
Noname manuscript No.
(will be inserted by the editor)

acados – a modular open-source framework for fast
embedded optimal control

Robin Verschueren ¨ Gianluca Frison ¨

Dimitris Kouzoupis ¨ Jonathan Frey ¨

Niels van Duijkeren ¨ Andrea Zanelli ¨
Branimir Novoselnik ¨ Thivaharan
Albin ¨ Rien Quirynen ¨ Moritz Diehl

Received: date / Accepted: date

Abstract This paper presents the acados software package, a collection of
solvers for fast embedded optimization intended for fast embedded applica-
tions. Its interfaces to higher-level languages make it useful for quickly de-
signing an optimization-based control algorithm by putting together different
algorithmic components that can be readily connected and interchanged. Since
the core of acados is written on top of a high-performance linear algebra li-

This research was supported by the EU via ERC-HIGHWIND (259 166), FP7-ITN-TEMPO
(607 957), H2020-ITN-AWESCO (642 682), by the DFG in context of the Research Unit
FOR 2401, and by the Federal Ministry for Economic Affairs and Energy (BMWi) via
eco4wind (0324125B) and DyConPV (0324166B).

Robin Verschueren
ABB Corporate Research, Baden-Dättwil, Switzerland

Gianluca Frison
Dimitris Kouzoupis
Andrea Zanelli
IMTEK, University of Freiburg, Germany

Niels van Duijkeren
Department of Mechanical Engineering, KU Leuven, Belgium

Branimir Novoselnik
Faculty of Electrical Engineering and Computing, University of Zagreb, Croatia

Thivaharan Albin
Institute for Dynamic Systems and Control, ETH Zürich, Switzerland

Rien Quirynen
Mitsubishi Electric Research Labs, Cambridge, MA, USA

Jonathan Frey
Moritz Diehl
IMTEK and Faculty of Mathematics, University of Freiburg, Germany

Note: the first four authors contributed an equal amount to the work presented in this
article.

ar
X

iv
:1

91
0.

13
75

3v
3 

 [
m

at
h.

O
C

] 
 2

6 
N

ov
 2

02
0



2 Robin Verschueren et al.

brary, we do not sacrifice computational performance. Thus, we aim to provide
both flexibility and performance through modularity, without the need to rely
on automatic code generation, which facilitates maintainability and extensi-
bility. The main features of acados are: efficient optimal control algorithms
targeting embedded devices implemented in C, linear algebra based on the
high-performance BLASFEO [32] library, user-friendly interfaces to Matlab
and Python, and compatibility with the modeling language of CasADi [4].
acados is free and open-source software released under the permissive BSD
2-Clause license.

Keywords Direct optimal control ¨ Optimization algorithms

Mathematics Subject Classification (2010) 49-04

1 Introduction

Embedded optimization, according to the definition in [24], is solving opti-
mization problems autonomously and with limited resources. The topic of this
article is embedded optimal control, an important class of methods within em-
bedded optimization. It focuses on calculating optimal decisions in order to
control a dynamic system as the state changes. There exist many algorithms
for embedded optimal control and quite a few were successfully applied to real-
time and embedded applications such as robotic trajectory optimization [78],
autonomous driving [58] and drones [43]. For an overview on embedded opti-
mization, we refer the reader to [24]. One of the most popular approaches in
embedded optimal control nowadays is model predictive control (MPC) [60,
76,40]. It is based on predicting the future behavior of a system and using this
information to optimize for the action at the current time step. In linear MPC
(also called linear-quadratic MPC (LQMPC)), the constraints, including the
dynamic model, are affine and the objective is quadratic. With nonlinear MPC
(NMPC), some or all of the constraints and objective are nonlinear functions1.
A related problem is that of moving horizon estimation (MHE) for estimating
states and parameters online. We will present a unified notation of NMPC and
MHE problems in Section 2.

Historically, MPC was primarily applied to systems with long timescales,
most notably in chemical processing [69], due to the fact that during each
time step, a computationally costly optimization problem has to be solved.
More recent algorithmic developments [18,57,66,8] and increasingly power-
ful embedded hardware render MPC real-time feasible for applications with
shorter timescales such as autonomous driving, robotics, and avionics, as in
some of the references cited above. A big role in bringing MPC to real-time
applications is played by the implementation of efficient embedded optimal
control methods, giving rise to software packages such as MPT [44] for ex-
plicit MPC, qpOASES [25], an active-set solver for quadratic programming

1 In this paper, we focus on finite-dimensional problems, i.e., the objective is not a func-
tional.



acados – fast embedded optimal control solvers 3

(QP), FORCES [21,91], an interior-point solver for quadratically constrained
quadratic programming (QCQP) and nonlinear programs with optimal control
structure, and the ACADO Code Generation tool [46] for tailored sequen-
tial quadratic programming (SQP) based NMPC solvers. Other examples of
nonlinear embedded optimization packages are VIATOC [47], GRAMPC [23] and
FalcOpt [83], to which we compare acados in Section 5. A non-exhaustive
list of embedded optimization software packages can be found in Table 1.

Ultimately, embedded software should run on a dedicated hardware plat-
form. In this paper, we focus solely on central processing units (CPU) as the
algorithms presented typically don’t profit as much from the parallelization
capabilities of massively parallel hardware platforms such as graphical pro-
cessing units (GPU), tensor processing units (TPU) or field programmable
gate arrays (FPGA). Please note that we don’t pin ourselves down to a spe-
cific CPU architecture: acados has been shown to work with x86, x86 64,
ARMv7A, ARMv8A and PowerPC architectures.

One challenge in developing software for embedded optimal control lies
in the trade-off between flexibility, memory usage and speed. Many of the
software packages mentioned in Table 1 are based on automatic code gener-
ation. One reason for that is to have self-contained efficient linear algebra
routines. Often however, the size of the problem and the choice of algorithms
are then fixed for one specific optimal control instance, inducing a loss of flex-
ibility. In some cases, a compiler or a human could generate faster or more
memory-efficient code. For example, for linear algebra operations, the recently
developed high-performance linear algebra package BLASFEO [32] outperforms
code-generated triple-loop linear algebra routines and state of the art BLAS
and LAPACK implementations for the moderate matrix size typical for embed-
ded optimization applications. Since the linear algebra operations typically
comprise most of the computational complexity of the algorithms considered,
we can use standard compiler optimizations for the code surrounding the linear
algebra routines without noticeably sacrificing performance (see Section 5). By
basing acados on BLASFEO, we exchange self-containedness for performance
and flexibility. We believe this is a better trade-off.

Another challenge for embedded optimal control software is related to the
process of software development. Often, to not sacrifice speed of execution
and/or memory footprint, embedded optimal control software uses global data
and suffers from tight coupling between algorithmic components. This might
lead to a codebase that is difficult to understand, maintain and extend. We
choose, as opposed to some other embedded optimal control software pack-
ages, to avoid these pitfalls by not unnecessarily sacrificing maintainability
and readability of the codebase for a small gain in performance and/or a re-
duction of memory footprint. We try to achieve this goal by organizing the code
in a modular fashion, with formal interfaces between the different algorithmic
components, as described in Section 4. This allows for a straightforward way of
interchanging solvers, routines, and libraries needed for the embedded control
algorithm.



4 Robin Verschueren et al.

Table 1 Software packages for embedded optimization.

Software Year Latest Reference Targets License
MUSCOD-II 1997 [56] NMPC proprietary

HQP 1997 [26] NLP LGPL v2
MPC Toolbox 1998 [61] LQMPC proprietary

AutoGenU 2000 [66] NMPC propietary
OOQP 2001 [35] QP propietary
MPT3 2003 [44] expl. MPC GPL

Hybrid toolbox 2003 [7] expl. MPC proprietary
qpOASES 2006 [25] QP LGPL v2.1

PQP 2008 [17] QP proprietary
CVXGEN 2009 [62] LP, QP proprietary

ACADO Codegen 2009 [46] NMPC LGPL v3
FiOrdOs 2011 [84] QP GPL v3
muAO-MPC 2013 [93] LQMPC 3-clause BSD
FORCES 2011 [21] QP, QCQP proprietary

ECOS 2013 [20] SOCP GPL v3
GRAMPC 1.0 2014 [48] NMPC LGPL v3
qpDUNES 2014 [27] LQMPC LGPL v3
DuQuad 2014 [54] QP unknown
HPMPC 2014 [34] LQMPC LGPL v2.1
VIATOC 2015 [47] NMPC GPL v3 and LGPL v3

PIPS-NLP 2016 [14] NLP 3-clause BSD
GPAD: 2016 [68] QP GPL v3

Forces NLP 2017 [91] NMPC proprietary
OSQP 2017 [82] QP Apache v2.0

FalcOpt 2017 [83] NMPC MIT
HPIPM 2017 [31] LQMPC, QP 2-clause BSD
ODYS 2017 [15] QP proprietary

protoip 2017 [50] NMPC unknown
SPLIT toolbox 2017 [79] LQMPC unknown

Control Toolbox 2018 [36] NMPC 2-clause BSD
GRAMPC 2.0 2018 [23] NMPC LGPL v3
PANOC.jl 2018 [77] NMPC unknown

nmpc-codegen 2018 [63] NMPC LGPL v3
PRESAS 2018 [74] QP proprietary
ParNMPC 2018 [16] NMPC unknown

qrqp 2018 [5] QP LGPL v3
acados 2018 [86] NMPC 2-clause BSD

TMPC 2018 [49] NMPC unknown
qpSWIFT 2019 [67] QP unknown

OpEn 2019 [80] NMPC Apache v2.0
PolyMPC 2019 [59] NMPC MIT
QPALM 2020 [45] QP GPL v3
NASOQ 2020 [13] QP MIT
ASIPM 2020 [28] QP proprietary

: As implemented by Pantelis Sopasakis.

A final aspect of embedded optimal control software that affects flexi-
bility, memory and runtime is the choice of modeling language and corre-
sponding automatic differentiation tool. Several modeling languages exist, e.g.,
Mathematica, sympy or the MATLAB Symbolic Toolbox. Many of these
languages make use of expression trees to represent mathematical functions,
which potentially leads to a large code size, high memory usage and slow eval-



acados – fast embedded optimal control solvers 5

uation of higher-order derivatives for non-trivial models. On the contrary, the
CasADi [4] modeling language is based on expression graphs. This often leads
to shorter instruction sequences and to smaller, typically faster code, which
makes it more suitable for embedded applications. Also, it is free and open-
source software. For these reasons, we favor CasADi for modeling nonlinear
functions and differential-algebraic equations. Additionally, acados supports
the use of hand-written or code-generated dynamic models as C source files.

In summary, the contribution of this paper is a new software package for
embedded optimal control, called acados. It offers the following main fea-
tures:

– efficient optimal control algorithms implemented in C,
– modular architecture enabling rapid prototyping of solution algorithms,
– interfaces to Python and Matlab,
– high-performance linear algebra based on BLASFEO [32],
– compatible with CasADi expressions [4],
– deployable on a variety of embedded devices,
– publicly available as permissively licensed free and open-source software.

The remainder of the paper is organized as follows: in Section 2, we review
some important elements of nonlinear embedded optimization algorithms rel-
evant to acados. We discuss recent advances in embedded optimization algo-
rithms that motivate the development of acados in Section 3. The software
package acados itself is introduced in Section 4. Various numerical experi-
ments including hardware-in-the-loop simulations as well as comparisons to
other embedded optimization packages are presented in Section 5, and the
paper is concluded in Section 6.

2 Algorithmic ingredients for embedded nonlinear optimal control

In this section, we first introduce the problems that typically have to be solved
for NMPC and MHE. We introduce a general formulation, that can facilitate
both multiple-shooting discretized NMPC and MHE problems. Subsequently,
we describe the algorithmic incredients of SQP-type methods as implemented
in acados for the general problem.

2.1 Nonlinear Optimal Control

Let us first regard the continuous-time nonlinear optimal control problem
(OCP) of the form

minimize
xp¨q,zp¨q,up¨q

ż T

0

`pxptq, zptq, uptqqdt`MpxpT qq (1a)

subject to xp0q “ x0, (1b)

0 “ fp 9xptq, xptq, zptq, uptqq, t P r0, T s, (1c)

0 ě gpxptq, zptq, uptqq, t P r0, T s. (1d)



6 Robin Verschueren et al.

In this notation, x : R Ñ Rnx denotes the differential states, z : R Ñ Rnz are
the algebraic variables and u : R Ñ Rnu denotes the control inputs. Further-
more, we use ` : Rnx ˆ Rnz ˆ Rnu Ñ R for the Lagrange term or running cost,
M : Rnx Ñ R for the Mayer term or terminal cost. The dynamics are modeled
with a set of implicit differential-algebraic equations (DAE) with right-hand-
side f : RnxˆRnxˆRnz ˆRnu Ñ RnxˆRnz . In the remainder of the paper, we
assume the implicit DAE to be of index 1, i.e. Bf{pB 9x, Bzq is invertible. The
nonlinear path constraints are given by g : Rnx ˆ Rnz ˆ Rnu Ñ Rng , and the
initial value of the states is x0 P Rnx . We consider the horizon length T to be
fixed.

2.2 Multiple Shooting Discretization

In acados, we discretize nonlinear OCPs with a multiple shooting approach [12].
We introduce a time grid rt0, t1, . . . , tN s with tk ă tk`1, k “ 0, . . . , N ´ 1, dis-
crete state variables x0, . . . , xN , algebraic variables z0, . . . , zN´1 and controls
u0, . . . , uN´1. For the control trajectory, we choose a piecewise constant con-
trol parametrization. On each time interval rtk, tk`1q, we can then write the
result of the numerical simulation routine as

„

xk`1

zk



“ φkpxk, ukq, k “ 0, . . . , N ´ 1.

where the separate components will be denoted by φxkpxk, ukq and φzkpxk, ukq.

The multiple shooting approach can often lead to better convergence be-
havior compared to single shooting, where the simulation and optimization is
performed sequentially, as shown in [9]. The resulting nonlinear programming
(NLP) formulation looks as follows:

minimize
x0,...,xN ,
z0,...,zN´1,
u0,...,uN´1

N´1
ÿ

k“0

ptk`1 ´ tkq ¨ `pxk, zk, ukq `MpxN q (2a)

subject to x0 “ x0, (2b)
„

xk`1

zk



“ φkpxk, ukq, k “ 0, . . . , N ´ 1, (2c)

0 ě gkpxk, zk, ukq k “ 0, . . . , N ´ 1. (2d)

The optimal control formulation above is not the most general one that acados
can handle: among others moving horizon estimation (MHE) problems, con-
straint relaxation via slack variables and equality constraints are supported as
well. The next section presents a more general class of optimization problems
which is handled by acados.



acados – fast embedded optimal control solvers 7

2.3 General Nonlinear Optimal Control structured Optimization Problem

In order to facilitate many different OCP formulations occurring in practice,
acados uses the following general formulation of nonlinear optimal control
structured optimization problems:

minimize
x0,...,xN ,
u0,...,uN´1,
z0,...,zN´1,
s0,...,sN

N´1
ÿ

k“0

lkpxk, uk, zkq `MpxN q `
N
ÿ

k“0

ρkpskq (3a)

subject to

„

xk`1

zk



“ φkpxk, ukq, k “ 0, . . . , N ´ 1, (3b)

0 ě gkpxk, zk, ukq ´ Js,ksk k “ 0, . . . , N ´ 1, (3c)

0 ě gN pxN q ´ Js,NsN , (3d)

0 ď sk k “ 0, . . . , N. (3e)

Here, the initial state constraint from (1b) is contained in the inequality con-
straint (3c) for k “ 0.

Note that this general formulation also includes slack variables sk which
could alternatively be formulated as control inputs uk. However, the slack
variables sk do not enter the system dynamics (3b) and can only enter the
cost linearly and quadratically, i.e. via the functions ρkp¨q of the form

ρkpskq “

nsk
ÿ

i“1

αiks
i
k ` β

i
ks
i
k

2
,

with αik P R, βik ą 0. These properties motivate the separation between slack
and control variables and allow for an efficient treatment in solution methods
as implemented in acados. The slack variables can be used to formulate soft
constraints or model piecewise quadratic possibly assymetric cost functions
among others. Soft constraints are often useful in practice, for example to deal
with constraint violations due to model-plant mismatch or disturbances that
would yield infeasibility of (2).

Moreover, acados is able to handle the most common types of cost and
constraint functions in a tailored fashion. Regarding the cost functions lkp¨q,
Mp¨q, acados is capable of exploiting the structure of the widely used linear
and nonlinear least-squares functions, while also being able to handle general
nonlinear functions.

Within the constraint functions gkp¨q, acados is able to exploit the most
common constraint types, which are simply bounds on xk and uk, linear con-
straints in xk and uk, such that only truly nonlinear constraints have to be



8 Robin Verschueren et al.

formulated and treated as such, and one could write gkp¨q as

gkpxk, zk, ukq “

»

—

—

–

Jbx,kxk
Jbu,kuk

Cx,kxk ` Cu,kuk
gnonlpxk, zk, ukq

fi

ffi

ffi

fl

, (4)

where Jbx,k, Jbu,k are selection matrices that determine which components
of xk, uk have simple bounds. Additionally, it is common to have upper and
lower bounds on a constraint component of gk, which allows for a more efficient
treatment of these constraints within acados.

The above NLP (3) could be solved by any general-purpose NLP solver,
like IPOPT [89]. The current scope of acados, however, encompasses efficient
embedded optimal control methods for solving such structured NLPs, since
these are better suited in a real-time and/or embedded setting [19]. Sequential
Quadratic Programming (SQP) is an example of an embeddable optimization
method and will be discussed in the following section.

2.4 Sequential Quadratic Programming and Real-Time Iterations

We briefly present the structure of an SQP algorithm as implemented in
acados. At the very least, an embedded SQP algorithm should feature:

– numerical integration of the continuous-time dynamics,
– generation of first-order and possibly second-order sensitivities of objective

and constraints,
– a procedure for approximating the Hessian matrix,
– an efficient QP solver (typically developed separately).

Note that globalization strategies such as line search or trust regions are
considered out of scope for this paper, because globalization is not recom-
mended in a real-time setting, since runtime bounds can not be established
in general [18], and the initializations are typically close to the exact solution
[38]. In practice, globalization is typically not necessary. Possibly extending
acados with globalization strategies such as merit functions [55] and filter
based line search methods [88] for use in a fully converged setting is subject
of future work.

In summary, the SQP algorithm in acados looks as follows:

wri`1s “ wris `∆wQP, i “ 0, 1, . . . ,

πri`1s “ πQP, i “ 0, 1, . . . ,

λri`1s “ λQP, i “ 0, 1, . . . ,

where wris “ rx
risJ
0 , u

risJ
0 , . . . , u

risJ
N´1, x

risJ
N sJ is the primal iterate at SQP itera-

tion i, πi and λi are the dual iterates, readily available from the QP solution.



acados – fast embedded optimal control solvers 9

Note that the algebraic variables have been eliminated from the OCP, but
numerical approximations of these values are accessible from the numerical
integration routine. The step ∆wQP is computed by solving the following QP:

minimize
∆x0,...,∆xN ,
∆u0,...,∆uN´1,

s0,...,sN

N´1
ÿ

k“0

„

∆xk
∆uk

J

Hk
hkkkkikkkkj

„

Qk S
J
k

Sk Rk

 „

∆xk
∆uk



`

„

qk
rk

J „

∆xk
∆uk



`∆xJNQN∆xN ` q
J
N∆xN

`

N
ÿ

k“0

sJk Pksk ` p
J
k sk

subject to

∆xk`1 “ Ak∆xk `Bk∆uk ` φ̄
x
k ´ xk`1, k “ 0, . . . , N ´ 1,

´ḡk ě Gxk∆xk `G
u
k∆uk ´ Js,ksk, k “ 0, . . . , N ´ 1,

´ḡN ě GxN∆xN ´ Js,NsN ,

0 ď sk k “ 0, . . . , N.

(5)

Above, we used the shorthands φ̄xk, ḡk, k “ 0, . . . , N ´ 1 and ḡN to denote the
function evaluations φxkpxk, ukq, gkpxk, zk, ukq and gN pxN q, respectively. We
formulate the NLP in such a way that the slack variables appear directly as
tailored optimization variables. We note that some, but not all QP solvers can
deal with slack variables directly. For those that do not, slack variables are
reformulated as extra input variables.

In the remainder of this section, we discuss each of the ingredients of an
efficient SQP solver, described above, separately. Generation of sensitivities
using numerical integration will be treated in Section 2.5, Hessian approxima-
tion in Section 2.6, structure-exploiting QP solvers in Section 2.7 and real-time
considerations in Section 2.8.

2.5 Numerical simulation and sensitivities

An important part of the implementation of direct shooting methods for opti-
mal control consists of reliably and efficiently computing numerical simulation
and sensitivity results for the nonlinear system of differential-algebraic equa-
tions that represents a dynamic model for our particular system of interest.

Within the family of single-step integration methods one typically dis-
tinguishes between explicit and implicit schemes [41]. Well-known examples
of explicit integration schemes include explicit Runge-Kutta (RK) formulas
such as explicit Euler and the RK method of order 4. Explicit integration
schemes are easy to implement since they rely on a direct combination of
explicit evaluations of the right-hand side of the system dynamics. Instead,
implicit integration schemes result in a nonlinear system of equations that



10 Robin Verschueren et al.

implicitly defines the numerical simulation result. Unlike explicit integration
methods, the nonlinear system in implicit integration schemes generally needs
to be solved numerically using an iterative procedure such as a Newton-type
method. However, implicit formulas are very popular in practice because of
their improved numerical stability properties and higher order of accuracy. Es-
pecially in case of stiff dynamical systems and implicit or differential-algebraic
equations, an implicit integration scheme should often be used [42].

When using these numerical integration schemes within direct multiple
shooting, one additionally needs a computationally efficient and reliable way
of computing first (and possibly second) order derivatives of the simulation
results with respect to the state and control input values:

Bφxkpxk, ukq

Bxk
,

Bφxkpxk, ukq

Buk
,

nx
ÿ

i“1

πk,i
B2φxk,ipxk, ukq

B2pxk, ukq
, (6)

where πk P Rnx is called the seed vector, for which the Lagrange multipliers
are used to compute the exact Hessian of the Lagrangian. Sensitivity propaga-
tion for direct optimal control methods is typically based on a discretize-then-
differentiate type of approach such as internal numerical differentiation (IND)
in [10]. For the class of explicit integration methods, this concept leads to
a forward or backward sensitivity propagation based on algorithmic differen-
tiation (AD) techniques [37]. In case of an implicit integration scheme, the
IND approach either results in iterative differentiation techniques or a direct
computation of sensitivities based on the implicit function theorem [1]. In ad-
dition, forward-backward propagation schemes can be derived to compute the
symmetric Hessian contributions [73].

Recent work in [72,71] proposed an algorithmic approach to embed implicit
integration schemes with sensitivity analysis in Newton-type optimization for
direct optimal control without the need for any iterative procedure, based on
the concepts of numerical condensing and expansion in a lifted Newton-type
optimization method [2].

2.6 Convex Hessian Approximation Methods

Gauss-Newton Hessian approximation. In the case of a (nonlinear) least-squares
objective in (3), e.g. when tracking a reference, we have

lkpxk, ukq “ }rkpxk, ukq}
2
2, k “ 0, . . . , N ´ 1

MpxN q “ }rN pxN q}
2
2,

with r : Rnx ˆRnu Ñ Rnrk , rN : Rnx Ñ RnrN . Notice that this kind of residual
function is a common case in embedded optimization.

The Gauss-Newton Hessian approximation amounts to linearizing ”be-
tween the norm signs”. Since no second-order sensitivities are necessary, the
Gauss-Newton Hessian approximation offers a competitive alternative to SQP
with exact Hessians, although it converges linearly only. We remark that for a



acados – fast embedded optimal control solvers 11

quadratic objective function in (3), the same quadratic objective arises in (5),
and no additional computations are needed. For more details on Gauss-Newton
methods in the context of NMPC, we refer the reader to [39].

Sequential Convex Quadratic Programming (SCQP). A generalization to us-
ing SQP with a Gauss-Newton Hessian approximation is sequential convex
quadratic programming [85]. In a sense, a Gauss-Newton SQP algorithm ne-
glects any curvature present in the inequality constraints by linearizing them.
In practice however, convex-over-nonlinear objectives and/or constraints arise
often, which are of the form ϕpcpx, uqq with a convex function ϕp¨q and a non-
linear function cp¨q. Examples include ellipsoidal terminal constraints to ensure
stability of an NMPC scheme, the friction ellipse in automotive applications,
or tunnel-following for robotic manipulators.

In SCQP, we still linearize the inequalities, but bring the convex contribu-
tions from the inequality constraints, multiplied with a Lagrange multiplier,
into the Hessian approximation. Doing so, the SCQP Hessian is guaranteed to
be positive semi-definite. For problems that feature convex-over-nonlinear con-
straints, this Hessian contribution offers better convergence guarantees than a
Gauss-Newton Hessian [85].

Structure-preserving convexification with minimal regularization. In the last
two paragraphs, we devised two Hessian approximations which are convex by
construction. However, when the exact Hessian of the Lagrangian is used, it
might be indefinite. When this happens, the optimal direction ∆wQP cannot
be guaranteed to be a descent direction. Furthermore, many QP solver codes
expect a positive (semi-)definite Hessian, even if the second order sufficient
conditions for optimality are met. The aim of regularization is to obtain an
approximation rH “ blkdiagp rH0, . . . , rHN q with each rHk ą 0. We very briefly
discuss three different methods here and compare their convergence in an
SQP-type setting in Section 5.

Let VkDkV
´1
k be the eigenvalue decomposition of Hk, for k “ 0, . . . , N .

Two simple ways of regularizing the Hessian blocks are

rHk “ projectpHk, εq :“ Vk
“

maxdiagpε,Dkq
‰

V ´1
k , (7a)

rHk “ mirrorpHk, εq :“ Vk
“

maxdiagpε, abspDkqq
‰

V ´1
k , (7b)

with ε small, absp¨q defined elementwise and maxdiagp¨, ¨q selecting the maxi-
mum values on the diagonal while not changing the off-diagonal elements.
Another approach is to exploit the optimal control problem structure of (5).
One approach of this kind is called convexification and has been proposed
in [87]. The difference with more naive regularization methods as stated above,
is that it first exploits as much convexity as possible through the optimal con-
trol structure, before regularizing the remaining negative directions. The com-
plexity of the regularization method is linear in the horizon length, and under
some conditions, the SQP iterates converge quadratically to a local solution.



12 Robin Verschueren et al.

An efficient implementation of this new Hessian regularization method is in-
cluded in acados. A numerical example is given in Section 5, which shows
the superior convergence behavior of convexification with respect to the mirror
and project regularization techniques.

Further convex Hessian approximations Other Hessian approximations exist
in the literature, such as BFGS and its limited-memory variant (see [64]). They
might be added to acados in the future.

2.7 Structure-exploiting embedded QP solvers

There exist different solution strategies for QP (5), which we briefly describe
in this section. We note that linear-quadratic optimal control problems can be
efficiently solved with the same kind of QP solving strategies presented. As
such, acados, conceived as a modular software package, can also be used to
facilitate solving linear-quadratic QPs, arising in linear-quadratic MPC.
In the following subsections, we give an overview on sparsity exploitation for
optimal control structred QPs.

Sparse approach. OCP (5) can be solved directly by using a general-purpose
sparse QP solver, e.g., CVXGEN [62], OOQP [35], both primal-dual interior-point
solvers, or OSQP [82], a first-order method. First-order methods are mainly
based on either the fast gradient method or the alternating direction method
of multipliers (ADMM). The strict real-time requirements for solution methods
make first-order methods a viable candidate. However, they might suffer from
slow convergence rates. For an overview of first-order methods in the context
of embedded optimal control, see [24,52].

Structured approach. OCP (5) is solved by exploiting its multi-stage structure,
but dense linear algebra is used. An example is the approach from [81,75] and
in solvers like FORCES [21,91], HPMPC [34] and HPIPM [31], which are all
interior-point solvers.

Condensing approach. An alternative to the previous approaches is the so-
called condensing approach [12]. By eliminating the state variables by means
of the dynamic equality constraints in (5), we obtain a smaller QP with only
the control inputs and possibly the initial state as optimization variables. Any
general-purpose dense QP solver can then be used to solve the smaller QP,
e.g. an active-set solver like qpOASES [25] or an interior-point method like
the dense variant in HPIPM. Since qpOASES is able to reuse information (i.e.
warm-starting) from one problem to the next, it is particularly well-suited for
(N)MPC. Condensing is shown to be of quadratic complexity in the horizon
length [30].



acados – fast embedded optimal control solvers 13

Partial condensing. A mix between the two previous approaches (i.e. struc-
tured, condensing) for solving (5) can be obtained by not eliminating all state
variables, but only per blocks of N{N2 stages (we assume for simplicity that
N is an integer multiple of N2), where N2 is the ‘new’ horizon length of the
partially condensed problem. By this additional degree of freedom, partial
condensing enables us to find a better trade-off between horizon length and
number of optimization variables, for a given problem. For more details on
partial condensing, the reader is referred to [6].

Further condensing strategies. There are further condensing strategies in the
literature, which might be added to acados in the future. A method called
complementary condensing was proposed in [51], where the KKT system is
solved in the space of the multipliers corresponding to the equality constraints.
This approach favorable if the problem has more control inputs than states.

Dual-Newton strategy. The dual Newton strategy is an algorithm that is based
on dual decomposition tailored to linear-quadratic OCPs in the form of (5),
with an open-source implementation in the software qpDUNES [27].

A main advantage of the dual Newton strategy, as in most active set meth-
ods, is warm-starting. Contrary to qpOASES, qpDUNES can perform multiple
active set changes per iteration. However, a premature termination of the al-
gorithm does not return a meaningful solution as in the case of qpOASES since
it is not feasible nor optimal for a neighboring problem. As recently observed
in [53], the convergence of qpDUNES can benefit significantly from a partial
condensing preprocessing step.

2.8 Real-time iterations

In a real-time control setting, we solve NLP (3) in sequence and under stringent
time conditions. Since the environment is anyway changing continuously, it is
often sufficient to solve it approximately – it is of no use to have a high-
accuracy but past-the-deadline solution.

One such online method is the real-time iteration (RTI) scheme [18]. It
solves an inequality-constrained QP in each iteration. The resulting generalized
predictor is better suited for predictions across active set changes, than e.g.
a tangential predictor obtained from an interior-point method. For a brief
overview, we refer the reader to [19].

In each RTI, one full iteration of an SQP-type scheme is performed, in-
cluding generation of the sensitivities w.r.t. all variables. We could introduce
additional approximations by not updating all sensitivities in each RTI [92].
Such approximations exist on different levels: from only updating the initial
state constraint with the current estimate of the state of the system, over up-
dating the right-hand side of the (in)equality constraints, to the full RTI. By
interleaving different approximations at different sample times, we obtain a
multi-level iterations scheme, as introduced by [11].



14 Robin Verschueren et al.

3 Algorithm implementations in acados

In this section, we focus on the algorithm implementations in acados. Since
acados builds on other software to handle basic linear algebra operations
(BLASFEO [32]) and QPs (HPIPM [31]), these will be presented first. After-
wards, a short description of integrators and SQP-type optimization solvers
will be given.

3.1 Linear algebra: BLASFEO

At the heart of all embedded optimization routines lies either an implementa-
tion of a small set of linear algebra routines (e.g. matrix-matrix multiplication,
Cholesky decomposition), or a call to a specialized linear algebra library (e.g.
BLAS and LAPACK). Generally BLAS implementations focus on performance
for large dense matrices, as used in high-performance computing and data sci-
ence. Considerably less investigated are BLAS and LAPACK implementations
for small dense matrices.

Often, the linear algebra code in embedded optimization packages, for
example in the ACADO Code Generation tool or Forces Pro, is code-
generated. For very small matrix sizes (e.g. 4ˆ 4), this technique outperforms
optimized linear algebra libraries. Furthermore, code-generation has the ad-
vantage that the code can be kept ‘library-free’. However, for larger matrix
sizes (e.g. in the range 10 ˆ 10 to 100 ˆ 100, typical in MPC applications),
code-generated linear algebra routines underperform with respect to optimized
libraries.

BLASFEO [32] is a linear algebra package that targets computations for
small matrices. It offers highly optimized linear algebra routines (e.g. dgemm,
dsyrk, dpotrf), tailored for the matrix sizes typically encountered in embed-
ded optimization. These routines exploit architecture-specific vector instruc-
tions for floating point operations (e.g. AVX), and focus on performance for
matrices fitting in cache.

Furthermore, BLASFEO defines a packed matrix format (called panel ma-
jor) which optimizes the cache usage, guaranteeing close to peak performance
for matrices of sizes up to a couple hundreds. All high-performance BLASFEO
routines use this panel major matrix format, and there is a rich set of auxil-
iary routines to operate on this matrix format, as well as to convert from/to
column- or row-major formats. In this sense, BLASFEO provides a complete
linear algebra framework, which can be used to implement many fast opti-
mization algorithms.

Except for trivially small matrices, BLASFEO enables a considerable speedup
(up to 10ˆ for some matrix sizes) in the matrix computations, compared to
code-generated linear algebra kernels. For all small matrix sizes up to, say,
300 ˆ 300, BLASFEO offers a considerable speedup compared to state-of-the-
art BLAS implementations, like OpenBLAS, too. The use of BLASFEO is one



acados – fast embedded optimal control solvers 15

of the factors why acados performs better than ACADO on medium-scale
problems, as we will see in Section 5.

3.2 Quadratic programming: HPIPM

In the implementation of SQP-type algorithms, QP sub-problems need to be
solved efficiently at each iteration. The QP sub-problem solution is typically
one of the two most expensive steps in SQP schemes, the other being the
simulation and sensitivity computations of dynamical systems.

HPIPM [31] is a library defining three QP types (dense QP, OCP QP and
tree-structured OCP QP, all handling soft constraints via tailored slack vari-
ables), and a rich set of routines to create, manage and solve the QPs. All QP
solvers are Mehrotra’s type primal-dual interior point methods, and they are
implemented using the BLASFEO linear algebra framework.

Furthermore, HPIPM provides a set of efficiently implemented routines to
convert between the different QP types, e.g. condensing routines convert an
OCP QP into a dense QP, partial condensing routines convert an OCP QP into
another OCP QP with shorter horizon length. Additional expansion routines
recover the original QP solution from the (partially) condensed one.

In acados, the QP framework is based on HPIPM, in the sense that HPIPM
provides both the dense QP and OCP QP definitions, as well as (partial) con-
densing algorithms to convert them and interior-point methods to solve them.
Numerous other QP solvers are then interfaced to acados to alternatively
solve the same types of QP problems. At the time of writing, additional inter-
faces exist to HPMPC, qpDUNES, qpOASES, and OSQP.

3.3 Algorithmic Differentiation

The main difference between software packages for linear quadratic MPC and
nonlinear MPC is that NMPC packages need a modeling language for the non-
linear functions. We support CasADi, a graph-based source transformation
algorithmic differentiation tool [4]. In our workflow, a user would typically
specify the dynamic continuous-time models and nonlinear constraint func-
tions with CasADi in a high-level language such as Matlab or Python. In
combination with CasADi’s code generator we obtain fast, embeddable code,
see Section 4.3.

3.4 Numerical simulation

acados features different kinds of numerical simulation routines. There are
implementations of explicit and implicit Runge-Kutta integrators available,
both of which support the optional propagation of first-order forward and ad-
joint sensitivities, as well as second-order sensitivities. The explicit integrators
can be used with explicit ODE models and supports different Butcher tableaus,



16 Robin Verschueren et al.

including Euler’s method and RK4. Moreover, the implicit integrators can be
used with an index-1 differential-algebraic equation (DAE) or implicit ODE
model and use the Gauss-Legendre Butcher tableaus. A novel implementa-
tion for lifted collocation integrators [72] has been made part of acados, as
well as a recently proposed structure-exploiting IRK algorithm, the so-called
GNSF-IRK scheme [29], discussed next.

The concept of GNSF-IRK is to rigorously exploit the linear dependencies
within the dynamic system. It extends the ideas of the linear input and lin-
ear output subsystems that have been implemented within the ACADO Code
Generation tool [70] and uses a more flexible structured dynamic system for-
mulation that can also handle index-1 DAEs. A main challenge for structure-
exploiting integrators is to appropriately reformulate the dynamic system of
interest into the desired structured form. acados features an automatic tran-
scription method for the GNSF structure [29], implemented as a Matlab func-
tion for CasADi models.

A last important feature of acados is that integrators can vary from stage
to stage, with e.g. different state and control dimensions, different integration
step length, or different integration schemes.

We note that all integrator modules, except for the ERK integrator, are
based on hardware tailored linear algebra routines in BLASFEO to speed up
the LU factorizations and the corresponding triangular system solutions, as
discussed in [33].

3.5 SQP-type methods

For nonlinear programming, acados offers different SQP-like methods. A full-
step SQP method is available, with different algorithmic options. As Hessian
approximations, we have Gauss-Newton Hessians, SCQP, and exact Hessians
with regularization/convexification as discussed in Section 2.8, and we allow
for user-defined Hessian approximations. For use in an online setting, e.g. in
NMPC, a specialized RTI routine is available.

Both the SCQP algorithm and the convexification method of Section 2.6
are novel features, to the authors’ knowledge, not present in any other NMPC
software packages.

4 The acados software package

acados implements some of the optimization methods mentioned in the previ-
ous sections. acados is meant to be user-friendly at a high level, and efficient
at a low level. In order to balance these properties, we developed a core li-
brary written in C which exposes functionality to the Python and Matlab
interfaces. In this section, we first discuss the functionality of this inner core
module, we then describe internal and external interfaces that are crucial for
usability.



acados – fast embedded optimal control solvers 17

Table 2 Overview of the software modules present in ACADOS.

Module Variants

OCP QP

HPIPM
qpDUNES
HPMPC
OSQP

Dense QP
HPIPM

qpOASES

Condensing
Full condensing (HPIPM)

Partial condensing (HPIPM)

Simulation

ERK
IRK

GNSF-IRK
lifted IRK

OCP NLP

Gauss-Newton SQP
Gauss-Newton SCQP
Exact-Hessian SQP

RTI

Regularization
Projection
Mirroring

Convexification

Nonlinear function
CasADi generated functions

C-code functions

4.1 The acados core library

The embedded optimization algorithms discussed in Section 2 are implemented
in acados in a modular fashion. For example, there is a clear interface between
an NLP solver and an integrator. The integrator expects a linearization point
wris and returns the end state of a simulated trajectory, and optionally first-
and second-order sensitivities:

NLP solver integrator
lin. point

sim.,sens.

Similar diagrams can be drawn for all other algorithmic components, in-
cluding (partial) condensing, QP solvers, function evaluations etc. Each of
these algorithmic components are modeled within acados as separate mod-
ules. Some modules can be used as standalone modules, or in combination with
others. For instance, depending on the choice of algorithm, an NLP solver will
make use of some or all of the other modules. In Table 2, we see an overview
of all modules currently present in acados, together with the implemented
algorithmic variants.

It is an important design choice that all modules are identical in their
signature. That way, all modules look similar to the users of acados. For de-
velopers, it should be straightforward to extend acados with another module.
The signature is as follows (in C syntax):

int <solver>(void *config,
void *dims,
<module>_in *in,



18 Robin Verschueren et al.

dynamics
(continuous)

simulation
(ERK)

external
function

cost
(nonlinear)

external
function

constraints
(nonlinear)

external
function

OCP QP solver
(HPIPM)

OCP NLP solver
(SQP)

Fig. 1 Example of the relation between modules and submodules in acados for a specific
case of a possible SQP algorithm.

<module>_out *out,
void *opts,
void *mem,
void *work);

Here, <module> stands for the name of the module at hand, for example
ocp qp for QP problems with optimal control structure or sim for integra-
tion problems, and <solver> is a placeholder for a function implementing the
specific solver for problems corresponding to this module, e.g., ocp qp hpipm
(interface to HPIPM solver) or sim erk (explicit Runge-Kutta method), etc.
Each module returns an int which denotes a solver-specific error status –
zero means successful completion by convention. All input arguments are
pointers. Each of the arguments comes with a set of helper functions, called
... calculate size, computing the size (in bytes) of the struct pointed
to, as well as a set of functions, called ... assign, to initialize a block of
memory.

Some modules comprise other modules. For example, an SQP solver for op-
timal control problems might need an integrator, which is on its own a proper
acados module. In this context, we call the integrator a submodule. Each of
the arguments above, dims, in, etc., have fields corresponding to submod-
ules. As an example, the relation between an NLP solver and its submodules
is depicted in Figure 1. We remark that the calculation of the memory size of a
module with submodules is done recursively, i.e., calling the calculate size
function on the top module returns the required memory size of the top mod-
ule and all of its submodules, and submodules of submodules, etc. This allows
users to allocate all the memory outside of acados, by design.

The core library of acados contains mostly what has been described in
this section: a collection of modules, each with corresponding data types and
variants of solvers, as well as helper functions for memory management. Using
the core library directly can be cumbersome and error-prone, as many details
need to be taken into account: it is designed to be efficient and flexible. To



acados – fast embedded optimal control solvers 19

cater to the specific needs of the end user, we offer different interfaces to the
core of acados, which are described next.

4.2 The C interface

The C interface is responsible for encapsulating the low-level constructs of the
acados core.

Choosing Solvers. When working with the core library, all functions are spe-
cific to one variant of a module: when solving a QP with, say, qpOASES, the
code will refer to structs like dense qp qpoases memory, dense qp qpoases opts,
etc. We provide an abstraction layer to facilitate switching solvers easily. To
this end, for each module we define a ‘plan’. A plan is a struct that contains a
number of fields representing the choice of a particular combination of solvers.
For example, the plan for an SQP-type method with Gauss-Newton Hessian
approximation, for a problem discretized with an ERK integrator using HPIPM
as an underlying QP solver, reads as

ocp_nlp_solver_plan plan = {
{PARTIAL_CONDENSING_HPIPM},
{ERK, ERK, ERK, ...},
SQP_GN,
{LINEAR_LS, ...},
{CONTINUOUS_MODEL, ...},
{BGH, ...},

};

Here, the arrays should be of the correct length (omitted for brevity, with
a slight abuse of notation). As a general rule, solvers that make use of other
modules should include them in their plan.

Passing options. For each module, we manipulate a specific options struct
using functions that take a textual representation of the option via a string.
The string encodes both the module that the option belongs to, as well as the
name of the option.

Memory management. Allocating memory ‘manually’ as described above can
quickly become cumbersome. For this reason, we make available a few routines
that automate that process. To this end, in the C interface each module from
the core library is mirrored by an additional function with signature

<module>_solve(<module>_solver *solver,
<module>_in *in,
<module>_out *out);

The argument solver is a pointer to a C structure that encapsulates the
data needed other than input and output. By doing so, we reduce the amount
of boilerplate code.



20 Robin Verschueren et al.

Convenience routines. The C interface additionally offers helper routines, so-
called ‘setters’ and ‘getters’, that wrap the handling of the low-level structs
of the acados core.

4.3 High-level interfaces

Often, software for NMPC is coded in scripting languages. Therefore, we of-
fer interfaces to two popular languages for scientific computing: Python and
Matlab, where the interface to Matlab is largely compatible with its free
and open-source alternative Octave. As such, we created a small domain-
specific language within each of these frameworks. We build on top of code
from the C interface of acados.

In order to formulate the OCP (3) through the acados modules (cost, con-
straints and dynamics), the main challenge is to pass the generally nonlinear
functions and their derivatives to these modules. The Python and Matlab
interfaces of acados use CasADi as a modeling language, i.e. to formulate
all generally nonlinear parts of the OCP. The acados high level interfaces are
able to use CasADi’s code generation and algorithmic differentiation to gener-
ate the C functions needed for each acados module. A major benefit of using
CasADi as a modeling language is that the solution behavior of acados can
be easily compared with the solutions coming from the numerous optimization
tools interfaced with CasADi.

Once the OCP to be solved is described through the domain-specific lan-
guage implemented by the high-level interfaces, a human readable self-con-
tained C project that makes use of templated code can be generated. The
generated project contains all the C code necessary for function and derivative
evaluations generated through CasADi and the C code necessary to set up the
NLP solver using the acados C interface. Moreover, a Matlab S-Function and
a build system for its compilation is generated. Note that this kind of code
generation is inherently different from the one in ACADO, since the templated
code uses only the functions exposed by the C interface of acados. In contrast
to this, ACADO generated solvers are standalone C projects that are extremely
problem specific and do not rely on a common library.

With the workflow described above, it is possible to obtain a self-contained,
high-performance solver that can be easily deployed on embedded hardware
starting from a description of the OCP in a high-level language.

We remark that model equations and other nonlinear functions are called
from acados in a completely language-agnostic way: acados is at no point
aware of which modeling tool is being used. One benefit is that this facili-
tates self-written models (in C/C++), which are also completely compatible
with acados. However, this is more involved, since in the case of CasADi
functions, memory allocation and matrix format conversions are taken into
account automatically by the CasADi functions wrapper in acados.



acados – fast embedded optimal control solvers 21

5 Numerical Results

This section consists of a few numerical experiments with acados and com-
parisons to other embedded optimization software packages. We discuss per-
formance on the nonlinear chain-of-masses problem, we present one open-loop
example with different Hessian approximations, and show one closed-loop en-
gine control experiment on an embedded platform.

5.1 Case Study 1: Chain of Masses

As a benchmarking problem, we take the chain-of-masses problem as presented
in [90]. The control objective is to stabilize a chain of masses with nonlinear
interaction between them. For a full description of the system, we refer to the
appendix. The system is useful as a benchmark in the sense that the problem
is simple enough to understand intuitively, yet complicated enough to get non-
trivial results from a range of different solvers. Also, by increasing the number
of masses, one could compare behavior for different numbers of states easily,
without changing much code.

Closed-loop experiments

In closed-loop, an MPC controller repeatedly (approximately) solves OCP (10).
The first control u0 is passed to the dynamic system under control and a new
initial state x0 is obtained. Here, we simulate the system by using a more
accurate integrator than the one in OCP (10), namely the Dormand-Prince
method, as implemented in the Matlab routine ode45.

We introduce one disturbance into the closed-loop system, similar as in [90]:
in the beginning of the simulation, we start from a horizontal configuration
of the chain of masses. Around the midpoint of the simulation, we override
the closed loop control with a constant ud “ r´1, 1, 1sJ. After one second of
simulation time, the controller takes over again.

We compare the following solvers with each other for this particular closed-
loop setup:

– IPOPT [89]. As a solver not targeting embedded devices specifically, we
use it as a baseline to compare against.

– FalcOPT [83]. A projected gradient descent method tailored for NMPC.
– VIATOC [47]. A gradient projection method for MPC that only allows linear

inequality constraints.
– ACADO Code Generation tool [46]. Generates SQP-based solvers.
– GRAMPC [23]. An embedded Augmented Lagrangian-based solver.
– acados. Framework presented in the current paper.

The tuning parameters for the different solvers are listed in Table 3.



22 Robin Verschueren et al.

Table 3 Solver options for the different solvers in Case Study 1.

Solver Solver options
IPOPT Called through CasADi, default parameters
FalcOPT Tolerance (eps): 0.1, maximum number of iterations (maxIt): 100
VIATOC Maximum number of iterations: 20
ACADO RTI solver, Full condensing, QP solver qpOASES
GRAMPC Parameters chosen as in [23]: max. number of augm. Lagrange iterations: 5
acados SQP RTI solver, QP solver HPIPM, partial condensing horizon of 5

Table 4 Relative suboptimality at the end of the simulation of the hanging chain with
M “ 5 and N “ 40. First-order methods VIATOC, GRAMPC and FalcOPT were tuned to
perform similarly. The algorithms chosen in ACADO and acados are identical, hence the
results are identical.

Solver name RCSO
IPOPT 0.00e+00
FalcOPT 3.170e-01
VIATOC 4.74e-03
ACADO 1.01e-04
GRAMPC 7.17e-02
acados 1.01e-04

In order to compare the quality of the closed-loop solutions, we use the
notion of distance-from-reference (DR), which is an approximation of the in-
tegrated cost along closed-loop trajectories:

DRp¨q,n “
n
ÿ

i“0

„

xp¨q,i ´ xref
up¨q,i ´ uref

J „

Q 0
0 R

 „

xp¨q,i ´ xref
up¨q,i ´ uref



.

To compare the different solvers, we plot the relative cumulative sub-
optimality (RCSO), relative to a fully converged solution, in this case, the
IPOPT solution, which reads as

RCSOp¨q,n “

ˇ

ˇ

ˇ

ˇ

DRp¨q,n ´DRipopt,n

DRipopt,n

ˇ

ˇ

ˇ

ˇ

,

where n “ 0, . . . , 300 denotes the time step in our simulation. We show a
comparison in Table 4. The results for ACADO and acados are exactly the
same, as they implement the same real-time algorithm, with both being very
close to the reference solution from IPOPT. The solvers GRAMPC, VIATOC
and FalcOPT, being based on first-order methods, are further away from the
IPOPT solution. These findings are consistent with previously published work
by other authors, see [23].

We have a look at the computational performance along the closed-loop
trajectories in Figure 2. GRAMPC, ACADO, VIATOC and acados produce con-
sistent timings throughout the entire experiment, even when the disturbance
occurs. This is a beneficial property for embedded solvers, as they often have
a fixed time deadline, being part of a larger control application. GRAMPC and
acados produce solutions at almost the same speed, both approximately a
factor 2 faster than ACADO which is in turn a factor 2-3 faster than VIATOC.



acados – fast embedded optimal control solvers 23

Fig. 2 Computational time for each iteration of the closed loop simulation, averaged over
10 runs.

Table 5 Computation times for the closed-loop experiments on a chain of masses
(cf. Figure 2)

comp. time per iteration pmsq median minimum maximum

IPOPT 59.84 49.06 384.90
FalcOPT 4.36 0.44 11.10
VIATOC 5.63 5.27 6.68
ACADO 1.97 1.90 3.45
GRAMPC 1.06 0.81 1.31
acados 1.05 0.87 2.23

Near the equilibrium, FalcOPT takes the shortest computation time, as it
needs to perform only a few gradient steps per iteration. IPOPT is included
as a baseline for comparison to non-embedded solvers. The timings are sum-
marized in Table 5.

Of course, any solver can trade off sub-optimality for computation time.
To get the full picture, we plot both measures against each other in Figure 3:
we look at relative cumulative sub-optimality over the entire length of the
experiment, versus worst-case computation times. By this comparison, we see
that acados and GRAMPC are on the Pareto-optimal front: although acados
is a factor 1000 less suboptimal than GRAMPC, the computational cost is higher.
By the median computation times, acados is faster (see Table 5).



24 Robin Verschueren et al.

Fig. 3 Trade-off between sub-optimality (Table 4) and computation time (Figure 2). We
see that acados and GRAMPC lie on the Pareto-optimal front.

5.2 Case study 2: Hessian regularization

In Section 2.8, we briefly mentioned the impact of Hessian regularization on
SQP methods. In this case study, we compare the convergence of exact-Hessian
based SQP with three different Hessian regularizations, on a simple control
problem, namely a cart-pole swingup, which is described in the appendix. Note
that in this case study, as opposed to the others, we do not perform closed-loop
experiments but solve one optimal control problem up until convergence.

5.2.1 Exact-Hessian based SQP

We solve OCP (12) with SQP, where we use the exact Hessian of the La-
grangian. In the notation of (5):

Hk “

„

Q 0
0 R



`

nx
ÿ

i“0

πk,i∇2
px,uqφ

x
i pxk, ukq, k “ 0, . . . , N ´ 1

HN “ Q,

where πk,i are the Lagrange multipliers associated with the dynamic equality
constraints.

In some cases, the non-convexity of the dynamic equations gives rise to
an indefinite Hessian matrix. We apply the projectp¨q and mirrorp¨q regular-
izations, as well as the convexification method previously mentioned in Sec-
tion 2.6. All are implemented as modules in the acados framework.

We compare the convergence of the SQP iterates obtained using the three
different regularization methods. For each SQP variant, we start the SQP it-
erations from an initialization point with zeros for all states except a linearly
decreasing initialization for the angle, from π to zero. The result can be seen
in Figure 4. The structure-exploiting convexification converges almost twice



acados – fast embedded optimal control solvers 25

0 10 20 30 40 50 60 70 80

10
-5

10
0

10
5

convexification

project

mirror

Fig. 4 Convergence comparison of exact-Hessian based SQP with three different regular-
ization strategies.

Table 6 Exact-Hessian based SQP: computation times

regularization convexification project mirror
avg iteration (ms) 2.540 2.303 2.264

total time (ms) 66.034 103.65 174.32

as fast as the projection regularization, and is in turn much faster than the
mirroring regularization. Intuitively, this makes sense, as mirroring is ‘block-
ing’ directions associated with large negative eigenvalues, by introducing large
positive eigenvalues in those directions. This prevents the solver from taking
larger steps2. In turn, the structure-exploiting regularization is faster than
merely projecting the eigenvalues on the positive definite cone, because it is
redistributing convexity among all stages, and thus needs less regularization
overall.

It must be said that the convexification method is quite a bit more in-
volved than the other two regularization schemes. However, by using the opti-
mized linear algebra routines of BLASFEO, we implemented the convexification
method such that it is only slightly more expensive per iteration than the basic
regularization methods, see Table 6, but much less computationally expensive
overall. Thus, the Hessian convexification method allows us to perform exact-
Hessian based NMPC online, with better performance than state-of-the-art
methods.

2 This is also the approach followed by the algorithms obtained with the ACADO Code
Generation tool.



26 Robin Verschueren et al.

5.3 Case study 3: Hardware-in-the-loop experiments for an engine control
application

As a last case study, we discuss the performance of acados on an embed-
ded platform, namely the dSPACE MicroAutoboxII [22]. It is an industrial
computing platform that is used in the car industry. It features a 900 MHz
PowerPC processor (IBM PPC 750GL) with 16MB of main memory. The con-
trol application that we focus on is engine control, with the engine model as
presented in [3], which we will briefly reproduce in the appendix.

The control objective is to track a boost pressure signal, where the boost
pressure is given by yppxq :“ Πc,lp ¨Πc,hp (see appendix). To this end, we solve
an OCP arising from a multiple shooting formulation with the Gauss-Legendre
method of order 6 with sampling time 0.05 s and N “ 20 shooting intervals.
The DAE simulation functions are denoted by φ. Let rpx, uq “ ryppxq;x;us
and rN pxq “ ryppxq;xs. The OCP then reads as

minimize
x0,...,xN ,
z0,...,zN´1
u0,...,uN´1

N´1
ÿ

k“0

}rpxk, ukq ´ yr,k}
2
W ` }rN pxN q ´ yr,N }

2
WN

subject to x0 “ x0,
„

xk`1

zk



“ φpxk, ukq, k “ 0, . . . , N ´ 1,

0 ď uk ď 100, k “ 0, . . . , N ´ 1,

0.5 ď Πc,lp,k ď 1.757, k “ 1, . . . , N,

0.5 ď Πc,hp,k ď 2.125, k “ 1, . . . , N.

(8)

Constraints on Πc,lp, Πt,hp are included to prevent damage to the compres-
sor. The exact values of the weight matrices and the reference vectors can be
found in the appendix.

We repeatedly solve OCP (8) approximately by performing real time iter-
ations. As an underlying QP solver, we use HPIPM. When ran in closed loop
on the dSPACE MicroAutoboxII, the results can be seen in Figure 5. Control
bounds and state bounds become active at some point in the simulation, for the
high-pressure stage. The reference is tracked closely and without oscillations,
which have been observed when linear-quadratic MPC is used [3]. As for the
computation times, it is interesting to note that there are spikes everywhere
where a jump occurs or a constraint becomes (in)active. The computation
times close to the solution (i.e. at the beginning of the simulation) drop to
almost zero. Overall, the maximum computation time remains under 10 ms,
which is 5x faster than the sampling time of the system (50 ms). We remark
that the computation times obtained with the dSPACE MicroAutoboxII, for
this HIL experiment, are about three times slower than a desktop computer
with a 2.5GHz Intel Core i7-4870HQ processor.



acados – fast embedded optimal control solvers 27

Fig. 5 Closed-loop simulation of the engine control task with steps in the reference boost
pressure. Simulations are carried out on the dSPACE MicroAutoboxII platform at a clock
speed of 900 MHz.

6 Conclusion and outlook

In this article, we presented acados, a new software package for embedded
optimization. It is free and open-source software that facilitates rapid testing
and deployment of (N)MPC algorithms on embedded hardware platforms. For
ease of use, we offer interfaces with higher-level languages such as Matlab
and Python.

Among many features that state-of-the-art NMPC algorithms require, a
couple of new features that are not present in any other software package is
the convexification procedure of Section 2.6, allowing the use of exact-Hessian
based SQP methods in real-time, and the SCQP Hessian approximation. Ad-
ditionally, the structure exploiting GNSF-IRK integrator has the potential to
speed up the simulation and sensitivity propagation tasks within an NMPC
scheme. Furthermore, acados features partial condensing, different state and
control dimensions per multiple shooting stage, the use of BLASFEO as a linear
algebra backend and facilities for using CasADi as a modeling language.

The software is shown to be embeddable, by numerical experiments on the
dSPACE MicroAutoboxII industrial computer, resulting in computation times
in the millisecond range for a non-trivial NMPC problem. Furthermore, it is
shown to be fast, by comparison to other embedded optimization packages.



28 Robin Verschueren et al.

acados is an ongoing endeavor. Future work includes extending interop-
erability with Simulink for easier deployment on embedded systems, and
adding features for nonlinear interior-point methods, as well as other SQP-
based methods like multi-level iterations.

References

1. Albersmeyer, J.: Adjoint-based algorithms and numerical methods for sensitivity gen-
eration and optimization of large scale dynamic systems. Ph.D. thesis, University of
Heidelberg (2010)

2. Albersmeyer, J., Diehl, M.: The lifted Newton method and its application in optimiza-
tion. SIAM Journal on Optimization 20(3), 1655–1684 (2010)

3. Albin, T., Ritter, D., Liberda, N., Quirynen, R., Diehl, M.: In-vehicle realization of
nonlinear MPC for gasoline two-stage turbocharging airpath control. IEEE Transactions
on Control Systems Technology pp. 1–13 (2017)

4. Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi: a software
framework for nonlinear optimization and optimal control. Mathematical Programming
Computation (2018)

5. Andersson, J.A.E., Rawlings, J.B.: Sensitivity analysis for nonlinear programming in
casadi. In: Proceedings of the IFAC Conference on Nonlinear Model Predictive Control
(NMPC) (2018)

6. Axehill, D.: Controlling the level of sparsity in MPC. Systems & Control Letters 76,
1–7 (2015)

7. Bemporad, A.: Hybrid Toolbox for Matlab (2003)

8. Bemporad, A., Borrelli, F., Morari, M.: The explicit solution of constrained LP-based
receding horizon control. In: Proceedings of the IEEE Conference on Decision and
Control (CDC). Sydney, Australia (1999)

9. Bock, H.: Randwertproblemmethoden zur Parameteridentifizierung in Systemen nicht-
linearer Differentialgleichungen, Bonner Mathematische Schriften, vol. 183. Universität
Bonn, Bonn (1987)

10. Bock, H.G.: Recent advances in parameter identification techniques for ODE. In: Numer-
ical Treatment of Inverse Problems in Differential and Integral Equations, pp. 95–121.
Birkhäuser (1983)

11. Bock, H.G., Diehl, M., Kühl, P., Kostina, E., Schlöder, J.P., Wirsching, L.: Numerical
methods for efficient and fast nonlinear model predictive control. In: Proceedings of ”Int.
Workshop on assessment and future directions of Nonlinear Model Predictive Control”.
Springer (2005)

12. Bock, H.G., Plitt, K.J.: A multiple shooting algorithm for direct solution of optimal
control problems. In: Proceedings of the IFAC World Congress, pp. 242–247. Pergamon
Press (1984)

13. Cheshmi, K., Kaufman, D.M., Kamil, S., Dehnavi, M.M.: NASOQ: Numerically accurate
sparsity-oriented qp solver. In: ACM Transactions on Graphics, vol. 39

14. Chiang, N.Y., Hang, R., Zavala, V.M.: An augmented lagrangian filter method for real-
time embedded optimization. IEEE Transactions on Automatic Control 62(12), 6110–
6121 (2017)

15. Cimini, G., Bemporad, A.: Exact complexity certification of active-set methods for
quadratic programming. IEEE Transactions on Automatic Control 62(12), 6094–6109
(2017)

16. Deng, H., Ohtsuka, T.: A highly parallelizable newton-type method for nonlinear model
predictive control. In: Proceedings of the IFAC Conference on Nonlinear Model Predic-
tive Control (NMPC) (2018)

17. Di Cairano, S., Brand, M., Bortoff, S.A.: Projection-free parallel quadratic programming
for linear model predictive control. International Journal of Control 86(8), 1367–1385
(2013)



acados – fast embedded optimal control solvers 29

18. Diehl, M., Bock, H.G., Schlöder, J.P., Findeisen, R., Nagy, Z., Allgöwer, F.: Real-
time optimization and nonlinear model predictive control of processes governed by
differential-algebraic equations. Journal of Process Control 12(4), 577–585 (2002)

19. Diehl, M., Ferreau, H.J., Haverbeke, N.: Efficient numerical methods for nonlinear MPC
and moving horizon estimation. In: L. Magni, M. Raimondo, F. Allgöwer (eds.) Nonlin-
ear model predictive control, Lecture Notes in Control and Information Sciences, vol.
384, pp. 391–417. Springer (2009)

20. Domahidi, A., Chu, E., Boyd, S.: ECOS: An SOCP solver for embedded systems. In:
Proceedings of the European Control Conference (ECC), pp. 3071–3076. IEEE (2013)

21. Domahidi, A., Zgraggen, A., Zeilinger, M.N., Morari, M., Jones, C.N.: Efficient interior
point methods for multistage problems arising in receding horizon control. In: Proceed-
ings of the IEEE Conference on Decision and Control (CDC), pp. 668–674. Maui, HI,
USA (2012)

22. dSPACE: Homepage. http://www.dspace.com (2006)
23. Englert, T., Völz, A., Mesmer, F., Rhein, S., Graichen, K.: A software framework for em-

bedded nonlinear model predictive control using a gradient-based augmented lagrangian
approach (GRAMPC). Optimization and Engineering 20(3), 769–809 (2019)

24. Ferreau, H.J., Almer, S., Verschueren, R., Diehl, M., Frick, D., Domahidi, A., Jerez, J.L.,
Stathopoulos, G., Jones, C.: Embedded optimization methods for industrial automatic
control. In: Proceedings of the IFAC World Congress (2017)

25. Ferreau, H.J., Kirches, C., Potschka, A., Bock, H.G., Diehl, M.: qpOASES: a para-
metric active-set algorithm for quadratic programming. Mathematical Programming
Computation 6(4), 327–363 (2014)

26. Franke, R., Arnold, E.: Computer Intensive Methods in Control and Signal Processing,
chap. Applying new numerical algorithms to the solution of discrete-time optimal control
problems, pp. 105–117. Springer (1997)

27. Frasch, J.V., Sager, S., Diehl, M.: A parallel quadratic programming method for dynamic
optimization problems. Mathematical Programming Computations 7(3), 289–329 (2015)

28. Frey, J., Cairano, S.D., Quirynen, R.: Active-Set based Inexact Interior Point QP Solver
for Model Predictive Control. In: Proceedings of the IFAC World Congress (2020)

29. Frey, J., Quirynen, R., Kouzoupis, D., Frison, G., Geisler, J., Schild, A., Diehl, M.:
Detecting and exploiting Generalized Nonlinear Static Feedback structures in DAE
systems for MPC. In: Proceedings of the European Control Conference (ECC) (2019)

30. Frison, G.: Algorithms and methods for high-performance model predictive control.
Ph.D. thesis, Technical University of Denmark (DTU) (2015)

31. Frison, G., Diehl, M.: HPIPM: a high-performance quadratic programming framework
for model predictive control. In: Proceedings of the IFAC World Congress. Berlin,
Germany (2020)

32. Frison, G., Kouzoupis, D., Sartor, T., Zanelli, A., Diehl, M.: BLASFEO: Basic linear
algebra subroutines for embedded optimization. ACM Transactions on Mathematical
Software (TOMS) 44(4), 42:1–42:30 (2018)

33. Frison, G., Quirynen, R., Zanelli, A., Diehl, M., Jørgensen, J.B.: Hardware tailored
linear algebra for implicit integrators in embedded NMPC. In: Proceedings of the IFAC
World Congress (2017)

34. Frison, G., Sorensen, H.B., Dammann, B., Jørgensen, J.B.: High-performance small-
scale solvers for linear model predictive control. In: Proceedings of the European Control
Conference (ECC), pp. 128–133 (2014)

35. Gertz, E.M., Wright, S.J.: Object-oriented software for quadratic programming. ACM
Transactions on Mathematical Software 29(1), 58–81 (2003)

36. Giftthaler, M., Neunert, M., Stäuble, M., Buchli, J.: The Control Toolbox - an open-
source C++ library for robotics, optimal and model predictive control. In: IEEE In-
ternational Conference on Simulation, Modeling, and Programming for Autonomous
Robots (SIMPAR) (2018)

37. Griewank, A.: Evaluating Derivatives, Principles and Techniques of Algorithmic Differ-
entiation. No. 19 in Frontiers in Appl. Math. SIAM, Philadelphia (2000)

38. Gros, S., Srinivasan, B., Bonvin, D.: Robust predictive control based on neighboring
extremals. Journal of Process Control 16, 243–253 (2006)



30 Robin Verschueren et al.

39. Gros, S., Zanon, M., Quirynen, R., Bemporad, A., Diehl, M.: From linear to nonlinear
MPC: bridging the gap via the real-time iteration. International Journal of Control
(2016)

40. Grüne, L., Pannek, J.: Nonlinear Model Predictive Control, second edition edn.
Springer-Verlag (2017)

41. Hairer, E., Nørsett, S., Wanner, G.: Solving Ordinary Differential Equations I, 2nd edn.
Springer Series in Computational Mathematics. Springer, Berlin (1993)

42. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II – Stiff and
Differential-Algebraic Problems, 2nd edn. Springer, Berlin Heidelberg (1991)

43. Hehn, M., D’Andrea, R.: A flying inverted pendulum. In: IEEE International Conference
on Robotics and Automation, pp. 763–770

44. Herceg, M., Kvasnica, M., Jones, C., Morari, M.: Multi-Parametric Toolbox 3.0. In:
Proc. of the European Control Conference, pp. 502–510. Zürich, Switzerland (2013).
http://control.ee.ethz.ch/˜mpt

45. Hermans, B., Themelis, A., Patrinos, P.: Qpalm: A proximal augmented lagrangian
method for nonconvex quadratic programs

46. Houska, B., Ferreau, H.J., Diehl, M.: An auto-generated real-time iteration algorithm
for nonlinear MPC in the microsecond range. Automatica 47(10), 2279–2285 (2011)

47. Kalmari, J., Backman, J., Visala, A.: A toolkit for nonlinear model predictive control
using gradient projection and code generation. Control Engineering Practice 39, 56–66
(2015)

48. Käpernick, B., Graichen, K.: The gradient based nonlinear model predicitive control
software GRAMPC. In: Proceedings of the European Control Conference (ECC) (2014)

49. Katliar, M.: Optimal control of motion simulators. Ph.D. thesis, Albert-Ludwigs-
Universität Freiburg (2020)

50. Khusainov, B., Kerrigan, E.C., Suardi, A., Constantinides, G.A.: Nonlinear predictive
control on a heterogeneous computing platform. In: Proceedings of the IFAC World
Congress (2017)

51. Kirches, C., Bock, H.G., Schlöder, J.P., Sager, S.: Complementary condensing for the di-
rect multiple shooting method. In: Modeling, Simulation and Optimization of Complex
Processes, pp. 195–206. Springer Berlin Heidelberg (2012)

52. Kouzoupis, D., Ferreau, H.J., Peyrl, H., Diehl, M.: First-order methods in embedded
nonlinear model predictive control. In: Proceedings of the European Control Conference
(ECC), pp. 2617–2622 (2015)

53. Kouzoupis, D., Quirynen, R., Frasch, J.V., Diehl, M.: Block condensing for fast nonlin-
ear MPC with the dual Newton strategy. In: Proceedings of the IFAC Conference on
Nonlinear Model Predictive Control (NMPC), vol. 48, pp. 26–31 (2015)

54. Kvamme, S.: DuQuad Webpage. http://sverrkva.github.io/duquad/ (2014)
55. Leineweber, D.B.: Efficient reduced SQP methods for the optimization of chemical

processes described by large sparse DAE models, Fortschritt-Berichte VDI Reihe 3,
Verfahrenstechnik, vol. 613. VDI Verlag, Düsseldorf (1999)

56. Leineweber, D.B., Bauer, I., Bock, H.G., Schlöder, J.P.: An efficient multiple shoot-
ing based reduced SQP strategy for large-scale dynamic process optimization. Part I:
theoretical aspects. Computers and Chemical Engineering 27, 157–166 (2003)

57. Li, W.C., Biegler, L.T.: Multistep, Newton-type control strategies for constrained non-
linear processes. Chem. Eng. Res. Des. 67, 562–577 (1989)

58. Liniger, A., Domahidi, A., Morari, M.: Optimization-based autonomous racing of 1:43
scale RC cars. Optimal Control Applications and Methods 36(5), 628–647 (2015)

59. Listov, P., Jones, C.: PolyMPC: An efficient and extensible tool for real-time nonlinear
model predictive tracking and path following for fast mechatronic systems. Optimal
Control Applications and Methods 41(2), 709–727 (2020)

60. Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall (2002)
61. MathWorks, T.: The model predictive control toolbox. https://mathworks.com/

products/mpc.html (2005)
62. Mattingley, J., Boyd, S.: CVXGEN: A code generator for embedded convex optimiza-

tion. Optimization and Engineering pp. 1–27 (2012)
63. Melis, W., Patrinos, P.: C code generation for NMPC. https://github.com/

kul-forbes/nmpc-codegen (2018)

http://control.ee.ethz.ch/~mpt
http://sverrkva.github.io/duquad/
https://mathworks.com/products/mpc.html
https://mathworks.com/products/mpc.html
https://github.com/kul-forbes/nmpc-codegen
https://github.com/kul-forbes/nmpc-codegen


acados – fast embedded optimal control solvers 31

64. Nocedal, J., Wright, S.J.: Numerical Optimization, 2 edn. Springer Series in Operations
Research and Financial Engineering. Springer (2006)

65. Nurkanović, A., Mešanović, A., Zanelli, A., Frey, J., Frison, G., Albrecht, S., Diehl, M.:
Real-time nonlinear model predictive control for microgrid operation. In: Proceedings
of the American Control Conference (ACC). Denver, USA (2020). (accepted)

66. Ohtsuka, T.: A continuation/GMRES method for fast computation of nonlinear receding
horizon control. Automatica 40(4), 563–574 (2004)

67. Pandala, A.G., Ding, Y., Park, H.W.: qpSWIFT: A real-time sparse quadratic program
solver for robotic applications. IEEE Robotics and Automation Letters 4(4), 3355–3362
(2019)

68. Patrinos, P., Bemporad, A.: An accelerated dual gradient-projection algorithm for em-
bedded linear model predictive control. Automatic Control, IEEE Transactions on 59(1),
18–33 (2014)

69. Qin, S., Badgwell, T.: An overview of industrial model predictive control technology. In:
J. Kantor, C. Garcia, B. Carnahan (eds.) Fifth International Conference on Chemical
Process Control – CPC V, pp. 232–256. American Institute of Chemical Engineers
(1996)

70. Quirynen, R., Gros, S., Diehl, M.: Efficient NMPC for nonlinear models with linear
subsystems. In: Proceedings of the IEEE Conference on Decision and Control (CDC),
pp. 5101–5106 (2013)

71. Quirynen, R., Gros, S., Diehl, M.: Inexact Newton-type optimization with iterated sen-
sitivities. SIAM Journal on Optimization 28(1), 74–95 (2018)

72. Quirynen, R., Gros, S., Houska, B., Diehl, M.: Lifted collocation integrators for direct
optimal control in ACADO toolkit. Mathematical Programming Computation 9(4),
527–571 (2017)

73. Quirynen, R., Houska, B., Diehl, M.: Efficient symmetric Hessian propagation for direct
optimal control. Journal of Process Control 50, 19–28 (2017)

74. Quirynen, R., Knyazev, A., Di Cairano, S.: Block structured preconditioning within
an active-set method for real-time optimal control. In: Proceedings of the European
Control Conference (ECC) (2018)

75. Rao, C.V., Wright, S.J., Rawlings, J.B.: Application of interior-point methods to model
predictive control. Journal of Optimization Theory and Applications 99, 723–757 (1998)

76. Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory, Compu-
tation, and Design, 2nd edition edn. Nob Hill (2017)

77. Sathya, A., Sopasakis, P., Themelis, A., Parys, R.V., Pipeleers, G., Patrinos, P.: Em-
bedded nonlinear model predictive control for obstacle avoidance using PANOC. In:
Proceedings of the European Control Conference (ECC) (2018)

78. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S.,
Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and
convex collision checking. The International Journal of Robotics Research 33(9), 1251–
1270 (2014)

79. Shukla, H., Khusainov, B., Kerrigan, E., Jones, C.: Software and hardware code gener-
ation for predictive control using splitting methods. In: Proceedings of the IFAC World
Congress (2017)

80. Sopasakis, P., Fresk, E., Patrinos, P.: OpEn: Code generation for embedded nonconvex
optimization. In: IFAC World Congress

81. Steinbach, M.: Fast recursive SQP methods for large-scale optimal control problems.
PhD thesis, University of Heidelberg, IWR (1995)

82. Stellato, B., Banjac, G., Goulart, P., Bemporad, A., Boyd, S.: OSQP: An operator split-
ting solver for quadratic programs. Mathematical Programming Computation 12(4),
637–672 (2020)

83. Torrisi, G., Grammatico, S., Smith, R.S., Morari, M.: A projected gradient and con-
straint linearization method for nonlinear model predictive control. SIAM Journal on
Control and Optimization 56(3), 1968–1999 (2018)

84. Ullmann, F.: FiOrdOs: A Matlab toolbox for C-code generation for first order methods.
Master’s thesis, ETH Zurich (2011)

85. Verschueren, R., van Duijkeren, N., Quirynen, R., Diehl, M.: Exploiting convexity in
direct optimal control: a sequential convex quadratic programming method. In: Pro-
ceedings of the IEEE Conference on Decision and Control (CDC) (2016)



32 Robin Verschueren et al.

86. Verschueren, R., Frison, G., Kouzoupis, D., van Duijkeren, N., Zanelli, A., Quirynen,
R., Diehl, M.: Towards a modular software package for embedded optimization. In:
Proceedings of the IFAC Conference on Nonlinear Model Predictive Control (NMPC)
(2018)

87. Verschueren, R., Zanon, M., Quirynen, R., Diehl, M.: A sparsity preserving convexi-
fication procedure for indefinite quadratic programs arising in direct optimal control.
SIAM Journal of Optimization 27(3), 2085–2109 (2017)

88. Wächter, A., Biegler, L.T.: Line Search Filter Methods for Nonlinear Programming:
Motivation and Global Convergence. SIAM Journal on Optimization 16, 1–31 (2006)

89. Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming 106(1),
25–57 (2006)

90. Wirsching, L., Bock, H.G., Diehl, M.: Fast NMPC of a chain of masses connected by
springs. In: Proceedings of the IEEE International Conference on Control Applications,
Munich, pp. 591–596 (2006)

91. Zanelli, A., Domahidi, A., Jerez, J.L., Morari, M.: FORCES NLP: An efficient im-
plementation of interior-point methods for multistage nonlinear nonconvex programs.
International Journal of Control (2017)

92. Zanelli, A., Quirynen, R., Diehl, M.: Efficient zero-order NMPC with feasibility and sta-
bility guarantees. In: Proceedings of the European Control Conference (ECC). Naples,
Italy (2019)

93. Zometa, P., Kögel, M., Findeisen, R.: muAO-MPC: A free code generation tool for em-
bedded real-time linear model predictive control. In: 2013 American Control Conference,
pp. 5320–5325 (2013)

Appendix A - Case study details

Case Study 1: Chain of Masses

System description

The control objective in this example is to stabilize the motion of a chain of
M “ 5 balls with mass m connected by springs to an equilibrium position.
The mass on one end of the chain is fixed at p0, 0, 0q. The mass on the other
end can be freely moved.

Let pi be the position of mass i, for i “ 1, . . . ,M . The model equations can
then be derived as follows. From Hooke’s law, we know that (see Figure 6)

Fi,i`1 “ D

ˆ

1´
L

}pi`1 ´ pi}

˙

ppi`1 ´ piq,

with each spring having spring constant D and rest length L.
This allows us to write the equations of motion for the middle balls, which

read as

:pi “
1

m
pFi,i`1 ´ Fi´1,iq ` gz, i “ 2, . . . ,M ´ 1,

with gz the gravitational acceleration vector. The control input u P R3 directly
controls the velocity of the free mass:

9pM “ u.



acados – fast embedded optimal control solvers 33

Fig. 6 Forces in the springs between the masses in the example of Case Study 1. Replicated
from [90].

We now introduce a state space formulation with states

xJ “ rpJ2 , p
J
3 , . . . , p

J
M´1, p

J
M , v

J
2 , v

J
3 , . . . , v

J
M´1s P Rnx

with nx “ 3 ¨ p2 ¨ pM ´ 2q ` 1q, which results in the following ODE:

9x “ fpx, uq “

»

—

—

—

—

—

—

—

—

—

—

–

v2
...

vM´1

u
1
m pF2,3 ´ F1,2q ` gz

...
1
m pFM´1,M ´ FM´2,M´1q ` gz

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (9)

We remark that the only nonlinearity is introduced in the calculation of the
forces. The steady state pxss, ussq of the system can be found by setting
fpxss, ussq “ 0 for any given pM,ss. We choose pM,ss “ r7.5, 0, 0sJ for the
experiments.

Optimal control problem formulation

In order to stabilize the motion of the chain of masses to the steady state,
we propose the following optimal control problem, obtained by performing a
multiple shooting discretization of ODE (9):

minimize
x0,...,xN
u0,...,uN´1

N´1
ÿ

k“0

„

xk ´ xref
uk ´ uref

J „

Q 0
0 R

 „

xk ´ xref
uk ´ uref



` pxN ´ xrefq
JP pxN ´ xrefq

subject to x0 “ x0,

xk`1 “ φxpxk, ukq, k “ 0, . . . , N ´ 1,

´ 1 ď uk ď 1, k “ 0, . . . , N ´ 1,

(10)

where the initial state x0 is the current estimate of the state vector, φ : Rnx ˆ

R3 Ñ Rnx is obtained by performing a single RK4 step of length 0.2 s on



34 Robin Verschueren et al.

Table 7 Design parameters for the chain of masses case study

Quantity Description Value
m mass of one ball 0.1125 kg
D spring constant 0.4 N{m
L rest length of the springs 0.1375 m
gz gravitational acceleration vector r0, 0,´9.81sJm{s2

N horizon length 40
∆t discretization step 0.2 s

pM,ref reference position of free ball r7.5, 0, 0sJm

θ

M

m

l

F

Fig. 7 Schematic illustrating the inverted pendulum on top of a cart.

ODE (9). Furthermore, we choose a horizon length N “ 40, the weighting
matrices

Q “ diagp 0, . . . , 0,
looomooon

p2,...,pM´1

2.5, 2.5, 2.5,
looooomooooon

pM

25, . . . , 25
loooomoooon

v2,...,vM´1

q,

P “ diagp 0, . . . , 0,
looomooon

p2,...,pM´1

10, 10, 10,
loooomoooon

pM

0, . . . , 0
loomoon

v2,...,vM´1

q,

R “ diagp0.1, 0.1, 0.1q,

the reference control input uref “ r0, 0, 0s
J and the state reference

xref “ r 0, . . . , 0
loomoon

p2,...,pM´1

, 7.5, 0, 0
loomoon

pM

, 0, . . . , 0
loomoon

v2,...,vM´1

sJ.

The design parameters are chosen as in [23] and are summarized in Table 7.
Note that we did not introduce path constraints or state bounds, since these
are not supported by all solvers that we compare to below.

Case Study 2: Hessian regularization

We control a mass on a rod (a pendulum), balanced on a horizontally mov-
ing cart, see Figure 7. The goal is to swing up the pendulum from a stable
equilibrium position, namely hanging down.

The dynamics of the cart-pendulum are described by the following ordinary
differential equation, where p, v are the horizontal displacement and velocity,



acados – fast embedded optimal control solvers 35

respectively, θ is the angle with the vertical and ω the corresponding angular
velocity:

9p “ v, (11a)

9θ “ ω, (11b)

9v “
´ml sinpθq 9θ2 `mg cospθq sinpθq ` F

M `m´mpcospθqq2
, (11c)

9ω “
´ml cospθq sinpθq 9θ2 ` F cospθq ` pM `mqg sinpθq

lpM `m´mpcospθqq2q
. (11d)

We collect the states in the state vector x :“ rp, θ, v, ωsJ, the control u is
the horizontal force F . Transcribing the continuous-time OCP with multiple
shooting gives rise to the following OCP:

minimize
x0,...,xN ,
u0,...,uN´1

N´1
ÿ

k“0

„

xk
uk

J „

Q 0
0 R

 „

xk
uk



` xJNQxN (12a)

subject to x0 “ x0, (12b)

xk`1 “ φxkpxk, ukq, k “ 0, . . . , N´1, (12c)

´80 ď uk ď 80, k “ 0, . . . , N´1, (12d)

where φ is an RK4 integrator, simulating (11) over one shooting interval. The
weight matrices are chosen as

Q “ diagpr1000, 1000, 0.01, 0.01sq, R “ 0.01.

Because our aim is to swing up the pendulum, we selected strong weights
on the position and angle. The other states and the control are assigned a
weak penalty in order to avoid too abrupt swing-ups and to favor smooth
trajectories. Note that the weighting matrices Q and R are tuning parameters
used by the control engineer in the design process in order to obtain a desired
behavior. Different choices are therefore equally valid. The initial value is x0 “
r0, π, 0, 0sJ. We choose N “ 100 shooting intervals of length 0.01 s.

Case study 3: Hardware-in-the-loop experiments for an engine con-
trol application

Two-stage turbocharging gasoline engines are investigated to overcome the
drawbacks of conventional (single-stage) turbocharging. The main advantage
they offer is a better trade-off between short transient times after load changes
and a high specific power. However, the two-stage architecture puts a higher
demand on the engine controller, due to the nonlinear nature with cross-
couplings in the inputs and the necessity to consider constraints. NMPC has
been proposed as a viable control strategy [3].
In Figure 8, a sketch of the two-stage turbocharged engine is depicted. The



36 Robin Verschueren et al.

Fig. 8 Schematic of the two-stage turbocharging concept. Source: [3]

high-pressure (HP) stage is able to realize fast transients, the low-pressure
(LP) stage produces a higher specific power, but with slower dynamics. The
control challenge lies in accurately tracking the boost pressure pboost, given
the highly nonlinear coupling between both stages.
For reasons of brevity, we directly present the engine model of [3] and refer

the interested reader to that work for a derivation. We model the engine with
a set of semi-explicit DAEs. The differential states consist of Πc,lp, Πc,hp the
pressure ratios between input and output of the compressor in the low pressure
and high pressure stage, respectively. The algebraic states are Πt,lp, Πt,hp, the
pressure ratios on the turbine. The inputs are the wastegate actuation pulse-
width modulated signals uwg,lp, uwg,hp, which take on values between 0% (fully
open) and 100% (fully closed).

The resulting DAE system reads as

9Πc,lp “ c1pΠ
1.5
t,lp ´Π

1.25
t,lp q

b

Π´1.5
t,lp ´Π´1.75

t,lp (13)

´ c2nengΠc,hppΠ
1.29
c,lp ´Πc,lpq (14)

0 “ Πc,lpΠc,hp (15)

´
c3
neng

b

Π0.5
t,lp ´Π

0.25
t,lp

´

a

Πt,lp ` c4ηpΠc,lp ¨Πc,hp, uwg,lpq

¯

(16)

9Πc,hp “ c5pΠ
1.5
t,hp ´Π

1.25
t,hp q

b

Π´1.5
t,hp ´Π

´1.75
t,hp (17)

´ c6nengΠc,lppΠ
1.29
c,hp ´Πc,hpq (18)

0 “ Πc,lpΠc,hp (19)

´
c7
neng

b

Π0.5
t,hp ´Π

0.25
t,hp

´

a

Πt,hp ` c8p1´ uwg,hp{100q
¯

, (20)

with, additionally, neng “ 2000 min´1 the engine speed. We model it as a
measured disturbance, in this case a constant. Furthermore, η : Rˆ R Ñ R is



acados – fast embedded optimal control solvers 37

Table 8 Parameter values for the two-stage turbocharged engine model

Parameter Unit Value Parameter Unit Value

c1 ´ 25.3 b1,1 ´ 0
c2 min 0.0034 b2,1 ´ 1

c3 min´1 7700 b3,1 ´ 1.49
c4 ´ 0.6 b4,1 ´ 0.0377
c5 ´ 43,6 b1,2 ´ 67.5
c6 min 0.0092 b2,2 ´ 4.712

c7 min´1 3600 b3,2 ´ 1
c8 ´ 0.9 b4,2 ´ -1

defined by

ηpu, vq “ γ1puq ¨ γ2pvq,

with γi : R Ñ R:

γipuq “ b1,i ` b2,i

ˆ

1` e
´u`b3,i

b4,i

˙´1

.

The values of all model parameters can be found in Table 8.
In order to obtain a smooth control behavior, we include the time derivative

of the controls in the optimization formulation, as follows: 9uwg,lp “ du,lp,
9uwg,hp “ du,hp, and we collect these rates in

d “

„

du,lp
du,hp



.

We then define the vector of differential states, algebraic states and con-
trols, respectively, as follows:

x “

»

—

—

–

Πc,lp

Πc,hp

uwg,lp

uwg,hp

fi

ffi

ffi

fl

, z “

„

Πt,lp

Πt,hp



, u “

„

du,lp
du,hp



.

The values of parameters in OCP (8) are

yr,k “ rypr,k; 1.14; 1.54; 50; 50; 0; 0s,

W “ diagpr103, 10´3, 10´3, 10´3, 10´3, 10´4, 10´4sq,

yr,N “ rypr,N ; 1.14; 1.54; 50; 50s,

WN “ diagpr103, 10´3, 10´3, 10´3, 10´3sq

with ypr,k, k “ 0, . . . , N varied as in Figure 5.


	1 Introduction
	2 Algorithmic ingredients for embedded nonlinear optimal control
	3 Algorithm implementations in acados
	4 The acados software package
	5 Numerical Results
	6 Conclusion and outlook

