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Abstract

The analysis of infeasible subproblems plays an important role in solving mixed inte-
ger programs (MIPs) and is implemented in most major MIP solvers. There are two
fundamentally different concepts to generate valid global constraints from infeasible
subproblems: conflict graph analysis and dual proof analysis. While conflict graph
analysis detects sets of contradicting variable bounds in an implication graph, dual
proof analysis derives valid linear constraints from the proof of the dual LP’s unbound-
edness. The main contribution of this paper is twofold. Firstly, we present three
enhancements of dual proof analysis: presolving via variable cancellation, strengthen-
ing by applying mixed integer rounding functions, and a filtering mechanism. Further,
we provide a comprehensive computational study evaluating the impact of every pre-
sented component regarding dual proof analysis. Secondly, this paper presents the
first combined approach that uses both conflict graph and dual proof analysis simul-
taneously within a single MIP solution process. All experiments are carried out on
general MIP instances from the standard public test set MIPLIB 2017; the presented
algorithms have been implemented within the non-commercial MIP solver SCIP and
the commercial MIP solver FICO Xpress.
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1 Introduction

In the last few decades, mixed integer programming (MIP) has become one of the
most important techniques in Operations Research. The general framework of mixed
integer programming was successfully applied to many real world applications, e.g.,
chip design verification [2], scheduling [30,36,47], supply chain management [25,52],
and gas transport optimization [22,31] to mention only a few. A lot of progress has
been made in the performance of general MIP solver software; problems that seemed
out of scope a decade ago can often be solved in seconds nowadays [5,13]. The field’s
theoretical progress directly stimulated the development of commercial (e.g.,CPLEX,
FICO Xpress,Gurobi, SAS)and non-commercial (e.g.,CBC, SCIP) MIP solvers.
In this paper, we will focus on one specific component that is used in almost every
state-of-the-art MIP solver: the analysis of infeasible subproblems. Without loss of
generality, we consider MIPs of the form

min{c'x |Ax > b, £ <x <u, x; € ZVj € I}, 1)

with objective coefficient vector ¢ € R”, constraint coefficient matrix A € R™*",
constraint left-hand side » € R™, and variable bounds ¢, u € Rn, where R := RU
{d00}. Furthermore, let V' = {1, ..., n} be the index set of all variables, andletZ € N/
be the set of variables that are required to be integral in every feasible solution.

By omitting the integrality requirements, we obtain the linear program (LP)

min{ch |Ax > b, £ <x <u, x € R"}. )

The linear program (2) is called the LP relaxation of (1). The LP relaxation provides
a lower bound on the optimal solution value of the MIP (1). This fact is an important
ingredient of LP-based branch-and-bound [18,35], which is the most commonly used
method to solve MIPs. Branch-and-bound is a divide-and-conquer method that splits
the search space sequentially into smaller subproblems, which are intended to be easier
to solve. During this procedure, the solver may encounter infeasible subproblems.
Infeasibility can either be detected by contradicting implications, e.g., derived by
domain propagation, or by an infeasible LP relaxation. In this paper’s remainder, we
treat an LP relaxation exceeding the current cutoff bound as infeasible. It proves that
this subproblem cannot contain a feasible solution of (1) that is better than the currently
best-known solution.

Modern MIP solvers try to “learn” from infeasible subproblems, e.g., by conflict
graph analysis [1]. More precisely, each subproblem can be identified by its local
variable bounds, i.e., by local bound changes that come from branching decisions and
domain propagation [46] at the current node and its ancestors. If domain propagation
detects infeasibility, one way of conflict learning is traversing the chain of decisions
and deductions in a reverse fashion. This procedure allows the reconstruction of the
history of bound changes along the root path, thereby identifying explanations for the
infeasibility. If it can be shown that a small subset of the bound changes suffices to prove
infeasibility, a so-called conflict constraint is generated. This constraint is exploited
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in the remainder of the search for domain propagation. Consequently, other parts of
the search tree can be pruned, and additional bound tightenings can be deducted.

The power of conflict analysis arises because branch-and-bound algorithms often
repeat a similar search in slightly different contexts throughout the search tree. Conflict
constraints address such situations and aim to avoid redundant work.

Conflict analysis for MIP has its origin in solving satisfiability problems (SAT)
and goes back to [39]. Similar ideas are used in constraint programming [e.g., 26,
33,48]. Integration of these techniques into MIP was independently suggested by
[2,20,45]. In this paper, we mostly follow the concepts and the notation of [2]. Follow-
up publications suggested methods to use conflict information for variable selection
in branching [3,34], to tentatively generate conflicts before branching [6,8,11], and
to analyze infeasibility detected in primal heuristics [9,10,51]. Besides, instead of
simply analyzing infeasibility that is derived more or less coincidentally, methods
were introduced to generate additional conflict information explicitly [21,51].

In a preliminary study [49], we examined a vanilla approach of combining conflict
graph analysis and dual proof analysis within SCIP. In contrast to conflict graph
analysis, dual proof analysis is an LP-based and purely analytic approach that builds
on the Farkas lemma [23] to construct a proof of (local) infeasibility. The present paper
builds upon this work. Our contribution is twofold: We describe various enhancements
for dual proof analysis and present an extensive computational study of the described
techniques. On affected instances, the methods presented in this paper improve the
performance of SCIP by 7% in term of solving time and lead to a tree size reduction
of 6.4% compared to the approach reported in [49].

The paper is organized as follows. In Sect. 2, we give a theoretical overview of the
analysis of infeasible subproblems. This section covers the concept behind conflict
graph analysis and the LP-based theory of dual proof analysis. Section 3 describes
three enhancements on dual proof analysis. We will discuss presolving techniques like
cancellation and the application of mixed integer rounding functions to strengthen the
resulting dual proof constraint. Moreover, we present an update mechanism that allows
one to strengthen certain dual proof constraints during the tree search and a filtering
method to pick only the most promising dual proof constraints. A comprehensive
computational study of the techniques presented in this paper is given in Sect. 4.
Additionally, this study contains—to the best of our knowledge—the first computa-
tional results within MIP solvers incorporating both conflict graph and dual proof
analysis.

2 Infeasibility analysis for MIP

The analysis of infeasible subproblems is widely established in solving MIPs, today.
Most state-of-the-art MIP solvers rely either on an adaption of the conflict graph
analysis techniques known from SAT or on a pure LP-based approach. Both approaches
are strongly connected, as we will argue below.
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Assume, we are given an infeasible node of the branch-and-bound tree defined by
the subproblem

min{c'x |Ax > b, ¢ <x <u', xj € ZVj € T) (3)

with local bounds £ < ¢/ < u’ < u. In LP-based branch-and-bound, the infeasibility
of a subproblem is typically detected by contradicting implications or by an infeasible
LP relaxation. In the following, we describe how both situations can be handled.

2.1 Infeasibility due to domain propagation

If infeasibility is encountered by domain propagation, modern SAT and MIP solvers
construct a directed acyclic graph. The graph represents the logic of how the set of
branching decisions led to the detection of infeasibility, see Fig. 1. This graph is called
a conflict graph (or implication graph) [39]. The vertices of the conflict graph represent
bound changes of variables. The arcs (v, w) correspond to bound changes implied by
propagation, i.e., the bound change corresponding to w is based (besides others) on
the bound change represented by v.

In addition to the inner vertices that represent the bound changes from domain
propagation, the graph features source vertices for bound changes that correspond to
branching decisions and an artificial sink vertex representing the infeasibility. Valid
conflict constraints can be derived from cuts in the graph that separate the branching
decisions from the artificial infeasibility vertex. Based on such a cut, a conflict con-
straint can be derived; consisting of a set of variables with associated bounds, requiring
that at least one of the variables has to take a value outside these bounds in each fea-
sible solution. Note that in general, conflict constraints derived from this procedure
have no linear representation if general integer or continuous variables are present.

branching decisions

infeasibility

Fig.1 Example of a conflict graph describing all variable bound implications from the branching decisions
to the infeasibility A due to propagation. All shown variables are binary
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Moreover, by using different cuts in the graph, several different conflict constraints
might be derived from a single infeasibility.

A well-established strategy for finding good cuts in the conflict graph is to rely on
the so-called First-Unique-Implication-Point (FUIP) [53]. For every level of branching
decisions, there exists a FUIP. Zhang et al. [53] have demonstrated that for solving SAT
problems using 1-FUIP, i.e., the FUIP of the last branching decision level, is superior
to other strategies. In contrast to that, [1] suggested a different strategy for solving
MIPs that outperforms using the 1-FUIP solely. The proposed strategy considers the
FUIPs of all branching decisions and the corresponding conflict constraints along the
path to the root node and chooses the most promising conflict constraints.

2.2 Infeasibility due to an infeasible LP relaxation

During LP-based branch-and-bound, the LP relaxation of each subproblem is solved. If
the LP relaxation turns out to be infeasible, the procedure described in Sect. 2.1 cannot
be applied directly. The reason is that the LP does not deduce infeasibility from a single
constraint but from a potentially large subset of the inequality system (2). Naively, one
would have to consider all local bound changes as a reason for the infeasibility. This
corresponds to adding an edge in the conflict graph from each variable node to the
artificial infeasibility node. However, this would not yield a conflict constraint that can
be used for pruning elsewhere in the tree. Thus, the naive reason of infeasibility does
not provide additional information for the remainder of the search. Consequently, it
is desirable to identify a small set of variables and bound changes sufficient to render
the LP infeasible. Such a set of variables and bound changes can be identified by
using LP duality theory as reported by Achterberg [1]. In the following, we will refer
to such set of variables as initial set. Note, the initial set of variables is not unique
in general. In the case of conflict graph analysis, which is a combinatorial approach,
sparser conflict constraints are preferred. In the case of binary variables, a conflict
constraint encodes that in every feasible solution at least one variable in the constraint
has to take a different value compared to the current path along to the root node.
Thus, adding a variable would weaken the conflict constraint. A heuristic approach
for achieving short conflict constraints is to start from a minimal subset of the initial set
of variables that is sufficient to render infeasibility [1]. Note, there might be multiple
minimal subsets of the initial set of variables that render infeasibility.

Based on such a minimal subset of variables, the same procedure such as applied
to analyze infeasibility due to contradicting variable bounds can be used to derive
conflict constraints. Achterberg proposed to pursue the same strategy for analyzing
LP-based infeasibility (see the end of Sect. 2.2.2) as for analyzing infeasibility due
to domain propagation. That is, considering all FUIPs and choosing the most promis-
ing corresponding conflict constraints [1]. In other words, for every FUIP a conflict
constraint is generated. Among this set of constraints, a suitable subset for further
considerations in the remainder of the solving process is chosen. With this strategy,
the overhead introduced by storing and propagating the additional constraints should
be reduced.
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In this paper, we propose a different strategy considering the LP-based certificate
of infeasibility directly, i.e., the so-called initial dual proof constraint. Compared to
conflict graph analysis, which is seeded from a single (minimal) subset of the initial
set of variables, the initial dual proof constraint encodes all subsets of the initial set of
variables that render infeasibility. Thus, it encodes more information. However, this
does not mean that a single dual proof constraint dominates all conflict constraints that
can be derived from it. As mentioned above, the initial set of variables is not unique in
general. Thus, after applying conflict graph analysis, the resulting conflict constraints
might contain variables whose bounds have been changed along the root path but are
not part of the initial set.

2.2.1 An excursion to duality theory

If solving the LP relaxation detects infeasibility, the proof of infeasibility is given by
aray in the dual space with respect to the zero-objective function.! Consider a node of
the branch-and-bound tree and the corresponding subproblem of type (3) with local
bounds ¢ < ¢’ < u’ < u. The dual LP of the corresponding LP relaxation of (3) is
given by

max{yTb + rT{E/, u'}| yTA +r=c¢, ye€ R;m r e R"},

where

ST ILTRS WUED SRS WU TR
jeN jeN jeN jeN

rj >0 rj <0 rf_>0 —rL;<()

with rt, rt e ]R’_f_ representing the dual variable on the finite bound constraints, i.e.,
r := rt — r". Note, since every variable j can only be tight in at most one bound
constraint, it follows by complementary slackness that either rf, r% or none of them
will be different to zero but not both at the same time. For every variable x; it holds
that r; = ¢; — y'A.j, where A.; denotes the j-th column of A. By LP theory, each

ray (y, r) € R™*" in the dual space that satisfies

yIA+r=0

Yb+rie,u'} >0 ®

proves infeasibility of (3), which is an immediate consequence of the Lemma of [23].
Hence, if (2) is infeasible, there exists a solution (y, r) of (5).

! This does not require that the dual problem of (2) is feasible.
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2.2.2 Analysis of infeasible LPs

It follows immediately from (5) that infeasibility within the local bounds ¢’ and u’ is
proven by 0 < y'b + rT{¢/,u'} = y'b — y"A{€’, u’}. Therefore, the inequality

y Ax > y'h (6)

has to be fulfilled by all feasible solutions. Since (6) is a non-negative aggregation
of globally valid constraints, it is globally valid too. In the following, this type of
constraint will be called dual proof constraint. The dual ray is effectively a list of
multipliers on all constraints that are represented in the LP relaxation, such as model
constraints (needed by the problem formulation) or additional valid global inequalities,
e.g., cutting planes, conflict constraints, and dual proof constraints. Thus, aggregating
the constraints according to the multipliers leads to a globally valid but redundant
constraint. However, with respect to the local bounds £’ and u” it leads to a false state-
ment, thereby proving that the set described by the constraints is empty inside the local
bounds. The property of proving infeasibility with respect to at least one set of local
bounds distinguishes dual proof constraints from arbitrary constraint aggregations. It
is used as some kind of natural “filtering” among the infinitely many different possible
constraint aggregations.

In general, infeasibility analysis can also be applied as explained in this paper if
locally valid inequalities are present. Here, we assume the corresponding dual mul-
tiplier to be 0. The resulting dual proof might not prove local infeasibility anymore.
In that case, the analysis of the infeasibility is stopped immediately. Modifications
of infeasibility analysis that also incorporate locally valid inequalities are described
by [12,50].

The situation of local infeasibility can be exploited as follows: Either one starts
conflict analysis as described in Sect. 2.1 from the set of local bounds, or one considers
only the weights given by the dual ray on the model constraints [43,44]. If those are
aggregated with respect to the dual multipliers, omitting the local bounds, we derive
a new globally valid constraint, which can be used for domain propagation. We refer
to the latter as dual proof analysis and to the outcome of this approach as dual proof
constraint. For the remainder of the paper, we will refer to the classical conflict analysis
as described in [1] as conflict graph analysis in order to better disambiguate the two
concepts. We will speak about the analysis of infeasible subproblems if we refer to
both concepts together.

An example of an infeasible LP after branching on one variable and the resulting
dual proof constraint can be found in Fig. 2. In this case, a single bound change
is derived, but in general, the resulting constraint can be directly used for domain
propagation during the remainder of the search.

In practice, a dual proof constraint of type (6) is expected to be dense, and therefore,
it might be worthwhile to search for a sparser infeasibility proof. Therefore, we will
discuss in the following how this constraint can be sparsified and strengthened via dual
proof analysis. Both the original and strengthened dual proof constraint can be used as
a starting point for conflict graph analysis, which is already described for infeasibility
due to domain propagation in Sect. 2.1.
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(a) Polytope P (b) Projection of P. Dual multipliers y and the resulting

dual proof constraint.
Fig. 2 Tllustration of an infeasibility proof. The polytope P = {x € R3|Ax > b, 0 < xj < lforj=

1, 2, 3} representing the convex hull of the global problem min{()Tx | Ax > b, x € {0, 1}3}. After branching
in x3, the subproblem with x3 = 0 can be proven to be infeasible due to an infeasible LP relaxation. The
resulting dual proof constraint is x3 > % which lead to the global bound deduction x3 > 1

Dual proof analysis Dual proof analysis denotes the modification of a dual proof
constraint (6) aiming to sparsify and strengthen the proof of infeasibility. In general,
all presolving techniques that apply to a single constraint [e.g., 2,4,46], can be used. In
Sect. 3, we will especially elaborate on presolving reductions that preserve the local
proof of infeasibility. The outcome of dual proof analysis is a single linear constraint
that can be used in the remainder of the search to derive further bound deductions
and prove the infeasibility of other parts of the tree. Further, it is a starting point
for the conflict graph analysis. Dual proof constraints are directly derived from the
LP relaxation. In contrast to conflict constraints derived from conflict graph analysis,
dual proof constraints do not incorporate any knowledge about integrality or infer-
ences of variables. Therefore, dual proof constraints are only considered for domain
propagation. Thus, they do not enter the LP relaxation.

Conflict graph analysis  To use the concept of a conflict graph as described in Sect. 2.1,
one needs an initial, preferably small, reason for infeasibility. Such encoding of infea-
sibility can be constructed from an infeasibility proof of type (6): It suffices to consider
all local bounds that have a nonzero coefficient in (6). The vertices of the conflict graph
that correspond to those local bounds are then connected to the artificial sink repre-
senting the infeasibility; global bounds are omitted. Conflict graph analysis can be
applied as described in Sect. 2.1.

To strengthen this procedure, one can sparsify the proof of infeasibility (6) by a
heuristic introduced by [1]. The heuristic relaxes some of the local bounds [¢’, u'] that
appear in the dual proof constraint such that the relaxed local bounds [¢”, 1] with
L <0<t <u <u” < ustill fulfill
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(a) Convex hull of the global  (b) Convex hull of the global  (¢) Convex hull of the global
problem. problem after conflict graph problem after dual proof
analysis. analysis.

Fig.3 Illustration of Example 1

yb+ 1" u'} > 0.

Note, the more bounds can be relaxed, the smaller the initial reason gets and the
stronger the resulting conflict constraints.

Example 1 A main difference between using a dual proof directly instead of applying
conflict graph analysis is the consideration of variables that contribute with their global
bound. Consider the following MIP

maxx +y+z
st. x+y+2z<2
x+y—2z<0
x+y+z=<1
x,y,z €{0,1}.

An optimal solution of the LP relaxation is (0, %, %) with objective value 1. After
branching on y, the LP relaxation proves infeasibility of the subproblem with y = 1.
A valid infeasibility proof, i.e., an unbounded ray in its dual, is (0, — %, —1). Following
Sect. 2.2.2, the resulting dual proof constraint is 1.5x + 1.5y < 1. Applying conflict
graph analysis leads to a single global deduction: (y < 0), see Fig. 3b. In contrast to
that, propagating the dual proof constraint directly leads to two global bound changes:
(x <0) A (y <0), see Fig. 3c. O

3 Three enhancements for dual proof analysis
Dual proof constraints derived as described in Sect. 2.2.2 can be used directly in the

remainder of the search. However, similar to conflict graph analysis, the dual proof
constraint can be modified and strengthened. In this section, we describe presolving
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and updating steps for strengthening dual proof constraints. Moreover, we discuss
how filtering steps can decide which dual proof constraint should be applied and
which should be rejected.

3.1 Presolving and strengthening

Presolving plays an important role in solving mixed integer programs [e.g., 2,4,16,
29,46]. In this section, we will discuss presolving techniques that can be applied to a
single linear constraint preserving the property of proving local infeasibility.

Since we consider MIPs of form Ax > b, only constraints of type a'x > by
are discussed in the remainder of this section. However, in Sect. 3.2 we will stick to
the notation used in the literature and consider constraints of form a'x < bg. Note,
by scaling with —1, each representation can be transformed into the other. Many
presolving and strengthening techniques use activity arguments [16]. Formally, the
maximal activity of a constraint a'x > by with respect to the (local) bounds ¢, u is
given by

Amax(a, £, u) = Z ajuj + Z ajl;j.

Analogously, the minimal activity is given by

Amin(a, £, u) = Z ajlj+ Z aju;.

JEN 1 aj>0 JEN : aj<0

Moreover, we will denote the violation of a constraint with respect to the (local)
bounds ¢ and u by vyiel(a, bo, £, u) = by — Amax(a, £, u). Hence, a constraint proves
infeasibility with respect to £ and u if vyio(a, bo, £, u) > 0.

3.1.1 Cancellation

Cancellation is a presolving technique to reduce the number of nonzero coefficients in
a constraint [4]. One way of doing so is the summation of constraints. More precisely,
adding an equality constraint to an inequality constraint will preserve the feasible
region of an LP or a MIP. The crucial part of this presolving technique is to choose
a pair of constraints and a scaling factor for the equality constraint such that the
support of the modified inequality is reduced. In this section, we present two variants
of cancellation that can be applied to dual proof constraints. Both variants have a linear
run time in the size of the support of the modified constraint.

Cancellation with variable bounds Dual proof constraints might contain variables
that contribute to the maximal activity with their global bound. Since the local and
global contributions to the maximal activity are equal, e.g., a;¢' = a;{, those vari-
ables can be removed from the infeasibility proof without changing the violation. Let
¢, u’ be the current local bounds of an infeasible subproblem. Then, a new constraint
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bB (a)Tx > ¥p(bg) that still proves local infeasibility can be constructed by

-~ )aj, if j ¢ Np
opl@); = 0, otherwise )
YBbo) =bo— Y ajlt;,uj), ®)
JjENB

where N :={j e N'|aj <Oand ¢’ =€ ora; > 0and u’ = u}.

Proposition 2 Let a'x > bybea globally valid constraint and ¢ (@)"x > Vg (by) be
constructed as described in (7)—(8) with respect to the local bounds £’ and u’. Then,
the following holds:

(1) vl/it)l(a’ b07 Ev M) = Vviol((bB (a)’ I/fB (b0)5 Es u)r and
(i) X :={(,u) e R" xR"[L < <u' <u, Amax(¢p(a),l',u’) < Y¥p(bo)} S
X ={,u)eR" xR"|£ <l <u' <u, Amax(a, ', u") < bp}.

Proof (i) This follows immediately by construction.

(ii) We show that for every subproblem defined by (¢,u’) € X it follows that
a'{¢',u'} < by. In other words, every tuple of bound vectors that is proven to
be infeasible after applying (7) and (8) is proven to be infeasible by the original
infeasibility proof, too. With the following observation

Do oailt oy < > ajlt.u,
jeNs JjENB
$5(a);=0 (@) =0

where we use the short notation as introduced in (4), it follows immediately that

Amax($(@), Cou) + Y aifl 'y < ypbo)+ Y aj{lj,uj)

JjeNB JjeNB
$5(a);j=0 $5(a);=0
— Amax(a, 7, u/) < by,

where ¢/, u’, £, u are chosen to maximize every expression.
O

Proposition 2 shows that using variable bounds to cancel nonzero coefficients in a
dual proof constraint leads to a weaker infeasibility proof in general, see Example 3.

Example3 Let x + y + z > 2 be a valid dual proof constraint with respect to
¢ = (0,0,0) and v’ = (0,0, 1) and x, y,z € {0, 1}. By construction, the modi-
fied constraint will be x + y > 1. Obviously, ((0, 0, 0), (1,0,0)) € X but satisfies
the modified constraint x +y > 1,1i.e., ((0,0,0), (1,0,0)) ¢ /'9, where X and X are
defined as in Proposition 2. O
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Note that in LP-based branch-and-bound, as it is implemented in most modern
MIP solvers, branching is performed only on integer variables. Therefore, we suggest
applying the cancellation procedure as described in this section only to continuous
variables. In our implementation we pursue a slightly more conservative strategy where
only continuous variables are removed that contribute with a global bound to the
maximal activity with respect to the current local bounds, i.e., depending on the sign
of the coefficient in the dual proof it holds ¢’ = ¢ and u’ = u, respectively. We apply
this cancellation as long as supp(a) > 0.15-|N|, where supp(a) := {j € N | a; # 0}
denotes the support of a'x > b. This threshold is identical to the default threshold
used to decide whether a conflict constraint, i.e., an infeasibility certificate derived
from conflict graph analysis, should be accepted.

For the special case of all j € supp(a) N Z are binary and all continuous variables
contribute with a global bound, i.e., j € supp(a) N (N \ Z) : j € Np, we apply
a more sophisticated strategy. Consider a maximal set of binary variables Z™** C
(supp(a) N Z) which is not sufficient to prove infeasibility with respect to the local
bounds ¢’ and u’, i.e.,

Amax (algma, £, u") + Amax (a| arzmax, £, u)>b
but for any binary variable x; with j ¢ Z™# it holds
Amax (@] zmaxy;, ¢ou'y + Amax (@|A\r\gmaxujy, €, u) < b Vj € (supp(a) NI) \ ™.

If such a set exists, all continuous variables can be canceled with their global bound
without weakening the dual proof if they are never sufficient to prove infeasibility, i.e.,

Amax (a|zma, £, u') + Amax (@|7\zmax, £, u) + Amin(@| Az, £, u) > b.

In that case the assignment of one additional binary variable x; with j ¢ ™% to its
current local bound is always needed to prove infeasibility, independently from the
assignment of the continuous variables.

Cancellation with variable bound constraints Next to variable bounds that are explic-
itly given by the problem formulations, modern MIP solvers detect and use so-called
variable bound constraints [24].

Definition 4 (Variable Bound Constraint [24]) Let b/, b* € R, c € R with ¢ # 0. A
variable bound constraint has the form

bl < xj+exp < b,
where x; is a continuous or integer variable and x; a binary or integer variable.

If b' = —oo and b* finite, the constraint gives an upper bound on x j» while a lower
bound on x; is given if b is finite and b* = oo. A typical example of variable upper
bound constraints are so-called big-M constraints x; < Mxy, where M is a (usually)
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huge constant, and x; is binary. Other typical use-cases are precedence constraints on
start time variables in scheduling.

Let Ny C supp(a) be the index of a variable for which a compatible variable bound
constraint exists. A variable bound constraint on variable x; witha; > 01is compatible
if it defines an upper bound. Analogously, a variable lower bound constraint on x; is
compatible if a; < 0. Moreover, let V be an arbitrary set of compatible variable
bound constraints with respect to a; containing, for every j, at least one variable
bound constraint

blj S xj+cjrxg < b?
such that xi is binary or general integer, respectively, and x; is general integer or
continuous, respectively. Since x; defines a bound on x;, we identify variable bound
constraint in ) by the tuple (j, k).

Given the sets Ny and V, one can construct an alternative proof ¢y (@)'x > Yy (bo),
where

0, if j e Ny
pv(a); = aj— > ackj, ifj¢Ny )
k#j
(k,j)éV
Yvibo) =bo— Y aj{bh, b4} (10)
JjeNy
(j.k)eVy

Proposition 5 Let a’x > b be a globally valid dual proof constraint and ¢y (a)"x >
Yy (bo) be a modified constraint following (9)—(10) with respect to the local bounds
¢ and u'. For every j € Ny with (j,k) € V and b? = E’j + cjkl{ly, uy} or u’/ +
cji{ly, up} = b? it holds

Vviol(a’ bOv E/ﬂ l,t/) = Vviol(¢v (a)7 WV(bO), e/a M/).

The proof of the proposition follows by construction because only variable bound
constraints that are satisfied with equality with respect to the local bounds are used
for substitution.

By construction, the substitution of variables with variable bound constraints does
not necessarily lead to smaller support in general. However, it can improve the capa-
bility of propagating the modified infeasibility proof, as the following examples show.

Example 6 Let x| + xp — %y > 1, x1,x € {0, 1} with £; = K/j =0u;j=u, =1
for j = 1,2,y € Z with0 < y < 4. Moreover, let y — 2x; > 0 be a variable lower
bound constraint of y. Applying (9) and (10) leads to

X1 +x —05y>1

— X1 +0.5y20} = xnzl

O
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Example7 Let x1 +x2 —z > 1, x1,x2 € {0, 1} with £; = E’j =0,u; =u’, =1for
j=1,2,z€ Rwith0 <z < M and M > 2. Moreover, let z — Mw > ( be a variable
lower bound constraint of z with w € {0, 1}. Applying (9) and (10) leads to

X1 +x2—2 >1 .
+z—Mw20} = w=0.

O

In our implementation, we make use of both described cancellation strategies.
Firstly, we try to replace continuous and general integer variables with a variable bound
constraint that is tight with respect to the local bounds such that no additional nonzero
coefficient is introduced. Moreover, we only substitute continuous variables by general
integer and binary variables and general integer variables by binary variables. To break
ties, we consider the left- and right-hand side of the variable bound constraints (sides
closer to zero are preferred) and the variable locks [2] of the substitution variable x
(more locks are preferred).

Afterward, we cancel continuous variables that contribute to the dual proof’s activity
with their global bound following the procedure and case distinction described above.

3.1.2 Updating procedure

During the tree search subproblems are pruned due to infeasibility or because of the
corresponding LP is proven to exceed the solution value of the currently best-known
solution. This threshold is called the cutoff bound. In general, an LP that is proven
to exceed the cutoff bound can be transformed into an infeasible LP by adding a
constraint

c'x <c'x*, (11)
where x* denotes the currently best-known solution. In the following, we will denote
this solution as incumbent solution.

A valid proof that the LP relaxation exceeds the cutoff bound is given by every dual
feasible solution (y, r) fulfilling

Yb+r u) > Tx* &= yTb+ (c —y A u'} > Tx*, (12)

where r; denotes the reduced costs of x; for all j € A/. A globally valid dual proof
constraint can be derived from (12):

(yTA —o)x > yTb —cTx*. (13)

This dual proof constraint has to be fulfilled by all improving solutions. Constraint (13)
is globally valid since it is a convex combination of all rows A;. and the cutoff con-
straint (11) scaled by —1.
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Proposition 8 Let x* be the incumbent solution and (y'A — ¢)x > y'b — c'x* an
mfeaszblllty proof for a bound- exceedmg LP wzth respect to local bounds €' and
u'. For every feasible solution x* wzth c'x* < x* the dual proof constraint can be
strengthenedto (yT A—c)x > y'b—cx* by tightening the right-hand side. Afterwards,
the strengthened constraint

(i) still proves infeasibility with respect to £’ and u' and
(i) is globally valid.

Proof (i) y'b+r"{(¢/,u'} > c"x* > cT)E

(i1) By construction ( yTA c)x > yTb Tx* is a convex combination of all rows A;.
and the strengthened constraint (11) scaled by —1. Hence, the dual proof constraint
is globally valid. O

In our implementation we use this updating scheme to strengthen dual infeasibility
proofs derived from bound-exceeding LPs each time a new incumbent solution is
found. Note, since dual proof constraints are only used for domain propagation the
strengthening does not directly impact the LP relaxation.

3.2 Mixed-integer rounding

Applying mixed integer rounding (MIR) cuts [41,42] was proven to be very success-
ful [e.g., 14,15] when generating strong cutting planes for mixed integer programming.
It has been shown [41] that MIR cuts imply Gomory’s mixed integer cuts [28]. The
family of mixed integer rounding cuts has a wide range and covers structured and
unstructured MIPs. In this section, we will focus on complemented MIR [38] inequal-
ities, and we will discuss how this well-established type of mixed integer rounding
function can be used to strengthen dual proofs.

3.2.1 c-MIR inequalities

The MIR procedure strengthens a single linear inequality by rounding the coefficients
of integer variables.

Theorem 9 [17] Consider a mixed integer set defined by a single inequality
S:={(x,2) € ZL xRY |a'x +¢"z < b}.
Let fo =b — |b] and f; = aj — |aj]. Then the inequality
n + p
fi—Jo 1
Z(LWJ"“% xj+? Z gjzj < b] (14)
Jj=1 0 0 j=1:g;j<0

is a valid inequality for conv(S).
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For the proof of this theorem, we refer to [17]. Inequality (14) is called MIR inequality.
Note, Theorem 9 defines the MIR inequality for nonnegative variables only. However,
every variable with at least one finite bound can be shifted into the nonnegative space
by complementing with one of its (finite) bounds. Complementing variables can also
be used to strengthen the MIR inequality. A variant of the MIR inequality combined
with a special scaling parameter was proposed by [38].

Theorem 10 [38] Consider a mixed integer set defined by a single inequality
S:={(x,2) € Z} xR | a'x+z<b, x; <u;jvjel}.

Let (T, C) be a partition of T and § > 0. A complemented-MIR (c-MIR) for S
associated with (T, C) and § > 0 is obtained by complementing variables in C and
dividing by § before generating the MIR inequality.

e (4 )x,+zc( ) j=x) = o)+ 5

jeT

where o = (b= ¥ ec aju)/8, fo = o — o), and G(d) = (ld) + L=p).

In the context of cutting planes, the MIR inequality is usually built from a non-
negative linear combination of valid inequalities. A heuristic how to derive a proper
nonnegative linear combination that separates a given point (x, z) was proposed in
[38], where (x, z) is valid for the LP relaxation but violates the integrality conditions.
Using the dual ray (y, r) yields a nonnegative linear combination that is valid for
the global problem, see Sect. 2.2.1. Thus, the MIR procedure can be applied to the
resulting proof constraint.

3.2.2 Applying c-MIR to dual proofs

In the following, we will define the partition (7', C) of Z, such that we always choose
the closest bound [38]. Formally, if £ < x < u is the given reference point it follows
C={jel|xj>w;—4£;)/2}andT :=T1\C.

In contrast to the classical separation procedure, where an LP-valid point should
be separated from the convex hull, no such point is given when analyzing a subprob-
lem with an infeasible LP relaxation. Due to this fact, there exists a certain degree
of freedom when choosing a reference point that is used for complementing the MIR
inequality. The (arbitrary) reference point is used to compute the efficacy of the infea-
sibility proof before and after applying the c-MIR procedure. We aim to strengthen
the initial proof of infeasibility such that it propagates well in the remainder of the
search. Since we aim at using globally valid proofs, the global bounds need to be used
when complementing the MIR inequality.

The question remains which reference point to use when complementing the MIR
inequality. The LP solution of the root node or the incumbent solution is not related
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to the current subproblem. In contrast to that, X with

. uj ifa; <0,
X; =
"7 e ifaj =0

is a natural choice because is related to the variable bounds contributing to the con-
straint activity. However, always using the bounds contributing to the minimal activity
according to the respective signs for complementation might in general lead to weak
local proofs, as can be seen from the following lemma. We say an infeasibility proof
is stronger (weaker) with respect to a given reference point than another infeasibility
proof, if its violation with respect to the given reference point is larger (smaller).

Lemma 11 Let a’x < b be a proof of local infeasibility with respect to £’ and u' and
0 < % < u be a reference point minimizing the activity of a'x. Moreover, let § = 1
and (T, C) and (T’, C') be two partitions of T such that C' C C and |C \ C'| = 1.
Further, let k € C\ C" with ary < 0. Assume (1 — fiyur > uy, Glar) = |axl,
and G(—ay) = |—ayx], i.e., the fractionality of the coefficient is smaller than the
fractionality of the right-hand side in both cases. Then, complementing with (T', C')
yields a stronger local infeasibility proof with respect to X.

Proof Let R(x) := > _;cp G(aj)xj + 3 ;cc G(—aj)(uj — x;) be the common part
of both inequalities after applying the c-MIR procedure

R(x) + G(ap)xk = LBol 15)
and  R(x) + G(—ax)(ux — xx) < [Pol — aru. (16)

We show that (15) has a smaller slack than (16) with respect to X under the assumption
that (1 — fi)ur > u;{.

R(X) 4+ G(ap)xy + s1 = [Bo]
and  R(X) + G(—ap)(up — Xp) + 52 = [Bol — axuy.

Assume 5| < §3:

G(ar) Xk + 51 — G(—ar) (ug — X)) — 52 = akuy
G(ap)uy + 51 — G(—ap) (ug — uy) — 52 = aru
Glauy — G(—ap) (ux — uy) > agug
(lax) + |—ar)uy — |—axJux > aguy
(lax) — TaxDuy + Talug > axuy
—uy + Taxlug > aguy

(I — foug > u

I R
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Proposition 12 For arbitrary but finite lower bounds £; # 0 Lemma 11 generalizes
to

u < (1= four + filk.

The proof of the above proposition follows the proof of Lemma 11 whereby inequal-
ity (15) changes to R(x) + G(ax)(xx — €r) < |Bol — arli. Based on the above
proposition we propose to use the reference point x with
uj ifa; > Oande/j > #
uj ifa; < Oandu/j > %%,
¢ ifa;>0and ¢, < 3,

uj+;

<
: /
L 1faj<0anduj< 7>

instead of using the global upper or lower bound depending on the sign of the respec-
tive coefficients, when applying the c-MIR procedure to dual infeasibility proofs.
This heuristic relaxes the result of Lemma 11 and Proposition 12 by dropping the
dependency on the fractionality of the coefficients.

In our implementation, we either keep the dual infeasibility proof or the derived c-
MIR inequality. To estimate which constraint might be most beneficial in the remainder
of the search, we consider the efficacy with respect to the described reference point x,
see Sect. 4.3 for further details.

3.3 Filtering

Conflict graph analysis and dual proof analysis share the initial reason of infeasibility
y'b +rT{€, u} > 0 as a common starting point (see Sect. 2). Both techniques follow
different paths such that the resulting constraints are of very different nature. Conflict
constraints derived from analyzing the conflict graph rely on combinatorial arguments.
Consequently, these constraints are not challenging with respect to their numerical
properties and expected to be sparse. Here, the shorter the conflict constraint, the
stronger it is [32]. This observation becomes more apparent when looking at a conflict
constraint from the SAT perspective, i.e., interpreting it as a set of literals that cannot
be all satisfied at the same time. Thus, adding a literal weakens the proof.

In contrast, constraints derived from dual proof analysis purely rely on the numerical
conditions of the constraint set of the MIP and the properties of the dual proof obtained
by solving the infeasible LP relaxation. Therefore, these proofs can be expected to
be numerically more challenging and denser than those derived from analyzing the
conflict graph. In the case of dual proofs, “sparser is better”” does not hold anymore.
Therefore, it is essential to pick the most promising infeasibility proofs derived from
dual proof analysis. As opposed to conflict constraints derived by conflict graph anal-
ysis, dual proof constraints rely on the initial proof’s actual coefficients because these
coefficients are needed to define the actual constraint. We filter out dual proof con-
straints that might lead to numerically unstable propagation steps. This filtering is done
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by restricting the maximal absolute range of all coefficients. For a given constraint
a'x > b we consider the minimal and maximal absolute coefficient which will be

denoted by
Amin = min{|a;| | j € supp(a)} and amax := max{|a;| | j € supp(a)}.

In our implementation we discard all proof constraints for which the dynamism
Amax /Amin €Xxceeds a threshold of 1e+8.

Dual infeasibility proofs derived by aggregating constraints A;. weighted by a dual
ray (v, r) are often dense. From a practical point of view there are two reasons why
longer proof constraints are assessed to be inferior against shorter proof constraints,
which hold for general constraints as well. It is expected that fewer bound changes on
the support of a short constraint are necessary to derive new deductions. Therefore,
constraints with small support are expected to propagate “earlier” than constraints with
large support. Moreover, there are also technical reasons to prefer constraints with
small support. Firstly, dense constraints consume more memory. Secondly, certain
types of constraints are much more computationally costly to propagate than others.
For example, consider a general linear constraint involving arbitrary variables and
coefficients—which is most likely the case for a dual proof. Propagating a general linear
constraint a"x > b, e.g., by activity based bound tightening [16], is done infeasibility
O(| supp{a}).

To not systematically abolish dense dual proof constraints, we propose a dynamic
threshold on the size of its support to decide whether the proof should be accepted
and maintained in the remainder of the search or immediately rejected. To this end,
we consider the average density of all model constraints A;., which will be denoted
by

DA | supp(Ap)|
|A] '

suppy(A) =

Further, let C be the set of all dual proofs currently maintained and a"x > b a new
dual proof. We accept the constraint if,

suppy(C U {a"x > b)) < max{a suppy(A), BIN},

with @, 8 > 0. By this, we do not restrict the density of a single constraint but rather
the average density over the set of maintained dual proofs. Since dense dual proof
constraints are expected to cover a larger variety of reasons of infeasibility but are
computationally costly during domain propagation, we try to balance both properties.
With this strategy, we aim to adjust the threshold dynamically, depending on the
actual density of all accepted dual proof constraints. Thus, if sufficiently many sparse
dual proof constraints are maintained at the current point in time, we are willing to
spend more effort on dense dual proof constraints. This strategy holds as long as the
average expected effort does not exceed the dynamic threshold. Note that dual proof
constraints with support of size one are immediately transformed into a bound change
and, therefore, not included in the average density.
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4 Computational study

In this section, we present an extensive computational study on general MIP problems
investigating the computational impact of the different ways of analyzing infeasibility
in MIP presented in this paper. To evaluate the individual impact of all the different
techniques presented in this paper, we will analyze each of them in detail.

In Sect. 4.1, we compare the impact of conflict graph analysis and dual proof anal-
ysis. Moreover, we present computational results where both techniques were simul-
taneously used within the state-of-the-art MIP solvers SCIP and FICO Xpress. To
the best of our knowledge, these are the first implementations of a combined approach
within a single solver. In Sect. 4.2—4.4 we present individual computational results for
all enhancement techniques presented in Sect. 3.

All experiments of Sect. 4.2 were performed with the academic MIP solver
SCIP 5.1.0 using SoPlex 3.1.1 as LP solver [27]. The experiments in Sect. 4.1
were conducted with SCTP and FICO Xpress 8.6.3. To evaluate the generated
data the interactive performance evaluation tool® (IPET) was used. The SCIP exper-
iments were run on a cluster of identical machines equipped with Intel Xeon E5-2690
CPUs with 2.6 GHz and 128 GB of RAM. The FICO Xpress experiments were
run on a cluster of identical machines equipped with Intel Xeon E5-2640 CPUs with
2.4GHz and 64 GB of RAM. A time limit of 7200 seconds was set in either case.

As test set we used the newly released benchmark set of MIPLIB 2017.4

To account for the effect of performance variability [19,37] all SCIP experiments
were performed with three different global random seeds; FICO Xpress exper-
iments were run on three different permutations of the problem. Determinism is
preserved because SCIP and FICO Xpress use pseudo-random number genera-
tors only. Every pair of MIP problem and seed/permutation is treated as an individual
observation, effectively resulting in a test set of 720 instances. We will use the term
“instance” when referring to a problem-seed combination or a specific permutation of
a problem.

In the following, we present aggregated results for every experiment containing
the number of solved instances (S) and the absolute and relative solving times in
seconds (T and Tq) and the number of explored branch-and-bound nodes (N and Ng).
The number of nodes is restricted to instances that were solved to optimality by
all considered settings. Absolute numbers are always given for the baseline setting,
whereas relative numbers are shown for all other settings. To aggregate the individual
observations, a shifted geometric mean [2] is used, where a shift of 1 and 100 is used
for solving time and nodes, respectively.

Relative solving times of setting s are defined by the quotient #; /1, where f, is the
absolute solving time of setting s and 7, is the absolute solving time of setting b that
is used as a baseline. An analogous definition holds for explored branch-and-bound
nodes. Thus, numbers less than one imply that setting s is superior and numbers greater

2 https://www.fico.com/de/products/fico-xpress-optimization.
3 https://github.com/GregorCH/ipet.
4 http://miplib.zib.de.
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than one imply that it is inferior to the baseline setting b. Note, that a relative solving
time 7, /t;, corresponds to a speedup factor of #5/%;.

Besides the results for the benchmark set of MIPLIB 2017, that are denoted by all,
the tables state the impact on instances that are affected. An instance is called affected
if it can be solved by at least one setting within the time limit and the number of tree
nodes differs between settings. Further, the subset of affected instances is grouped into
a hierarchy of increasingly harder classes “> k”. Class “> k™ contains all instances
for which at least one setting needs at least k seconds and can be solved by at least
one setting within the time limit. As explained by [5], this excludes instances that
are “easy” for all settings in an unbiased manner. Detailed tables with instance-wise
computational results regarding SCIP can be found in the online supplement® on
GitHub.

4.1 General overview

To analyze the overall computational impact of infeasibility analysis of infeasible
LPs or bound exceeding LPs within SCIP, we consider four different configurations:
disabled infeasibility analysis (nolpinf), conflict graph analysis (confgraph) or
dual proof analysis (dualproof) solely, and using a combination of both tech-
niques (combined). Note that all four settings only differ in how infeasible and
bound exceeding LP relaxations are analyzed. Infeasibility due to propagation remains
unchanged, see Table 1 for the different configurations of infeasibility analysis con-
sidered in this paper. In the following, nolpinf is used as a baseline.

Both settings using dual proof analysis (dualproof and combined) were using
all techniques described in Sect. 3. Aggregated results on all four settings are shown
in Table 2.

For every LP relaxation considered for infeasibility analysis, at most 10 conflict
constraints and 2 dual proof constraints are stored. As suggested by [1], we store the 10
most promising conflict constraints generated by All-FUIP. When dual proof analysis
is enabled, we store the modified and strengthened dual proof and the constraint after
applying c-MIR to that proof constraints, if the procedure succeeds (see Sect. 4.3).

To maintain all conflict constraints and dual proofs, we use a pool-based
approach [49]. Here, the maximal number of conflict constraints maintained at the same
time when using nolpinf, confgraph, and combined was limited to 10, 000.
When using dualproof and combined, at most 100 dual proofs of infeasible and
75 dual proofs of bound exceeding LPs are maintained simultaneously. These pool
sizes turned out to have the best trade-off between additional information and time
spent in evaluating these constraints. A similar observation regarding the performance
of dual proof analysis within Gurobi was made by [4]. If one of the pools reaches
its limit, the constraint that did not lead to new bound deductions for the longest time
is removed before adding the new conflict or dual proof constraint. This procedure
corresponds to an aging scheme as it is used in SAT [40].

5 Excluding instances where at least one settings finished with numerical violations.

6 https://github.com/jakobwitzig/computational-aspects-conflict-analysis-mip.
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Our computational results indicate that 80% of the instances that can be solved by at
least one of the four settings are affected by analyzing infeasible and bound exceeding
LP relaxations.

All three variants of LP infeasibility analysis are superior to SCIP without any
of these techniques. Over all subsets of instances shown in Table 2 we observe a
clear ordering. combined is superior to confgraph, and confgraph is supe-
rior to nolpinf with respect to both solving time and tree size. At the same time,
dualproof is clearly inferior to both confgraph and combined but superior
to nolpinf regarding tree size. Surprisingly, dualproof has hardly any impact
regarding the solving time compared to nolpinf. However, the reduction of the tree
size on affected instances by using dual proof analysis solely is 6.2%. Here, our obser-
vations differ from those reported by [4], where dual proof analysis leads to a reduction
of solving time by 6% on affected instances. The disparity in the observations may
be caused by different test sets and a different implementation in Gurobi, which is
tuned to rely solely on dual proof analysis.

The version that combines both conflict graph analysis and dual proof analysis
(combined) solves 18 additional instances compared to nolpinf and 3 more
instances compared to confgraph. In our experiments, the impact on the tree size
by applying conflict analysis is consistently larger than the impact on the overall solv-
ing time. This observation is expected because every additional constraint derived
from either of the presented techniques that is considered in the remainder of the
search increases the time spent at every node of the search tree, i.e., during domain
propagation.

On affected instances, we observed a success rate of 83% for combined, i.e.,
the portion of analyzed infeasible and bound exceeding LP relaxations from which
at least one conflict constraint or dual proof could be derived. dualproof and
confgraph yield a success rate of 67% and 34%, respectively. The small success
rate of confgraph is due to a very strict limit on the size of the support to accept a
conflict constraint. Due to the combinatorial nature of conflict constraints, it is known
that shorter is always better. Moreover, on the set of affected instances bound exceeding
LP relaxations were analyzed 3.3 to 4.4 times as often as infeasible LP relaxations.

On instances that are known to be infeasible confgraph and combined perform
best while reducing the solving time by roughly 65%. In contrast to that, dualproof
performs like nolpinf. Hence, we conclude that on infeasible instances, conflict
graph analysis is superior to dual proof analysis. Note, MIPLIB 2017 contains only 8
infeasible instances. Thus, our observation is based on a small test set of 24 instances.
On the other hand, on the set of nontrivial feasibility instances’ consisting of 57
instances confgraph performs worse compared to the set of affected instances.
Here, confgraph improves the solving time by 10.9% (affected: 20.1%) only. In
contrast to that, combined improves the solving time by 24.5% (affected: 24.1%)
and dualproof leads to slight slowdown of 2.3%. Consequently, we conclude that
the combination of both conflict graph analysis and dual proof analysis is particularly
beneficial on feasibility instances.

7 The set of instances with a nontrivial objective function for which the gap between the final dual bound
at the root node and the best-known solution is below 0.1%.
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Table3 Aggregated computational results on MIPLIB 2017 benchmark for FICO Xpress. Relative changes
by at least 5% are highlighted in bold (improvement) or italic (deterioration)

nolpinf confgraph combined

S T N S To No S To No
All 693 515 77.5 7024 530 0.926 0.889 529 0.909 0.874
Affected 350 330 225 58703 344 0.847 0.835 343 0.833 0.813
>10 306 286 394 58703 300 0.832 0.835 299 0.815 0.813
>100 224 204 948 60916 218 0.780 0.833 217 0.767 0.812

>1000 118 98 2794 86530 112 0.706  0.821 111 0.699 0.799

Computational impact of infeasibility analysis in FICO Xpress Table 3 shows the
overall computational impact of using or a combination of conflict graph and dual proof
analysis (combined), neither of the two (nolpinf) or only conflict graph analysis
(confgraph) within the state-of-the-art commercial MIP solver FICO Xpress.
Using only dual proof analysis is not easily possible within the current FICO Xpress
implementation.

Independent of the actual experiments, there are some principal differences between
the SCIP results and those of FICO Xpress. We observed a significantly larger
number of out of memory failures. The increase in the number of failures has three
primary reasons. Firstly, the machines on which FICO Xpress was run only have
half the RAM compared to those of SCIP. Secondly, FICO Xpress was run with
20 threads, which leads to 64 MIP tasks being created and, therefore, 64 copies of the
problem being taken, see [7]. Thirdly, the node throughput on hard problems was much
larger. This can be partially seen in the “> k” rows, but naturally instances that time
out or run out of memory are affected even more. This leads to a much larger search
tree being created: for some instances, FICO Xpress solved more than 100 million
nodes. Instances for which at least one variant of FICO Xpress hit the memory
limit were removed, which is the reason for the smaller number of instances in the
overall test set.

FICO Xpress solved significantly more instances to proven optimality or infea-
sibility than SCIP. Since more instances are solved, the number of affected instances
increases. At the same time, FICO Xpress solved a larger share of instances at the
root node; which decreases the number of affected instances. Consequently, the set
of affected instances differs a lot between the two solvers, although the number (330
versus 283) is only slightly different.

Nevertheless, our observations show quite similar tendencies. As for SCIP, conflict
graph analysis gives a clear performance boost to the solver, and a combined approach
of conflict graph and dual proof analysis gives the best performance. Altogether, we
observe a speed-up of 9%, when applying infeasibility analysis techniques in FICO
Xpress. On affected instances, the speed-up is roughly 17%, and goes up to 30% on
the hardest models. Those numbers are smaller than the corresponding numbers for
SCIP (10% on all, 24% on affected, 37% on the hardest). Next to the different sets of
affected instances, there is also a technical explanation for this deviation: The balancing
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Table 4 Aggregated computational results on instances affected by applying all cancellation techniques.
Relative changes by at least 5% are highlighted in bold (improvement) or italic (deterioration)

cancellation disabled combined

S T N S To No
All 714 345 1334 2939 344 0.996 0.987
Affected 146 146 596 26544 145 0.983 0.971
>10 144 144 634 27961 143 0.983 0.967
>100 119 119 1135 48263 118 0.973 0.949
>1000 78 78 2313 152404 77 0.965 0.939

between local cutting and infeasibility analysis differs between the two solvers. FICO
Xpress separates significantly more cuts that are only locally valid, which constrains
the applicability and the impact of infeasibility analysis. Consequently, only 65% of
the solved instances are affected (compared to 80% for SCIP).

As for SCIP, by using infeasibility analysis techniques, more instances can be
solved. However, using dual proof analysis on top of conflict graph analysis does not
lead to more solved instances, but one instance less being solved. Nevertheless, the
consistently better running times of the combined setting lead us to the conclusion
that an approach that conducts both techniques is preferable. Consequently, this is the
default setting of FICO Xpress.

4.2 Presolving and strengthening techniques

To evaluate the computational impact within SCIP of the cancellation techniques
described in Sect. 3.1.1 and the strengthening of dual proof constraints based on the
incumbent solution described in Sect. 3.1.2, we disable both features and compare them
to combined. Inthe following, we will refer to both variable cancellation strategies by
cancellation,whereastheindividual procedures using global variables bound and
variable bound constraints will be called bound-cancellation and vbound-
cancellation, respectively. Moreover, we will refer to the strengthening step by
update.

Variable cancellation cancellation affects 146 instances that can be solved by
at least one setting, see Table 4. On these instances, our computational experiments
indicate a slight performance improvement with respect to solving time of up to 3.5%
and a reduction in the tree size by up to 4.1% gained by activating cancellation.
The observed improvements gained by cancellation are small but consistent over
all increasingly hard groups of affected instances. In our experiments, we observed
a speedup (slowdown) of at least 5% on 36% (24%) of the affected instances when
cancellation is enabled. The number of rejections due to restrictions on the size
of the support decreased by 73.6% when cancellation is enabled.
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Within cancellation,bound-cancellationand vbound-cancella-
tion were successfully applied on roughly 3% and 7% of all analyzed infeasible LP
relaxations.

When only disabling bound-cancellation, 76 instances are affected. Note, in
our implementation, nonzero variable cancellation with their global variable bounds is
applied to continuous variables only. On the set of affected instances, using bound-
cancellation improves the solving time by up to 6.2%. The reduction of the tree
sizeisup to 11.1%.

Compared to bound-cancellation, deactivating vbound-cancella-
tion affects 115 instances. When vbound-cancellationisenabled, the impact
with respect to solving time is between 2.2% (affected) and 4.1% (“> 1000”).
Although we observe a minor reduction of solving time on the set of affected instances,
vbound-cancellation reduces the tree size by 4.9% to 8.7%. Since vbound-
cancellation substitutes continuous variables with variable bound constraints
defined by general integer or binary variables, it is expected that the time spent for
domain propagation slightly increases for these constraints. However, the modified
dual proof constraints propagate better, i.e., lead to more additional variable bound
deductions, since less continuous variables are involved.

In our implementation, vbound-cancellationiscalled before bound-can-
cellation. Consequently, every success of vbound-cancellation might
have an immediate impact on the success rate of bound-cancellation. In our
computational study, we observe that the success rate with respect to applied can-
cellations of the latter reduced by 15% when vbound-cancellation is called
first.

Updating dual proofs of bound exceeding LPs  Dual proof constraints derived from
LP relaxations exceeding the current cutoff bound can be strengthened whenever a
new incumbent solution is found. We will refer to this strengthening step by update.
Enabling or disabling update affects 161 instances in our test set, see Table 5. The
reduction of the solving time and tree size on the complete set of affected instances
is neutral. On the set of hardest instances, update leads to a slowdown of 4.4%.
During the whole solving process update was applied to 35% of all accepted dual
proof constraints derived from a bound exceeding LP relaxation. In our experiments,
we observed a speedup (slowdown) of at least 5% on 31% (29%) of the affected
instances when update is enabled.

In contrast to the previously discussed strengthening techniques, update explicitly
incorporates the objective function and the cutoff bound. Thus, it is expected that this
type of dual proof constraint works particularly well if the primal bound incrementally
improves over time. On the other hand, if either a near-optimal solution is found right
in the beginning or all solutions are found at the end of the tree search, update might
have a negative impact on the overall solving process. Consequently, the impact of
this strengthening technique strongly depends on the progress on the primal side. The
better the solutions found early in the solving process, the less impact is expected from
activating update.
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Table5 Aggregated computational results on instances affected by updating dual bound exceeding proofs.
Relative changes by at least 5% are highlighted in bold (improvement) or italic (deterioration)

update disabled combined

S T N S T No
All 715 347 1328 2875 345 1.001 0.995
Affected 161 160 566 24587 158 1.005 0.990
>10 160 159 580 24799 157 1.005 0.990
>100 136 135 932 40284 133 1.003 0.981
>1000 80 79 2151 164409 77 1.044 1.035

4.3 Mixed integer rounding

To generate an alternative proof of infeasibility, we separate a c-MIR (see Sect. 3.2.1)
inequality based on the dual proof constraint after applying the techniques discussed
in Sect. 3.1. In the following, we will refer to this procedure as mir-procedure.
To decide whether the additionally separated inequality should be accepted for further
considerations its efficacy

b—a'x
max{0.000001, ||a]2}

with respect to the reference point x discussed in Sect. 3.2.2 is taken into account. A
positive efficacy gives the normalized violation, otherwise the normalized redundancy.
Thus, a larger efficacy is preferred. We only accept the separated inequality if the
corresponding efficacy is larger than the efficacy of the dual proof constraint from
which it was derived.

In our computational study mir-procedure affects 70 instances, while reducing
the solving time and tree size by 6.8% and 3.9%, respectively, see Table 6. Our com-
putational results indicate that the harder the instances are, the more benefit is gained
by applying mir-procedure. On the set of affected instances, mir-procedure
is successfully applied to 12% of all analyzed infeasible LP relaxations. In our experi-
ments, we observed a speedup (slowdown) of at least 5% on 25% (25%) of the affected
instances when mir-procedure is enabled.

4.4 Filtering

To distinguish between dual proof constraints that are expected to be promising in
the remainder of the search and those that might lead to numerical troubles or an
increase of the time spent during propagation, we apply a filtering step as described
in Sect. 3.3. In the following, we refer to this step by £iltering. Both filterings
due to numerical conditions and size of the support are applied after all previously
discussed techniques.
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Table6 Aggregated computational results on instances affected by applying the c-MIR procedure. Relative
changes by at least 5% are highlighted in bold (improvement) or italic (deterioration)

mir-procedure disabled combined

S T N S T No
All 715 346 1335 2955 345 0.996 0.992
Affected 70 69 1048 80192 68 0.932 0.961
>10 70 69 1048 80192 68 0.932 0.961
>100 63 62 1518 115304 61 0.895 0.944
>1000 50 49 2240 170987 48 0.874 0.945

Table 7 Aggregated computational results on instances affected by filtering dual proofs. Relative changes
by at least 5% are highlighted in bold (improvement) or italic (deterioration)

filtering disabled combined

S T N S Tq No
All 715 338 1342 2748 345 0.991 0.992
Affected 135 127 539 15415 134 0.955 0.978
>10 134 126 555 15528 133 0.955 0.979
>100 107 99 1117 32614 106 0.933 0.943
>1000 69 61 2581 111484 68 0.911 0.940

Our computational study indicates that £ i1 tering has the mostsignificantimpact
among all presented techniques, see Table 7. £iltering affects 135 instances and
leads to a reduction of solving time and tree size by 4.5% and 2.2%, respectively, on
these instances. The harder instances are, the larger is the impact of £iltering. On
the group of hardest instances, the solving time can be reduced by 8.9%. Moreover, it
leads to 7 additionally solved instances. In our experiments, we observed a speedup
(slowdown) of at least 5% on 35% (33%) of the affected instances when filtering
is enabled.

By applying £iltering, 34% of the dual proof constraints were rejected, where
less than 1% were rejected due to numerical properties, i.e., the ratio of the maximal
and minimal nonzero coefficient in absolute value was larger than le+8. Thus, the
most important filtering criterion is the size of the support. As described in Sect. 3.3,
we consider the ratio of the average number of nonzeros of all maintained dual proof
constraints and all model constraints.

4.5 Overall impact of techniques presented in this paper

In the previous paragraphs, we analyzed the individual impact of every technique
discussed in this paper. Table 8 shows the impact on the performance when disabling
all techniques at the same time. On the subset of affected instances, we observe an
improvement of solving time by 7% when enabling all features. On affected instances
that could be solved by both settings, the tree size reduces by 6.7%. When disabling all
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Table 8 Aggregated computational results on instances affected by deactiviting all features. Relative
changes by at least 5% are highlighted in bold (improvement) or italic (deterioration)

All disabled combined

S T N S T No
All 715 345 1356 2866 345 0.980 0.961
Affected 197 193 560 15757 193 0.930 0.933
>10 194 190 598 16363 190 0.929 0.932
>100 162 158 1014 28174 158 0.912 0.919
>1000 97 93 2376 115049 93 0.889 0.908

discussed features, the implementation corresponds to the one used in our preliminary
study [49].

5 Conclusion and outlook

In this paper, we studied the combination of conflict graph analysis and dual proof
analysis for infeasible and bound exceeding LP relaxations within a single solver.
Our computational results indicate that both improve the performance of MIP solvers,
with conflict graph analysis being the more powerful technique. A combined approach
performed best, for both solvers, SCIP and FICO Xpress, that we used for our
experiments.

Furthermore, we introduced three enhancements for dual proof analysis: Presolving
via variable cancellation, strengthening by applying mixed integer rounding func-
tions, and a filtering mechanism. All of those enhancements led to clear performance
improvements. A method to update bound-exceeding proofs, however, did not benefit
the solver.

We conclude that infeasibility analysis plays an important role in the solution pro-
cess of mixed integer programming problems, and that a combination of different
techniques is worthwhile. The generalization of the presented methods towards mixed
integer nonlinear programming provides an interesting line for future research. The
first results in this direction have recently been published in [12,50].
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