
A stochastic approximation method for approximating the

efficient frontier of chance-constrained nonlinear programs∗

Rohit Kannan1 and James Luedtke2

1Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
E-mail: rohit.kannan@wisc.edu

2Department of Industrial & Systems Engineering and Wisconsin Institute for Discovery,
University of Wisconsin-Madison, Madison, WI, USA. E-mail: jim.luedtke@wisc.edu

Version 3 (this document): May 28, 2020

Version 2: November 8, 2019

Version 1: December 17, 2018

Abstract

We propose a stochastic approximation method for approximating the efficient frontier of chance-
constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-
constrained programs that seeks solutions on the efficient frontier of optimal objective value versus
risk of constraint violation. To this end, we construct a reformulated problem whose objective is to
minimize the probability of constraints violation subject to deterministic convex constraints (which
includes a bound on the objective function value). We adapt existing smoothing-based approaches
for chance-constrained problems to derive a convergent sequence of smooth approximations of our
reformulated problem, and apply a projected stochastic subgradient algorithm to solve it. In contrast
with exterior sampling-based approaches (such as sample average approximation) that approximate
the original chance-constrained program with one having finite support, our proposal converges
to stationary solutions of a smooth approximation of the original problem, thereby avoiding poor
local solutions that may be an artefact of a fixed sample. Our proposal also includes a tailored
implementation of the smoothing-based approach that chooses key algorithmic parameters based on
problem data. Computational results on four test problems from the literature indicate that our
proposed approach can efficiently determine good approximations of the efficient frontier.

Key words: stochastic approximation, chance constraints, efficient frontier, stochastic subgradient

1 Introduction

Consider the following chance-constrained nonlinear program (NLP):

ν∗α := min
x∈X

f(x) (CCP)

s.t. P {g(x, ξ) ≤ 0} ≥ 1− α,

where X ⊂ Rn is a nonempty closed convex set, ξ is a random vector with probability distribution P
supported on Ξ ⊂ Rd, f : Rn → R is a continuous quasiconvex function, g : Rn×Rd → Rm is continuously
differentiable, and the constant α ∈ (0, 1) is a user-defined acceptable level of constraint violation. We
explore a stochastic approximation algorithm for approximating the efficient frontier of optimal objective
value ν∗α for varying levels of the risk tolerance α in (CCP), i.e., to find a collection of solutions which
have varying probability of constraint violation, and where for each such solution the objective function
value is (approximately) minimal among solutions having that probability of constraint violation or

∗This research is supported by the Department of Energy, Office of Science, Office of Advanced Scientific Computing
Research, Applied Mathematics program under Contract Number DE-AC02-06CH11347.

1

ar
X

iv
:1

81
2.

07
06

6v
3

 [
m

at
h.

O
C

]
 2

8
M

ay
 2

02
0

smaller (see also [40, 52]). Most of our results only require mild assumptions on the data defining the
above problem, such as regularity conditions on the functions g and the ability to draw independent and
identically distributed (i.i.d.) samples of ξ from P, and do not assume Gaussianity of the distribution
P or make structural assumptions on the functions g (see Section 3). Our result regarding ‘convergence
to stationary solutions’ of (CCP) additionally requires ξ to be a continuous random variable satisfying
some mild distributional assumptions. We note that Problem (CCP) can model joint nonconvex chance
constraints, nonconvex deterministic constraints (by incorporating them in g), and even some recourse
structure (by defining g through the solution of auxiliary optimization problems, see Appendix C).

Chance-constrained programming was introduced as a modeling framework for optimization under
uncertainty by Charnes et al. [15], and was soon after generalized to the joint chance-constrained case
by Miller and Wagner [42] and to the nonlinear case by Prékopa [49]. Apart from a few known tractable
cases, e.g., see Prékopa [50] and Lagoa et al. [37], solving chance-constrained NLPs to optimality is in
general hard since the feasible region is not guaranteed to be convex and evaluating feasibility of the
probabilistic constraint involves multi-dimensional integration. Motivated by a diverse array of appli-
cations [11, 32, 39, 64], many numerical approaches for chance-constrained NLPs attempt to determine
good-quality feasible solutions in reasonable computation times (see Section 2 for a brief review).

Rather than solving (CCP) for a fixed α, we are interested in approximating the efficient frontier
between risk of constraint violation and objective value since this efficient frontier provides decision-
makers with a tool for choosing the parameter α in (CCP). An added advantage of estimating the
efficient frontier of (CCP) is that we automatically obtain an estimate of the efficient frontier of a family
of distributionally robust counterparts [36]. In this work, we investigate the potential of a stochastic
subgradient algorithm [20, 30, 47] for approximating the efficient frontier of (CCP). While our proposal
is more naturally applicable for approximating the efficient frontier, we also present a bisection strategy
for solving (CCP) for a fixed risk level α.

We begin by observing that the efficient frontier can be recovered by solving the following stochastic
optimization problem [52]:

min
x∈X

P {g(x, ξ) 6≤ 0} (1)

s.t. f(x) ≤ ν,

where the above formulation determines the minimum probability of constraints violation given an upper
bound ν on the objective function value. The reformulation in (1) crucially enables the use of stochastic
subgradient algorithms for its approximate solution. Assuming that (CCP) is feasible for risk levels of
interest, solving (1) using varying values of the bound ν yields the same efficient frontier as solving (CCP)
using varying values of α [52].

Let 1 : R → {0, 1}, defined by 1 [z] = 1 if z > 0 and 1 [z] = 0 if z ≤ 0, denote the characteristic
function of the set (0,+∞), and max [1 [g(x, ξ)]] denote max

j∈{1,··· ,m}
1 [gj(x, ξ)]. Note that the following

problem is equivalent to (1):
min
x∈Xν

E
[
max [1 [g(x, ξ)]]

]
,

where Xν denotes the closed convex set {x ∈ X : f(x) ≤ ν}. The above formulation is almost in the
form that stochastic gradient-type algorithms can solve [21], but poses two challenges that prevent
immediate application of such algorithms: the step function 1 [·] is discontinuous and the max function
is nondifferentiable. We propose to solve a partially-smoothened approximation of the above formulation
using the projected stochastic subgradient algorithm of Nurminskii [47] and Ermoliev and Norkin [26].
In particular, we use the procedure outlined in Davis and Drusvyatskiy [20] to solve our approximation
(also see the closely-related proposals of Ermoliev [25], Ghadimi et al. [30], and the references in these
works). To enable this, we replace the discontinuous step functions in the above formulation using
smooth approximations φj : R→ R, j ∈ {1, · · · ,m}, to obtain the following approximation to (1):

min
x∈Xν

E
[
max [φ (g(x, ξ))]

]
, (APPν)

where max [φ (g(x, ξ))] is shorthand for the composite function max{φ1 (g1(x, ξ)) , · · · , φm (gm(x, ξ))}.
Section 3.2 presents some options for the smooth approximations φj .

Our first primary contribution is to analyze the convergence of optimal solutions and stationary
points of (APPν) to those of problem (1). This analysis closely follows previous work on the use of

2

similar approximations for the chance-constrained problem (CCP) (cf. Hong et al. [34], Hu et al. [35],
Norkin [46], Shan et al. [56, 57], and Geletu et al. [29]). Our analysis is required because: i. our
approximations (APPν) involve a convergent sequence of approximations of the objective function of (1)
rather than a convergent sequence of approximations of the feasible region of (CCP), ii. we handle joint
chance-constrained NLPs directly without reducing them to the case of individual chance-constrained
programs, and iii. our computational results rely on a slight generalization of existing frameworks for
smooth approximation of the step function. Related to the first point, Norkin [46] analyzes smooth
approximations in the probability maximization context, but their analysis is restricted to the case when
the probability function being maximized is concave (see also Ermoliev et al. [28, Example 5.6], Shapiro
et al. [58, Section 4.4.2], Lepp [38], and the references in Norkin [46] for related work).

Our second primary contribution is to propose a practical implementation of a method based on
the projected stochastic subgradient algorithm of Nurminskii [47] and Ermoliev and Norkin [26] (we use
the specific version proposed in Davis and Drusvyatskiy [20]) to obtain stationary points for problem
(APPν) for varying levels of ν, and thus obtain an approximation of the efficient frontier. For each fixed
ν this method yields convergence to a neighborhood of an approximately stationary solution since the
objective function of (APPν) is weakly convex under mild assumptions [23, 47]. A similar approach
has been proposed in Norkin [46]. In particular, Norkin [46] considers the case when the function
g is jointly convex with respect to x and ξ, uses Steklov-Sobolev averaging for constructing (APPν)
from (1), assumes that the negative of the objective of (1) and the negative of the objective of (APPν)
are ‘α-concave functions’ (see Definition 2.3 of Norkin [46] or Definition 4.7 of Shapiro et al. [58]), and
establishes the rate of convergence of the stochastic quasigradient method of Ermoliev [25], Nemirovsky
and Yudin [45] for solving (APPν) to global optimality in this setting. Our contributions differ from
those of Norkin [46] in two main respects: we present theory for the case when (APPν) may not be
solved to global optimality (see Lepp [38] for a related approach), and we design and empirically test a
practical implementation of a stochastic approximation algorithm for approximating the solution of (1).

A major motivation for this study is the fact that sample average approximations [41] of (CCP) may
introduce “spurious local optima” as a byproduct of sampling as illustrated by the following example
from Section 5.2 of Curtis et al. [19] (see also the discussion in Ermoliev and Norkin [26, 27]).

Example 1. Consider the instance of (CCP) with n = 2, d = 2, X = Rn, ξ1 ∼ U [−12, 12], ξ2 ∼ U [−3, 3],

f(x) = x2, and g(x, ξ) =
x4
1

4 −
x3
1

3 −x
2
1 + 0.2x1− 19.5 + ξ2x1 + ξ1ξ2−x2 with α = 0.05. Figure 1 plots the

(lower) boundary of the feasible region defined by the chance constraint in a neighborhood of the optimal
solution x∗ ≈ (1.8,−0.1) along with the boundaries of the feasible region generated by a ten thousand
sample average approximation (SAA) of the chance constraint and the feasible region generated by the
smooth approximation of the step function adopted in this work. The points highlighted by triangles in
Figure 1 are local minima of the SAA approximation, but are not near any local minimia of the true
problem. We refer to these as spurious local minima.

Example 1 illustrates that obtaining a local optimal solution of an accurate SAA of (CCP) may not
necessarily yield a good solution even when ξ is a ‘well-behaved’ continuous random variable that makes
the probability function p(x) := P {g(x, ξ) 6≤ 0} ‘well behaved’ (even though it might be nonconvex).
While smoothing the chance constraint helps mitigate this issue (cf. Figure 1), existing algorithms [29, 57]
still use SAA to solve the resulting smooth approximation. By employing a stochastic subgradient
algorithm, we do not restrict ourselves to a single fixed batch of samples of the random variables, and
can therefore hope to converge to truly locally optimal solutions of (APPν). Our proposal leverages
well-known advantages of stochastic subgradient-type approaches, including a low per-iteration cost,
low memory requirement, good scaling with number of random variables and the number of joint chance
constraints, and reasonable scaling with the number of decision variables (cf. the discussion in Nemirovski
et al. [44]).

This article is organized as follows. Section 2 reviews related approaches for solving chance-constrained
NLPs. Section 3 establishes consistency of the smoothing approach in the limit of its parameter val-
ues, and discusses some choices for smooth approximation of the step function. Section 4 outlines our
proposal for approximating the efficient frontier of (CCP) and lists some practical considerations for its
implementation. Section 5 summarizes implementation details and presents computational experiments
on four test problems that illustrate the strength of our approach. We close with a summary of our con-
tributions and some avenues for future work in Section 6. The appendices present auxiliary algorithms,

3

Figure 1: Comparison of the boundary of the feasible region (in a neighborhood of the optimal solution)
of a SAA of Example 1 (with sample size 10000) with that of the smooth approximation of the step
function adopted in this work (the function φ is defined in Example 4 and the smoothing parameter
τ = 1.085).

-1.5 -0.5 0.5 1.5 2.5

x
1

-0.5

0

0.5

1

1.5

2

x
2

True boundary

SAA boundary

Smooth approximation

Spurious local minima

omitted proofs, and computational results, and provide technical and implementation-related details for
problems with recourse structure.

Notation. We use e to denote a vector of ones of suitable dimension, 1 [·] to denote the l.s.c. step
function, Xν := {x ∈ X : f(x) ≤ ν}, p(x) := P {g(x, ξ) 6≤ 0}, Bδ(x) := {z ∈ Rn : ‖z − x‖ < δ}, where
‖·‖ denotes the Euclidean norm, and ‘a.e.’ for the quantifier ‘almost everywhere’ with respect to the
probability measure P. Given functions h : Rn × Rd → Rm and φj : R → R, j = 1, · · · ,m, we
write max [h(x, ξ)] to denote max{hj(x, ξ) : j ∈ {1, . . . ,m}} and φ (h(x, ξ)) to denote the element-wise
composition (φ1(h1(x, ξ)), · · · , φm(hm(x, ξ))). Given a set Z ⊂ Rn, we let co{Z} denote its convex hull,
IZ(·) denote its indicator function, i.e., IZ(z) = +∞ if z 6∈ Z, and zero otherwise, NZ(z) denote its
normal cone at a vector z ∈ Rn and proj (z, Z) to denote the projection of z onto Z (we abuse notation
to write y = proj (z, Z) when Z is a nonempty closed convex set), and |Z| denote its cardinality when
it is a finite set. Given a twice differentiable function f : R → R, we write df(x) and d2f(x) to denote
its first and second derivatives at x ∈ R. Given a locally Lipschitz continuous function f : Rn → R, we
write ∂f(x) to denote its Clarke generalized gradient at a point x ∈ Rn [17] and ∂Bf(x) to denote its B-
subdifferential (note: ∂f(x) = co {∂Bf(x)}). We assume measurability of random functions throughout.

2 Review of related work

We restrict our attention in this brief review to algorithms that attempt to generate good-quality feasible
solutions to chance-constrained nonlinear programs.

In the scenario approximation approach, a fixed sample {ξi}Ni=1 of the random variables from the
distribution P is taken and the sampled constraints g(x, ξi) ≤ 0, ∀i ∈ {1, · · · , N}, are enforced in lieu of
the chance constraint P {g(x, ξ) ≤ 0} ≥ 1−α. The advantage of this approach is that the scenario problem
is a standard NLP that can be solved using off-the-shelf solvers. Calafiore, Campi, and Garatti [10, 12]
present upper bounds on the sample size N required to ensure that the solution of the scenario problem
is feasible for (CCP) with a given probability when the functions g(·, ξ) are convex for each fixed ξ ∈ Ξ.
When the functions g do not possess the above convexity property but instead satisfy alternative Lipschitz
assumptions, Luedtke and Ahmed [41, Section 2.2.3] determine an upper bound on N that provides

4

similar theoretical guarantees for a slightly perturbed version of the scenario problem. A major limitation
of scenario approximation is that it lacks strong guarantees on solution quality [41, 52]. A related
approach for obtaining feasible solutions to (CCP) constructs convex approximations of the feasible
region using conservative convex approximations of the step function [16, 43, 53]. Such approximations
again may result in overly conservative solutions, e.g., see Hong et al. [34] and Cao and Zavala [13].

There has been a recent surge of interest in iterative smoothing-based NLP approaches in which
the chance constraint p(x) ≤ α is replaced by a convergent sequence of smooth approximations. To
illustrate these approaches, consider first the case when we only have an individual chance constraint
(i.e., m = 1), and suppose p(x) = E

[
1 [g(x, ξ)]

]
≤ α is approximated by E

[
φk (g(x, ξ))

]
≤ α, where {φk}

is a monotonic sequence of smooth approximations converging to the step function. If each element of
{φk} is chosen to overestimate the step function, then solving the sequence of smooth approximations
furnishes feasible solutions to (CCP) of improving quality. Due to the difficulty in evaluating high-
dimensional expectations in general, the smooth approximation is typically applied to a scenario-based
approximation. Joint chance constraints have been accommodated either by replacing the max function
in E

[
max [φk (g(x, ξ))]

]
with its own convergent sequence of smooth approximations [35, 56], or by

conservatively approximating (CCP) using a Bonferroni-type approximation [43].
Lepp (see [38] and the references therein) proposes a stochastic version of a modified Lagrangian al-

gorithm for solving progressively refined smooth approximations of individual chance-constrained NLPs
with a differentiable probability function p, and establishes almost sure convergence to stationary so-
lutions of (CCP). A key difference between our proposal and Lepp’s [38] is that the latter requires a
diverging sequence of mini-batch sizes to ensure convergence. Andrieu et al. [5] propose smoothing and fi-
nite difference-based stochastic Arrow-Hurwicz algorithms for individual chance-constrained NLPs with
continuous random variables, and establish local convergence to stationary solutions under relatively
strong assumptions.

Hong et al. [34] propose a sequence of conservative nonsmooth difference-of-convex (DC) approxima-
tions of the step function and use it to solve joint chance-constrained convex programs. They establish
convergence of any stationary/optimal solution of the DC approximation scheme to the set of station-
ary/optimal solutions of (CCP) in the limit under certain assumptions. Hu et al. [35] build on this
work by developing a sequence of conservative smooth approximations of joint chance-constrained con-
vex programs (using log-sum-exp approximations of the max function), and use a sequential convex
approximation algorithm to solve their smooth approximation of a SAA of (CCP). Shan et al. [56, 57]
develop a family of conservative smooth DC approximations of the step function, also employ conserva-
tive log-sum-exp approximations of the max function to construct smooth approximations of (CCP), and
provide similar theoretical guarantees as Hong et al. [34] under slightly weaker assumptions. Geletu et al.
[29] propose a framework for conservative analytic approximations of the step function, provide similar
theoretical guarantees as these works, and illustrate the applicability of their framework for individual
chance-constrained NLPs using a class of sigmoid-like smoothing functions. They also propose smooth
outer-approximations of (CCP) for generating lower bounds. Adam et al. [1, 3] develop a continuous
relaxation of SAAs of (CCP), and propose to use smooth approximations of the step function that are
borrowed from the literature on mathematical programs with complementarity constraints along with
Benders’ decomposition [7] to determine stationary points. Cao and Zavala [13] propose a nonsmooth
sigmoidal approximation of the step function, and use it to solve a smooth approximation of a SAA
of individual chance-constrained NLPs. They propose to initialize their algorithm using the solution of
a SAA of a conservative approximation of (CCP) obtained by replacing the step function with a con-
vex overestimate [53]. Finally, Peña-Ordieres et al. [48] also consider using a smooth approximation on
an SAA of (CCP), analyze the joint convergence with respect to sample size and sequence of smooth
approximations, propose to solve a quantile-based approximation, and devise a trust-region method to
solve the approximation when applied to a joint chance constraint.

An alternative to smoothing the chance constraint is to solve a SAA problem directly using mixed-
integer NLP techniques, which may be computationally challenging, especially when the constraint func-
tions g are not convex with respect to the decisions x. Several tailored approaches [40, 61] have been
proposed for solving SAAs of chance-constrained convex programs. Curtis et al. [19] attempt to directly
solve a SAA of (CCP) using NLP techniques. They develop an exact penalty function for the SAA, and
propose a trust region algorithm that solves quadratic programs with linear cardinality constraints to
converge to stationary points of (CCP).

Another important body of work by van Ackooij and Henrion [59, 60] establishes (sub)gradient

5

formulae for the probability function p when the function g possesses special structure and P is a Gaus-
sian or Gaussian-like distribution. These approaches employ internal sampling to numerically evaluate
(sub)gradients, and can be used within a NLP framework for computing stationary point solutions
to (CCP). When Problem (CCP) possesses certain special structures, NLP approaches based on ‘p-
efficient points’ [22, 62] can also be employed for its solution.

The recent independent work of Adam and Branda [2] also considers a stochastic approximation
method for chance-constrained NLPs. They consider the case when the random vector ξ has a discrete
distribution with finite (but potentially large) support, rewrite the chance constraint in (CCP) using a
quantile-based constraint, develop a penalty-based approach to transfer this constraint to the objective,
and employ a mini-batch projected stochastic subgradient method to determine an approximately sta-
tionary solution to (CCP) for a given risk level. This work does not include a analysis that shows the
method converges to a stationary solution.

3 The smoothing approach

In the first part of this section, we establish conditions under which global/stationary solutions of con-
vergent sequences of smooth approximations (APPν) converge to a global/stationary solution of (1). We
then present some concrete examples of sequences of smooth approximations that can be accommodated
within this framework.

3.1 Consistency

We establish sufficient conditions under which solving a sequence of smooth approximations (APPν) of
the stochastic program (1) yields a point on the efficient frontier of (CCP). The techniques in this section
follow closely those in previous work that analyzed similar convergence for (CCP) (cf. Hong et al. [34], Hu
et al. [35], Shan et al. [56, 57], and Geletu et al. [29]). We use the following assumptions on Problem (1)
in our analysis. Not all results we present require all these assumptions; the required assumptions are
included in the statements of our results.

Assumption 1. The convex set Xν := {x ∈ X : f(x) ≤ ν} is nonempty and compact.

Assumption 2. For each x ∈ Xν , P {max [g(x, ξ)] = 0} = 0.

Assumption 3. The following conditions on the functions gj hold for each ξ ∈ Ξ and j ∈ {1, · · · ,m}:

A. The function gj(·, ξ) is Lipschitz continuous on Xν with a nonnegative measurable Lipschitz con-
stant Lg,j(ξ) satisfying E

[
L2
g,j(ξ)

]
< +∞.

B. The gradient function ∇gj(·, ξ) is Lipschitz continuous on Xν with a measurable Lipschitz constant

L
′

g,j(ξ) ∈ R+ satisfying E
[
L
′

g,j(ξ)
]
< +∞.

C. There exist positive constants σg,j satisfying E
[
‖∇xgj(x̄, ξ)‖2

]
≤ σ2

g,j , ∀x̄ ∈ Xν .

Assumption 1 is used to ensure that Problem (1) is well defined (see Lemma 1). Assumption 2 guaran-
tees that the family of approximations of the function p considered converge pointwise to it on Xν in the
limit of their parameter values (see Proposition 1). This assumption, when enforced, essentially restricts
ξ to be a continuous random variable (see Lemma 1 for a consequence of this assumption). Assumption 3
is a standard assumption required for the analysis of stochastic approximation algorithms that serves two
purposes: it ensures that the approximations of the function p possess important regularity properties
(see Lemma 2), and it enables the use of the projected stochastic subgradient algorithm for solving the
sequence of approximations (APPν). Note that Assumption 2 is implied by Assumption 6B, which we
introduce later, and that Assumption 3A implies E

[
Lg,j(ξ)

]
< +∞.

Lemma 1. The probability function p : Rn → [0, 1] is lower semicontinuous. Under Assumption 2, we
additionally have that p is continuous on Xν .

Proof. Follows from Theorem 10.1.1 of Prékopa [50].

6

A natural approach to approximating the solution of Problem (1) is to construct a sequence of
approximations (APPν) based on an associated sequence of smooth approximations that converge to the
step function (cf. Section 2). In what follows, we use {φk} to denote a sequence of smooth approximations
of the step function, where φk corresponds to a vector of approximating functions (φk,1, · · · , φk,m) for
the m constraints defined by the function g. Since we are mainly interested in employing sequences
of approximations {φk} that depend on associated sequences of smoothing parameters {τk} (with φk,j
‘converging’ to the step function 1 [·] as the smoothing parameter τk,j converges to zero), we sometimes
write φ(·; τk,j), where φ : R × R+ → R, instead of φk,j(·) to make this parametric dependence explicit.
For ease of exposition, we make the following (mild) blanket assumptions on each element of the sequence
of smoothing functions {φk} throughout this work. Section 3.2 lists some examples that satisfy these
assumptions.

Assumption 4. The following conditions hold for each k ∈ N and j ∈ {1, · · · ,m}:

A. The functions φk,j : R→ R are continuously differentiable.

B. Each function φk,j is nondecreasing, i.e., y ≥ z =⇒ φk,j(y) ≥ φk,j(z).
C. The functions φk,j are equibounded, i.e., there exists a universal constant Mφ > 0 (independent of

indices j and k) such that |φk,j(y)| ≤Mφ, ∀y ∈ R.

D. Each approximation φk,j(y) converges pointwise to the step function 1 [y] except possibly at y = 0,
i.e., lim

k→∞
φk,j(y) = 1 [y] , ∀y ∈ R\{0}, or, equivalently, lim

k→∞
φ(y; τk,j) = 1 [y] , ∀y ∈ R\{0}.

We say that ‘the strong form of Assumption 4’ holds if Assumption 4D is replaced with the stronger
condition of pointwise convergence everywhere, i.e., lim

k→∞
φk,j(y) = 1 [y] , ∀y ∈ R. Note that a sequence

of conservative smooth approximations of the step function (which overestimate the step function every-
where) cannot satisfy the strong form of Assumption 4, whereas sequences of underestimating smooth
approximations of the step function may satisfy it (see Section 3.2). In the rest of this paper, we use
p̂k(x) to denote the approximation E

[
max [φk (g(x, ξ))]

]
(again, we sometimes write p̂(x; τk) instead of

p̂k(x) to make its dependence on the smoothing parameters τk explicit). Note that p̂k : Rn → R is
continuous under Assumption 4, see Shapiro et al. [58, Theorem 7.43]. The following result establishes
sufficient conditions under which p̂k(x)→ p(x) pointwise on Xν .

Proposition 1. Suppose Assumptions 2 and 4 hold, or the strong form of Assumption 4 holds. Then
lim
k→∞

p̂k(x) ≡ lim
k→∞

p̂(x; τk) = p(x), ∀x ∈ Xν .

Proof. Define hk : Rn × Rd → R by hk(x, ξ) := max [φk (g(x, ξ))] for each k ∈ N, and note that hk is
continuous by virtue of Assumption 4A. Additionally, Assumption 4C implies that |hk(x, ξ)| ≤ Mφ for
each x ∈ Rn, ξ ∈ Rd, and k ∈ N. By noting that for each x ∈ Xν ,

lim
k→∞

hk(x, ξ) = max [1 [g(x, ξ)]]

for a.e. ξ ∈ Ξ due to Assumptions 2 and 4 (or just the strong form of Assumption 4), we obtain the
stated result by Lebesgue’s dominated convergence theorem [58, Theorem 7.31].

The next two results show that a global solution of (1) can be obtained by solving a sequence of
approximations (APPν) to global optimality. To achieve this, we rely on the concept of epi-convergence of
sequences of extended real-valued functions (see Rockafellar and Wets [54, Chapter 7] for a comprehensive
introduction).

Proposition 2. Suppose Assumptions 2 and 4 hold. Then, the sequence of functions {p̂k(·) + IXν (·)}k
epi-converges to p(·) + IXν (·) for each ν ∈ R.

Proof. Define hk : Rn → R and h : Rn → R by hk(x) := p̂k(x) + IXν (x) and h(x) := p(x) + IXν (x),
respectively. From Proposition 7.2 of Rockafellar and Wets [54], we have that {hk} epi-converges to h if
and only if at each x ∈ Rn

lim inf
k→∞

hk(xk) ≥ h(x), for every sequence {xk} → x, and

lim sup
k→∞

hk(xk) ≤ h(x), for some sequence {xk} → x.

7

Consider the constant sequence with xk = x for each k ∈ N. We have

lim sup
k→∞

hk(xk) = IXν (x) + lim sup
k→∞

p̂k(x) = IXν (x) + p(x) = h(x)

as a result of Proposition 1, which establishes the latter inequality.
To see the former inequality, consider an arbitrary sequence {xk} in Rn converging to x ∈ Rn. By

noting that the indicator function IXν (·) is lower semicontinuous (since Xν is closed) and

lim inf
k→∞

hk(xk) ≥ lim inf
k→∞

p̂k(xk) + lim inf
k→∞

IXν (xk),

it suffices to show lim infk p̂k(xk) ≥ p(x) to establish {hk} epi-converges to h. In fact, it suffices to show
the above inequality holds for any x ∈ Xν since the former inequality holds trivially for x 6∈ Xν .

Define qk : Rd → R by qk(ξ) := max [φk (g(xk, ξ))], and note that qk is P-integrable by virtue of
Assumption 4. By Fatou’s lemma [58, Theorem 7.30], we have that

lim inf
k

E
[
qk(ξ)

]
= lim inf

k
p̂k(xk) ≥ E

[
q(ξ)

]
,

where q : Rd → R is defined as

q(ξ) := lim inf
k

qk(ξ) = lim inf
k

max [φk (g(xk, ξ))] .

Therefore, it suffices to show that q(ξ) ≥ max [1 [g(x, ξ)]] a.e. for each x ∈ Xν to establish the former
inequality. (Note that this result holds with Assumption 2 if the strong form of Assumption 4 is made.)

Fix ξ ∈ Ξ. Let l ∈ {1, · · · ,m} denote an index at which the maximum in max [1 [g(x, ξ)]] is attained,
i.e., max [1 [g(x, ξ)]] = 1 [gl(x, ξ)]. Consider first the case when gl(x, ξ) > 0. By the continuity of the
functions g, for any ε > 0 there exists Nε ∈ N such that j ≥ Nε =⇒ g(xj , ξ) > g(x, ξ)− εe. Therefore

q(ξ) = lim inf
k

max [φk (g(xk, ξ))] ≥ lim inf
k

max [φk (g(x, ξ)− εe)] ≥ lim inf
k

φk,l (gl(x, ξ)− ε) ,

where the first inequality follows from Assumption 4B. Choosing ε < gl(x, ξ) yields

q(ξ) = lim inf
k

max [φk (g(xk, ξ))] ≥ lim inf
k

φk,l (gl(x, ξ)− ε) = 1 = max [1 [g(x, ξ)]]

by virtue of Assumption 4D. The case when gl(x, ξ) < 0 follows more directly since

q(ξ) = lim inf
k

max [φk (g(xk, ξ))] ≥ lim inf
k

φk,l (gl(x, ξ)− ε) = 1 [gl(x, ξ)− ε] = 0 = max [1 [g(x, ξ)]] ,

where the second equality follows from Assumption 4. Since max [g(x, ξ)] 6= 0 a.e. ∀x ∈ Xν by Assump-
tion 2, we have that q(ξ) ≥ max [1 [g(x, ξ)]] a.e. for each x ∈ Xν , which concludes the proof.

A consequence of the above proposition is the following key result (cf. Hong et al. [34, Theo-
rem 2], Shan et al. [57, Theorem 4.1], Geletu et al. [29, Corollary 3.7], and Cao and Zavala [13, Theo-
rem 5]), which establishes convergence of the optimal solutions and objective values of the sequence of
approximating problems (APPν) to those of the true problem (1).

Theorem 1. Suppose Assumptions 1, 2, and 4 hold. Then

lim
k→∞

min
x∈Xν

p̂(x; τk) = min
x∈Xν

p(x) and lim sup
k→∞

arg min
x∈Xν

p̂(x; τk) ⊂ arg min
x∈Xν

p(x).

Proof. Follows from Proposition 2 and Theorem 7.33 of Rockafellar and Wets [54].

Theorem 1 has a couple of practical limitations. First, it is not applicable to situations where ξ is
a discrete random variable since it relies crucially on Assumption 2. Second, it only establishes that
any accumulation point of a sequence of global minimizers of (APPν) is a global minimizer of (1).
Since (APPν) involves minimizing a nonsmooth nonconvex expected-value function, obtaining a global
minimizer of (APPν) is itself challenging. The next result circumvents the first limitation when the
smoothing function is chosen judiciously (cf. the outer-approximations of Geletu et al. [29] and Sec-
tion 3.2). Proposition 4 shows that strict local minimizers of (1) can be approximated using sequences of
local minimizers of (APPν). While this doesn’t fully address the second limitation, it provides some hope
that strict local minimizers of (1) may be approximated by solving a sequence of approximations (APPν)
to local optimality. Theorem 2 establishes that accumulation points of sequences of stationary solutions
to the approximations (APPν) yield stationary solutions to (1) under additional assumptions.

8

Proposition 3. Suppose the approximations {φk} satisfy the strong form of Assumption 4. Then
the sequence of functions {p̂k(·) + IXν (·)}k epi-converges to p(·) + IXν (·). Moreover, the conclusions of
Theorem 1 hold if we further make Assumption 1.

Proof. Follows by noting that Assumption 2 is no longer required for the proof of Proposition 2 when
the strong form of Assumption 4 is made.

In fact, the proof of Proposition 3 becomes straightforward if we impose the additional (mild) con-
dition (assumed by Geletu et al. [29]) that the sequence of smooth approximations {φk} is monotone
nondecreasing, i.e., φk+1,j(y) ≥ φk,j(y), ∀y ∈ R, k ∈ N, and j ∈ {1, · · · ,m}. Under this additional
assumption, the conclusions of Proposition 3 follow from Proposition 7.4(d) and Theorem 7.33 of Rock-
afellar and Wets [54].

The next result, in the spirit of Proposition 3.9 of Geletu et al. [29], shows that strict local minimizers
of (1) can be approximated using local minimizers of (APPν).

Proposition 4. Suppose the assumptions of Theorem 1 (or those of Proposition 3) hold. If x∗ is a strict
local minimizer of (1), then there exists a sequence of local minimizers {x̂k} of min

x∈Xν
p̂k(x) with x̂k → x∗.

Proof. Since x∗ is assumed to be a strict local minimizer of (1), there exists δ > 0 such that p(x) > p(x∗),
∀x ∈ Xν ∩ cl (Bδ(x

∗)). Since Xν ∩ cl (Bδ(x
∗)) is compact, min

x∈Xν∩cl(Bδ(x∗))
p̂k(x) has a global minimum,

say x̂k, due to Assumption 4A. Furthermore, {x̂k} has a convergent subsequence in Xν ∩ cl (Bδ(x
∗)).

Assume without loss of generality that {x̂k} itself converges to x̂ ∈ Xν ∩ cl (Bδ(x
∗)). Applying

Theorem 1 to the above sequence of restricted minimization problems yields the conclusion that x̂ is a
global minimizer of p on Xν ∩ cl (Bδ(x

∗)), i.e., p(x) ≥ p(x̂), ∀x ∈ Xν ∩ cl (Bδ(x
∗)). Since x∗ is a strict

local minimizer of (1), this implies x̂ = x∗. Since {x̂k} → x∗, this implies that xk belongs to the open
ball Bδ(x

∗) for k sufficiently large. Therefore, x̂k is a local minimizer of min
x∈Xν

p̂k(x) for k sufficiently

large since it is a global minimizer of the above problem on Bδ(x
∗).

We are unable to establish the more desirable statement that a convergent sequence of local mini-
mizers of approximations (APPν) converges to a local minimizer of (1) without additional assumptions
(cf. Theorem 2).

The next few results work towards establishing conditions under which a convergent sequence of
stationary solutions to the sequence of approximating problems (APPν) converges to a stationary point
of (1). We make the following additional assumptions on each element of the sequence of smoothing
functions {φk} for this purpose.

Assumption 5. The following conditions hold for each k ∈ N and j ∈ {1, · · · ,m}:

A. The derivative mapping dφk,j(·) is bounded by M
′

φ,k,j on R, i.e., |dφk,j(y)| ≤M ′

φ,k,j , ∀y ∈ R.

B. The derivative mapping dφk,j(·) is Lipschitz continuous on R with Lipschitz constant L
′

φ,k,j ∈ R+.

The above assumptions are mild since we let the constants M
′

φ,k,j and L
′

φ,k,j depend on the sequence
index k. Note that in light of Assumption 4A, Assumption 5A is equivalent to the assumption that
φk,j(·) is Lipschitz continuous on R with Lipschitz constant M

′

φ,k,j . We make the following assumptions
on the cumulative distribution function of a ‘scaled version’ of the constraint functions g and on the
sequence {φk,j} of smoothing functions to establish Proposition 6 and Theorem 2.

Assumption 6. The following conditions on the constraint functions g, the distribution of ξ, and the
sequences {φk,j} of smoothing functions hold for each k ∈ N and ν ∈ R of interest:

A. The sequence of smoothing parameters {τk} satisfies

τk+1,j = τcτk,j with τ1,j > 0, ∀j ∈ {1, · · · ,m}, (2)

for some constant factor τc ∈ (0, 1), i.e., for each j ∈ {1, · · · ,m}, the smoothing parameters are
chosen from a monotonically decreasing geometric sequence (with limit zero). Furthermore, the
underlying smoothing function φ is homogeneous of degree zero, i.e.,

φ(λy;λz) = φ(y; z), ∀λ > 0, y ∈ R, z ∈ R+.

9

B. For each j ∈ {1, · · · ,m}, let ḡj : Rn × Rd → R be defined by ḡj(x, ξ) :=
gj(x,ξ)
τ1,j

, ∀(x, ξ) ∈
Rn ×Rd. Let F : Rn ×R→ [0, 1] denote the cumulative distribution function of max [ḡ(x, ξ)], i.e.,
F (x, η) := P {max [ḡ(x, ξ)] ≤ η}. There exists a constant θ > 0 such that distribution function F is
continuously differentiable on X̄×(−θ, θ), where X̄ ⊃ Xν is an open subset of Rn. Furthermore, for
each η ∈ R, F (·, η) is Lipschitz continuous on Xν with a measurable Lipschitz constant LF (η) ∈ R+

that is also Lebesgue integrable, i.e.,
∫
LF (η)dη < +∞.

C. There exists a sequence of positive constants {εk} ↓ 0 such that

lim
k→∞

∫
|η|≥εk

LF (η)dφ(η; τk−1
c)dη = 0 and lim

k→∞
φ(εk; τk−1

c)− φ(−εk; τk−1
c) = 1.

Assumption 6A is a mild assumption on the choice of the smoothing functions φk that is satisfied by
all three examples in Section 3.2. When this assumption is made in conjunction with Assumption 4B,
the approximation p̂k(x) := E

[
max [φk (g(x, ξ))]

]
can be rewritten as p̂k(x) = E

[
φ
(
max [ḡ(x, ξ)] ; τk−1

c

)]
,

which lends the following interpretation: the sequence of approximations {p̂k} can be thought of as
having been constructed using the same sequence of smoothing parameter values {τk,j} = {τk−1

c } for each
constraint j on a rescaled version ḡj of the constraint function gj . The Lipschitz continuity assumption
in Assumption 6B is mild (and is similar to Assumption 4 of Shan et al. [57]). The assumption of
local continuous differentiability of the distribution function F in Assumption 6B is quite strong (this
assumption is similar to Assumption 4 of Hong et al. [34]). A consequence of this assumption is that
the function p(x) ≡ 1−F (x, 0) is continuously differentiable on X̄. Finally, note that Assumption 6C is
mild, see Section 3.2 for examples that (trivially) satisfy it. When made along with Assumption 4, the
first part of this assumption ensures that the mapping dφ(·; τk−1

c) approaches the ‘Dirac delta function’
sufficiently rapidly (cf. Remark 3.14 of Ermoliev et al. [28]).

The following result ensures that the Clarke gradient of the approximation p̂k is well defined.

Lemma 2. Suppose Assumptions 3, 4, and 5 hold. Then for each k ∈ N:

1. φk,j(gj(·, ξ)) is Lipschitz continuous on Xν with Lipschitz constant M
′

φ,k,jLg,j(ξ) for each ξ ∈ Ξ
and j ∈ {1, · · · ,m}.

2. p̂k is Lipschitz continuous on Xν with Lipschitz constant E
[

max
j∈{1,··· ,m}

[
M
′

φ,k,jLg,j(ξ)
]]

.

Proof. 1. For any x, y ∈ Xν , j ∈ {1, · · · ,m}, and ξ ∈ Ξ, we have

|φk,j (gj(y, ξ))− φk,j (gj(x, ξ))| ≤M
′

φ,k,j |gj(y, ξ)− gj(x, ξ)| ≤M
′

φ,k,jLg,j(ξ)‖y − x‖,

where the first step follows from Assumptions 4A and 5A and the mean-value theorem, and the
second step follows from Assumption 3A.

2. For any x, y ∈ Xν , we have

|p̂k(y)− p̂k(x)| =
∣∣E[max [φk (g(y, ξ))]−max [φk (g(x, ξ))]

]∣∣
≤ E

[
max [|φk (g(y, ξ))− φk (g(x, ξ))|]

]
≤ E

[
max
j

[
M
′

φ,k,jLg,j(ξ)
]]
‖y − x‖,

which completes the proof.

The next result characterizes the Clarke generalized gradient of the approximating objectives p̂k.

Proposition 5. Suppose Assumptions 3, 4, and 5 hold. Then the Clarke generalized gradient of p̂k can
be expressed as

∂p̂k(x) = E
[
co {Γk(x, ξ)}

]
,

where Γk : Rn×Rd ⇒ Rn is defined as Γk(x, ξ) := {∇xφk,l(gl(x, ξ)) : l ∈ A(x, ξ)}, A(x, ξ) denotes the set
of active indices l ∈ {1, · · · ,m} at which max [φk (g(x, ξ))] = φk,l (gl(x, ξ)), and the expectation above is
to be interpreted in the sense of Definition 7.39 of Shapiro et al. [58].

10

Proof. From the corollary to Proposition 2.2.1 of Clarke [17], we have that φk (g(·, ξ)) is strictly differen-
tiable. Theorem 2.3.9 of Clarke [17] then implies that max [φk (g(·, ξ))] is Clarke regular. The stronger
assumptions of Theorem 2.7.2 of Clarke [17] are satisfied because of Assumption 4, Lemma 2, and the
regularity of max [φk (g(·, ξ))], which then yields

∂p̂k(x) = ∂E
[
max [φk (g(x, ξ))]

]
= E

[
∂x max [φk (g(x, ξ))]

]
.

Noting that φk (g(·, ξ)) is Clarke regular from Proposition 2.3.6 of Clarke [17], the stated equality then
follows from Proposition 2.3.12 of Clarke [17].

The next result, similar to Lemma 4.2 of Shan et al. [57], helps characterize the accumulation points
of stationary solutions to the sequence of approximations (APPν).

Proposition 6. Suppose Assumptions 3, 4, 5, and 6 hold. Then

lim sup
x→x̄
k→∞

∂p̂k(x) +NXν (x) ⊂ {∇p(x̄)}+NXν (x̄).

Proof. See Appendix B.

The following key result is an immediate consequence of the above proposition (cf. Shan et al. [57,
Theorem 4.2]), and establishes convergence of Clarke stationary solutions of the sequence of approximat-
ing problems (APPν) to those of the true problem (1).

Theorem 2. Suppose Assumptions 1, 3, 4, 5, and 6 hold. Let {xk} be a sequence of stationary solutions
to the sequence of approximating problems min

x∈Xν
p̂k(x). Then every accumulation point of {xk} is an

stationary solution to min
x∈Xν

p(x).

Proof. From the corollary to Proposition 2.4.3 of Clarke [17], we have 0 ∈ ∂p̂k(xk) +NXν (xk) by virtue
of the stationarity of xk for min

x∈Xν
p̂k(x). The stated result follows from Proposition 6 since 0 ∈ {∇p(x̄)}+

NXν (x̄) for any accumulation point x̄ of {xk} (see Theorem 5.37 of Rockafellar and Wets [54]).

3.2 Examples of smooth approximations

We present a few examples of sequences of smooth approximations of the step function that satisfy
Assumptions 4, 5, and 6. Throughout this section, we let {τk,j}, j ∈ {1, · · · ,m}, denote sequences of
positive reals satisfying (2).

Example 2. This example is from Example 5.1 of Shan et al. [57]. The sequence of approximations

φk,j(y) =

0 if y < −τk,j ,

1− 2
(

y
τk,j

)3

− 3
(

y
τk,j

)2

if − τk,j ≤ y ≤ 0,

1 if y > 0

of the step function satisfy Assumptions 4 and 5. Assumption 6A is easily verified, and Assumption 6C
trivially holds with εk = τk−1

c .

Example 3. This example is based on the above example and the outer-approximation framework
of Geletu et al. [29]. The sequence of approximations

φk,j(y) =

0 if y < 0,

1− 2
(
y−τk,j
τk,j

)3

− 3
(
y−τk,j
τk,j

)2

if 0 ≤ y ≤ τk,j ,
1 if y > τk,j

of the step function satisfy the strong form of Assumption 4 and Assumption 5. Assumption 6A is easily
verified, and Assumption 6C trivially holds with εk = τk−1

c .

11

Figure 2: Illustration of the examples of smoothing functions in Section 3.2.

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

y

0

0.2

0.4

0.6

0.8

1

(y
)

step function

Example 1

Example 2

Our approximation

The next example is the sequence of smooth approximations {φk} that we adopt in this work.

Example 4. The sequence of approximations

φk,j(y) =
1

1 + exp
(
− y
τk,j

)
of the step function satisfy Assumptions 4 and 5 (see Proposition 7). Assumption 6A is easily verified,

and Assumption 6C could be satisfied with εk = τ
β(k−1)
c for some constant β ∈ (0, 1) (depending on the

distribution function F , cf. Remark 3.14 of Ermoliev et al. [28]).

Figure 2 illustrates the above smoothing functions with the common smoothing parameter τ = 0.1.
We refer the reader to the works of Shan et al. [57], Geletu et al. [29], and Cao and Zavala [13] for other
examples of ‘smooth’ approximations that can be accommodated within our framework. The next result
estimates some important constants related to our smooth approximation in Example 4.

Proposition 7. The sequence of approximations {φk} in Example 4 satisfies Assumption 5 with con-
stants M

′

φ,k,j ≤ 0.25τ−1
k,j and L

′

φ,k,j ≤ 0.1τ−2
k,j , ∀k ∈ N, j ∈ {1, · · · ,m}.

Proof. The bounds follow by noting that for each y ∈ R:

dφk(y) =
τ−1
k,j[

exp(0.5τ−1
k,j y) + exp(−0.5τ−1

k,j y)
]2 ≤ 0.25τ−1

k,j , and

∣∣d2φk,j(y)
∣∣ = τ−2

k,j

∣∣∣∣∣∣∣
exp

(
y

2τk,j

)
− exp

(
− y

2τk,j

)
[
exp

(
y

2τk,j

)
+ exp

(
− y

2τk,j

)]3
∣∣∣∣∣∣∣ ≤ 0.1τ−2

k,j ,

where the final inequality is obtained by maximizing the function x 7→

∣∣∣∣∣ x− 1
x(

x+ 1
x

)3
∣∣∣∣∣ on R.

4 Proposed algorithm

Our proposal for approximating the efficient frontier of (CCP) involves solving a sequence of approxima-
tions (APPν) constructed using the sequence of smooth approximations of the step function introduced

12

in Example 4. We use the projected stochastic subgradient algorithm of Davis and Drusvyatskiy [20]
to obtain an approximately stationary solution to (APPν) for each value of the objective bound ν and
each element of the sequence of smoothing parameters {τk} (note that we suppress the constraint in-
dex j in our notation from here on unless necessary). Section 4.1 outlines a conceptual algorithm for
approximating the efficient frontier of (CCP) using the projected stochastic subgradient algorithm, and
Sections 4.2 and 4.3 outline our proposal for estimating some parameters of the algorithm in Section 4.1
that are important for a good practical implementation.

4.1 Outline of the algorithm

Algorithm 1 presents a prototype of our approach for constructing an approximation of the efficient
frontier of (CCP). It takes as input an initial guess x̂0, a sequence of objective bounds {νi}Mi=1, the
maximum number of ‘runs’, R, of the projected stochastic subgradient method, and the maximum number
of iterations of the method in each run, Nmax. For each objective bound νi, we first determine a sequence
of smoothing parameters and step lengths {(τk, γk)}Kk=1 for the sequence of approximations (APPν). The
middle loop of Algorithm 1 then iteratively solves the sequence of approximations (APPν) with ν = νi

and smoothing parameters {τk} by using the solution from the previous approximation as its initial
guess. The innermost loop of Algorithm 1 monitors the progress of the stochastic subgradient method
over several ‘runs’. Each run generates a candidate solution x̄i,k,r with risk level ᾱi,k,r (we omit the
superscript r in Algorithm 1 for simplicity), and we move on to the next approximation in the sequence
either if insufficient progress is made over the last few runs, or if the number of runs exceeds its limit.
Since the choice of the smoothing parameters {τk}, step lengths {γk}, and the termination criteria
employed within Algorithm 1 are important for its practical performance, we present our proposal for
estimating/setting these algorithmic parameters from the problem data in Section 4.2. First, we split
Algorithm 1 into several component algorithms so that it is easier to parse.

Algorithm 2 outlines our proposal for approximating the efficient frontier of (CCP). This algorithm
takes as its inputs an initial guess x̂0 ∈ X, an initial objective bound ν̄0 of interest, an objective spacing
ν̃ for discretizing the efficient frontier, and a lower bound αlow on risk levels of interest that is used
as a termination criterion. Section 4.2 prescribes ways to determine a good initial guess x̂0 and initial
bound ν̄0, whereas Section 5.1 lists our setting for ν̃, αlow, and other algorithmic parameters. The
preprocessing step uses Algorithm 4 to determine a suitable initial sequence of smoothing parameters
{τk} based on the problem data, and uses this choice of {τk} to determine an initial sequence of step
lengths for the stochastic subgradient algorithm (see Section 4.2). Good choices of both parameters are
critical for our proposal to work well. The optimization phase of Algorithm 2 uses Algorithm 3 to solve
the sequence of approximations (APPν) for different choices of the objective bound ν = ν̄i (note that
Algorithm 3 rescales its input smoothing parameters {τ̄k} at the initial guess x̄i for each bound ν̄i).
Finally, Algorithm 8 in the appendix adapts Algorithm 2 to solve (CCP) approximately for a given risk
level α̂.

Algorithm 3 solves a sequence of approximations (APPν) for a given objective bound ν using the
projected stochastic subgradient algorithm of Davis and Drusvyatskiy [20] and an adaptation of the two-
phase randomized stochastic projected gradient method of Ghadimi et al. [30]. This algorithm begins
by rescaling the smoothing parameters {τ̄k} at the initial guess x̄0 using Algorithm 4 to ensure that
the sequence of approximations (APPν) are ‘well-scaled’1 at x̄0. The optimization phase then solves
each element of the sequence of approximations (APPν) using two loops: the inner loop employs a mini-
batch version2 of the algorithm of Davis and Drusvyatskiy [20] to solve (APPν) for a given smoothing
parameter τk, and the outer loop assesses the progress of the inner loop across multiple ‘runs/replicates’
(the initialization strategy for each run is based on Algorithm 2-RSPG-V of Ghadimi et al. [30]). Finally,
the initial guess for the next approximating problem (APPν) is set to be a solution corresponding to the
smallest estimate of the risk level determined thus far. This initialization step is important for the next
approximating problem in the sequence to be well-scaled at its initial guess - this is why we do not solve
a ‘single tight approximating problem’ (APPν) that can be hard to initialize (cf. Figure 2), but instead
solve a sequence of approximations to approximate the solution of (1). Note that while the number
of iterations N of the inner projected stochastic subgradient loop is chosen at random as required by

1We make this notion more precise in Section 4.2.
2Although Davis and Drusvyatskiy [20] establish that mini-batching is not necessary for the convergence of the projected

stochastic subgradient algorithm, a small mini-batch can greatly enhance the performance of the algorithm in practice.

13

Algorithm 1 Prototype of algorithm for approximating the efficient frontier of (CCP)

1: Input: initial point x̂0 ∈ X, sequence of objective bounds {νi}Mi=1, maximum number of projected
stochastic subgradient iterations, Nmax, and number of ‘runs’ of the stochastic subgradient method,
R.

2: Output: pairs {(νi, α̂i)}Mi=1 of objective values and risk levels on the approximation of the efficient
frontier along with associated solutions {x̂i}Mi=1.

3: for iteration i = 1 to M do . Loop through the objective bounds {νi}
4: Set initial guess x̄i,0 := x̂i−1.
5: Determine sequence of smoothing parameters and step lengths {(τk, γk)}Kk=1.
6: for approximation k = 1 to K do . Loop through the sequence of smooth approximations
7: Set initial guess x̃k,0 := x̄i,k−1 for approximation k.
8: for run r = 1 to R do . Runs of the stochastic subgradient method
9: Initialize the first iterate x1 := x̃k,0.

10: Choose number of iterations N for this run uniformly at random from {1, · · · , Nmax}.
11: Execute N iterations of the projected stochastic subgradient algorithm of [20] for solv-

ing (APPν) with
ν = νi and smoothing parameter τk using step length γk.

12: Set x̄i,k to be the last iterate of the stochastic subgradient method, and estimate its risk
level ᾱi,k.

13: Update incumbents (α̂i, x̂i) with (ᾱi,k, x̄i,k) if needed. Update x̃k,0 = x̄i,k.
14: If there is insufficient improvement in the incumbent α̂i over the last few runs, exit the

‘runs’ loop.
15: end for
16: Update initial guess for the next approximation in the sequence to the incumbent solution,

i.e., set x̄i,k = x̂i.
17: end for
18: end for

Algorithm 2 Approximating the efficient frontier of (CCP)

1: Input: initial point x̂0 ∈ X, initial objective bound ν̄0, objective spacing ν̃, and lower bound on risk
levels of interest αlow ∈ (0, 1).

2: Set algorithmic parameters: mini-batch size M , maximum number of iterations Nmax, minimum
and maximum number of ‘runs’, Rmin and Rmax, parameters for determining and updating step
length, termination criteria, fixed sample {ξ̄l}NMCl=1 from P for estimating risk levels of candidate
solutions, and sequence of smoothing parameters {τ̄k}Kk=1 for some K ∈ N.

3: Output: set of pairs {(ν̄i, ᾱi)} of objective values and risk levels that can be used to approximate
the efficient frontier and associated solutions {x̂i}.

4: Preprocessing: determine smoothing parameters {τk}Kk=1 scaled at proj
(
x̂0, Xν̄0

)
using Algo-

rithm 4, and an initial sequence of step lengths {γ̄k}Kk=1 for this sequence of approximating prob-
lems (APPν) with ν = ν̄0 using Algorithm 5.

5: Optimization Phase:
6: Initialize iteration count i = 0.
7: repeat
8: Update iteration count i← i+ 1 and set objective bound ν̄i = ν̄0 − (i− 1)ν̃.
9: Obtain (ᾱi, x̂i) by solving the sequence of approximations (APPν) using Algorithm 3 with objec-

tive bound ν = ν̄i,
scaling parameters {τ̄k}Kk=1, the above algorithmic parameter settings, and x̄i := proj

(
x̂i−1, Xν̄i

)
as the

initial guess.
10: until ᾱi ≤ αlow

14

the theory in Davis and Drusvyatskiy [20], a practical alternative is to choose a deterministic number
of iterations N and set x̄i to be the solution at the final iterate. Line 17 of Algorithm 3 heuristically
updates the step length to ensure good practical performance. Additionally, in contrast with the proposal
of Algorithm 2-RSPG-V of Ghadimi et al. [30] that chooses the solution over the multiple runs that is
closest to stationarity, motivated by practical application, we return the solution corresponding to the
smallest found risk level. Because of these heuristic steps, the algorithm would require slight modification
(removal of the heuristic step-size update method and different choice of the solution from multiple runs)
to be assured to have the convergence guarantees of Davis and Drusvyatskiy [20]. However, as our
emphasis in this paper is on deriving a practical algorithm and testing it empirically, we keep the
algorithm description matching what we have implemented.

Algorithm 3 Generating a point approximately on the efficient frontier

1: Input: objective bound ν, initial guess x̄0 ∈ Xν , mini-batch size M , maximum number of iterations
Nmax, minimum and maximum number of ‘runs’, Rmin and Rmax ≥ Rmin, initial step lengths
{γ̄k}Kk=1, parameters for updating step length, run termination criteria, sample {ξ̄l}NMCl=1 from P for
estimating risk levels, and sequence of smoothing parameters {τ̄k}Kk=1.

2: Output: Smallest estimate of the risk level α̂ and corresponding solution x̂ ∈ Xν .
3: Preprocessing: determine smoothing parameters {τk}Kk=1 scaled at x̄0 using Algorithm 4.

4: Initialize: Best found solution x̂ = x̄0 and estimate of its risk level α̂ using the sample {ξ̄l}NMCl=1 .
5: Optimization Phase:
6: for approximation k = 1 to K do
7: Initialize run count i = 0 and step length γk = γ̄k.
8: repeat . Begin outer loop of ‘runs/replicates’
9: Update i← i+ 1, and initialize the first iterate x1 := x̄i−1.

10: Choose number of iterations N uniformly at random from {1, · · · , Nmax}.
11: for iteration l = 1 to N − 1 do . Inner projected stochastic subgradient loop
12: Draw an i.i.d. sample {ξl,q}Mq=1 of ξ from P.

13: Estimate an element G(xl) ∈ Rn of the subdifferential of the objective of (APPν) with
smoothing

parameters τk at xl using the mini-batch {ξl,q}Mq=1.

14: Update xl+1 := proj
(
xl − γkG(xl), Xν

)
.

15: end for
16: Set x̄i = xN , and estimate its risk level ᾱi using the sample {ξ̄l}NMCl=1 .
17: Update step length γk using Algorithm 6, and the incumbents (α̂, x̂) with (ᾱi, x̄i) if α̂ > ᾱi.
18: until run termination criteria are satisfied (see Algorithm 6)
19: Update initial guess x̄0 = x̂ for the next approximation.
20: end for

In the remainder of this section, we verify that the assumptions of Davis and Drusvyatskiy [20]
hold to justify the use of their projected stochastic subgradient method for solving the sequence of
approximations (APPν). First, we verify that the objective function p̂k of (APPν) with smoothing
parameter τk is a weakly convex function on Xν . Next, we verify that Assumption (A3) of Davis and
Drusvyatskiy [20] holds. Note that a function h : Rd → R is said to be ρh-weakly convex (for some

ρh ≥ 0) if h + 0.5ρh‖·‖2 is convex on Rd (see Definition 4.1 of Drusvyatskiy and Paquette [23] and the
surrounding discussion).

Proposition 8. Suppose Assumptions 3, 4 and 5 hold. Then p̂k(·) is L̄k-weakly convex on Xν , where
L̄k is the Lipschitz constant of the Jacobian E

[
∇φk (g(·, ξ))

]
on Xν .

Proof. Follows from Lemma 4.2 of Drusvyatskiy and Paquette [23].

The following result is useful for bounding p̂k’s weak convexity parameter in terms of known constants.

Proposition 9. Suppose Assumptions 3, 4 and 5 hold. Then

1. For any ξ ∈ Ξ, the Lipschitz constant Lk,j(ξ) of ∇φk,j (gj(·, ξ)) on Xν satisfies

Lk,j(ξ) ≤M
′

φ,k,jL
′

g,j(ξ) + L
′

φ,k,jL
2
g,j(ξ).

15

2. The Lipschitz constant L̄k of the Jacobian ∇E
[
φk (g(·, ξ))

]
on Xν satisfies

L̄k ≤ E
[(m∑
j=1

L2
k,j(ξ)

) 1
2

]
.

Proof. 1. Follows by using the chain rule ∇φk,j (gj(·, ξ)) = dφk,j (gj(·, ξ))∇gj(·, ξ) and bounding the
Lipschitz constant of the above product on Xν using Assumptions 3A, 3B, and 5 and standard
arguments.

2. From part one of Lemma 2 and Theorem 7.44 of Shapiro et al. [58], we have ∇E
[
φk (g(x, ξ))

]
=

E
[
∇xφk (g(x, ξ))

]
, ∀x ∈ Xν . The stated result then follows from the first part of this proposition

and the fact that the Frobenius norm of a matrix provides an upper bound on its spectral norm,

where the existence of the quantity E
[(∑m

j=1 L
2
k,j(ξ)

) 1
2]

follows from the fact that
√∑

j L
2
k,j(ξ) ≤∑

j Lk,j(ξ), Assumptions 3A and 3B, and Lebesgue’s dominated convergence theorem.

We derive alternative results regarding the weak convexity parameter of the approximation p̂k
when (CCP) is used to model recourse formulations in Appendix C. We now establish that Assump-
tion (A3) of Davis and Drusvyatskiy [20] holds.

Proposition 10. Suppose Assumptions 3, 4, and 5 hold. Let G(x, ξ) be a stochastic B-subdifferential
element of p̂k(·) at x ∈ Xν , i.e., E

[
G(x, ξ)

]
∈ ∂BE

[
max [φk (g(x, ξ))]

]
. Then

E
[
‖G(x, ξ)‖2

]
≤ max
j∈{1,··· ,m}

(
M
′

φ,k,j

)2

σ2
g,j .

Proof. Follows from Assumptions 3C and 5 and the fact that G(x, ξ) = dφk,j(gj(x, ξ))∇xgj(x, ξ) for
some active constraint index j ∈ {1, · · · ,m} such that max [φk (g(x, ξ))] = φk,j (gj(x, ξ)).

4.2 Estimating the parameters of Algorithm 2

This section outlines our proposal for estimating some key parameters of Algorithm 2. We present
pseudocode for determining suitable smoothing parameters and step lengths, and for deciding when to
terminate Algorithm 3 with a point on our approximation of the efficient frontier.

Algorithm 4 rescales the sequence of smoothing parameters {τ̄k} based on the values assumed by the
constraints g at a reference point x̄ and a Monte Carlo sample of the random vector ξ. The purpose
of this rescaling step is to ensure that the initial approximation (APPν) with smoothing parameter τ1
is ‘well-scaled’ at the initial guess x̄. By ‘well-scaled’, we mean that the smoothing parameter τ1 is
chosen (neither too large, nor too small) such that the realizations of the scaled constraint functions

ḡj(x̄, ξ) :=
gj(x̄,ξ)
τ1,j

, j ∈ {1, · · · ,m}, are mostly supported on the interval [−1, 1] but not concentrated

at zero. This rescaling ensures that stochastic subgradients at x̄ are not too small in magnitude. If
x̄ is ‘near’ a stationary solution, then we can hope that the approximation remains well-scaled over a
region of interest and that our ‘first-order algorithm’ makes good progress in a reasonable number of
iterations. Note that the form of the scaling factor βj in Algorithm 4 is influenced by our choice of the
smoothing functions in Example 4. Algorithm 5 uses the step length rule in Davis and Drusvyatskiy
[20, Page 6] with the trivial bound ‘R = 1’ and sample estimates of the weak convexity parameter of p̂k
and the parameter σ2

k related to its stochastic subgradient. Since stochastic approximation algorithms
are infamous for their sensitivity to the choice of step lengths (see Section 2.1 of Nemirovski et al. [44],
for instance), Algorithm 6 prescribes heuristics for updating the step length based on the progress of
Algorithm 3 over multiple runs. These rules increase the step length if insufficient progress has been
made, and decrease the step length if the risk level has increased too significantly. Algorithm 6 also
suggests the following heuristic for terminating the ‘runs loop’ within Algorithm 3: terminate either if
the upper limit on the number of runs is hit, or if insufficient progress has been made over the last few
runs.

16

Algorithm 4 Scaling the smoothing parameters

1: Input: reference point x̄ ∈ X, and sequence of smoothing parameters {τ̄k}Kk=1.
2: Set algorithmic parameters: number of samples Nscale, scaling tolerance stol > 0, and scaling

factor ω > 0.
3: Output: smoothing parameters {τk}Kk=1 scaled at x̄.

4: Draw a sample {ξi}Nscalei=1 of ξ from P.
5: For each j ∈ {1, · · · ,m} and k, set τk,j = βj τ̄k, where βj := ωmax

{
median

{
|gj(x̄, ξi)|

}
, stol

}
.

Algorithm 5 Determining initial step length

1: Input: objective bound ν, reference point x̄ ∈ Xν , mini-batch size M , maximum number of iterations
Nmax, minimum number of runs Rmin, and smoothing parameters {τk}Kk=1.

2: Set algorithmic parameters: number of samples for estimating weak convexity parameter Nwc,
sampling radius r > 0, number of samples for estimating ‘variability’ of stochastic gradients Nvar,
and batch size for computing expectations Nbatch.

3: Output: initial step lengths {γ̄k}Kk=1.
4: Estimate the weak convexity parameter ρk of the objective of (APPν) with smoothing parameter
τk using i. Nwc samples of pairs of points in Xν ∩ Br(x̄), and ii. mini-batches of ξ for estimating
stochastic gradients (see Section 4.3).

5: Estimate σ2
k := maxx∈Xν E

[
‖G(x, ξ)‖2

]
using i. Nvar sample points x ∈ Xν∩Br(x̄), and ii. stochastic

B-subdifferential elements G(x, ξ) of the subdifferential of the objective of (APPν) with smoothing
parameter τk and mini-batches of ξ (see Section 4.3).

6: Set γ̄k :=
1√

ρkσ2
k(Nmax + 1)Rmin

.

4.3 Other practical considerations

We list some other practical considerations for implementing Algorithm 2 below.

Setting an initial guess: The choice of the initial point x̂0 for Algorithm 2 is important especially
because Algorithm 3 does not guarantee finding global solutions to (APPν). Additionally, a poor choice
of the initial bound ν̄0 can lead to excessive effort expended on uninteresting regions of the efficient
frontier. We propose to initialize x̂0 and ν̄0 by solving a set of tuned scenario approximation problems.
For instance, Algorithm 7 in the appendix can be solved with M = 1, R = 1, and a tuned sample size N1

(tuned such that the output (ν̄1,1, ᾱ1,1, x̄1,1) of this algorithm corresponds to an interesting region of the
efficient frontier) to yield the initial guess x̂0 = x̄1,1 and ν̄0 = ν̄1,1. Note that it may be worthwhile to
solve the scenario approximation problems to global optimality to obtain a good initialization (x̂0, ν̄0),
e.g., when the number of scenarios N1 is not too large (in which case they may be solved using off-
the-shelf solvers/tailored decomposition techniques in acceptable computation times). Case study 4 in
Section 5 provides an example where globally optimizing the scenario approximation problems to obtain
an initial guess yields a significantly better approximation of the efficient frontier.

Computing projections: Algorithm 2 requires projecting onto the sets Xν for some ν ∈ R multiple
times while executing Algorithm 3. Thus, it may be beneficial to implement tailored projection subrou-
tines [14], especially for sets Xν with special structures [18] (also see Case study 2 in Section 5). If the
set Xν is a polyhedron, then projection onto Xν may be carried out by solving a quadratic program.

Computing stochastic subgradients: Given a point x̄ ∈ Xν and a mini-batch {ξl}Ml=1 of the random
vector ξ, a stochastic element G(x̄, ξ) of the B-subdifferential of the objective of (APPν) with smoothing
parameter τk at x̄ can be obtained as

G(x̄, ξ) =
1

M

M∑
l=1

dφk,j(l)
(
gj(l)(x̄, ξ

l)
)
∇xgj(l)(x̄, ξl),

17

Algorithm 6 Updating step length and checking termination

1: Input: current run number r, minimum and maximum number of ‘runs’, Rmin and Rmax, step
length γk, estimated risk levels {ᾱi}ri=1, and the risk level at the initial guess α̂0.

2: Set algorithmic parameters: step length checking frequency Ncheck, run termination checking
parameter Nterm, relative increase in risk level δ1 > 0 beyond which we terminate, relative increase
in risk level δ2 > δ1 beyond which we decrease the step length by factor γdecr > 1, and step length
increase factor γincr > 1.

3: Construct the sequence {α̂i}ri=0, with α̂i := min{α̂i−1, ᾱi}, of smallest risk levels at the end of each
run thus far.

4: Updating step length:
5: if run number is divisible by Ncheck then
6: Determine maximum relative ‘decrease’ in the estimated risk level

δ̂ := max
i∈{1,··· ,Ncheck}

α̂r−Ncheck − ᾱr+1−i

α̂r−Ncheck

over the past Ncheck runs, relative to the smallest known estimate of the risk level Ncheck runs
ago.

7: if δ̂ ≥ −δ1 then
8: Increase step length by factor γincr. . Insufficient decrease in estimated risk level
9: else if δ̂ ≤ −δ2 then

10: Decrease step length by factor γdecr. . Unacceptable increase in estimated risk level
11: end if
12: end if
13: Termination check:
14: if number of runs equals Rmax then
15: Terminate.
16: else if number of runs is at least Rmin then
17: Determine maximum relative ‘decrease’ in the estimated risk level over the past Nterm runs

δ̂ := max
i∈{1,··· ,Nterm}

α̂r−Nterm − ᾱr+1−i

α̂r−Nterm
.

If δ̂ < −δ1, terminate due to insufficient decrease in risk level.
18: end if

where for each l ∈ {1, · · · ,M}, j(l) ∈ {1, · · · ,m} denotes a constraint index satisfying max
[
φk
(
g(x̄, ξl)

)]
=

φk,j(l)
(
gj(l)(x̄, ξ

l)
)
. Note that sparse computation of stochastic subgradients can speed Algorithm 2 up

significantly.

Estimating risk levels: Given a candidate solution x̄ ∈ Xν and a sample {ξ̄l}NMCl=1 of the random
vector ξ, a stochastic upper bound on the risk level p(x̄) can be obtained as

ᾱ = max
α∈[0,1]

{
α :

Nviol∑
i=0

(
NMC

i

)
αi(1− α)NMC−i = δ

}
,

where Nviol is the cardinality of the set
{
l : g(x̄, ξ̄l) 6≤ 0

}
and 1 − δ is the required confidence level,

see Nemirovski and Shapiro [43, Section 4]. Since checking the satisfaction of NMC constraints at the
end of each run in Algorithm 3 may be time consuming (especially for problems with recourse structure),
we use a smaller sample size (determined based on the risk lower bound αlow) to estimate risk levels
during the course of Algorithm 3 and only use all NMC samples of ξ to estimate the risk level {ᾱi}
of the final solutions {x̂i} in Algorithm 2. If our discretization of the efficient frontier obtained from
Algorithm 2 consists of NEF points each of whose risk levels is estimated using a confidence level of 1−δ,
then we may conclude that our approximation of the efficient frontier is ‘achievable’ with a confidence
level of at least 1− δNEF using Bonferroni’s inequality.

18

Estimating weak convexity parameters: Proposition 8 shows that the Lipschitz constant L̄k of
the Jacobian E

[
∇φk (g(·, ξ))

]
on Xν provides a conservative estimate of the weak convexity parameter

ρk of p̂k on Xν . Therefore, we use an estimate of the Lipschitz constant L̄k as an estimate of ρk. To
avoid overly conservative estimates, we restrict the estimation of L̄k to a neighborhood of the reference
point x̄ in Algorithm 5 to get at the local Lipschitz constant of the Jacobian E

[
∇φk (g(·, ξ))

]
.

Estimating σ2
k: For each point x sampled from Xν , we compute multiple realizations of the mini-

batch stochastic subdifferential element G(x, ξ) outlined above to estimate E
[
‖G(x, ξ)‖2

]
. Once again,

we restrict the estimation of σ2
k to a neighborhood of the reference point x̄ in Algorithm 5 to get at the

local ‘variability’ of the stochastic subgradients.

Estimating initial step lengths: Algorithm 5 estimates initial step lengths for the sequence of
approximations (APPν) by estimating the parameters {ρk} and {σ2

k}, which in turn involve estimating
subgradients and the Lipschitz constants of {p̂k}. Since the numerical conditioning of the approximating
problems (APPν) deteriorates rapidly as the smoothing parameters τk approach zero (see Figure 2),
obtaining good estimates of these constants via sampling becomes challenging when k increases. To
circumvent this difficulty, we only estimate the initial step length γ̄1 for the initial approximation (APPν)

with smoothing parameter τ1 by sampling, and propose the conservative initialization γ̄k :=
(
τk
τ1

)2

γ̄1

for k > 1 (see Propositions 7, 8, 9, and 10 for a justification).

5 Computational study

We present implementation details and results of our computational study in this section. We use the
abbreviation ‘EF’ for the efficient frontier throughout this section.

5.1 Implementation details

The following parameter settings are used for testing our stochastic approximation method:

• Algorithm 2: Obtain initial guess x̂0 and initial objective bound ν̄0 using Algorithm 7 in Ap-
pendix A.1 with M = 1, R = 1, and N1 = 10. Set ν̃ = 0.005|ν̄0| (we assume that ν̄0 6= 0 for
simplicity) and αlow = 10−4 unless otherwise specified. In addition, set M = 20, Nmax = 1000,
Rmin = 10, Rmax = 50, K = 3, and {τ̄k} = {(0.1)k−1} (i.e., τc = 0.1 in Equation (2)).

• Algorithm 4: Nscale = 104, stol = 10−6, and ω = 1.

• Algorithm 5: Nwc = Nvar = 200, Nbatch = 20, and r = 0.1‖x̄‖ (assuming that x̄ 6= 0).

• Algorithm 6: Ncheck = 3, Nterm = 5, δ1 = 10−4, δ2 = 10−2, and γincr = γdecr = 10.

• Projecting onto Xν : Case study 1: using the algorithm of Condat [18]; Case study 2: numerical
solution of the KKT conditions (see Appendix A.4 for details); Case studies 3 and 4 and Case
study 5 in the appendix: by solving a quadratic program.

• Estimating risk level p(x): Case studies 1 and 2: analytical solution; Case studies 3 and 4: Monte
Carlo estimate using NMC = 105 and reliability level δ = 10−6; Case study 5 in the appendix:
numerical estimation of the exact risk level based on Ruben [55].

• Case study 2: ν̃ = 0.02|ν̄0|
• Case studies 3 and 4: αlow = 5× 10−4.

We compare the results of our proposed approach with a tuned application of scenario approximation
that enforces a predetermined number of random constraints, solves the scenario problem to local/global
optimality, and determines an a posteriori estimate of the risk level at the solution of the scenario problem
using an independent Monte Carlo sample (see Section 4.3) to estimate a point on the EF of (CCP).
Algorithm 7 in Appendix A presents pseudocode for approximating the EF of (CCP) by solving many
scenario approximation problems using an iterative (cutting-plane) approach.

Our codes are written in Julia 0.6.2 [8], use Gurobi 7.5.2 [33] to solve linear, quadratic, and second-
order cone programs, use IPOPT 3.12.8 [63] to solve nonlinear scenario approximation problems (with

19

MUMPS [4] as the linear solver), and use SCIP 6.0.0 [31] to solve nonlinear scenario approximation
problems to global optimality (if necessary). The above solvers were accessed through the JuMP 0.18.2
modeling interface [24]. All computational tests3 were conducted on a Surface Book 2 laptop running
Windows 10 Pro with a 1.90 GHz four core Intel i7 CPU, 16 GB of RAM.

5.2 Numerical experiments

We tested our approach on four test cases from the literature. We present basic details of the test
instances below. The Julia code and data for the test instances are available at https://github.

com/rohitkannan/SA-for-CCP. For each test case, we compared the EFs generated by the stochastic
approximation method against the solutions obtained using the tuned scenario approximation method
and, if available, the analytical EF. Because the output of our proposed approach is random, we present
enclosures of the EF generated by our proposal over ten different replicates in Appendix D for each case
study. These results indicate that the output of the proposed method does not vary significantly across
the replicates.

Case study 1. This portfolio optimization instance is based on Example 2.3.6 in Ben-Tal et al. [6], and
includes a single individual linear chance constraint:

max
t, x∈∆N

t

s.t. P
{
ξTx ≥ t

}
≥ 1− α,

where ∆N :=
{
y ∈ RN+ :

∑
i yi = 1

}
is the standard simplex, xi denotes the fraction of investment in

stock i ∈ {1, · · · , N}, ξ ∼ P := N (µ,Σ) is a random vector of returns with joint normal probability

distribution, µi = 1.05+0.3N−iN−1 and σi = 1
3

(
0.05 + 0.6N−iN−1

)
, i ∈ {1, · · · , N}, and Σ = diag(σ2

1 , · · · , σ2
N).

We consider the instance with number of stocks N = 1000. We assume the returns ξ are normally
distributed so that we can benchmark our approach against an analytical solution for the true EF when
the risk level α ≤ 0.5 (e.g., see Prékopa [50, Theorem 10.4.1]).

Figure 3 compares a typical EF obtained using our approach against the analytical EF and the
solutions generated by the tuned scenario approximation algorithm. Our proposal is able to find a
very good approximation of the true EF, whereas the scenario approximation method finds solutions
that can be improved either in objective or risk. Our proposed approach took 388 seconds on average
(and a maximum of 410 seconds) to approximate the EF using 26 points, whereas the tuned scenario
approximation method took a total of 6900 seconds to generate its 1000 points in Figure 3. Note that
even though the above instance of (CCP) does not satisfy Assumption 1 as written (because Xν :=
{(x, t) : x ∈ ∆N , t ≥ ν} is not compact), we can essentially incorporate the upper bound t ≤ ν within
the definition of the set Xν because the solution to Problem (APPν) always satisfies t∗ = ν.

Since existing smoothing-based approaches provide the most relevant comparison, we compare our
results with one such approach from the literature. We choose the smoothing-based approach of Cao
and Zavala [13] for comparison because: i. they report encouraging computational results in their work
relative to other such approaches, and ii. they have made their implementation available. Table 1 sum-
marizes typical results of the sigmoidal smoothing approach of Cao and Zavala [13] when applied to the
above instance with a specified risk level of α = 0.01, with a varying number of scenarios, and with differ-
ent settings for the scaling factor γ of the sigmoidal approximation method (see Algorithm SigVar-Alg

of Cao and Zavala [13]). Appendix A.3 lists details of our implementation of this method. The second,
third, and fourth columns of Table 1 present the overall solution time in seconds (or a failure status
returned by IPOPT), the best objective value and the true risk level of the corresponding solution re-
turned by the method over two replicates (we note that there was significant variability in solution times
over the replicates; we report the results corresponding to the smaller solution times). Figure 3 plots
the solutions returned by this method (using the values listed in Table 1). The relatively poor perfor-
mance of Algorithm SigVar-Alg on this example is not surprising; even the instance of the sigmoidal
approximation problem with only a hundred scenarios (which is small for α = 0.01) has more than a
thousand variables and a hundred thousand nonzero entries in the (dense) Jacobian. Therefore, tailored

3The scenario approximation problems solved to global optimality using SCIP in Case study 4 were run on a different
laptop running Ubuntu 16.04 with a 2.6 GHz four core Intel i7 CPU, 8 GB of RAM due to interfacing issues on Windows.

20

https://github.com/rohitkannan/SA-for-CCP
https://github.com/rohitkannan/SA-for-CCP

approaches have to be developed for solving these problems efficiently. Since our implementation of the
proposal of Cao and Zavala [13] failed to perform well on this instance even for a single risk level, we do
not compare against their approach for the rest of the case studies.

Figure 3: Comparison of the efficient frontiers for Case study 1.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

1.25

1.3

1.35

1.4

1.45

1.5

re
v

e
n

u
e

Analytical solution

Scenario approximation

Initial guess for stochastic approximation

Sigmoidal approximation with = 10

Sigmoidal approximation with = 100

Sigmoidal approximation with adaptive

Stochastic approximation

Table 1: Performance of the sigmoidal smoothing approach of Cao and Zavala [13] on Case study 1. The
entry for each column of γ indicates the time in seconds (or IPOPT status)/best objective value/best
risk level returned by the sigmoidal approximation method over two replicates. The entries infeas and
tle denote infeasible and time limit exceeded statuses returned by IPOPT.

Num. scenarios γ = 10 γ = 100 γ adaptive
Time Obj Risk Time Obj Risk Time Obj Risk

100 34 1.337 0.548 23 1.334 0.513 29 1.337 0.575
500 508 1.311 0.206 106 1.306 0.139 59 1.312 0.227
1000 606 1.303 0.106 1203 1.306 0.125 1011 1.307 0.130
2000 1946 1.298 0.059 296 1.296 0.040 2787 1.301 0.077
5000 4050 1.226 2.4× 10−8 6289 1.292 0.025 infeas

10000 2708 1.199 5.1× 10−11 tle tle

Case study 2. We consider the following variant of Case study 1 where the variance of the portfolio is
minimized subject to the constraint that the return is larger than a fixed threshold at least with a given
probability:

min
x∈∆N

xTΣx

s.t. P
{
ξTx ≥ t̄

}
≥ 1− α,

21

where we require that the 100α percentile of the return is at least t̄ = 1.2. Once again, we consider the
instance with number of stocks N = 1000, and assume the returns ξ are normally distributed as in Case
study 1 so that we can benchmark our approach against the analytical solution for the true EF.

We found that using a general-purpose NLP solver to solve the quadratically-constrained quadratic
program to compute projections onto the set Xν :=

{
x ∈ ∆N : xTΣx ≤ ν

}
during the course of Algo-

rithm 2 was a bottleneck of the algorithm in this case. Thus, we implemented a tailored projection
routine that exploits the structure of this projection problem. Appendix A.4 presents details of the
projection routine. Figure 4 compares a typical EF obtained using our approach against the analytical
EF and the solutions generated by the tuned scenario approximation algorithm. Our proposal is able to
generate solutions that lie on or very close to the true EF, whereas the scenario approximation method
finds solutions that can be improved either in objective or risk. Our proposed approach took 1556 seconds
on average (and a maximum of 1654 seconds) to approximate the EF using 20 points, whereas the tuned
scenario approximation method took a total of 36259 seconds to generate its 1000 points in Figure 4.

Figure 4: Comparison of the efficient frontiers for Case study 2.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

v
a

ri
a

n
c

e
 o

f
re

tu
rn

10
-5

Analytical solution

Scenario approximation

Initial guess for stochastic approximation

Stochastic approximation

Case study 3. This norm optimization instance is based on Section 5.1.2 of Hong et al. [34], and
includes a joint convex nonlinear chance constraint:

min
x∈Rn+

−
∑
i

xi

s.t. P

{∑
i

ξ2
ijx

2
i ≤ U2, j = 1, · · · ,m

}
≥ 1− α,

where ξij are dependent normal random variables with mean j
d and variance 1, and cov(ξij , ξi′ j) = 0.5

if i 6= i
′
, cov(ξij , ξi′ j′) = 0 if j 6= j

′
. We consider the instance with number of variables n = 100,

number of constraints m = 100, and bound U = 100. Figure 5 compares a typical EF obtained using our
approach against the solutions generated by the tuned scenario approximation algorithm. Once again,
our proposed approach is able to find a significantly better approximation of the EF than the scenario

22

Figure 5: Comparison of the efficient frontiers for Case study 3.

10
-3

10
-2

10
-1

10
0

risk level ()

-820

-800

-780

-760

-740

-720

-700

-680

-660
c

o
s

t

Scenario approximation

Initial guess for stochastic approximation

Stochastic approximation

approximation method, although it is unclear how our proposal fares compared to the true EF since it
is unknown in this case. Our proposal took 6742 seconds on average (and a maximum of 7091 seconds)
to approximate the EF using 31 points, whereas it took tuned scenario approximation a total of 25536
seconds to generate its 1000 points in Figure 5. We note that more than 70% of the reported times for our
method is spent in generating random numbers because the random variable ξ is high-dimensional and
the covariance matrix of the random vector ξ·j is full rank. A practical instance might have a covariance
matrix rank that is at least a factor of ten smaller, which would reduce our overall computation times
roughly by a factor of three (cf. the smaller computation times reported for the similar Case study 5 in
the appendix). Appendix D benchmarks our approach against the true EF when the random variables
ξij are assumed to be i.i.d. in which case the analytical solution is known (see Section 5.1.1 of Hong et al.
[34]). Once again, note that Assumption 1 does not hold because the set Xν =

{
x ∈ Rn+ :

∑
i xi ≥ −ν

}
is

not compact; however, we can easily deduce an upper bound on each xi, i ∈ {1, · · · , n}, that is required
for feasibility of the chance constraint for the largest (initial) risk level of interest and incorporate this
upper bound within the definition of Xν without altering the EF.

Case study 4. This probabilistic resource planning instance is based on Section 3 of Luedtke [40], and
is modified to include a nonconvex recourse constraint:

min
x∈Rn+

cTx

s.t. P {x ∈ R(λ, ρ)} ≥ 1− α,

where xi denotes the quantity of resource i, ci denotes the unit cost of resource i,

R(λ, ρ) =

x ∈ Rn+ : ∃y ∈ Rnnc+ s.t.

nc∑
j=1

yij ≤ ρix2
i , ∀i ∈ {1, · · · , n},

n∑
i=1

µijyij ≥ λj , ∀j ∈ {1, · · · , nc}

 ,

nc denotes the number of customer types, yij denote the amount of resource i allocated to customer type
j, ρi ∈ (0, 1] is a random variable that denotes the yield of resource i, λj ≥ 0 is a random variable that

23

denotes the demand of customer type j, and µij ≥ 0 is a deterministic scalar that denotes the service
rate of resource i for customer type j. Note that the nonlinear term ρix

2
i in the definition of R(λ, ρ) is a

modification of the corresponding linear term ρixi in Luedtke [40]. This change could be interpreted as
a reformulation of the instance in Luedtke [40] with concave objective costs (due to economies of scale).
We consider the instance with number of resources n = 20 and number of customer types nc = 30.
Details of how the parameters of the model are set (including details of the random variables) can be
found in the electronic companion to Luedtke [40].

Figure 6 compares a typical EF obtained using our approach against the solutions generated by
the tuned scenario approximation algorithm. The blue dots in the top part of Figure 6 correspond to
the 1000 points obtained using the scenario approximation method when IPOPT is used to solve the
scenario approximation problems. We mention that the vertical axis has been truncated for readability;
the scenario approximation yields some solutions that are further away from the EF (with objective values
up to 110 for the risk levels of interest). The 1000 red dots in the bottom part of Figure 6 correspond
to the points obtained by solving the scenario approximation problems to global optimality using SCIP.
The top black curve (with circles) corresponds to the EF obtained using the stochastic approximation
method when it is initialized using the IPOPT solution of a scenario approximation problem. When
a better initial point obtained by solving a scenario approximation problem using SCIP is used, the
stochastic approximation method generates the bottom green curve (with squares) as its approximation
of the EF.

Several remarks are in order. The scenario approximation solutions generated using the local solver
IPOPT are very scattered possibly because IPOPT gets stuck at suboptimal local minima. However, the
best solutions generated using IPOPT provide a comparable approximation of the EF as the stochastic
approximation method that is denoted by the black curve with circles (which appears to avoid the poor
local minima encountered by IPOPT). We note that IPOPT finds a good local solution at one of the
1000 scenario approximation runs (indicated by the blue circle). Solving the scenario approximation
problems to global optimality using SCIP yields a much better approximation of the EF than the local
solver IPOPT. Additionally, when the proposed approach is initialized using the global solution obtained
from SCIP for a single scenario approximation problem (which took less than 60 seconds to compute), it
generates a significantly better approximation of the EF that performs comparably to the EF generated
using the global solver SCIP. We also tried initializing the solution of IPOPT with the one global solution
from SCIP, and this did not yield a better approximation of the EF. Our approach took 9148 seconds
on average (and a maximum of 9439 seconds) to generate the green curve (with squares) approximation
of the EF using 26 points, whereas it took the blue scenario approximations (solved using IPOPT) and
the red scenario approximations (solved using SCIP) a total of 110291 seconds and 145567 seconds,
respectively, to generate their 1000 points in Figure 6.

6 Conclusion and future work

We proposed a stochastic approximation algorithm for estimating the efficient frontier of chance-con-
strained NLPs. Our proposal involves solving a sequence of partially smoothened stochastic optimization
problems to local optimality using a projected stochastic subgradient algorithm. We established that
every limit point of the sequence of stationary/global solutions of the above sequence of approximations
yields a stationary/global solution of the original chance-constrained program with an appropriate risk
level. A potential advantage of our proposal is that it can find truly stationary solutions of the chance-
constrained NLP unlike scenario-based approaches that may get stuck at spurious local optima generated
by sampling. Our computational experiments demonstrated that our proposed approach is consistently
able to determine good approximations of the efficient frontier in reasonable computation times.

Extensions of our proposal that can handle multiple sets of joint chance constraints merit further
investigation. One option is to minimize the maximum risk of constraints violation over the various sets
of joint chance constraints, which can be formulated as a minimax stochastic program (cf. Section 3.2
of Nemirovski et al. [44]). This can in turn be reformulated as a weakly convex-concave saddle point
problem that can be solved to stationarity using existing techniques [51]. Since our proposal relies on
computing projections efficiently, approaches for reducing the computational effort spent on projections,
such as random constraint projection techniques, could be explored. Additionally, extensions that incor-
porate deterministic nonconvex constraints in a more natural fashion provide an avenue for future work.

24

Figure 6: Comparison of the efficient frontiers for Case study 4.

10
-3

10
-2

10
-1

risk level ()

48

50

52

54

56

58

60

62

64

66

68

70

c
o

s
t

IPOPT scenario approximation

SCIP scenario approximation

IPOPT-based initialization

SCIP-based initialization

Good IPOPT scenario solution

Stochastic approximation with IPOPT init

Stochastic approximation with SCIP init

The projected stochastic subgradient method of Davis and Drusvyatskiy [20] has recently been extended
to the non-Euclidean case [65], which could accelerate convergence of our proposal in practice. Finally,
because stochastic approximation algorithms are an active area of research, several auxiliary techniques,
such as adaptive step sizes, parallelization, acceleration, etc., may be determined to be applicable (and
practically useful) to our setting.

Acknowledgements

The authors thank the anonymous reviewers for suggestions that improved the paper. R.K. also thanks
Rui Chen, Eli Towle, and Clément Royer for helpful discussions.

References

[1] Lukáš Adam and Martin Branda. Nonlinear chance constrained problems: optimality conditions, regular-
ization and solvers. Journal of Optimization Theory and Applications, 170(2):419–436, 2016.

[2] Lukáš Adam and Martin Branda. Machine learning approach to chance-constrained problems: An algorithm
based on the stochastic gradient descent. http://www.optimization-online.org/DB_HTML/2018/12/6983.
html (Last accessed: April 1, 2019), 2018.

[3] Lukáš Adam, Martin Branda, Holger Heitsch, and René Henrion. Solving joint chance constrained problems
using regularization and Benders decomposition. Annals of Operations Research, pages 1–27, 2018. doi:
10.1007/s10479-018-3091-9.

[4] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. MUMPS: a general purpose
distributed memory sparse solver. In International Workshop on Applied Parallel Computing, pages 121–
130. Springer, 2000.

[5] Laetitia Andrieu, Guy Cohen, and Felisa Vázquez-Abad. Stochastic programming with probability con-
straints. arXiv preprint arXiv:0708.0281, 2007.

[6] Aharon Ben-Tal, Laurent El Ghaoui, and Arkadi Nemirovski. Robust optimization. Princeton University
Press, 2009.

25

http://www.optimization-online.org/DB_HTML/2018/12/6983.html
http://www.optimization-online.org/DB_HTML/2018/12/6983.html

[7] Jacques F Benders. Partitioning procedures for solving mixed-variables programming problems. Numerische
Mathematik, 4(1):238–252, 1962.

[8] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B Shah. Julia: A fresh approach to numerical
computing. SIAM Review, 59(1):65–98, 2017.

[9] Daniel Bienstock, Michael Chertkov, and Sean Harnett. Chance-constrained optimal power flow: Risk-aware
network control under uncertainty. SIAM Review, 56(3):461–495, 2014.

[10] Giuseppe Calafiore and Marco C Campi. Uncertain convex programs: randomized solutions and confidence
levels. Mathematical Programming, 102(1):25–46, 2005.

[11] Giuseppe C Calafiore, Fabrizio Dabbene, and Roberto Tempo. Research on probabilistic methods for control
system design. Automatica, 47(7):1279–1293, 2011.

[12] Marco C Campi and Simone Garatti. A sampling-and-discarding approach to chance-constrained optimiza-
tion: feasibility and optimality. Journal of Optimization Theory and Applications, 148(2):257–280, 2011.

[13] Yankai Cao and Victor Zavala. A sigmoidal approximation for chance-constrained nonlinear programs.
http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf (Last accessed: April 1, 2019), 2017.

[14] Yair Censor, Wei Chen, Patrick L Combettes, Ran Davidi, and Gabor T Herman. On the effectiveness
of projection methods for convex feasibility problems with linear inequality constraints. Computational
Optimization and Applications, 51(3):1065–1088, 2012.

[15] Abraham Charnes, William W Cooper, and Gifford H Symonds. Cost horizons and certainty equivalents:
an approach to stochastic programming of heating oil. Management Science, 4(3):235–263, 1958.

[16] Wenqing Chen, Melvyn Sim, Jie Sun, and Chung-Piaw Teo. From CVaR to uncertainty set: Implications in
joint chance-constrained optimization. Operations Research, 58(2):470–485, 2010.

[17] Frank H Clarke. Optimization and nonsmooth analysis, volume 5. SIAM, 1990.
[18] Laurent Condat. Fast projection onto the simplex and the `1 ball. Mathematical Programming, 158(1-2):

575–585, 2016.
[19] Frank E Curtis, Andreas Wachter, and Victor M Zavala. A sequential algorithm for solving nonlinear

optimization problems with chance constraints. SIAM Journal on Optimization, 28(1):930–958, 2018.

[20] Damek Davis and Dmitriy Drusvyatskiy. Stochastic subgradient method converges at the rate O
(
k−1/4

)
on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

[21] Damek Davis, Dmitriy Drusvyatskiy, Sham Kakade, and Jason D Lee. Stochastic subgradient method
converges on tame functions. arXiv preprint arXiv:1804.07795, 2018.

[22] Darinka Dentcheva and Gabriela Martinez. Regularization methods for optimization problems with proba-
bilistic constraints. Mathematical Programming, 138(1-2):223–251, 2013.

[23] Dmitriy Drusvyatskiy and Courtney Paquette. Efficiency of minimizing compositions of convex functions
and smooth maps. Mathematical Programming, pages 1–56, 2018. doi: 10.1007/s10107-018-1311-3.

[24] Iain Dunning, Joey Huchette, and Miles Lubin. JuMP: A modeling language for mathematical optimization.
SIAM Review, 59(2):295–320, 2017.

[25] Yuri M Ermoliev. Stochastic quasigradient methods. In Yuri M Ermoliev and Roger JB Wets, editors,
Numerical techniques for stochastic optimization, chapter 6, pages 141–185. Springer, 1988.

[26] Yuri M Ermoliev and VI Norkin. Stochastic generalized gradient method for nonconvex nonsmooth stochastic
optimization. Cybernetics and Systems Analysis, 34(2):196–215, 1998.

[27] Yuri M Ermoliev and Vladimir I Norkin. On nonsmooth and discontinuous problems of stochastic systems
optimization. European Journal of Operational Research, 101(2):230–244, 1997.

[28] Yuri M Ermoliev, Vladimir I Norkin, and Roger JB Wets. The minimization of semicontinuous functions:
mollifier subgradients. SIAM Journal on Control and Optimization, 33(1):149–167, 1995.

[29] Abebe Geletu, Armin Hoffmann, Michael Kloppel, and Pu Li. An inner-outer approximation approach to
chance constrained optimization. SIAM Journal on Optimization, 27(3):1834–1857, 2017.

[30] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation methods for
nonconvex stochastic composite optimization. Mathematical Programming, 155(1-2):267–305, 2016.

[31] Ambros Gleixner, Michael Bastubbe, Leon Eifler, Tristan Gally, Gerald Gamrath, Robert Lion Gottwald,
Gregor Hendel, Christopher Hojny, Thorsten Koch, Marco E. Lübbecke, Stephen J. Maher, Matthias Mil-
tenberger, Benjamin Müller, Marc E. Pfetsch, Christian Puchert, Daniel Rehfeldt, Franziska Schlösser,
Christoph Schubert, Felipe Serrano, Yuji Shinano, Jan Merlin Viernickel, Matthias Walter, Fabian Wegschei-
der, Jonas T. Witt, and Jakob Witzig. The SCIP Optimization Suite 6.0. Technical report, Optimization
Online, July 2018. URL http://www.optimization-online.org/DB_HTML/2018/07/6692.html.

[32] Claudia Gotzes, Holger Heitsch, René Henrion, and Rüdiger Schultz. On the quantification of nomination
feasibility in stationary gas networks with random load. Mathematical Methods of Operations Research, 84
(2):427–457, 2016.

[33] Gurobi Optimization LLC. Gurobi Optimizer Reference Manual, 2018. URL http://www.gurobi.com.
[34] L Jeff Hong, Yi Yang, and Liwei Zhang. Sequential convex approximations to joint chance constrained

programs: A Monte Carlo approach. Operations Research, 59(3):617–630, 2011.

26

http://www.optimization-online.org/DB_FILE/2017/10/6236.pdf
http://www.optimization-online.org/DB_HTML/2018/07/6692.html
http://www.gurobi.com

[35] Zhaolin Hu, L Jeff Hong, and Liwei Zhang. A smooth Monte Carlo approach to joint chance-constrained
programs. IIE Transactions, 45(7):716–735, 2013.

[36] Ruiwei Jiang and Yongpei Guan. Data-driven chance constrained stochastic program. Mathematical Pro-
gramming, 158(1-2):291–327, 2016.

[37] Constantino M Lagoa, Xiang Li, and Mario Sznaier. Probabilistically constrained linear programs and
risk-adjusted controller design. SIAM Journal on Optimization, 15(3):938–951, 2005.

[38] Riho Lepp. Extremum problems with probability functions: Kernel type solution methods. In Christodou-
los A. Floudas and Panos M. Pardalos, editors, Encyclopedia of Optimization, pages 969–973. Springer, 2009.
URL https://doi.org/10.1007/978-0-387-74759-0_170.

[39] Pu Li, Harvey Arellano-Garcia, and Günter Wozny. Chance constrained programming approach to process
optimization under uncertainty. Computers & Chemical Engineering, 32(1-2):25–45, 2008.

[40] James Luedtke. A branch-and-cut decomposition algorithm for solving chance-constrained mathematical
programs with finite support. Mathematical Programming, 146(1-2):219–244, 2014.

[41] James Luedtke and Shabbir Ahmed. A sample approximation approach for optimization with probabilistic
constraints. SIAM Journal on Optimization, 19(2):674–699, 2008.

[42] Bruce L Miller and Harvey M Wagner. Chance constrained programming with joint constraints. Operations
Research, 13(6):930–945, 1965.

[43] Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance constrained programs. SIAM
Journal on Optimization, 17(4):969–996, 2006.

[44] Arkadi Nemirovski, Anatoli Juditsky, Guanghui Lan, and Alexander Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 19(4):1574–1609, 2009.

[45] Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and method efficiency in
optimization. Wiley, 1983.

[46] Vladimir I Norkin. The analysis and optimization of probability functions. Technical report, IIASA Working
Paper, WP-93-6, January 1993.

[47] EA Nurminskii. The quasigradient method for the solving of the nonlinear programming problems. Cyber-
netics, 9(1):145–150, 1973.

[48] Alejandra Peña-Ordieres, James R Luedtke, and Andreas Wächter. Solving chance-constrained problems
via a smooth sample-based nonlinear approximation, 2019.

[49] András Prékopa. On probabilistic constrained programming. In Proceedings of the Princeton symposium on
mathematical programming, pages 113–138. Princeton, NJ, 1970.

[50] András Prékopa. Stochastic programming, volume 324. Springer Science & Business Media, 1995.
[51] Hassan Rafique, Mingrui Liu, Qihang Lin, and Tianbao Yang. Non-convex min-max optimization: Provable

algorithms and applications in machine learning. arXiv preprint arXiv:1810.02060, 2018.
[52] Tara Rengarajan and David P Morton. Estimating the efficient frontier of a probabilistic bicriteria model.

In Winter Simulation Conference, pages 494–504, 2009.
[53] R Tyrrell Rockafellar and Stanislav Uryasev. Optimization of conditional value-at-risk. Journal of Risk, 2:

21–42, 2000.
[54] R Tyrrell Rockafellar and Roger J-B Wets. Variational analysis, volume 317. Springer Science & Business

Media, 2009.
[55] Harold Ruben. Probability content of regions under spherical normal distributions, IV: The distribution of

homogeneous and non-homogeneous quadratic functions of normal variables. The Annals of Mathematical
Statistics, 33(2):542–570, 1962.

[56] F Shan, XT Xiao, and LW Zhang. Convergence analysis on a smoothing approach to joint chance constrained
programs. Optimization, 65(12):2171–2193, 2016.

[57] Feng Shan, Liwei Zhang, and Xiantao Xiao. A smoothing function approach to joint chance-constrained
programs. Journal of Optimization Theory and Applications, 163(1):181–199, 2014.

[58] Alexander Shapiro, Darinka Dentcheva, and Andrzej Ruszczyński. Lectures on stochastic programming:
modeling and theory. SIAM, 2009.

[59] Wim van Ackooij and René Henrion. Gradient formulae for nonlinear probabilistic constraints with Gaussian
and Gaussian-like distributions. SIAM Journal on Optimization, 24(4):1864–1889, 2014.

[60] Wim van Ackooij and René Henrion. (Sub-)Gradient formulae for probability functions of random inequality
systems under Gaussian distribution. SIAM/ASA Journal on Uncertainty Quantification, 5(1):63–87, 2017.

[61] Wim van Ackooij, Antonio Frangioni, and Welington de Oliveira. Inexact stabilized Benders decomposition
approaches with application to chance-constrained problems with finite support. Computational Optimiza-
tion and Applications, 65(3):637–669, 2016.

[62] Wim van Ackooij, V Berge, Welington de Oliveira, and C Sagastizábal. Probabilistic optimization via
approximate p-efficient points and bundle methods. Computers & Operations Research, 77:177–193, 2017.

[63] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming. Mathematical programming, 106(1):25–57, 2006.

27

https://doi.org/10.1007/978-0-387-74759-0_170

[64] Hui Zhang and Pu Li. Chance constrained programming for optimal power flow under uncertainty. IEEE
Transactions on Power Systems, 26(4):2417–2424, 2011.

[65] Siqi Zhang and Niao He. On the convergence rate of stochastic mirror descent for nonsmooth nonconvex
optimization. arXiv preprint arXiv:1806.04781, 2018.

A Algorithm outlines

A.1 Implementation of the scenario approximation algorithm

Algorithm 7 details our implementation of the tuned scenario approximation algorithm. Instead of
solving each scenario approximation problem instance using an off-the-shelf solver by imposing all of
the sampled constraints at once, we adopt a cutting-plane approach that iteratively adds some of the
violated scenario constraints at a candidate solution to the list of enforced constraints in a bid to reduce
the overall computational effort (cf. Algorithm 2.6 in Bienstock et al. [9]). We use M = 50 iterations and
R = 20 replicates for our computational experiments. Settings for sample sizes Ni, constraints added
per iteration Nc, and number of samples NMC are problem dependent and provided below. Line 19 in
Algorithm 7, which estimates the risk level of a candidate solution, may be replaced, if possible, by one
that computes the true analytical risk level or a numerical estimate of it [59].

• Ni = d10aie, i = 1, · · · , 50, where: for Case study 1: ai = 1 + 5
49 (i − 1); for Case study 2:

ai = 1+ 4
49 (i−1); for Case study 3: ai = 1+ log10(50000)−1

49 (i−1); for Case study 4: ai = 1+ 4
49 (i−1);

and for Case study 5: ai = 1+ 4
49 (i−1) (the upper bounds on Ni were determined based on memory

requirements)

• Nc: Case study 1: 1000; Case study 2: 100000; Case study 3: 10; Case study 4: 5; and Case
study 5: 10 (these values were tuned for good performance)

• NMC : See Section 5.1 of the paper (we use the same Monte Carlo samples that were used by our
proposed method to estimate risk levels).

A.2 Solving (CCP) for a fixed risk level

Algorithm 8 adapts Algorithm 2 to solve (CCP) for a given risk level α̂ ∈ (0, 1). An initial point x̄0 and
an upper bound on the optimal objective value νup can be obtained in a manner similar to Algorithm 2,
whereas an initial lower bound on the optimal objective value νlow can be obtained either using lower
bounding techniques (see [41, 43]), or by trial and error. Note that the sequence of approximations in
line 9 of Algorithm 8 need not be solved until termination if Algorithm 3 determines that ᾱi < α̂ before
its termination criteria have been satisfied.

A.3 Implementation of the sigmoidal approximation algorithm

We used the following ‘tuned’ settings to solve each iteration of the sigmoidal approximation problem (see
Section 4 of Cao and Zavala [13]) using IPOPT: tol = 10−4, max iter = 10000, hessian approximation

= limited memory, jac c constant=yes, and max cpu time=3600 seconds. We terminated the loop of
Algorithm SigVar-Alg of Cao and Zavala [13] when the objective improved by less than 0.01% relative
to the previous iteration. In what follows, we use the notation of Algorithm SigVar-Alg of Cao and
Zavala [13]. For our ‘adaptive γ’ setting, we use the proposal of Cao and Zavala [13] to specify γ when the
solution of the CVaR problem corresponds to tc(α) < 0. When tc(α) = 0 at the CVaR solution returned
by Gurobi, we try to estimate a good value of tc(α) by looking at the true distribution of g(xc(α), ξ).

A.4 Tailored projection step for Case study 2

Because Algorithm 2 requires projecting onto the sets Xν :=
{
x ∈ ∆N : xTΣx ≤ ν

}
many times for

Case study 2 with different values of ν, we develop a tailored projection routine that is computationally
more efficient than solving quadratically-constrained quadratic programs to compute these projections.

28

Algorithm 7 Scenario approximation for approximating the efficient frontier of (CCP)

1: Input: Number of major iterations M , distinct sample sizes Ni, i = 1, · · · ,M , number of replicates
per major iteration R, maximum number of scenario constraints added per iteration Nc, number of
samples to estimate risk levels NMC , and initial guess x̂ ∈ X.

2: Output: Pairs (ν̄i,r, ᾱi,r), i ∈ {1, · · · ,M} and r ∈ {1, · · · , R}, of objective values and risk levels
that can be used to approximate the efficient frontier, and corresponding sequence of solutions {x̄i,r}.

3: Preparation: Draw a (fixed) sample {ξ̄l}NMCl=1 from P for estimating risk levels of candidate solu-
tions.

4: for major iteration i = 1 to M do
5: for replicate r = 1 to R do
6: Sample: Draw i.i.d. sample {ξl,r}Nil=1 from P.
7: Initialize: Starting point x0 := x̂, list of scenarios enforced for each chance constraint I0

k = ∅,
k ∈ {1, · · · ,m},

and counter q = 0.
8: repeat
9: Update q ← q + 1, number of scenario constraints violated V ← 0, Iqk = Iq−1

k , ∀k.
10: Solve the following scenario approximation problem (locally) using the initial guess xq−1

to obtain
a solution xq and corresponding optimal objective νq:

min
x∈X

f(x)

s.t. gk(x, ξl,r) ≤ 0, ∀l ∈ Iq−1
k .

11: for k = 1 to m do
12: Evaluate kth random constraint gk at xq for each of the scenarios l = 1, · · · , Ni.
13: Sort the values {gk(xq, ξl,r)}Nil=1 in decreasing order.
14: Increment V by the number of scenario constraints satisfying gk(xq, ξl,r) > 0.
15: Add at most Nc of the most violated scenario indices l to Iqk .
16: end for
17: until V = 0
18: Set x̂ = xi,r = xq and ν̄i,r = νq to their converged values.
19: Estimate risk level ᾱi,r of candidate solution x̂ using the sample {ξ̄l}NMCl=1 .
20: end for
21: end for

Algorithm 8 Solving (CCP) for a fixed risk level

1: Input: target risk level α̂ ∈ (0, 1), ‘guaranteed’ lower and upper bounds on the optimal objective
value νlow and νup with νlow ≤ νup, and initial point x̄0 ∈ X.

2: Set algorithmic parameters: in addition to line 2 of Algorithm 2, let νtol > 0 denote an optimality
tolerance.

3: Output: approximate optimal objective value ν̂ of (CCP) for a risk level of α̂.
4: Preprocessing: let ν̄0 = 1

2 (νlow + νup), and determine smoothing parameters {τk,j}Kk=1 scaled at
proj

(
x̄0, Xν̄0

)
using Algorithm 4 and an initial sequence of step lengths {γ̄k}Kk=1 for the corresponding

sequence of approximating problems (APPν) with ν = ν̄0 using Algorithm 5.
5: Optimization Phase:
6: Initialize index i = 0.
7: repeat
8: Update iteration count i← i+ 1 and set objective bound ν̄i = 1

2 (νlow + νup).
9: Obtain (ᾱi, x̄i) by solving sequence of approximations (APPν) using Algorithm 3 with the above

algorithmic
parameter settings and proj

(
x̄i−1, Xν̄i

)
as the initial guess.

10: if ᾱi ≥ α̂ then set νlow ← ν̄i ; else set νup ← ν̄i.
11: until νlow ≥ νup − νtol
12: Set ν̂ = νup.

29

To project a point y ∈ RN onto Xν for some ν > 0, note that the KKT conditions for the projection
problem min

x∈Xν
0.5‖x− y‖2 yield:

x∗i =
yi − µ+ πi
1 + 2σ2

i λ
, x∗i ≥ 0, πi ≥ 0, x∗i πi = 0, ∀i ∈ {1, · · · , N},

λ ≥ 0,

N∑
i=1

x∗i = 1,

N∑
i=1

α2
i (x
∗
i)

2 ≤ ν, λ

(
N∑
i=1

α2
i (x
∗
i)

2 − ν

)
= 0,

where x∗ ∈ RN denotes the projection and µ, λ, and (π1, · · · , πN) denote KKT multipliers. Note that

the inequalities in the first row can be simplified as x∗i = max
{

0, yi−µ
1+2σ2

i λ

}
, ∀i ∈ {1, · · · , N}. We first

check whether λ = 0 satisfies the above system of equations (i.e., if the quadratic constraint is inactive
at the solution) by setting x∗ to be the projection of y onto the unit simplex. If λ = 0 is infeasible, we
solve the following system of equations by using binary search over λ:

x∗i = max

{
0,

yi − µ
1 + 2σ2

i λ

}
, ∀i ∈ {1, · · · , N},

N∑
i=1

xi = 1,

N∑
i=1

α2
i (x
∗
i)

2 = ν,

where for each fixed λ > 0, the first two sets of equations in x∗ and µ are solved by adapting the algorithm
of Condat [18] for projection onto the unit simplex.

B Proof of Proposition 6

We first sketch an outline of the proof (note that our proof will follow a different order for reasons that
will become evident). We will establish that (see Chapters 4 and 5 of Rockafellar and Wets [54] for
definitions of technical terms)

lim sup
x→x̄
k→∞

∂p̂k(x) +NXν (x) = lim sup
x→x̄
k→∞

∂p̂k(x) + lim sup
x→x̄
k→∞

NXν (x). (3)

Then, because of the outer semicontinuity of the normal cone mapping, it suffices to prove that the
outer limit of ∂p̂k(x) is a subset of {∇p(x̄)}. To demonstrate this, we will first show that ∂p̂k(x) =
−∂
∫∞
−∞ F (x, η)dφ

(
η; τk−1

c

)
dη, where F is the cumulative distribution function of max [ḡ(x, ξ)]. Then,

we will split this integral into two parts - one accounting for tail contributions (which we will show vanishes
when we take the outer limit), and the other accounting for the contributions of F near (x, η) = (x̄, 0)
that we will show satisfies the desired outer semicontinuity property.

Since p̂k(x) can be rewritten as p̂k(x) = E
[
φ
(
max [ḡ(x, ξ)] ; τk−1

c

)]
by Assumptions 4B and 6, we

have

p̂k(x) = E
[
φ
(
max [ḡ(x, ξ)] ; τk−1

c

)]
=

∫ +∞

−∞
φ
(
max [ḡ(x, ξ)] ; τk−1

c

)
dP

=

∫ +∞

−∞
φ
(
η; τk−1

c

)
dF (x, η)

= lim
η→+∞

φ
(
η; τk−1

c

)
−
∫ +∞

−∞
F (x, η)dφ

(
η; τk−1

c

)
dη,

where the second line is to be interpreted as a Lebesgue-Stieljes integral, and the final step follows by
integrating by parts and Assumption 4. This yields (see Proposition 5 and Assumption 6 for the existence
of these quantities)

∂p̂k(x) ⊂ −∂
∫
|η|≥εk

F (x, η)dφ
(
η; τk−1

c

)
dη − ∂

∫ εk

−εk
F (x, η)dφ

(
η; τk−1

c

)
dη (4)

by the properties of the Clarke generalized gradient, where {εk} is defined in Assumption 6.

30

Let {xk} be any sequence inXν converging to x̄ ∈ Xν . Suppose vk ∈ −∂
∫
|η|≥εk F (xk, η)dφ

(
η; τk−1

c

)
dη

with vk → v ∈ Rn. We would like to show that v = 0. Note that by an abuse of notation (where we
actually take norms of the integrable selections that define vk)

lim
k→∞

‖vk‖ = lim
k→∞

∥∥∥∥∥−∂
∫
|η|≥εk

F (xk, η)dφ
(
η; τk−1

c

)
dη

∥∥∥∥∥ = lim
k→∞

∥∥∥∥∥
∫
|η|≥εk

∂xF (xk, η)dφ
(
η; τk−1

c

)
dη

∥∥∥∥∥
≤ lim
k→∞

∫
|η|≥εk

‖∂xF (xk, η)‖dφ
(
η; τk−1

c

)
dη

≤ lim
k→∞

∫
|η|≥εk

LF (η)dφ
(
η; τk−1

c

)
dη = 0, (5)

where the first step follows from Theorem 2.7.2 of Clarke [17] (whose assumptions are satisfied by virtue
of Assumption 6B), the second inequality follows from Proposition 2.1.2 of Clarke [17], and the final
equality follows from Assumption 6C.

The above arguments establish that lim sup
x→x̄
k→∞

−∂
∫
|η|≥εk F (x, η)dφ

(
η; τk−1

c

)
dη = {0}. Consequently,

we have lim sup
x→x̄
k→∞

∂p̂k(x) ⊂ lim sup
x→x̄
k→∞

−∂
∫ εk
−εk F (x, η)dφ

(
η; τk−1

c

)
dη from Equation (4). We now consider

the outer limit lim sup
x→x̄
k→∞

−∂
∫ εk
−εk F (x, η)dφ

(
η; τk−1

c

)
dη. Suppose wk ∈ −∂

∫ εk
−εk F (xk, η)dφ

(
η; τk−1

c

)
dη

with wk → w ∈ Rn. We wish to show that w = ∇p(x̄). Invoking Theorem 2.7.2 of Clarke [17] once
again, we have that

lim sup
k→∞

− ∂
∫ εk

−εk
F (xk, η)dφ

(
η; τk−1

c

)
dη ⊂ lim sup

k→∞
−
∫ εk

−εk
∇xF (xk, η)dφ

(
η; τk−1

c

)
dη

= lim sup
k→∞

−
(∫ εk

−εk
∇xF (xk, η)dφ̂ (η) dη

)(∫ εk

−εk
dφ
(
z; τk−1

c

)
dz

)
=

(
lim sup
k→∞

−
∫ εk

−εk
∇xF (xk, η)dφ̂ (η) dη

) (
lim
k→∞

∫ εk

−εk
dφ
(
z; τk−1

c

)
dz

)
= lim sup

k→∞
−
∫ εk

−εk
∇xF (xk, η)dφ̂k (η) dη, (6)

where for each k ∈ N large enough, φ̂k : R→ R is defined as φ̂k (y) =
φ
(
y; τk−1

c

)∫ εk
−εk dφ

(
z; τk−1

c

)
dz

, the first step

follows (by an abuse of notation) from the fact that εk < θ for k large enough (see Assumption 6B), and
the third and fourth steps follow from Assumption 6C. Noting that4

∫ εk

−εk
∇xF (xk, η)dφ̂k(η)dη =

[
∂F

∂x1
(xk, ω1,k) · · · ∂F

∂xn
(xk, ωn,k)

]T ∫ εk

−εk
dφ̂k(η)dη =

∂F

∂x1
(xk, ω1,k)

...
∂F

∂xn
(xk, ωn,k)

for some constants ωi,k ∈ (−εk, εk), i = 1, · · · , n, by virtue of Assumption 6B and the first mean value
theorem for definite integrals, we have

lim sup
k→∞

− ∂
∫ εk

−εk
F (xk, η)dφ

(
η; τk−1

c

)
dη ⊂ lim sup

k→∞

{
−
[
∂F

∂x1
(xk, ω1,k) · · · ∂F

∂xn
(xk, ωn,k)

]T
}

= {−∇xF (x̄, 0)} = {∇p(x̄)},
4Lemma 4.2 of Shan et al. [57] reaches a stronger conclusion from Equation (6) than our result (they only require that

the distribution function F is locally Lipschitz continuous). We do not adapt their arguments since we are unable to follow
a key step (the first step in [57, pg. 191]) in their proof.

31

where the first equality above follows from Assumption 6B, and the second equality follows from the fact
that p(x) = 1− F (x, 0) for each x ∈ Xν . Reconciling our progress with Equation (4), we obtain

lim sup
x→x̄
k→∞

∂p̂k(x) ⊂ {∇p(x̄)}.

To establish the desirable equality in Equation (3), it suffices to show that ∂p̂k(xk) ⊂ C for k large
enough, where C ⊂ Rn is independent of k. From Equation (5), we have that the first term in the right-
hand side of Equation (4) is contained in a bounded set that is independent of k ∈ N. From Equation (6),
we have that any element of the second term in the right-hand side of Equation (4) is bounded above in
norm by max

x∈cl(Bδ(x̄))
η∈[−0.5θ,0.5θ]

‖∇xF (x, η)‖ for k large enough for any δ > 0. The above arguments in conjunction

with Equation (4) establish Equation (3). The desired result then follows from the outer semicontinuity
of the normal cone mapping, see Proposition 6.6 of Rockafellar and Wets [54].

C Recourse formulation

As noted in Section 1 of the paper, Problem (CCP) can also be used to model chance-constrained
programs with static recourse decisions, e.g., by defining g through the solution of the following auxiliary
optimization problem for each (x, ξ) ∈ X × Ξ:

g(x, ξ) := min
y,η

η

s.t. T (x, ξ) +W (ξ)y + ηe ≥ 0,

y ∈ Rny+ , η ≥ −1,

where T : Rn × Rd → Rmr is continuously differentiable, and W : Rd → Rmr×ny . Note that g can be
recast in the form of a joint chance constraint by appealing to linear programming duality, viz.,

g(x, ξ) = max
(v,w)∈EXT(V (ξ))

− vTT (x, ξ)− w,

where EXT(V (ξ)) denotes the set of extreme points of the polytope

V (ξ) =
{

(v, w) ∈ Rmr+ × R+ : vTW (ξ) ≤ 0, vTe+ w = 1
}
.

Explicitly reformulating the recourse constraints into the above explicit form is not generally practical
since Algorithms 4 and 5 rely on stepping through each of the constraint functions, and the cardinality of
the set of extreme points of V (ξ) may be huge. Therefore, we consider the case when the approximations
p̂k are constructed using a single smoothing function, i.e., p̂k(x) = E

[
φk(g(x, ξ))

]
, where {φk} is a

sequence of smooth scalar functions that approximate the step function.
Throughout this section, we assume that g that can be reformulated as g(x, ξ) := max

j∈J
hj(x, ξ), where

J is a (potentially large) finite index set, and hj : Rn×Rd → R are continuously differentiable functions
that are Lipschitz continuous and have Lipschitz continuous gradients in the sense of Assumption 3. We

let L
′

h(ξ) denote the Lipschitz constant of ∇h(·, ξ) on Xν with E
[(
L
′

h(ξ)
)2]

< +∞. While the theory in

this section is also applicable to the ordinary joint chance constrained setting, it is usually advantageous
to consider individual smoothing functions for each chance constraint function in that case whenever
feasible.

We first characterize the Clarke generalized gradient of the approximation p̂k under this setup.

Proposition 11. Suppose Assumptions 4 and 5 and the above assumptions on g(x, ξ) = max [h(x, ξ)]
and φk hold. Then ∂p̂k(x) = E

[
dφk (max [h(x, ξ)])× ∂x max [h(x, ξ)]

]
.

Proof. Note that for any x ∈ X and ξ ∈ Ξ, we have ∂xφk(g(x, ξ)) = dφk(g(x, ξ)) ∂x max [h(x, ξ)], see
Theorem 2.3.9 of Clarke [17]. A justification for swapping the derivative and expectation operators then
follows from Proposition 5 of the paper and the fact that p̂k(x) = E

[
φk(g(x, ξ))

]
= E

[
max
j

[φk (gj(x, ξ))]
]

since φk is monotonically nondecreasing on R.

32

The following result establishes that the approximation p̂k continues to enjoy the weak convexity
property for the above setup under mild assumptions.

Proposition 12. Suppose Assumptions 1, 4, and 5 hold. Additionally, suppose g(x, ξ) = max [h(x, ξ)]
satisfies the above conditions and φk is a scalar smoothing function. Then p̂k(·) is L̄k-weakly convex for
some constant L̄k that depends on L

′

h(ξ), L
′

φ,k, M
′

φ,k, and the diameter of Xν .

Proof. First, note that g(·, ξ) := max [h(·, ξ)] is L
′

h(ξ)-weakly convex on Xν for each ξ ∈ Ξ, see Lemma 4.2
of Drusvyatskiy and Paquette [23]. In particular, this implies that for any y, z ∈ Xν ,

g(z, ξ) = max [h(z, ξ)] ≥ g(y, ξ) + sT
y (ξ)(z − y)− L

′

h(ξ)

2
‖z − y‖2

for any sy(ξ) ∈ ∂max [h(y, ξ)]. The Lipschitz continuity of dφk(·) implies that for any scalars v and w:

φk(w) ≥ φk(v) + dφk(v)(w − v)−
L
′

φ,k

2
(w − v)2.

From the monotonicity Assumption 4B and by recursively applying the above result, we have for any
ξ ∈ Ξ and y, z ∈ Xν :

φk (g(z, ξ)) ≥ φk

(
g(y, ξ) + sTy (ξ)(z − y)− L

′
h(ξ)

2
‖z − y‖2

)

≥ φk
(
g(y, ξ) + sTy (ξ)(z − y)

)
− L

′
h(ξ)

2
dφk

(
g(y, ξ) + sTy (z − y)

)
‖z − y‖2 −

L
′
φ,k

(
L
′
h(ξ)

)2
8

‖z − y‖4

≥ φk (g(y, ξ)) + (dφk (g(y, ξ)) sy(ξ))T(z − y)−
L
′
φ,k

2

(
sTy (ξ)(z − y)

)2
−
L
′
h(ξ)M

′
φ,k

2
‖z − y‖2−

L
′
φ,k

(
L
′
h(ξ)

)2
8

‖z − y‖4

≥ φk (g(y, ξ)) + (dφk (g(y, ξ)) sy(ξ))T(z − y)− ‖z − y‖
2

2

[
L
′
φ,k‖sy(ξ)‖2 + L

′
h(ξ)M

′
φ,k+

L
′
φ,k

(
L
′
h(ξ)

)2
diam (Xν)2

4

]
.

Taking expectation on both sides and noting that ‖sy(ξ)‖ ≤ L
′
h(ξ), we get

E
[
φk (g(z, ξ))

]
≥ E

[
φk (g(y, ξ))

]
+ E

[
(dφk (g(y, ξ)) sy)T(z − y)

]
−

‖z − y‖2

2

L′φ,kE[(L′h(ξ)
)2]

+ E
[
L
′
h(ξ)

]
M
′
φ,k +

L
′
φ,kE

[(
L
′
h(ξ)

)2]
diam (Xν)2

4

 .
Therefore, p̂k is L̄k-weakly convex on Xν with

L̄k := L
′

φ,kE
[(
L
′

h(ξ)
)2]

+E
[
L
′

h(ξ)
]
M
′

φ,k+
1

4
L
′

φ,kE
[(
L
′

h(ξ)
)2]

diam (Xν)
2
.

We now outline our proposal for estimating the weak convexity parameter L̄k of p̂k for the above
setting. First, we note that estimate of the constants L

′

φ,k and M
′

φ,k can be obtained from Proposition 7.
Next, we propose to replace the unknown constant diam (Xν) with the diameter 2r of the sampling ball
in Algorithm 5. Finally, we note that estimating the Lipschitz constant L

′

h(ξ) for any ξ ∈ Ξ is tricky
since it would involve looking at all of the |J | constraints in general, just the thing we wanted to avoid!
To circumvent this, we propose to replace L

′

h(ξ) in L̄k with an estimate of the local Lipschitz constant
of our choice of the B-subdifferential element of g(·, ξ) through sampling (similar to the proposal in
Algorithm 5). When g is defined through the solution of the recourse formulation considered, we can
estimate a B-subdifferential element by appealing to linear programming duality and use this as a proxy
for the ‘gradient’ of g. Note that a crude estimate of the step length does not affect the theoretical
convergence guarantee of the stochastic subgradient method of Davis and Drusvyatskiy [20].

33

D Additional computational results

We present results of our replication experiments for the four case studies in the paper, and also consider
a variant of Case study 3 that has a known analytical solution to benchmark our proposed approach.

Figure 7 presents the enclosure of the trajectories of the EF generated by ten replicates of the proposed
approach when applied to Case study 1. For each value of the objective bound ν, we plot the smallest
and largest risk level determined by Algorithm 3 at that bound over the different replicates. We find that
the risk levels returned by the proposed algorithm do not vary significantly across the different replicates,
with the maximum difference in the risk levels across the 26 points on the EF being a factor of 1.48.
Figure 8 presents the corresponding plot for Case study 2. We again find that the risk levels returned
by the proposed algorithm do not vary significantly across the different replicates, with the maximum
difference in the risk levels across the 20 points on the EF being a factor of 1.006. Figure 9 presents the
corresponding plot for Case study 3. The maximum difference in the risk levels at the 31 points on the
EF for this case is a factor of 1.22 across the ten replicates. Figure 10 presents the corresponding plot
for Case study 4. The maximum difference in the risk levels at the 26 points on the EF for this case is
a factor of 1.25 across the ten replicates.

Figure 7: Enclosure of the trajectories of the efficient frontier for Case study 1 generated by ten replicates
of the proposed approach.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

1.25

1.3

1.35

1.4

1.45

1.5

re
v

e
n

u
e

Analytical solution

Scenario approximation

Stochastic approximation lower bound

Stochastic approximation upper bound

Case study 5. We consider Case study 3 when the random variables ξij ∼ P := N (0, 1) are i.i.d., the
number of variables n = 100, the number of constraints m = 100, and bound U = 100. The EF can be
computed analytically in this case, see Section 5.1.1 of Hong et al. [34]. Figure 11 compares a typical EF
obtained using our approach against the analytical EF and the solutions generated by the tuned scenario
approximation algorithm. Our proposed approach is able to converge to the analytical EF, whereas the
scenario approximation method is only able to determine a suboptimal EF. Our proposal takes 2332
seconds on average (and a maximum of 2379 seconds) to approximate the EF using 32 points, whereas
it took the scenario approximation a total of 16007 seconds to generate its 1000 points in Figure 11.
We note that about 60% of the reported times for our method is spent in generating random numbers
because the random variable ξ is high-dimensional.

Figure 12 presents an enclosure of the trajectories of the EF generated by the proposed approach
over ten replicates for this case. We find that the risk levels returned by the proposed algorithm do not

34

Figure 8: Enclosure of the trajectories of the efficient frontier for Case study 2 generated by ten replicates
of the proposed approach.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

v
a

ri
a

n
c

e
 o

f
re

tu
rn

10
-5

Analytical solution

Scenario approximation

Stochastic approximation lower bound

Stochastic approximation upper bound

Figure 9: Enclosure of the trajectories of the efficient frontier for Case study 3 generated by ten replicates
of the proposed approach.

10
-3

10
-2

10
-1

10
0

risk level ()

-820

-800

-780

-760

-740

-720

-700

-680

-660

c
o

s
t

Scenario approximation

Stochastic approximation lower bound

Stochastic approximation upper bound

vary significantly across the different replicates, with the maximum difference in the risk levels across
the 32 points on the EF being a factor of 1.001.

35

Figure 10: Enclosure of the trajectories of the efficient frontier for Case study 4 generated by ten replicates
of the proposed approach.

10
-3

10
-2

10
-1

risk level ()

47

48

49

50

51

52

53

54

55

56

c
o

s
t

SCIP scenario approximation

Stochastic approximation lower bound with SCIP init

Stochastic approximation upper bound with SCIP init

Figure 11: Comparison of the efficient frontiers for Case study 5.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

-900

-880

-860

-840

-820

-800

-780

-760

-740

-720

c
o

s
t

Analytical solution

Scenario approximation

Initial guess for stochastic approximation

Stochastic approximation

36

Figure 12: Enclosure of the trajectories of the efficient frontier for Case study 5 generated by ten replicates
of the proposed approach.

10
-4

10
-3

10
-2

10
-1

10
0

risk level ()

-900

-880

-860

-840

-820

-800

-780

-760

-740

-720

c
o

s
t

Analytical solution

Scenario approximation

Initial guess for stochastic approximation

Stochastic approximation lower bound

Stochastic approximation upper bound

37

	1 Introduction
	2 Review of related work
	3 The smoothing approach
	3.1 Consistency
	3.2 Examples of smooth approximations

	4 Proposed algorithm
	4.1 Outline of the algorithm
	4.2 Estimating the parameters of Algorithm 2
	4.3 Other practical considerations

	5 Computational study
	5.1 Implementation details
	5.2 Numerical experiments

	6 Conclusion and future work
	A Algorithm outlines
	A.1 Implementation of the scenario approximation algorithm
	A.2 Solving (CCP) for a fixed risk level
	A.3 Implementation of the sigmoidal approximation algorithm
	A.4 Tailored projection step for Case study 2

	B Proof of Proposition 6
	C Recourse formulation
	D Additional computational results

