
Mathematical Programming Computation (2022) 14:543–591
https://doi.org/10.1007/s12532-022-00219-z

FULL LENGTH PAPER

Limited-memory common-directions method for
large-scale optimization: convergence, parallelization, and
distributed optimization

Ching-pei Lee1 · Po-Wei Wang2 · Chih-Jen Lin3

Received: 25 December 2020 / Accepted: 13 February 2022 / Published online: 29 March 2022
© The Author(s) 2022

Abstract
In this paper, we present a limited-memory common-directions method for smooth
optimization that interpolates between first- and second-order methods. At each itera-
tion, a subspace of a limited dimension size is constructed using first-order information
fromprevious iterations, and an efficientNewtonmethod is deployed to find an approx-
imate minimizer within this subspace. With properly selected subspace of dimension
as small as two, the proposed algorithm achieves the optimal convergence rates for
first-order methods while remaining a descent method, and it also possesses fast con-
vergence speed on nonconvex problems. Since the major operations of our method are
dense matrix-matrix operations, the proposed method can be efficiently parallelized
in multicore environments even for sparse problems. By wisely utilizing historical
information, our method is also communication-efficient in distributed optimization
that uses multiple machines as the Newton steps can be calculated with little commu-
nication. Numerical study shows that our method has superior empirical performance
on real-world large-scale machine learning problems.

Keywords Smooth optimization · Optimal method · First-order method ·
Second-order method

Mathematics Subject Classification 90C06 · 90C30 · 68W10 · 68W15 · 65K05

B Ching-pei Lee
leechingpei@gmail.com

Po-Wei Wang
poweiw@cs.cmu.edu

Chih-Jen Lin
cjlin@csie.ntu.edu.tw

1 Academia Sinica, Taipei, Taiwan

2 Machine Learning Department, Carnegie Mellon University, Pittsburgh, PA, USA

3 Department of Computer Science and Information Engineering, National Taiwan University, Taipei,
Taiwan

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12532-022-00219-z&domain=pdf

544 Lee, Wang, and Lin

1 Introduction

We consider the following unconstrained smooth optimization problem.

min
w∈Rn

f (w) , (1)

where f is ρ-Lipschitz-continuously differentiable and the solution set Ω of (1) is
nonempty. We propose and study a limited-memory common-directions method for
(1). At each iteration, our method constructs a manifold or a subspace of a limited
dimension m in which we find the update direction. In the manifold parameterized
by a smooth function G, whose domain is usually of a much smaller dimension, we
may apply many efficient algorithms such as the Newton method to find an update
direction. That is, given the current w and the manifold parameterized by a smooth
function G : Rm → Rn , where m � n, we approximately optimize

min
t∈Rm

f (w + G (t)) . (2)

This can be done through a Newton method that iteratively solves the quadratic prob-
lem1

min
t∈Rm

∇t f
(
w + G

(
t(T)
))�

t + 1

2
t�∇2

t f
(
w + G

(
t(T)
))

t (3)

and conducts a line search, where t(T) is the iterate obtained at the T th Newton
iteration. We call the iterations of constructing G and solving (2) the outer iterations,
and the Newton steps (3) inner iterations.

Problem (2) reduces the original optimization problem to amuch lower dimensional
one and thus this subproblem can be solved efficiently in many cases. In particular, if
we assume that G is a linear function such that

G (t) = P t, ∀t ∈ Rm (4)

for some P ∈ Rn×m , then

∂G (t)
∂ t�

= P,
∂2G (t)
∂ t∂ t�

= 0, ∀t ∈ Rm,

which reduces (3) to

min
t∈Rm

∇ f
(
w + G

(
t(T)
))�

P t + 1

2
t�
(

P�∇2 f
(
w + G

(
t(T)
))

P
)
t. (5)

1 We do not assume f to be twice-differentiable, but its Lipschitz-continuous differentiability ensures that
it is twice-differentiable almost everywhere, and a generalized Hessian can be used [7]. We use ∇2 f to
denote an arbitrary generalized Hessian, and when f is twice-differentiable, this reduces to the Hessian.

123

Limited-memory common-directions method 545

This can be easily minimized by solving the following Newton linear system when
P�∇2 f

(
w + G

(
t(T)
))

P is positive definite.

P�∇2 f
(
w + P t(T)

)
P t = −P�∇ f

(
w + P t(T)

)
. (6)

Equivalently, each column of P is considered as a possible direction for updating w,
and solving the subproblem (2) finds the best linear combination of the columns of
P as the update direction. This explains the nomenclature – each column of P is a
“common direction” as they can be commonly used to construct G in multiple outer
iterations.

Notice that ∇2 f
(
w + G

(
t(T)
))

P can be calculated in the cost of O(m) gradient
evaluations of f through automatic differentiation (see, for example, [21, Chapter 8]),
or in an even lower cost when the problem structure can be utilized. Thereafter, obtain-
ing the coefficients in (6) takes O(m2) inner products of n-dimensional vectors. When
m is small, the cost of calculating the gradient and ∇2 f

(
w + G

(
t(T)
))

P dominates,
thus roughly the cost per inner iteration is asymptotically equivalent to m iterations
of gradient descent if m is a fixed constant not affected by the problem parameters.
Moreover, in many situations when the problem possesses specific structures that can
be utilized, as described in Sect. 5.2, multiple inner iterations can even be cheaper
than conducting a single gradient evaluation for f , making one outer iteration of our
method cost the same as one iteration of gradient descent.

In the special case in which the column space of P is a subspace of the space
spanned by the gradients of f in the previous and current outer iterations, our method
can be seen as a first-order method. However, our method is more general in allowing
other possible directions, such as quasi-Newton or stochastic Newton ones, being
included. On the other hand, as Newton’s method is applied in subspaces, our method
can be considered as incorporating the curvature information as well. For example,
when G(t) = ∇ f (w)t , our method with only one inner Newton step is similar to the
Borwein-Barzilai method [2] at deciding the step size of steepest descent using some
spectral information; when G includes recent update directions and the corresponding
gradient differences, our method is in spirit similar to quasi-Newton methods in using
these directions to approximate the Newton method. Therefore, it is expected that the
proposed method can enjoy advantages from both first- and second-order methods.
We will show that in theory, our method enjoys low global iteration complexity just
like (accelerated) first-order methods, while in practice, our method converges even
faster than second-order methods.

For problems with complicated structure, evaluations of the gradient, the objec-
tive, and the Hessian may not be highly parallelizable, especially when the data in
the problem are sparse such that the bottleneck becomes memory access. In this case,
traditional batch methods do not enjoy parallelism as much as expected. On the other
hand, in the proposed limited-memory common-directions method, the major opera-
tions of the m Hessian-vector products and the O(m2) vector-vector inner products
in constructing the left-hand side matrix of (3) are by nature embarrassingly parallel
at least up to m processors. This means that our method can enjoy better parallelism

123

546 Lee, Wang, and Lin

than most batch methods, and the vector-vector inner products can even be conducted
in a distributed manner where the P matrix is stored disjointly on multiple machines.

Another advantage of our method is in distributed optimization such that multiple
machines connected through a network are simultaneously used. For this scenario, the
communication cost, or equivalently the rounds of communication between machines
to synchronize necessary information, is the usual bottleneck. Thus, state of the art
takes fast-convergent Newton-CG methods with certain preconditioners to reduce the
communication cost [13, 27, 28], but one CG iteration takes one round of commu-
nicating an n-dimensional vector. By adopting Newton directions in subspaces, the
proposed method can effectively reduce the number of iterations and therefore the
communication rounds required to be lower than that of existing approaches. More-
over, unlike Newton-CG approaches, with some additional computation, our method
obtains the Newton direction in a subspace by communicating only O(m2) elements
between machines. In essence, our method trades local computation for communica-
tion, and the former is abundant in this case aswe havemultiplemachines. Therefore, it
is much more communication-efficient and hence suitable for distributed optimization
as well.

1.1 Related work and our contributions

Limited-memory methods have been extensively studied in the context of quasi-
Newton methods. When the initial Hessian estimate is a multiple of the identity, it
can be easily seen that quasi-Newton methods belonging to the Broyden class find the
update directions from the span of the current and previous gradients. Therefore, they
can be seen as a type of first-order methods that finds the linear combination coeffi-
cients of the gradients using inner products between the historical gradients and the
update steps. Among quasi-Newton methods, the limited-memory BFGS (L-BFGS)
method [14] is one of the most popular, thanks to its economical spatial and compu-
tational costs per iteration and superior empirical convergence.

Recently, [26] proposed the common-directions method for smooth and strongly
convex empirical risk minimization (ERM) problems. Their algorithm maintains the
gradients up to the current iteration and finds the update step as a linear combination
of them. The combination is determined by approximately finding the best possible
one through running multiple iterations of the Newton method. The key ingredient in
their algorithm is to utilize the problem structure of ERM to efficiently compute the
Hessian with low cost. They show that by accumulating the gradients, this method
possesses both the optimal global linear convergence rate for first-order methods and
local quadratic convergence from the Newton method, and empirically it outperforms
both optimal first-order methods and second-order methods on small- and medium-
scale problems. The major disadvantage of the common-directions method is its usage
of all gradients accumulated from the first iteration on such that for a rather difficult
problem that requires many iterations to solve, both the storage and the subproblem
solve become expensive.

In this paper, we consider a fusion between the common-directions method and
the limited-memory quasi-Newton methods to develop a limited-memory common-

123

Limited-memory common-directions method 547

directions method. In particular, instead of storing and using all gradients accumulated
from the first iteration on, our method uses only information from the most recent m̂
iterations for a pre-specified value of m̂. To retain information from the discarded
gradients for possibly better convergence, we also include the possibility of using as
the common directions the momentum terms or previous update steps adopted by opti-
mal first-order methods and limited-memory quasi-Newton methods. In comparison
with our initial presentation of the limited-memory common-directions method that
focused only on distributed optimization for a specific problem class [10], this paper
provides a more general treatment for smooth optimization with extended theoretical
analysis for optimal convergence rates, broader applicability, improved algorithms,
and extensive experiments. In particular, our Sect. 5.2 is a generalization of the algo-
rithmic description in [10], Theorems 2 and 5 are adapted from [10] to our more
general setting, and Theorem 3 improves upon the result in the same work, but other
parts are newly developed.

Through this limited-memory setting, we obtain controllable spatial and compu-
tational per-iteration cost, extend applicability from ERM to general optimization
problems with the help of automatic differentiation, and better parallelize the com-
putation. We develop convergence results using techniques different from that in [26]
because we no longer include all previous gradients in our search space. We show
that the optimal linear convergence rate for first-order methods on strongly convex
problems is still attainable even when the number of common directions at each iter-
ation is as small as two. In addition, we also cover the case not shown in [26] to
prove that optimal convergence rate of O(1/k2) for first-order methods on general
convex problems can also be obtained with two properly selected common directions
(k is the outer iteration counter in our method). Unlike other optimal methods that are
non-monotone, our method is a strictly descent one. Moreover, other optimal methods
only possess R-linear convergence on strongly convex problems, but our method also
achieves global Q-linear convergence (with a different rate). Another contribution of
this work in theory is showing that for a broad choices of the common directions, even
if (2) is solved as coarse as by only one Newton iteration, global sublinear convergence
rates of O(1/k) on both convex and nonconvex (to stationarity) problems, and global
Q-linear convergence on problems satisfying the Polyak-Łojasiewicz condition can
be ensured.

We also discuss that our algorithm is also suitable for multicore parallelization and
distributed optimization to practically solve large-scale problems with high efficiency,
and show through numerical results that the empirical behavior of the proposed algo-
rithm is indeed suitable for these scenarios and can outperform state of the art in
multicore parallel optimization and distributed optimization.

Empirical studies also show that our method outperforms optimal first-order meth-
ods on a single-core setting, and state of the art methods in multicore and distributed
environments, and hence we have included the distributed version of the proposed
algorithm in the open-source package MPI-LIBLINEAR.2

2 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

548 Lee, Wang, and Lin

1.2 Notations and assumptions

We denote f ∗ := minw f (w). Given any ε ≥ 0, we say that a point w is an ε-
accurate solution for (1) if f (w) ≤ f ∗ + ε. For a given set of vectors a1, . . . , at ,
span (a1, . . . , at) denotes the subspace spanned by them. That is,

span (a1, . . . , at) :=
{

t∑
i=1

βi ai

∣∣∣∣∣βi ∈ �, i = 1, . . . , t

}
.

For any functionG,Im(G) anddom(G) denote its image and effective domain, respec-
tively.When not specified otherwise, ‖·‖ signifies ‖·‖2. Given two symmetricmatrices
A and B of the same dimension, A B means that A − B is positive semidefinite and
A � B means A − B is positive definite. I denotes the identity matrix, and σmin(A)

the smallest eigenvalue of A. We denote the kth iterate by wk for all k ≥ 0.
The following is assumed throughout this work.

Assumption 1 The objective f in (1) is ρ-Lipschitz-continuously differentiable for
some ρ > 0. Moreover, the solution set Ω of (1) is non-empty.

We note that restricting the domain in (1) to Rn is just for the ease of description,
and our algorithm and analysis apply directly to any Euclidean spaces.

1.3 Organization

This work is organized as follows. Section 2 describes and analyzes a version of
our algorithmic framework that achieves the optimal convergence rates for first-order
methods with a carefully selected G. A more general version is then given in Sect. 3
with its convergence rates analyzed in Sect. 4. Discussion in Sect. 5.1 studies the choice
of the common directions for improving the empirical convergence and how to utilize
some special problem structures to make our method highly efficient in Sect. 5.2.
Numerical results are presented in Sect. 6 to examine the empirical performance of
our method. We further apply the proposed algorithm to parallel and distributed opti-
mization in Sects. 7 and 8, respectively. Section 9 provides some concluding remarks.
All proofs are in the “Appendix”.

2 Limited-memory common-directionsmethod with optimal
convergence rates

We start with a case in which our method can be viewed as a first-order method, in
the sense that at the kth outer iteration,

wk ∈ w0 + span (∇ f (w0), . . . ,∇ f (wk−1))

for all k ≥ 0. It is known that the optimal iteration complexity for first-order methods
to reach an ε-accurate solution under Assumption 1 is O(1/

√
ε)when f is convex (or

123

Limited-memory common-directions method 549

equivalently the best convergence rate is O(1/k2)), and O(
√

ρ/σ log(1/ε)), from an
R-linear convergence rate, when f is σ -strongly convex with σ > 0 [17, 19]. We will
show that for a properly chosen G with m as small as two, our method achieves such
optimal iteration complexities if (2) is approximately solved to enough accuracy.

We describe our method as a meta algorithm in Algorithm 1, such that only outer
iterations are considered while skipping the details of solving (2). There are many
possible algorithms to efficiently optimize (2)whenG is linearwith a small dimension,
and we postpone this discussion to later sections.

The choice of G can be quite arbitrary as long as it is linear, and for achieving the
optimal convergence speed of first-order methods on σ -strongly convex problems for
some σ ≥ 0 (σ = 0 indicates that f is only convex), we only require that at the kth
outer iteration, Im(G) contains span (∇ f (wk), vk+1 − wk), where vk+1 is defined
by

{
v0 := w0,

vk+1 := 1
γk+1

((1 − αk) γkvk + αkσwk − αk∇ f (wk)) ,∀k ≥ 0,
(7)

with

γ0 =
{

ρ if σ = 0,

σ else,
γk+1 := (1 − αk) γk + αkσ, ∀k ≥ 0, (8)

and αk being the positive solution to

ρα2
k = (1 − αk) γk + αkσ. (9)

When σ > 0, Eqs. (8) and (9) imply

γk ≡ σ, αk ≡ α :=
√

σ

ρ
, ∀k ≥ 0. (10)

When σ = 0, (8) and (9) in combination shows that

γk+1 = ρα2
k , ∀k ≥ 0. (11)

Therefore from (9),

ρα2
k+1 = γk+1 (1 − αk+1) = ρα2

k (1 − αk+1), ∀k ≥ 0, (12)

and from the quadratic formula applied to (12) for k > 0 and to (8)–(9) for k = 0, we
have

α0 = −1 + √
5

2
, αk+1 =

−α2
k + αk

√
α2

k + 4

2
, ∀k ≥ 0. (13)

123

550 Lee, Wang, and Lin

By induction, it is clear that αk > 0 for all k, so (10) and (11) imply that γk+1 > 0
for all k. We can therefore see that no matter σ > 0 or σ = 0, vk in (7) is always
well-defined.

Using simple induction, we can see that

wk, vk+1 ∈ w0 + span (∇ f (w0), . . . ,∇ f (wk)) ,

so after including the span of vk+1 −wk , our method can still be considered as a first-
order method. Notice that at the beginning of the kth iteration, wk and vk are already
known, so we can obtain vk+1 before starting the kth iteration of the algorithm. For
the case in which f is nonconvex, we are able to show that min0≤T ≤k ‖∇ f (wT)‖2
converges to 0 at a rate of o(1/k), which is the same speed as gradient descent and
the accelerated gradient method for nonconvex problems, as long as Im(G) includes a
vector whose direction does not deviate from the reversed gradient direction toomuch.
Interestingly, unlike the result for the convex cases that requires sufficient accurate
subproblem solutions for (2), this rate for stationarity can be achieved even if the
subproblem is solved very roughly, as we shall see later in Theorem 3 in Sect. 4.

Algorithm 1: Limited-memory Common-directions Method
Given w0 ∈ Rn for k=0,1,… do

Pick a positive integer m and linear function G : Rm → Rn

Approximately solve

tk ≈ argmin
t∈Rm

f (wk + G(t)) (14)

wk+1 ← wk + G(tk)

end

We prove below the optimality of Algorithm 1 in terms of the convergence speed.

Theorem 1 Consider (1) with f σ -strongly convex for some σ ≥ 0 (σ = 0 implies
that f is only convex). For any initial point w0, the following results hold.

1. If σ > 0 and the subproblem solution for (2) at the kth iteration generates the next
iterate wk+1 that satisfies the following conditions for all k ≥ 0,

{
∇ f (wk+1)

� (vk+1 − wk+1) + σ
2 ‖vk+1 − wk+1‖2 ≥ 0,

f (wk+1) ≤ f (wk) − 1
2ρ ‖∇ f (wk)‖2 ,

(15)

then Algorithm 1 generates objective values R-linearly convergent to the optimum:

f (wk) − f ∗ ≤
(
1 −
√

σ

ρ

)k (σ

2

∥∥w0 − w∗∥∥2 + f (w0) − f ∗) , (16)

and it takes O(
√

ρ/σ log(1/ε)) iterations to obtain an ε-accurate solution.

123

Limited-memory common-directions method 551

2. If σ = 0 and there exists a sequence {ψi } (not necessarily all nonnegative) such
that for all k ≥ 0,

{
∇ f (wk+1)

� (vk+1 − wk+1) + ψk+1 ≥ 0,

f (wk+1) ≤ f (wk) − 1
2ρ ‖∇ f (wk)‖2 ,

(17)

then the iterates generated by Algorithm 1 satisfy

f (wk) − f ∗ ≤ 4

(k + 1)2

(
ρ

2

∥∥w0 − w∗∥∥2 + f (w0) − f ∗ +
k−1∑
i=1

ψi

αi

)
, (18)

for all k ≥ 0 for any w∗ in the solution set. Therefore, if there exists a constant
A∞ < ∞ such that

Ak :=
k∑

i=1

ψi

αi
≤ A∞, ∀k > 0, (19)

Algorithm 1 takes O(1/
√

ε) iterations to get an ε-accurate solution.

In Theorem 1, if ψk converges to zero at a rate of O(αkk−(1+δ)) for any δ > 0,
(19) is satisfied. (We can simply set ψk = αk/(k1+δ) for any δ > 0.) When σ = 0,
one can also replace αk defined by (9) with some simpler choices such as αk =
(q − 1)/(k + q − 1) with q > 2 proposed by [25]. In this case, the optimal O(k−2)

rate is still obtained, but the convergence rate requirement of ψk can be simplified to
O(k−(2+δ)) for any δ > 0. The proof is essentially the same by noticing that in this
case, instead of the equality in (12), we have

ρα2
k ≥ (1 − αk) ρα2

k−1.

We then show that when G is selected properly, (15) and (17) can be met by solving
(2) approximately.

Proposition 1 Assume f is σ -strongly convex for some σ > 0. Consider (2) at the kth
iteration with w = wk and let

ṽk+1 := vk+1 − wk . (20)

If span (∇ f (wk), ṽk+1) ⊆ Im(G) and G is a linear function, then either

{
∇ f (wk + G (t))� (ṽk+1 − G (t)) + σ

2 ‖ṽk+1 − G (t)‖2 ≥ 0, (21a)
f (wk + G (t)) ≤ f (wk) − 1

2ρ ‖∇ f (wk)‖2 (21b)

holds for all t within some neighborhood of the solution set for (2); or either G(t∗) =
ṽk+1 or G(t∗) = −∇ f (wk)/ρ is satisfied by all optimal solutions t∗.

123

552 Lee, Wang, and Lin

Proposition 2 Assume f is convex and σ = 0 in (7)–(9). Consider (2) at the kth
iteration with w = wk . If span (∇ f (wk), ṽk+1) ⊆ Im(G) and G is a linear function,
then given any ψk+1 > 0, either

{∇ f (wk + G (t))� (ṽk+1 − G (t)) + ψk+1 ≥ 0, (22a)
f (wk + G (t)) ≤ f (wk) − 1

2ρ ‖∇ f (wk)‖2 (22b)

holds for all t within some neighborhood of the solution set for (2); or there is an
optimal t∗ for (2) satisfies G(t∗) = −∇ f (wk)/ρ and this t∗ satisfies (22).

Notice that (21) and (22) respectively imply (15) and (17) in the next iteration.
The above propositions therefore imply that either any approximate solution of (2)
close enough to the solution set or some easily calculable vectors satisfy the required
conditions for ensuring optimal convergence rates in Theorem 1. Thus, we can apply
any convergent iterative subproblem solver to (2) and get the condition (21) or (22)
satisfied within finite iterations. More specifically, when f is strongly convex, the
minimizer is unique, and thus any algorithm ensuring the convergence of the objective
to theminimumwill generate iterates that eventually reach the neighborhood satisfying
(21).When f is convex, any algorithm that produces an iterate sequence that converges
to a minimizer, such as gradient descent [4, 11], accelerated gradient [with suitable
parameters,1, 5], randomized coordinate descent [with probability one,23], will be
able to reach the neighborhood that satisfies (22) in finite iterations. In fact, in our
experiment in Sect. 6 for strongly convex f , we observe that the condition (21) is
always satisfied after one Newton step.

Including vk+1 −wk in Im(G) as suggested by Propositions 1 and 2 requires prior
knowledge of the parameters σ and ρ. When these values are unknown, one can use
the line search techniques in [20] to obtain similar rates. We omit details for this case
as the analysis is very similar to that in Theorem 1.

We can also obtain a o(1/k) sublinear convergence rate for ‖∇ f (wk)‖2 even if f
is nonconvex, see Theorem 3 in Sect. 4.

3 Practical limited-memory common-directionsmethod

In this section, we discuss an efficient solver for the subproblem (2) with G in the form
(4). More specifically, we show how to apply a line-search Newton method (5) on the
subspace selected. For the subproblem, G can be decided freely and is not limited to
that suggested by Propositions 1 and 2.

We describe how one iteration of the Newton method for the subproblem is done,
and if one wants to run multiple inner iterations, it is just a repetition of this procedure.
Becausedom(G) is usually of a very low dimension, we use a full Newton stepwithout
truncation. This means that given the current iteratew, we obtain an update direction t
for the subproblem (2) through solving the followingm bym linear system constructed
from (6) with t(0) = 0.

P�∇2 f (w) P t = −P�∇ f (w) . (23)

123

Limited-memory common-directions method 553

Computation of the coefficients in this linear system is easy. First, given P , we can
use automatic differentiation to compute the matrix ∇2 f (w) P . Then the computa-
tion of both P� (∇2 f (w) P

)
and P�∇ f (w) is straightforward. When the problem

structure is known, we may also utilize it to get an even lower cost in constructing the
linear system, as we will discuss in Sect. 5.2. The final update direction for w is then
constructed as p := G(t) = P t .

Two pitfalls of directly using the p obtained above require extra care. The first
one is that when the matrix on the left-hand side of (23) is not positive definite, it is
possible that the resultant t is not a descent direction for (2) and therefore P t may
be a nondescent direction for f . To take care of this problem, we add a sufficiently
large multiple of the identity to the matrix on the left-hand side of (23) whenever the
smallest eigenvalue of it is smaller than a given threshold τ > 0.

The second pitfall is that the full Newton’s step does not always ensure sufficient
objective value decrease. Therefore, to ensure convergence, we conduct a line search
procedure to find a suitable step size θ and update the iterate w by

w ← w + θ p.

Because we want to use the unit step size whenever possible in second-order methods,
we use a simple backtracking line search procedure such that given parameters β, c1 ∈
(0, 1), we iteratively try i = 0, 1, . . . until

f
(
w + β i p

)
≤ f (w) + c1β

i∇ f (w)� p, (24)

and let θ = β i . The overall algorithm is summarized in Algorithm 2.
As a side note, there aremany possible options for approximately solving (2) and the

described method of Newton steps with line search is just one of them. For example,
we can replace thematrix on the left-hand side of (23) with any positive definite matrix
and the convergence is still guaranteed, as wewill see in Sect. 4.Wewill also discuss in
Sect. 5.2 a class of problems that we can evaluate ∇ f (G(t)) and ∇2 f (G(t)) cheaply
for multiple t with a fixed G, in which case running multiple inner Newton iterations
can be much cheaper than updating G, so that running multiple Newton iterations and
running a single Newton iteration have almost the same cost per outer iteration.

3.1 Cost per iteration

Let the cost of calculating the gradient∇ f (w) be denoted by Tgrad. By using automatic
differentiation, it takes at most O(mTgrad) to evaluate ∇2 f (wk) Pk and the total cost
of forming the coefficients on the left-hand side is therefore O(mTgrad + m2n), where
the second term is for thematrix-matrix product. The cost for computing the right-hand
side of (23) is simply O(mn) for the matrix-vector product. The cost of computing the
smallest eigenvalue of P�

k ∇2 f (wk)Pk is O(m3), which is the same as inverting Hk .
This cost is usually negligible in comparison to the O(m2n) cost of the matrix-matrix
product. The cost of the function value evaluation in the line search is no greater
than O(Tgrad) and usually much smaller. In addition, we will see in Sect. 4 that the

123

554 Lee, Wang, and Lin

Algorithm 2: Practical Limited-memory common-directions method
Given w0, m > 0, M2 > 0, and β, c1 ∈ (0, 1). Compute ∇ f (w0) and pick an initial P0 that has no
more than m columns
for k=0,1,… do

Compute ∇2 f (wk)Pk

Compute P�
k (∇2 f (wk)Pk) and P�

k ∇ f (wk)

if σmin(P�
k ∇2 f (wk)Pk) < M2 then

Hk ← (P�
k ∇2 f (wk)Pk) + (M2 − σmin(P�

k ∇2 f (wk)Pk))I
else

Hk ← P�
k ∇2 f (wk)Pk

end

tk ← −H−1
k P�

k ∇ f (wk)

pk ← Pk tk
Δk ← ∇ f (wk)� pk
for i=0,1,… do

θk ← βi

if f (wk + θk pk) ≤ f (wk) + c1θkΔk then
Break

end
end
wk+1 = wk + θk pk
Compute ∇ f (wk+1)

Pick some Pk+1 that has no more than m columns
end

number of backtracking steps is bounded by a constant, and in practice θk = 1 usually
produces sufficient function decrease. Therefore, the cost per iteration of Algorithm 2
is O(mTgrad + m2n + m3).

4 Convergence analysis

We discuss the convergence speed of Algorithm 2. We separately discuss the three
cases in which f is nonconvex, f is convex, and f satisfies the Polyak-Łojasiewicz
condition [9, 15, 22], respectively.

Instead of the specific matrix Hk considered in Algorithm 2, we prove convergence
rates for a more general setting in finding the update direction pk . In particular, we
consider solving

min
tk

∇ f (wk)
� pk + 1

2
p�

k Ĥk pk

subject to pk = Pk tk, (25)

where Ĥk is a given symmetric positive definite matrix such that there exist M1 ≥
M2 > 0 satisfying

M1 I Hk M2 I ,∀k. (26)

123

Limited-memory common-directions method 555

We denote the columns of Pk by

Pk = [qk
1, . . . , q

k
mk

] ∈ Rn×mk , (27)

and mk can change with k without any restriction except for mk > 0 for all k.
For the ease of description, we assumewithout loss of generality that Pk is orthonor-

mal, which can always be achieved through the Gram-Schmidt process with cost
O(m2

kn), which is no larger than the cost discussed in Sect. 3.1. In this case, Algo-
rithm 2 is a special case of the framework described here because

P�
k ∇2 f (wk)Pk + aI = P�

k (∇2 f (wk) + aI)Pk

shows that the lower bound in (26) is satisfied automatically, and since ∇ f is ρ-
Lipschitz continuous, −ρ I � ∇2 f � ρ I and hence M1 ≤ 2ρ + M2.

The following theorems show the finite termination of the backtracking and present
the iteration complexity of our method with only minimal restrictions on the choice
of the vectors in Pk .

Theorem 2 Consider (25) for f (w) satisfying Assumption 1. If at iteration k,

∣∣∣∇ f (wk)
�qk

j

∣∣∣
‖∇ f (wk)‖‖qk

j‖
≥ δ > 0, for some qk

j in (27), (28)

and the update direction pk is the same as that defined in (25) with Hk satisfying (26),
then the backtracking line search for (24) with any given β, c1 ∈ (0, 1) terminates in
finite steps, and the final step size satisfies

θk ≥ θ̄ := min

(
1,

2β (1 − c1) M2

ρ

)
. (29)

The condition (28) does not require the existence of a descent direction. Instead, as
long there is a direction whose angle with the gradient is bounded away from being
orthogonal, we can ensure that the update direction pk is a descent one.

Now we discuss the convergence rates of the proposed algorithm. We start with the
nonconvex case.

Theorem 3 Assume f (w) satisfies Assumption 1. For an algorithm that iteratively
solves (25) that satisfies the conditions (26) and (28) to obtain pk and uses it as the
update direction with backtracking line search to find a step size satisfying (24), then
the minimum of the norm square of the gradients

min
0≤J≤k

‖∇ f (w J)‖2

vanishes at a o(1/k) rate, and ‖∇ f (wk)‖2 converges to zero.

Next, we consider the convex case.

123

556 Lee, Wang, and Lin

Theorem 4 Consider the same conditions in Theorem 3 and assume additionally that
f is convex, and given any w0, the value

R0 := max
w: f (w)≤ f (w0)

min
w∗∈Ω

‖w − w∗‖ (30)

is finite. We then have that f (wk) converges to f ∗ at a global rate of O(1/k):

f (wk) − f ∗ ≤ ρM2
1 R2

0

2M2
1 + ρM2δ2c1

∑k−1
T =0 θT

≤ ρM2
1 R2

0

2M2
1 + ρM2δ2c1kθ̄

. (31)

The first inequality in (31) provides the reason why we conduct line search instead of
directly applying θ̄ as the step size. Note that our assumption of a finite R0 in (30) is
weaker, in allowing an unbounded Ω , than assuming bounded level sets. On the other
hand, the stronger assumption of bounded level set leads to a better convergence rate
of o(1/k) as shown in [3, Proposition 1.3.3]. In comparison to Theorem 1, instead
of (17) that requires a certain quality of subproblem solutions, Theorem 4 uses the
simple condition of a bounded R0 for a wider applicability, and it results in a O(1/k)

convergence rate that is slower than the O(1/k2) one in Theorem 1.
Finally, we discuss the case in which linear convergence can be obtained.

Theorem 5 Consider the same assumptions in Theorem 3 and assume additionally
that f (w) satisfies the Polyak-Łojasiewicz condition [9, 15, 22] for some σ > 0, i.e.,

‖∇ f (w)‖2 ≥ 2σ(f (w) − f ∗), ∀w, (32)

then the function values converge globally Q-linearly to f ∗:

f (wk+1) − f ∗ ≤
(
1 − 2σ M2δ

2θkc1
M2

1

) (
f (wk) − f ∗)

≤
(
1 − 2σ M2δ

2θ̄c1
M2

1

) (
f (wk) − f ∗) ,∀k ≥ 0,

where θ̄ is the lower-bound of the step size in (29).

Notice that (32) does not require convexity, and hence even on some nonconvex prob-
lems, we can get linear convergence to the global optimum.

To obtain global convergence rates, we used parameters M1, M2, R0 and ρ that are
global. However, those values tend to be extreme values that barely occur in practice,
thus we often observe much better convergence rates locally. Moreover, when the
curvature information of f is properly included in Hk , we tend to observe step sizes
far away from the lower bound θ̄ and unit step size is often accepted.

The theorems above provide convergence not only for our algorithm, but also many
others, such as the Barzilai-Borwein method [2] with a line search to ensure suffi-
cient objective decrease and line-search Newton methods. Similarly, the algorithm of
combining past gradients in [26] can also be treated as a special case of our framework.

123

Limited-memory common-directions method 557

5 Implementation details

In this section, we discuss the selection for Pk to improve the empirical performance
of our algorithm, and then describe a general problem class whose structure we can
utilize to make the implementation even more efficient.

5.1 Choices of the common directions

The convergence analysis in Sect. 4 only suggested that one should include some
vectors that are gradient-related. Theorem 1 and Propositions 1-2 suggest that includ-
ing the current iterate wk and a momentum vector related to vk defined in (7) might
achieve better theoretical convergence speed. However, when we do not know ρ and
σ , we are unable to calculate vk accurately. In many accelerated first-order methods,
instead of this deliberately chosen vk , the update directions from previous iterations
are used as “momentum terms” to be combined with the current gradient to form the
new update step. Thus previous update directions and the current gradient are the most
natural choices for the common directions.

When all previous gradients from the first iteration on are included in Pk , [26] show
that we can even achieve asymptotic quadratic convergence. This result suggests that
the previous gradients are also good choices to include. When we have a fixed m, how
to balance the number of previous gradients and previous update steps is a question.
We observe that for quasi-Newton methods belonging to the Broyden class, when the
initial estimate for the Hessian is a multiple of the identity, each quasi-Newton step is
a linear combination of the current gradient, the difference of the previous gradients
in the form ∇ f (wi+1) − ∇ f (wi), and the previous update steps; see, for example,
[21, Chapter 6]. For their limited-memory versions such as L-BFGS [14], the same
number of previous updates and previous gradients are used together with the current
gradient. As L-BFGS is quite popular in practice, we adopt this choice to use the same
number of previous steps and gradient differences. We also take the current iterate as
one column of Pk because it is already available.

Assume m is even, now for the kth iteration, we have chosen to use wk , ∇ f (wk),
and the pairs (pi ,∇ f (wi+1) − ∇ f (wi)) for i = k − 1, k − 2, . . . , k − (m/2 − 1) to
form Pk . From (25), we see that when Hk in Algorithm 2 is not damped by a multiple
of identity, using pi , i = k−1, k−2, . . . , k−(m/2−1) together withwk is equivalent
to using wi , i = k, k − 1, . . . , k − (m/2− 1), as they will result in the same span and
therefore the same pk . Similarly, using the difference of the gradients is equivalent to
directly using the gradients. Therefore, our construction of Pk simplifies to

Pk =
[
wk−(m

2 −1),∇ f
(
wk−(m

2 −1)

)
, . . . ,wk,∇ f (wk)

]
. (33)

This makes the update of Pk straightforward – we just add the current iterate-gradient
pair, and then discard the oldest pair when the number of columns in Pk is larger
than m. It has been shown in our preliminary report [10] that using previous gradient
differences and update steps simultaneously gives better empirical performance than
using only one of them.

123

558 Lee, Wang, and Lin

Another choice is to include in Pk some approximation of the Newton step that
can be cheaply obtained to span a subspace whose distance to the solution set might
be closer. One such case is taking the diagonal entries of the (generalized) Hessian
to form the diagonal matrix D(wk), and then use the vector D(wk)

−1∇ f (wk) as an
approximated Newton step. In this case, assuming m is a multiple of three, we take

Pk =
[
wk−(m

3 −1),∇ f
(
wk−(m

3 −1)

)
, D
(
wk−(m

3 −1)

)−1 ∇ f
(
wk−(m

3 −1)

)
, . . . ,

wk,∇ f (wk) , D (wk)
−1 ∇ f (wk)

]
. (34)

We will compare the empirical performance of (33) and (34) in Sect. 6.

5.2 Problem structure for efficient implementation

The part of forming the linear system (23) is the major additional cost of our algorithm
in comparison to first-order algorithms. We will show that when the problem is of the
form

f (w) = Q(w) + g
(

X�w
)

, (35)

where Q is a real and quadratic function, X = (x1, · · · , xl) ∈ Rn×l , and g is separable
in the sense g(z) = ∑l

i=1 gi (zi), highly efficient implementation is possible for the
choices of Pk in (33) or (34). We further write Q in the form

Q(w) = 1

2
w� Aw + b�w (36)

for some symmetric matrix A ∈ Rn×n and vector b ∈ Rn . Problems of the form (35)
are widely seen in applications including machine learning and signal processing.

The key is to note that for any k > 0, Pk and Pk+1 have overlapping columns and
only few columns are updated, and we can thus denote

Pk+1 = [V̂k,wk+1, Vk+1], (37)

where V̂k are the columns also appear in Pk and Vk+1 are the columns only appear in
Pk+1 excludingwk+1. Using this notation, our discussion below can cover any choices
of Pk as long as existing columns are reused (and the discussion involving wk+1 can
be skipped if wk+1 is not a column of Pk+1).

Throughout the iterations, we will maintain

X� Pk, X�wk, P�
k APk, and P�

k b, (38)

and discuss their usage and update below. We will assume that the computation of
both X�v for any v ∈ Rn and X�u for any u ∈ Rl cost O(TX) for some TX (the

123

Limited-memory common-directions method 559

most common scenarios include that TX = ln when X is dense and that TX equals the
number of nonzero elements in X when X is sparse), and similarly assume that com-
puting Av for v ∈ Rn costs O(TA). Under Assumption 1, (35) is twice-differentiable
almost everywhere. Its gradient and (generalized) Hessian [16] are respectively

∇ f (w) = Aw + b + Xuw, ∇2 f (w) = A + X DwX�, (39)

where Dw is a diagonal matrix, and

(Dw)i,i := ∂2gi (x�
i w), (uw)i := ∂gi (x�

i w), i = 1, . . . , l. (40)

The main computation at each iteration of Algorithms 1 and 2 is to construct and
solve the linear system (23). For problems of the form (35), if at the kth iteration,
the iterate is wk and the linear function (4) is defined by Pk , then the matrix on the
left-hand side of (23) is

P�
k ∇2 f (wk)Pk = P�

k APk + P�
k X Dwk X� Pk . (41)

For large-scale problems, one should maintain X� Pk and calculate the second term in
(41) by (X� Pk)

�Dwk (X� Pk) instead of P�
k (X Dwk X�)Pk , where the latter requires

O(n2) storage and O(n2l) computation to explicitly form the Hessian matrix of
g(X�w). Further, X� Pk does not need to be calculated from scratch (which has
an expensive O(lmn) cost) because we can take the property that Pk and Pk−1 share
most columns to efficiently update X� Pk−1 to X� Pk . We should also maintain X�wk

(which is actually a column of X� Pk for our choice of Pk) so that the cost of com-
puting Dwk can be reduced from the original O(TX) to O(l). The second term of (41)
can thus be efficiently computed in O(m2l) time, which is often even cheaper than
computing the gradient of g(X�wk) that costs O(TX).

For maintaining X� Pk , we have from (37) that

X� Pk =
[

X�V̂k−1, X�wk, X�Vk

]
. (42)

The term X�V̂k−1 is directly available because it is a submatrix of X� Pk−1 maintained
in the (k − 1)th iteration, and X�wk is obtained from the previous iteration in the line
search procedure that we will explain later when discussing (48). Finally, from (33)
and (34), Vk in (37) has only one or two columns for all k, so computing X�Vk and
therefore maintaining X Pk costs only O(TX).

Next, we consider the first term in (41) and use (37) to deduce that

P�
k APk = P�

k

[
AV̂k−1, Awk, AVk

]
. (43)

We compute AVk in O(TA) cost, and then P�
k (AVk) costs only O(mn). To compute

P�
k Awk , in addition to (38), from the previous iteration we keep track of θk−1, tk−1,

123

560 Lee, Wang, and Lin

(44), and the update direction

pk−1 = Pk−1 tk−1. (44)

Then the following calculation is conducted.

P�
k Awk = P�

k A (wk−1 + θk−1Pk−1 tk−1) = P�
k Awk−1 + θk−1P�

k APk−1 tk−1

=
⎡
⎣

V̂ �
k−1Awk−1

w�
k Awk−1(

V �
k A
)
wk−1

⎤
⎦+ θk−1

⎡
⎢⎣

(
V̂ �

k−1APk−1

)
tk−1(

w�
k APk−1

)
tk−1(

V �
k A
)
(Pk−1 tk−1)

⎤
⎥⎦ , (45)

where, if possible, we use parentheses to specify the details of operations that will be
explained below. For the first row in (45), both V̂ �

k−1Awk−1 and V̂ �
k−1APk−1 are entries

in P�
k−1APk−1 maintained, and the inner product between the latter and tk−1 costs

only O(m). For the third row in (45) that involves V �
k APk−1 tk−1 and V �

k Awk−1,
we use AVk computed above and Pk−1 tk−1 available in (44), and the remaining inner
products cost only O(n). For the second row in (45), we note that

w�
k Awk−1 = (wk−1 + θk−1Pk−1 tk−1)

� Awk−1

= w�
k−1Awk−1 + θk−1 t�k−1

(
P�

k−1Awk−1

)

involves two entries in P�
k−1APk−1 and the computation costs only O(m) for the

inner product between tk−1 and P�
k−1Awk−1, which is exactly w�

k APk−1 tk−1 needed

in (45). Finally, P�
k AV̂k−1 in (43) can be decomposed into

P�
k AV̂k−1 =

⎡
⎣

V̂ �
k−1AV̂k−1

w�
k AV̂k−1

V �
k AV̂k−1

⎤
⎦ . (46)

The first entry is available from P�
k−1APk−1, and the rest two have been calculated

above (w�
k AV̂k−1 from the first row in (45) and V �

k AV̂k−1 as entries of P�
k (AVk)

in (43)), so these entries are obtained with no additional cost. Therefore, the cost of
maintaining the term P�

k APk using information from P�
k−1APk−1 is O(TA + mn).

Next is the right-hand side of (23), which from (39) can be calculated by

P�
k ∇ f (wk) = P�

k Awk + P�
k b +

(
X� Pk

)�
uwk . (47)

The cost is low because X� Pk and P�
k Awk have been respectively calculated in (42)

and (45), and we only need to compute uwk ,
(
X� Pk

)�
uwk , and P�

k b. As indicated in
(38), P�

k b should be maintained because we can reuse some elements of P�
k−1b and

only need to calculate V �
k b.3 The cost of maintaining P�

k b is thus only O(n). The

3 The update of w�
k b is similar to (48) and only costs O(m).

123

Limited-memory common-directions method 561

calculation of uwk is O(l) because X�wk is obtained from the previous iteration in

(48), and the part of
(
X� Pk

)�
uwk costs only O(ml). This means that the right-hand

side of (23) is not the bottleneck.
When we conduct line search in (24), the above calculated information can be

utilized to reduce the cost. The term ∇ f (wk)
� pk can be calculated between (47) and

tk with O(m) cost. All other terms are already known (the previous objective value is
maintained) so we just need to discuss how to evaluate f (wk + β i pk) with multiple
values of i efficiently. For g(X�w), we can use X� Pk obtained in (42) to calculate
(X� Pk)tk in O(lm) time. Thus

X�wk + β i
(

X� Pk

)
tk (48)

for each i can be obtained in O(l) time. Therefore, for each i , g(X�(w + β i p)) can
be evaluated in O(l) time as well. For the quadratic part, we see that

(
wk + β i Pk tk

)�
A
(
wk + β i Pk tk

)

= w�
k Awk + 2β iw�

k APk tk + β2i t�k
(

P�
k APk

)
tk .

(49)

As P�
k APk is maintained, w�

k Awk is one of its elements, and w�
k APk tk−1 has been

calculated in (45), we just need O(m2) overhead for the last term. Then each line
search step costs only O(1) on this part. Note that the sum in (48) with the final β i

accepted will be X�wk+1 needed for the next iteration; see (38). The new function
value f (wk+1) is also obtained.

Interestingly, the line search procedure via (48) and (49) does not generate the next
iterate wk+1. Thus, in the end of the iteration we calculate the update direction

pk = Pk tk, (50)

which as shown in (44) and (45) will be used in the next iteration, and finally obtain

wk+1 = wk + θk pk . (51)

We summarize in Algorithm 3 how we maintain additional information to make
the implementation for (35) more efficient and show the corresponding cost of each
computational step.

The problem structure (35) also allows us to conduct multiple inner iterations with
a cost much lower than parts other than solving the subproblem in an outer iteration,
including updating Pk and calculating the full gradient. We explain that as long as
Pk remain unchanged, the coefficients in the Newton linear systems can be evaluated
quickly. From (6), (40), and (41), if w is changed in an inner iteration, all we need
to calculate for updating the coefficients in the Newton linear system are Dw and
(X� Pk)

�Dw(X� Pk) for the matrix, and uw, (P�
k A)w, (X� Pk)

�uw for P�
k ∇ f (w).

For the data-related part g(z) with z = X�w, the objective value, uw, and Dw can

123

562 Lee, Wang, and Lin

Algorithm 3: Efficient implementation of Algorithm 2 for (35).

Given w0 ∈ Rn and matrices A and X such that computing Av and X�v respectively cost O(TA) and
O(TX)

Compute X�w0, Aw0, and f (w0)

for k=0,1,… do
Use X�wk to compute ∇ f (wk) by (39) � O(TX + TA + n + l)
Update Pk in the form (37)
Compute X� Pk (using X� Pk−1, tk−1 and θk−1 if k > 0)

– X�V̂k−1 � O(1)

– X�wk is available from (48) � O(1)

– X�Vk � O(TX)*

Compute P�
k APk (through (43) using P�

k−1APk−1, tk−1 and θk−1 if k > 0)

– AVk and then P�
k (AVk) � O(TA + mn)*

– P�
k Awk by (45) � O(m + n)

– P�
k AV̂k−1 by (46) � O(1)

Compute P�
k b (using tk−1, θk−1 and P�

k−1b if k > 0) � O(n)

Use X�wk to calculate (40)
Construct the linear system (23) by (41) and (47) � O(m2l + n)

Solve the system (23) for tk � O(m3)

Compute t�k (P�
k APk)tk and (X� Pk)tk respectively for (49) and (48) � O(l + m2)

Conduct backtracking line search to find θk that satisfies (24) using (49) and (48) and record f (wk+1)

Compute pk by (50) and wk+1 by (51) � O(mn)

end
*Note that Vk constructed by (33) or (34) has at most 2 columns, so the cost of X�Vk and AVk are indeed
O(TX) and O(TA).

all be quickly calculated in O(l) time through z that is maintained by (48). Notice
that in this case, the column of wk in (37) is the iterate from the latest outer iteration,
but not the latest iterate from the inner iteration (so are other columns in Pk such as
∇ f (wk)), so the update of w and z are disentangled from the update of Pk , where
the former two change every inner iteration but the last one is updated every outer
iteration. Thus, when Pk and therefore X� Pk remains unchanged, we can compute
(X� Pk)

�Dw(X� Pk) in O(lm2) time. For (47), from (45), P�
k Aw can be updatedwith

O(m +n) cost, and with both uw and X� Pk available, (X� Pk)
�uw costs only O(lm)

to compute. Thus constructing and solving the linear system can be much cheaper
than, for example, calculating X�Vk when Pk is updated in an outer iteration. We
have therefore explained why (35) allows us to solve (2) with multiple inner Newton
iterations efficiently. For updating (38) after one outer iteration, we accumulate the
values of t in all inner iterations within the same outer iteration to conduct the updates
in the manner discussed above.

5.2.1 Summary of cost analysis

We summarize the cost of the major steps in Algorithm 3 in Table 1. In total, the
computational cost per iteration is

123

Limited-memory common-directions method 563

Table 1 Summarization of the cost of the major computational steps of Algorithm 3

Step Cost

Compute ∇ f (wk) using Awk and X�wk O(TX + TA + n + l)

X� Pk O(TX)

P�
k APk O(TA + mn)

P�
k b O(n)

(40) O(l)

Compute (41) and (47) O(m2l + n)

Solve (23) O(m3)

Line search O(l + m2 + l × #(line search steps))

Compute pk and wk+1 O(mn)

O
(

TX + TA + m2l + l × # (line search steps) + mn + m3
)

, (52)

and the number of line search steps is upper-bounded by a constant according to
Theorem 2while in practice we observe that unit step size is often accepted. In general,
m tends to a small constant such that O(m3) = O(1) and the dominant term is often
TX + TA + m2l. For example, if A and X are both dense, TX + TA = O(ln). When
m and the number of backtracking steps are not large, the last three terms in (52) are
clearly dominated by TX + TA. If X or A are sparse, unless the matrix is highly sparse
such that each row or column has a small number of non-zeros, the dominant term is
still TX + TA + m2l.

In comparison with the general cost analysis given in Sect. 3.1, from (39) and (40),
we note that TX + TA is exactly Tgrad (assuming l + n = O(TX + TA) as argued
above). Therefore, while the plain implementation involves m(TX + TA), Algorithm 3
by utilizing the problem structure requires only two to three (Tx + TA), as can be seen
from (52). As TX + TA is usually dominant, the efficient implementation described
above can indeed lead to significant improvement in the computational cost.

6 Numerical experiments

We present numerical results of Algorithms 1 and 2 running with a single core of
a machine with 16GB memory. Code for reproducing our results in this section
and Sects. 7–8 is available at https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-
commdir-journal-exp.tar.gz.

Throughout the experiments, we consider �2-regularized logistic regression and
�2-regularized squared-hinge loss SVM problems, which are of the forms

min
w

1

2
‖w‖2 + C

l∑
i=1

log
(
1 + exp

(
yiw

�xi

))
, and (53)

123

https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir-journal-exp.tar.gz

564 Lee, Wang, and Lin

min
w

1

2
‖w‖2 + C

l∑
i=1

max
{
1 − yiw

�xi , 0
}2

, (54)

respectively, whereC > 0 is a pre-specified parameter, xi , i = 1, . . . , l are the feature
vectors of the training data with corresponding labels yi ∈ {−1, 1}. Notice that both
problems are of the form (35), with A = I and b = 0 in the quadratic part, and gi (zi)

is the summand times C .
Both problems satisfy Assumption 1 and the �2 regularization makes the problem

strongly convex. Thus Theorem 5 and the first case of Theorem 1 apply because σ -
strong convexity implies (32) with the same σ . The datasets we use are summarized
in Table 2.4 We compare the relative difference to the optimal objective value:

∣∣∣∣
f (w) − f ∗

f ∗

∣∣∣∣ , (55)

where f ∗ is obtained by running our algorithm long enough. All methods are imple-
mented in C/C++.

We first examine the optimal convergence speed described in Theorem 1 and
compare Algorithm 1 with related approaches. To apply Theorem 1, we consider
Proposition 1 and take

Pk = [∇ f (wk), vk,wk] (56)

at each iteration to include the span of∇ f (wk) and ṽk+1, as required by Proposition 1.
We use this choice instead of directly including ṽk+1 because wk and vk are main-
tained throughout for calculating vk+1, so we can utilize these two vectors easily. The
subproblem (14) is solved by the Newton method described in Sect. 3, with the inner
stopping condition being (21). Notice that classical analysis for line-search Newton
guarantees that the inner iterates will approach the solution set of (2), and Proposi-
tion 1 ensures that when the iterate is close enough to the solution set, this condition
will be satisfied. Therefore, (21) is a valid stopping condition.

We use the (smaller) first four datasets listed in Table 2 in this experiment. For
parameters estimation, it is clear that for (53) and (54) the quadratic term is 1-strongly
convex so we always have σ = 1. For ρ, clearly the gradient of the quadratic term is
1-Lipschitz continuous, and in the data-related term, each gi (x�

i w) has a C ρ̂‖xi‖22-
Lipschitz continuous gradient with ρ̂ = 0.25 for (53) and ρ̂ = 2 for (54). We thus set
ρ as the following upper bound.

ρ = 1 + C
l∑

i=1

ρ̂‖xi‖22. (57)

We compare the following methods.

4 All except yahoo-japan and yahoo-korea are downloaded from http://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Limited-memory common-directions method 565

Table 2 Data statistics Dataset #instances #features Density (%)

a9a 32,561 123 11.2757

real-sim 72,309 20,958 0.2448

news20 19,996 1,355,191 0.0336

rcv1t 677,399 47,236 0.1549

yahoo-japan 140,963 832,026 0.0160

yahoo-korea 368,444 3,053,939 0.0111

– L-CommDir-Optimal: Algorithm 1 with the settings described above.
– Accelerated gradient (AG) [18, 20]: we use the same σ = 1 and the ρ estimation
in (57).

– CommDir [26]: the unlimited-memory version of Algorithm 3 that takes all gra-
dients up to the current iteration to form P in (2).

– L-CommDir-BFGS: Algorithm 3 with (33).
– L-CommDir-Diag: Algorithm 3 with (34).

We use the suffix “-t” for L-CommDir-BFGS and L-CommDir-Diag to indicate that
information from the latest t iterations (including the current iteration) is used. We
mainly use t = 5, making m = 10 for (33) in L-CommDir-BFGS and m = 15 in (34)
for L-CommDir-Diag. To compare with L-CommDir-Optimal, we also consider t = 1
(information from the current iteration only), making m = 2 and m = 3 respectively
for L-CommDir-BFGS and L-CommDir-Diag. For all methods that require line search
to satisfy (24), we use the fixed parameters β ≡ 0.5 and c1 ≡ 10−2 throughout in
both this section and all following experiments.

The results are shown in Table 3. We see that L-CommDir-Optimal always needs
only one Newton step to satisfy (22), making Algorithm 1with the inner stopping con-
dition being (15) equivalent to Algorithm 2 under Pk in (56) in this experiment. Except
for a9a, L-CommDir-Optimal always outperforms AG significantly, while when AG
is faster, L-CommDir-Optimal takes at most four times of the number of iterations,
confirming that our method is converging at least as fast. We also see that when
t = 1, L-CommDir-BFGS and L-CommDir-Diag tend to be worse than L-CommDir-
Optimal, indicating that a momentum term is indeed helpful. However, when t ≥ 5,
L-CommDir-BFGS, L-CommDir-Diag, and CommDir all converge much faster than
these optimal first-order methods empirically in terms of both the running time and
the number of iterations. Note that L-CommDir-BFGS always takes no fewer itera-
tions than CommDir, as the subspace considered by the former is always in that of
the latter, but L-CommDir-Diag sometimes converges faster. Notice that L-CommDir-
BFGS and CommDir can still be considered as first-order methods in the sense that
pk ∈ span (w0,∇ f (w0), . . . ,∇ f (wk)), but they show much faster empirical per-
formance.5 Hence, we focus on using (33) and (34) for P in the sequel.

5 Obviously, pk ∈ span (w0, ∇ f (w0),w1, ∇ f (w1), . . . ,wk ,∇ f (wk)), and by simple induction, we
can conclude that eachwk ∈ span

(
w0, ∇ f (w0), ∇ f (w1), . . . , ∇ f (wk−1)

)
for all k. Therefore, pk is in

the span of the previous gradients and the initial point.

123

566 Lee, Wang, and Lin

Ta
bl
e
3

Si
ng

le
-c
or
e
co
m
pa
ri
so
n
of

di
ff
er
en
tm

et
ho

ds
on

(5
3)

an
d
(5
4)

w
ith

C
=

1

Pr
ob
le
m

(5
3)

(5
4)

D
at
a

a9
a

re
al
-s
im

ne
w
s2
0

rc
v1
t

a9
a

re
al
-s
im

ne
w
s2
0

rc
v1
t

A
G

T
im

e
30

.5
50

.6
11

8.
8

32
75

.1
36

.1
68

.0
31

5.
1

48
01

.3

It
er
.

23
55

12
95

63
5

41
45

57
80

42
48

22
41

12
03

2

O
pt
im

al
T
im

e
60

.5
3.
5

11
.5

24
1.
6

16
9.
3

11
.9

71
.9

14
28

.0

(O
ut
er
)
It
er
.

34
88

51
46

26
5

20
72

6
38

5
35

7
31

27

L
ar
ge
st
in
ne
r
ite
r.

1
1

1
1

1
1

1
1

B
FG

S-
1

T
im

e
85

.4
5.
3

14
.0

46
8.
8

30
4.
5

22
.3

19
4.
6

26
12

.0

It
er
.

59
95

88
72

56
4

41
00

8
74

8
12

85
60

94

D
IA

G
-1

T
im

e
29

2.
9

6.
3

40
.1

45
3.
1

79
6.
3

23
.7

28
8.
0

13
23

.0

It
er
.

13
57

7
60

10
4

29
6

58
78

0
41

5
95

8
15

89

B
FG

S-
5

T
im

e
2.
1

1.
4

3.
5

44
.3

2.
4

2.
1

9.
6

74
.5

It
er
.

10
7

20
13

44
21

5
59

40
15

4

D
IA

G
-5

T
im

e
3.
6

2.
2

6.
7

66
.2

6.
6

2.
9

13
.9

91
.3

It
er
.

10
9

17
12

35
30

9
43

28
98

C
om

m
D
ir

T
im

e
3.
3

1.
4

4.
8

45
.8

4.
9

3.
1

19
.3

26
4.
3

It
er
.

61
18

13
37

76
40

33
10

1

W
e
pr
es
en
t
th
e
re
qu

ir
ed

tim
e
(i
n
se
co
nd

s)
an
d
nu

m
be
r
of

ite
ra
tio

ns
to

m
ak
e
(5
5)

no
la
rg
er

th
an

10
−8

.T
he

na
m
es

O
pt
im

al
,B

FG
S,

an
d
D
IA

G
om

it
th
e
pr
efi
x
L-
C
om

m
D
ir.

T
he

ro
w
“l
ar
ge
st
in
ne
r
ite
r.”

of
L-
C
om

m
D
ir-
O
p
tim

al
sh
ow

s
th
e
la
rg
es
tn

um
be
r
of

in
ne
r
ite
ra
tio

ns
ta
ke
n
ov
er

th
e
ou
te
r
ite
ra
tio

ns
to

so
lv
e
(2
)
to

sa
tis
fy

(2
1)

123

Limited-memory common-directions method 567

We continue to compare CommDir and L-CommDir further using all datasets in
Table 2. We further try C ∈ {10−3, 1, 103} to test how the algorithms perform
when the condition number changes. We compare Comm Dir with both L-CommDir-
BFGS and L-CommDir-Diag using information from the latest t iterations with
t ∈ {5, 10, 15, 20}. The results are shown in Tables 4 and 5.

In all situations, CommDir requires fewer iterations than L-CommDir-BFGS. But
even with only t = 5, the convergence speed of L-CommDir-BFGS is competitive.
When it comes to the real running time, however, on difficult problems that take
more iterations, especially when C = 103, CommDir can be much slower in later
iterations when m becomes large, while L-CommDir does not suffer from this issue
and is therefore much faster.

We also observe that L-CommDir-Diag tends to be faster than L-CommDir-BFGS
in terms of the iteration count, but the running time might not be as advantageous
because computing the diagonal entries of the Hessian is as costly as computing the
gradient. Also, from (34), Vk+1 in (37) has two columns in L-CommDir-Diag, so its
updating X� Pk is more costly than that of L-CommDir-BFGS.

7 Multicore parallelization

In comparison to other first-order and even second-order methods, one advantage of
our method is that it can be better parallelized. When the problem is of the form (35)
and X is sparse, the bottleneck of first-order methods is the computation of X�w
in (40) for calculating the gradient. This calculation is mainly reading through all
the entries of X , so the bottleneck is usually the memory bandwidth instead of the
computational power. Therefore, its parallelism is limited. Similar situation applies to
second-order methods that repeatedly calculate the Hessian-vector products, as that is
also a memory-bound procedure. Therefore, although theoretically all non-stochastic
first-order and second-order methods are inherently parallel as the major operations
are matrix-vector products, usually we do not experience that much speedup by using
more cores.

On the other hand, the additional calculation of (41) in our method is a matrix-
matrix calculation and the most expensive part (X� Pk)

�Dwk (X� Pk) involves dense
matrix-matrix operations, so there are more data reusing and the memory bandwidth
is not the bottleneck anymore. Therefore, better parallelism of our method can be
expected in multicore environments.

Moreover, in themulticore setting, except the step of solving the linear system, each
of other steps in Table 1 invovles a set of independent operations such as matrix-vector
products. Thus, they can be easily parallelized. Assume m3 is relatively small and we
do no parallelize it, then if we have K cores, the computational cost of one iteration
of Algorithm 3 reduces from (52) to

O

(
TX + TA + m2l + l × # (line search steps) + mn

K
+ m3

)
. (58)

123

568 Lee, Wang, and Lin

Ta
bl
e
4

Si
ng

le
-c
or
e
co
m
pa
ri
so
n
of

L-
C
om

m
D
ir
an
d
C
om

m
D
ir
on

(5
3)

D
at
a

C
B
FG

S-
5

B
FG

S-
10

B
FG

S-
15

B
FG

S-
20

C
om

m
D
ir

D
IA

G
-5

D
IA

G
-1
0

D
IA

G
-1
5

D
IA

G
-2
0

a9
a

0.
00
1

T
im

e
0.
1

0.
1

0.
1

0.
1

0.
1

0.
2

0.
2

0.
2

0.
2

It
er
.

8
8

8
8

8
7

7
7

7

1
T
im

e
2.
1

3.
0

4.
4

5.
8

3.
3

3.
6

3.
8

4.
0

3.
9

It
er
.

10
7

88
82

75
61

10
9

61
42

34

10
00

T
im

e
22

.0
23

.8
26

.8
37

.7
10

.4
11

.6
7.
7

6.
6

6.
8

It
er
.

10
86

66
6

44
9

40
5

98
34

4
11

9
63

48

re
al
-s
im

0.
00
1

T
im

e
0.
2

0.
2

0.
2

0.
2

0.
2

0.
3

0.
3

0.
3

0.
3

It
er
.

3
3

3
3

3
3

3
3

3

1
T
im

e
1.
4

1.
6

1.
6

1.
4

1.
4

2.
2

2.
4

2.
3

2.
3

It
er
.

20
18

18
18

18
17

15
15

15

10
00

T
im

e
19

.3
24

.6
30

.9
38

.1
51

.4
29

.3
34

.2
47

.4
63

.7

It
er
.

26
1

22
2

18
8

16
4

12
8

21
6

16
0

14
4

13
4

ne
w
s2
0

0.
00
1

T
im

e
0.
7

0.
7

0.
7

0.
7

0.
8

0.
9

0.
9

0.
9

0.
9

It
er
.

3
3

3
3

3
2

2
2

2

1
T
im

e
3.
5

4.
1

4.
0

4.
0

4.
8

6.
7

7.
1

7.
2

7.
2

It
er
.

13
13

13
13

13
12

11
11

11

10
00

T
im

e
30

.9
39

.4
43

.1
42

.1
50

.1
85

.2
83

.8
74

.7
71

.0

It
er
.

10
7

97
84

70
55

14
3

98
69

56

rc
v1
t

0.
00
1

T
im

e
5.
3

5.
2

5.
3

5.
2

5.
3

10
.1

9.
9

9.
9

9.
9

It
er
.

6
6

6
6

6
6

6
6

6

1
T
im

e
44

.3
53

.5
65

.9
79

.6
45

.8
66

.2
81

.5
97

.8
10

6.
5

123

Limited-memory common-directions method 569

Ta
bl
e
4

co
nt
in
ue
d

D
at
a

C
B
FG

S-
5

B
FG

S-
10

B
FG

S-
15

B
FG

S-
20

C
om

m
D
ir

D
IA

G
-5

D
IA

G
-1
0

D
IA

G
-1
5

D
IA

G
-2
0

It
er
.

44
39

37
37

37
35

31
29

28

10
00

T
im

e
93

8.
8

11
18

.0
15

13
.0

20
24

.0
99

67
.9

73
6.
6

82
5.
0

11
41

.0
15

98
.0

It
er
.

91
6

73
6

66
2

61
2

38
0

38
2

27
8

25
0

23
9

ya
ho
oj
p

0.
00
1

T
im

e
1.
4

1.
4

1.
4

1.
4

1.
5

2.
7

2.
7

2.
7

2.
7

It
er
.

4
4

4
4

4
4

4
4

4

1
T
im

e
18

.3
18

.1
19

.7
21

.9
21

.8
24

.1
24

.6
25

.8
26

.8

It
er
.

46
36

33
33

33
31

25
23

23

10
00

T
im

e
31

1.
5

27
6.
2

28
8.
7

33
2.
5

71
2.
8

36
9.
9

33
4.
2

39
3.
0

45
0.
5

It
er
.

77
6

50
6

39
8

35
3

20
4

45
9

30
0

26
4

23
2

ya
ho

ok
r

0.
00

1
T
im

e
12

.9
12

.8
12

.8
12

.8
13

.4
21

.4
21

.2
21

.2
21

.2

It
er
.

6
6

6
6

6
5

5
5

5

1
T
im

e
21

2.
6

19
3.
1

19
6.
6

20
5.
1

21
9.
7

25
6.
7

24
6.
6

25
3.
6

26
0.
1

It
er
.

94
72

63
58

55
57

46
41

38

10
00

T
im

e
38

05
.0

30
71

.0
30

02
.0

32
44

.0
98

63
.5

33
60

.0
34

11
.0

34
59

.0
38

09
.0

It
er
.

16
74

11
13

89
5

79
8

37
7

74
2

61
2

50
4

45
3

W
e
pr
es
en
tt
he

re
qu

ir
ed

tim
e
an
d
nu

m
be
r
of

ite
ra
tio

ns
to

m
ak
e
(5
5)

no
la
rg
er

th
an

10
−8

123

570 Lee, Wang, and Lin

Ta
bl
e
5

Si
ng

le
-c
or
e
co
m
pa
ri
so
n
of

L-
C
om

m
D
ir
an
d
C
om

m
D
ir
on

(5
4)

D
at
a

C
B
FG

S-
5

B
FG

S-
10

B
FG

S-
15

B
FG

S-
20

C
om

m
D
ir

D
IA

G
-5

D
IA

G
-1
0

D
IA

G
-1
5

D
IA

G
-2
0

a9
a

0.
00
1

T
im

e
0.
2

0.
3

0.
3

0.
2

0.
2

0.
4

0.
4

0.
4

0.
4

It
er
.

19
17

17
17

17
18

15
15

15

1
T
im

e
2.
4

3.
6

5.
3

7.
1

4.
9

6.
6

6.
3

5.
0

3.
2

It
er
.

21
5

17
4

15
6

13
9

76
30

9
15

7
76

41

10
00

T
im

e
14

.9
13

.9
18

.4
24

.2
11

.3
4.
1

3.
0

3.
1

3.
6

It
er
.

13
30

66
1

51
9

44
0

10
4

19
3

76
51

44

re
al
-s
im

0.
00
1

T
im

e
0.
3

0.
3

0.
3

0.
3

0.
2

0.
5

0.
5

0.
5

0.
5

It
er
.

5
5

5
5

5
5

5
5

5

1
T
im

e
2.
1

2.
0

2.
2

2.
4

3.
1

2.
9

2.
7

2.
9

3.
1

It
er
.

59
46

42
40

40
43

32
30

29

10
00

T
im

e
35

.3
30

.9
34

.4
38

.2
20

40
.0

17
0.
0

18
9.
9

21
0.
8

25
0.
6

It
er
.

11
84

86
2

79
8

73
8

48
0

29
11

26
98

24
49

23
87

ne
w
s2
0

0.
00
1

T
im

e
0.
9

0.
9

0.
9

0.
9

1.
0

1.
9

1.
9

1.
9

1.
9

It
er
.

4
4

4
4

4
4

4
4

4

1
T
im

e
9.
6

11
.7

13
.3

14
.8

19
.3

13
.9

18
.0

19
.5

21
.0

It
er
.

40
35

33
33

33
28

26
24

24

10
00

T
im

e
15

4.
5

22
1.
1

27
8.
1

34
6.
3

23
66

.6
10

25
.0

11
44

.0
15

07
.0

18
50

.0

It
er
.

67
3

63
0

58
9

58
3

40
0

21
32

15
28

14
75

14
27

rc
v1

t
0.
00

1
T
im

e
9.
3

9.
8

9.
1

9.
1

8.
4

18
.2

17
.8

17
.3

17
.3

It
er
.

12
12

12
12

12
12

11
11

11

123

Limited-memory common-directions method 571

Ta
bl
e
5

co
nt
in
ue
d

D
at
a

C
B
FG

S-
5

B
FG

S-
10

B
FG

S-
15

B
FG

S-
20

C
om

m
D
ir

D
IA

G
-5

D
IA

G
-1
0

D
IA

G
-1
5

D
IA

G
-2
0

1
T
im

e
74

.5
74

.2
81

.4
91

.2
26

4.
3

91
.3

92
.3

98
.9

11
1.
4

It
er
.

15
4

12
9

11
9

11
3

10
1

98
84

76
73

10
00

T
im

e
14

63
.0

14
90

.0
16

28
.0

18
01

.0
-

19
40

.0
20

46
.0

24
02

.0
27

92
.0

It
er
.

32
82

28
63

26
44

24
71

-
22

13
20

06
19

92
19

49

ya
ho
oj
p

0.
00
1

T
im

e
3.
1

3.
1

3.
1

3.
1

3.
4

4.
8

4.
9

4.
9

4.
9

It
er
.

9
9

9
9

9
7

7
7

7

1
T
im

e
49

.8
51

.8
58

.1
65

.5
11

1.
6

54
.3

56
.3

62
.0

68
.8

It
er
.

18
2

13
9

12
1

11
1

89
98

74
64

59

10
00

T
im

e
12

99
.0

12
11

.0
13

21
.0

14
13

.0
–

58
82

.0
63

04
.0

69
44

.0
81

78
.0

It
er
.

52
47

35
65

29
96

25
66

-
11

49
2

87
89

73
16

68
33

ya
ho

ok
r

0.
00

1
T
im

e
25

.8
27

.4
26

.6
26

.7
27

.9
47

.7
45

.2
45

.2
45

.2

It
er
.

12
12

12
12

12
11

10
10

10

1
T
im

e
56

9.
6

52
5.
6

52
3.
4

55
0.
3

92
6.
4

57
5.
5

58
5.
3

62
1.
9

67
6.
6

It
er
.

30
4

23
2

19
4

17
4

13
0

15
2

12
7

11
3

10
5

10
00

T
im

e
11

44
0.
0

10
86

0.
0

10
73

0.
0

10
86

0.
0

–
–

–
–

–

It
er
.

75
54

58
30

47
91

41
23

–
–

–
–

–

W
e
pr
es
en
tt
he

re
qu

ir
ed

tim
e
an
d
nu

m
be
r
of

ite
ra
tio

ns
to

m
ak
e
(5
5)

no
la
rg
er

th
an

10
−8

“–
”
in
di
ca
te
s
th
at
th
e
al
go
ri
th
m

fa
ils

to
re
ac
h
th
e
de
si
re
d
pr
ec
is
io
n
w
ith

in
4
ho
ur
s

123

572 Lee, Wang, and Lin

Table 6 Data statistics Dataset #instances #features Density (%)

url 2,396,130 3,231,961 0.0036

epsilon 400,000 2000 100.0000

webspam 350,000 16,609,143 0.0224

KDD2010-a 8,407,752 20,216,830 0.0002

We also note that in a shared-memorymulticore environment, communication between
cores is usually extremely fast and not an issue for the overall running time.

7.1 Multicore experiments

To verify our discussion, we conduct numerical experiments to show the empir-
ical speedup of our method using different number of cores, and compare it with
Multicore-LIBLINEAR 2.30 [12],6 which is a state-of-the-art multicore package for
(53). In particular, we compare our method with the trust-region Newton method with
preconditioned conjugate gradient implemented in this package. What we intend to
see is how the algorithms scale with the number of cores, so we compare the respective
running time speedup of the algorithms. In this experiment, we present the results of
(53) with C = 1, and take historical information from the latest ten iterations for
L-CommDir. In addition to the datasets in Table 2, we also consider some larger ones
listed in Table 6.7 For each algorithm, the speedup is computed as:

Speedup of using k cores = Running time of using 1 core

Running time of using k cores
.

In this experiment, all solvers are run on an Intel multi-core dualsocket machine
with 180 GB memory. Each socket is associated with 20 cores, and we enforce all the
threads to use cores from the same socket. Parallelization is achieved through openMP
and Intel Math Kernel Library. The results are in Fig. 1. We see that for a9a, real-
sim, and news20, L-CommDir has much better speedup thanMulticore-LIBLINEAR.
Moreover, L-CommDir-Diag achieves significant parallelismonepsilon, and for others
the speedup of L-CommDir and Multicore-LIBLINEAR are similar. This together
with the high speedup show that multicore parallelization is indeed very useful for
L-CommDir to reduce the running time.

8 Distributed optimization

For distributed environments that connect multiple machines through a network, the
situation is quite different. By using multiple machines, the memory bandwidth and
computational power are usually less severe a problem, but often the expensive inter-

6 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear/.
7 All are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets.

123

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/multicore-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Limited-memory common-directions method 573

(a) a9a (b) real-sim (c) news20

(d) rcv1t (e) yahoo-japan (f) yahoo-korea

(g) url (h) epsilon (i) webspam

(j) KDD2010-a

Fig. 1 Speedup using multiple cores

machine communication becomes the bottleneck. In the standard setting of distributed
optimization with K machines, f is a summation of individual functions

f (w) =
K∑

k=1

fk(w), (59)

where each fk is exclusively available only on the kthmachine. Thus it takes one round
of inter-machine communication of an n-dimensional vector to compute the gradient.
For Newton method, computing the whole Hessian needs to communicate O(n2)

123

574 Lee, Wang, and Lin

(a) (b) (c)

(d) (e) (f)

Fig. 2 Comparison of different algorithms withC = 10−3 for (53).We show running time (left) and rounds
of communication (right) v.s. (55)

elements, which is prohibitively expensive. Therefore, conjugate gradient (CG) that
computes Hessian-vectors is adopted, as each Hessian-vector requires communicating
an n-dimensional vector only. State of the art for distributed optimization [13, 27, 28]
are Newton-CG methods with different preconditioners to reduce the overall rounds
of communication needed, as Newton methods are fast-convergent asymptotically,
and preconditioners could reduce the needed CG iterations per Newton step, but in
practice these approaches can still take many CG iterations.

In distributed optimization, trading computation for communication could help
reduce the running time. Our method that interpolates between first- and second-order
methods is a perfect case for this purpose. The computation of the linear system in
this setting is by letting each machine compute

123

Limited-memory common-directions method 575

(a) (b) (c)

(d) (e) (f)

Fig. 3 Comparison of different algorithms with C = 1 for (53). We show running time (left) and rounds of
communication (right) v.s. (55)

P�
k ∇2 fk (w) Pk

locally and then use communication to do the summation over k. This involves little
communication (as the matrix is just m by m) but is computation-heavy, while our
method has fast empirical convergence similar to second-order methods because the
real Hessian is used, making the convergence faster and therefore cutting the required
rounds of communication. In comparison with first-order methods, our method is
guaranteed to be no worse in terms of the worst-case communication complexity
through Theorem 1, while the empirical performance is usually magnitudes better.
On the other hand, in addition to the O(n) communication cost for computing the

123

576 Lee, Wang, and Lin

(a) (b) (c)

(d) (e) (f)

Fig. 4 Comparison of different algorithms with C = 103 for (53). We show running time (left) and rounds
of communication (right) v.s. (55)

full gradient due to the distributed nature in (59), our method takes only O(m2)

communication cost to obtain a non-truncated Newton step in a subspace. In summary,
the computational cost per machine of Algorithm 3 in a distributed environment with
K machines is the same as (58), while the communication cost per tieration is

O
(
(m2 + n)Comm(K)

)
,

where Comm(K) is the communication cost of transmitting one scalar among K
machines.

In comparison to Newton-CG methods that conduct multiple CG iterations per
truncated Newton step, each CG iteration has communication cost O(n) and our

123

Limited-memory common-directions method 577

(a) (b) (c)

(d) (e) (f)

Fig. 5 Comparison of different algorithms withC = 10−3 for (54).We show running time (left) and rounds
of communication (right) v.s. (55)

obtained step is a non-truncated full Newton step in a subsapce. Thus, when the
subspace is close to a solution, ourmethod can bemuchmore communication-efficient
than Newton-CG methods.

8.1 Distributed experiments

We proceed to examine the empirical performance of our method for distributed
optimization. The distributed environment is a cluster of ten machines running MPI
connected through a 1Gbps network. We compare the following methods.

123

578 Lee, Wang, and Lin

(a) (b) (c)

(d) (e) (f)

Fig. 6 Comparison of different algorithms with C = 1 for (54). We show running time (left) and rounds of
communication (right) v.s. (55)

– MPI-LIBLINEAR:8 Apublic package for distributed optimization onERMproblems.
We use the distributed trust region Newton solver with preconditioned conjugate
gradient using the diagonal entries of the Hessian as the preconditioner [8, 13, 28].

– VL-BFGS [6]: An implementation of L-BFGS specialized for distributed environ-
ments. We use historical information from the previous 10 iterations.

– L-CommDir: our method with (33) and (34). We use the historical information
from the latest 10 iterations.

The results of C ∈ {10−3, 1, 103} are shown in Figs. 2, 3, 4, 5, 6 and 7.

8 Version 2.20, downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/.

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/

Limited-memory common-directions method 579

(a) (b) (c)

(d) (e) (f)

Fig. 7 Comparison of different algorithms with C = 103 for (54). We show running time (left) and rounds
of communication (right) v.s. (55)

We first examine the communication cost. For (53), L-CommDir-BFGS is among the
most communication-efficient, and performs worse only on KDD2010-a with C = 1
and C = 103. Similar trends are observed for (54), but for (54) with C = 103,
L-CommDir-BFGS always outperforms other methods in communication efficiency.
Likely this is because the generalizedHessian of (54) is not as useful as the realHessian
of (53), especially for difficult problems, so L-CommDir-Diag and MPI-LIBLINEAR do
not perform that well. On the other hand, L-CommDir-Diag is not as communication-
efficient as L-CommDir-BFGS in general, and it usually performs closer to existing
methods, but for difficult problems like KDD2010-a and url, it sometimes becomes the
best method in terms of the rounds of communication.

123

580 Lee, Wang, and Lin

Next, regarding the running time, it and the round of communication are positively
correlated, but it is also dependent on the computational power of themachines and the
distributed environment. In particular, we see that L-CommDir-Diag is relatively faster
in the running time, because its amount of computation per communication round is
less (for every iteration it takes two communication rounds while L-CommDir-BFGS
takes only one). On the other hand, MPI-LIBLINEAR is much faster than L-CommDir
on epsilon, as epsilon has a lower problem dimension, making the communication
cost less significant in the overall running time.

9 Conclusions

In this work, we present an efficient smooth optimization algorithm that interpo-
lates between first- and second-order methods by utilizing information from previous
iterations. Theoretical results show that our method possesses the optimal conver-
gence rates of first-order methods while being strictly descent in the objective value.
Empirical results also show that our method outperforms optimal first-order meth-
ods and second-order methods on real-world empirical risk minimization problems in
single-core, multicore, and distributed optimization. Future work includes extending
our method to general regularized problems by adding the regularization term to the
subproblem, and to consider nonlinear manifolds in the construction of G, possibly
through Riemannian optimization or partly smooth functions. Based on this work, we
have expanded the package MPI-LIBLINEAR, available at http://www.csie.ntu.edu.tw/
~cjlin/libsvmtools/distributed-liblinear/, to include the proposed method.

Acknowledgements Parts of this wok were done when Ching-pei was in the Department of Mathematics
of the National University of Singapore. The authors thank the support of HPC@NUS IT for the multicore
experiment environment.

Funding This work was supported in part by MOST of Taiwan Grants 110-2221-E-002-115-MY3 and
109-2222-E-001-003-MY3.

Data availability statement Implementation of our algorithm has been incorporated as a part of
the open-source package MPI-LIBLINEAR available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
distributedliblinear/. Code for reproducing the experiments in the paper is available at https://www.csie.
ntu.edu.tw/~cjlin/papers/l-commdirlcommdir-journal-exp.tar.gz, and the datasets used in the experiments
except yahoo-japan and yahoo-korea are downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
datasets.

Declarations

Conflict of interest The authors have no relevant financial or non-financial interests to disclose.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted

123

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributed-liblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributedliblinear/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/distributedliblinear/
https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdirlcommdir- journal-exp. tar.gz
https://www.csie.ntu.edu.tw/~cjlin/papers/l-commdirlcommdir- journal-exp. tar.gz
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets

Limited-memory common-directions method 581

by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proofs

A.1 Proof of Theorem 1

Proof The main idea of our proof follows from the estimating sequence by [19], but
we also develop techniques to cope with inexact subproblem solutions and that there
is only one sequence of iterates in our algorithm. We will construct a sequence of
functions {φk} such that

φk+1 (w) − f (w) ≤
k∏

i=0

(1 − αi) (φ0(w) − f (w)) ,∀k ≥ 0, (60)

φ∗
k := min

w
φk(w) ≥ f (wk) −

k−1∏
i=0

(1 − αi) Âk−1, (61)

where

Âk :=
{
0 if σ > 0 or k = 0,

Ak else,
(62)

and show that the convergence speed
∏k

i=0(1 − αi) meets the optimal rates. Let w∗
be an arbitrary point in the solution set. The convergence speed of f (wk)− f ∗ is then
established by

f (wk) − f ∗ (61)≤ φ∗
k − f ∗

+
k−1∏
i=0

(1 − αi) Âk−1 ≤ φk(w
∗) − f (w∗) +

k−1∏
i=0

(1 − αi) Âk−1

(60)≤
k−1∏
i=0

(1 − αi)
(
φ0(w

∗) − f (w∗) + Âk−1

)
. (63)

This sequence of functions is constructed as follows.

φ0(w) := γ0

2
‖w − w0‖2 + f (w0), (64)

φk+1(w) := (1 − αk) φk (w)

+ αk

(
f (wk) + ∇ f (wk)

� (w − wk) + σ

2
‖w − wk‖2

)
, k ≥ 0. (65)

I. Upper Bound for φk:

123

http://creativecommons.org/licenses/by/4.0/

582 Lee, Wang, and Lin

We can show (60) easily by the definition (65) as follows.

φk+1(w) = (1 − αk) φk(w) + αk

(
f (wk) + ∇ f (wk)

� (w − wk) + σ

2
‖w − wk‖2

)

≤ (1 − αk) φk(w) + αk f (w), (66)

where (66) is from the (strong) convexity of f . The result (60) then follows from
deducting f (w) from both sides of (66) and recursion.
II. φ∗

k Bounds f (wk):
Next, we prove (61). It is straightforward from induction, the definition (64)–(65),

and the definition of γk in (8) that

∇2φk(w) = (1 − αk−1)∇2φk−1(w) + αk−1σ I

= (1 − αk−1)γk−1 I + αk−1σ I = γk I , ∀k,

showing that φk are quadratic and strongly convex with modulus γk . Therefore, at the
kth iteration, there is an optimal solution uk such that

φk(w) = φ∗
k + γk

2
‖w − uk‖2 , ∀w. (67)

By setting the derivative of (65) to zero and using (67), we get that

0 = ∇φk+1 (uk+1) = (1 − αk) ∇φk (uk+1) + αk (∇ f (wk) + σ (uk+1 − wk))

= (1 − αk) γk (uk+1 − uk) + αk (∇ f (wk) + σ (uk+1 − wk)) .

Rearranging the above equation, we have

uk+1 = 1

(1 − αk)γk + αkσ
((1 − αk)γkuk + αkσwk − αk∇ f (wk)) ,

which satisfies the definition of vk in (7) and (8) (notice that (1 − αk)γk + αkσ > 0
as discussed when we define (7) so uk+1 is well-defined). Thus, we have

uk ≡ vk, and φ∗
k = φk(vk),∀k ≥ 0, (68)

for both cases of σ > 0 and σ = 0, and (67) can be written as

φk (w) = φk (vk) + γk

2
‖w − vk‖2 ,∀k ≥ 0. (69)

First consider the case of σ > 0. From (7) and (10), we have

vk+1 = (1 − α)vk + αwk − α

σ
∇ f (wk),

123

Limited-memory common-directions method 583

which can be written as the following two equivalent forms.

vk+1 − vk = −α(vk − wk) − α

σ
∇ f (wk), (70)

vk+1 − wk = (1 − α)(vk − wk) − α

σ
∇ f (wk). (71)

We then obtain a recurrent relation of φ∗
k+1 by using (69), (10), and (65).

φ∗
k+1 = φk+1(vk+1)

= (1 − α)
(
φk(vk) + σ

2
‖vk+1 − vk‖2

)

+ α
(

f (wk) + ∇ f (wk)
�(vk+1 − wk) + σ

2
‖vk+1 − wk‖2

)
(72)

= (1 − α)φk(vk) + α f (wk) (73)

+ α(1 − α)
(
∇ f (wk)

�(vk − wk) + σ

2
‖vk − wk‖2

)
− 1

2ρ
‖∇ f (wk)‖2,

(74)

where (72) is by (65), (10), and (69); and (73)–(74) are obtained from separately
applying (70)–(71), and applying (10) to the coefficient of ‖∇ f (wk)‖2. Now with
(68) and the definition that Âk = 0, ∀k ≥ 0, we are ready to prove an equivalent form
of (61), φk(vk) ≥ f (wk), ∀k, by induction. From the definition (64), it is clear that
φ0(v0) ≥ f (w0). For the induction, assume φk(vk) ≥ f (wk) for some k ≥ 0. For the
next (k + 1)th iteration, replacing the first term in (73) with f (wk) leads to

φ∗
k+1 ≥ f (wk) − 1

2ρ
‖∇ f (wk)‖2 + α(1 − α)

(
∇ f (wk)

�(vk − wk) + σ

2
‖vk − wk‖2

)
,

which together with (15) leads to φk+1(vk+1) ≥ f (wk+1). Thus the bound (61)
holds.

Next, we consider the case of σ = 0. From the recursion (8), we have

γk+1 = ρ

k∏
i=0

(1 − αi) , ∀k ≥ 0. (75)

Further, in this case, (7) is reduced to

vk+1 = vk − αk

γk+1
∇ f (wk). (76)

We obtain the following recurrent relation of φ∗
k+1.

φk+1(vk+1)

(65),(69)= (1 − αk)
(
φk(vk) + γk

2
‖vk+1 − vk‖2

)
+ αk

(
f (wk) + ∇ f (wk)

�(vk+1 − wk)
)

(77)

123

584 Lee, Wang, and Lin

Note that

1

2
(1 − αk)γk ‖vk+1 − vk‖2 (76)= 1

2
(1 − αk)γk · α2

k

γ 2
k+1

‖∇ f (wk)‖2 (8)= α2
k

2γk+1
‖∇ f (wk)‖2 .

Applying the above result to (77), we have

φk+1(vk+1)
(76)= (1 − αk)φk(vk) + αk f (wk) + α2

k

2γk+1
‖∇ f (wk)‖2

+ αk∇ f (wk)
�
(
vk − wk − αk

γk+1
∇ f (wk)

)

(11)= (1 − αk)φ
∗
k + αk f (wk) − ‖∇ f (wk)‖2

2ρ
+ αk∇ f (wk)

�(vk − wk).

(78)

We know that φ0(v0) ≥ f (w0) holds from the construction (64). Now we assume that
(61) holds for some k ≥ 0 and obtain for the (k + 1)th iteration that

φ∗
k+1

(78),(61)≥ f (wk) − 1

2ρ
‖∇ f (wk)‖2 − (1 − αk)

k−1∏
i=0

(1 − αi)Ak−1 + αk∇ f (wk)
T (vk − wk)

(17)≥ f (wk) − 1

2ρ
‖∇ f (wk)‖2 − (1 − αk)

k−1∏
i=0

(1 − αi) Ak−1 − αkψk

(17)≥ f (wk+1) − (1 − αk)

k−1∏
i=0

(1 − αi) Ak−1 − αkψk

(75),(11)≥ f (wk+1) −
k∏

i=0

(1 − αi)

(
Ak−1 + ψk

αk

)

(19)= f (wk+1) −
k∏

i=0

(1 − αi) Ak .

Thus we have shown by induction that (61) holds for all k ≥ 0.
III. Convergence Speed of φk(w

∗) − f (w∗):
We proceed to show how fast

∏k
i=0(1 − αi) converges to zero. First consider the

case that σ > 0. Clearly, (10) shows that the term
∏k

i=0(1−αi) converges to zero at the
desired optimal linear convergence rate of (1 − √

σ/ρ). With (63), Âk = 0, ∀k ≥ 0,
and replacing φ0(w

∗) with the right-hand side of (64) and γ0 with σ via (8), this
implies the optimal rate for first-order methods on strongly convex problems shown
in (16), and hence the desired iteration complexity.

When σ = 0, from that αk > 0 and the fact that
√

a2 + b2 ≤ |a| + |b|, we get

αk+1 =
−α2

k + αk

√
α2

k + 4

2
≤ −α2

k + αk(αk + 2)

2
= αk, ∀k ≥ 0.

123

Limited-memory common-directions method 585

Thus, the sequence of αk is decreasing. Further, we have αk ∈ (0, 1) for all k from the
decreasing property and that

0 = −1 + 1

2
< α0 = −1 + √

5

2
<

−1 + √
9

2
= 1.

Let us define λk := α−1
k . From the decreasing property of {αk} and (12), we have that

λk+1 − λk = αk − αk+1

αkαk+1
= α2

k − α2
k+1

αkαk+1 (αk + αk+1)
≥ α2

k − α2
k+1

2α2
k αk+1

= α2
k (1 − (1 − αk+1))

2α2
k αk+1

= 1

2
.

Therefore, λk ≥ k/2 + λ0. This result, (13), and the definition of λk imply

α−1
k ≥ k

2
+ α−1

0 = k

2
+ 2√

5 − 1
= k

2
+

2
(√

5 + 1
)

4
≥ k + 2

2
,∀k ≥ 0. (79)

We therefore get that from (75), (11) and (79),

ρ

k∏
i=0

(1 − αi) = γk+1 = ρα2
k ≤ 4ρ

(k + 2)2
, ∀k ≥ 0, (80)

satisfying the optimal convergence speed of O(k−2). The form (18) is then obtained
by first inserting (64) and (80) into (63) to get

f (wk) − f ∗ ≤ 4

(k + 1)2

(γ0

2

∥∥w0 − w∗∥∥2 + f (w0) − f ∗ + Âk−1

)
,

and then replacing γ0 with ρ by (8) and Âk with the values in (62) and (19). ��

A.2 Proof of Proposition 1

Proof From the strong convexity of f , even though theremight bemultiple possibilities
of t that are optimal for (2), they all result in the same iterate w∗

k+1 after the mapping
wk + G(t). We first show that (21) holds at any optimal t∗ that maps tow∗

k+1 and then
discuss its neighborhood. As G is linear, we have that there is P ∈ Rn×m such that

G(t) = P t, ∀t ∈ Rm .

Therefore, the optimality condition of the convex problem (2) gives

∂ f (wk + G(t))
∂ t�

∣∣∣∣
t=t∗

= ∇ f (w∗
k+1)

� P = 0�,

123

586 Lee, Wang, and Lin

for any t∗ that is optimal for (2), and thus

∇ f (w∗
k+1)

�G
(
t∗
) = ∇ f (w∗

k+1)
� P t∗ = 0, (81)

∇ f (w∗
k+1)

�ṽk+1 = 0, (82)

where (82) holds because the assumption ṽk+1 ∈ span (∇ f (wk), ṽk+1) ⊆ Im(G)

implies the existence of some t̂ such that ṽk+1 = P t̂ . By combining (82) and (81), we
get

∇ f
(
wk + G

(
t∗
))� (

ṽk+1 − G
(
t∗
)) = 0, (83)

so (21a) holds atw∗
k+1 because the first term is zero and the second term is nonnegative.

For (21b), it is clear from the Lipschitz continuity of the gradient of f that

f
(
w∗

k+1

) ≤ f

(
wk − 1

ρ
∇ f (wk)

)

≤ f (wk) − ∇ f (wk)
�
(
1

ρ
∇ f (wk)

)
+ ρ

2

∥∥∥∥
1

ρ
∇ f (wk)

∥∥∥∥
2

= f (wk) − 1

2ρ
‖∇ f (wk)‖2 . (84)

If w∗
k+1 = wk + G(t∗) lies in the interior of (21) (i.e., w∗

k+1 strictly satisfies the
inequalities in (21)), by the continuity of f and ∇ f , there is a neighborhood of w∗

k+1
such that every point of it satisfies (21). As G is also continuous, it means that for each
optimal solution t∗ there is a neighborhood of which all points satisfy (21).

Now we discuss the cases when w∗
k+1 lies on the boundary of (21). When (21a)

holds in equality at w∗
k+1, (82) and (81) from the optimality condition at w∗

k+1 imply
that

ṽk+1 = G(t∗).

When (21b) holds in equality at w∗
k+1 = wk + G(t∗), (84) implies that

f

(
wk − 1

ρ
∇ f (wk)

)
= f

(
w∗

k+1

)
. (85)

By the assumption that∇ f (wk) ∈ Im(G),wk − 1
ρ
∇ f (wk) is in the form ofwk +G(t).

We have mentioned in the beginning of the proof that the optimal wk + G(t∗) for (2)
is unique. Thus (85) implies that

w∗
k+1 = wk − 1

ρ
∇ f (wk).

��

123

Limited-memory common-directions method 587

A.3 Proof of Proposition 2

Proof We note that (83) holds at any optimum t∗ as its required conditions are all
satisfied. Therefore, (22a) holds within a neighborhood of any optimal solution of (2)
as long as ψk+1 > 0 since the inequality in (22a) is strictly satisfied at w∗

k+1. The part
for (22b) is similar to the argument in the proof of Proposition 1. Notice that when
(22b) holds at equality, G (t∗) = −∇ f (wk)/ρ is an optimal solution and thus (83)
holds at t∗ as well. Then with ψk+1 > 0 the inequality in (22a) strictly holds. ��

A.4 Proof of Theorem 2

Proof The solution of (25) also solves the following linear system.

P�
k Hk Pk tk = −P�

k ∇ f (wk), (86)

where we recall that Pk is defined in (27). If qk
j satisfies (28), then the right-hand side

of (86) is not all zero, hence tk �= 0 and Pk tk �= 0. Therefore, from (86), we have

− p�
k ∇ f (wk) = (Pk tk)� Hk Pk tk ≥ M2‖Pk t‖2 = M2‖ pk‖2. (87)

We then have from Assumption 1 and (87) that

f (wk + θk pk) ≤ f (wk) + θk∇ f (wk)
� pk + θ2k

ρ

2
‖ pk‖2

≤ f (wk) + θk∇ f (wk)
� pk

(
1 − ρθk

2M2

)
.

From (87), ∇ f (wk)
� pk < 0. Therefore, when

1 − ρθk

2M2
≥ c1,

(24) is satisfied. Thus, by considering the possibility of overshoot, we obtain a lower
bound θ̄ of the final step size in (29), and the backtracking procedure takes at most
�logβ θ̄� steps. ��

A.5 Proof of Theorem 3

Proof The j th equation in the linear system (86) is

p�
k Hkqk

j = −∇ f (wk)
�qk

j . (88)

By (26), (28), and (88),

‖ pk‖‖qk
j‖ ≥

∣∣∣∣
1

M1
(pk)

� Hkqk
j

∣∣∣∣ =
∣∣∣∣
1

M1
∇ f (wk)

�qk
j

∣∣∣∣ ≥ ‖∇ f (wk)‖‖qk
j‖

δ

M1
.

123

588 Lee, Wang, and Lin

Therefore,

‖ pk‖ ≥ δ

M1
‖∇ f (wk)‖. (89)

Combining (87) and (89), we can establish the following result.

− p�
k ∇ f (wk)

‖ pk‖‖∇ f (wk)‖ ≥ M2‖ pk‖2
‖ pk‖‖∇ f (wk)‖ ≥ δM2

M1
.

By (24), (87), and (89), we have

f (wk+1) − f (wk) ≤ θkc1∇ f (wk)
� pk ≤ − M2δ

2θkc1
M2

1

‖∇ f (wk)‖2. (90)

Summing (90) up from 0 to k, we get

k∑
j=0

M2δ
2c1 min0≤ j≤k θ j

M2
1

‖∇ f (w j)‖2 ≤ f (w0) − f (wk+1) ≤ f (w0) − f ∗,

where f ∗ is the minimal objective value of f . Consequently, by (29),

gk := min
0≤J≤k

‖∇ f (wJ)‖2 ≤ 1

k + 1

k∑
J=0

‖∇ f (wJ)‖2

≤ 1

k + 1

M2
1

M2δ2c1 min0≤J≤k θJ
(f (w0) − f ∗)

≤ 1

k + 1

M2
1

M2δ2c1θ̄
(f (w0) − f ∗).

Finally, the o(1/k) convergence follows from that gk is a decreasing, summable, and
nonnegative sequence so Proposition 3.4 and Theorem 3.5 of [24] apply directly. Note
that since

k∑
J=0

‖∇ f (wJ)‖2

is bounded, ‖∇ f (wk)‖ converges to zero as k approaches infinity. ��

A.6 Proof of Theorem 4

Proof From convexity of f , we have that for any w∗ ∈ Ω ,

f (w) − f ∗ ≤ ∇ f (w)
(
w − w∗) ≤ ‖∇ f (w) ‖‖w − w∗‖.

123

Limited-memory common-directions method 589

From (30), we have that

f (w) − f ∗ ≤ ‖∇ f (w)‖ R0. (91)

Define

Δk := f (wk) − f ∗ (92)

and therefore from (91),

− ‖∇ f (wk)‖ ≤ −(f (wk) − f ∗)
R0

= −Δk

R0
. (93)

By substituting (92) into (90) and using (93), we get

Δk+1 ≤ Δk − M2δ
2θkc1

M2
1 R2

0

Δ2
k . (94)

Now divide (94) by ΔkΔk+1 and note from (90) that Δk is monotonically decreasing.
We get

1

Δk
≤ 1

Δk+1
− M2δ

2θkc1
M2

1 R2
0

. (95)

By summing (95) from 0 to k, we obtain

1

Δ0
≤ 1

Δk+1
− M2δ

2c1
M2

1 R2
0

k∑
j=0

θ j . (96)

This together with (29) leads to

Δk+1 ≤ Δ0M2
1 R2

0

M2
1 R2

0 + Δ0M2δ2c1
∑k

j=0 θ j
≤ Δ0M2

1 R2
0

M2
1 R2

0 + Δ0M2δ2c1 (k + 1) θ̄
. (97)

From Assumption 1, f is ρ-Lipschitz-continuously differentiable, and from (92) and
(30) we have

Δ0 = f (w0) − f ∗ ≤ ρ

2
‖w0 − w̄‖2 ≤ ρ

2
R2
0, (98)

where

w̄ = argmin
w∗∈Ω

∥∥w0 − w∗∥∥ , (99)

123

590 Lee, Wang, and Lin

and R0 is finite. By noting that Δ0 ≥ 0 and that the differential of the right-hand side
of (97) with respect to Δ0 is nonnegative when Δ0 ≥ 0, we can use (98) to simplify
(97) to

Δk ≤ ρM2
1 R2

0

2M2
1 + ρM2δ2c1(k + 1)θ̄

,

showing the desired O(1/k) rate. ��

A.7 Proof of Theorem 5

Proof Deducting f ∗ from both sides of (90) and combining it with (32), we get that
for all k

f (wk+1) − f ∗ ≤
(
1 − 2σ M2δ

2θkc1
M2

1

) (
f (wk) − f ∗)

≤
(
1 − 2σ M2δ

2θ̄c1
M2

1

) (
f (wk) − f ∗) , (100)

where the last inequality is from (29). Thus, we see that (100) gives a convergence rate
that is at least Q-linear. Note that our assumptions give c1 > 0, and σ M2/M2

1 > 0.
Therefore the coefficient in the right-hand side of (100) is smaller than 1. ��

References

1. Attouch, H., Peypouquet, J.: The rate of convergence of Nesterov’s accelerated forward–backward
method is actually faster than 1/k̂ 2. SIAM J. Optim. 26(3), 1824–1834 (2016)

2. Barzilai, J., Borwein, J.M.: Two-point step size gradient methods. IMA J. Numer. Anal. 8, 141–148
(1988)

3. Bertsekas, D.P.: Nonlinear Programming, 3rd edn. Athena Scientific, Belmont (2016)
4. Burachik, R., Graña Drummond, L., Iusem, A.N., Svaiter, B.: Full convergence of the steepest descent

method with inexact line searches. Optimization 32(2), 137–146 (1995)
5. Chambolle, A., Dossal, C.: On the convergence of the iterates of “FISTA”. J. Optim. Theory Appl.

166(3), 25 (2015)
6. Chen, W., Wang, Z., Zhou, J.: Large-scale L-BFGS using MapReduce. In: Advances in Neural Infor-

mation Processing Systems, pp. 1332–1340 (2014)
7. Hiriart-Urruty, J.B., Strodiot, J.J., Nguyen, V.H.: Generalized Hessian matrix and second-order opti-

mality conditions for problems with C1,1 data. Appl. Math. Optim. 11(1), 43–56 (1984)
8. Hsia, C.Y., Chiang, W.L., Lin, C.J.: Preconditioned conjugate gradient methods in truncated Newton

frameworks for large-scale linear classification. In: Proceedings of the Asian Conference on Machine
Learning (ACML) (2018). http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf

9. Karimi, H., Nutini, J., Schmidt, M.: Linear convergence of gradient and proximal-gradient methods
under Polyak-łojasiewicz condition. In: Joint European Conference on Machine Learning and Knowl-
edge Discovery in Databases (2016)

10. Lee, C.P.,Wang, P.W., Chen,W., Lin, C.J.: Limited-memory common-directionsmethod for distributed
optimization and its application on empirical risk minimization. In: Proceedings of SIAM International
Conference on Data Mining (SDM) (2017). http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-
commdir.pdf

123

http://www.csie.ntu.edu.tw/~cjlin/papers/tron_pcg/precondition.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/l-commdir/l-commdir.pdf

Limited-memory common-directions method 591

11. LEE, C.P., Wright, S.J.: First-order algorithms converge faster than O(1/k) on convex problems.
In: Proceedings of the 36th International Conference on Machine Learning (ICML) (2019). http://
proceedings.mlr.press/v97/lee19e.html

12. Lee,M.C., Chiang,W.L., Lin, C.J.: Fastmatrix-vectormultiplications for large-scale logistic regression
on shared-memory systems. In: Proceedings of the IEEE International Conference on Data Mining
(ICDM) (2015). http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf

13. Lin, C.Y., Tsai, C.H., Lee, C., Lin, C.J.: Large-scale logistic regression and linear support vector
machines using Spark. In: Proceedings of the IEEE International Conference on Big Data, pp. 519–
528 (2014). http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

14. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math.
Program. 45(1), 503–528 (1989)

15. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations
aus Dérivées Partielles. Éditions du centre National de la Recherche Scientifique (1963)

16. Mangasarian, O.L.: A finite Newton method for classification. Optim. Methods Softw. 17(5), 913–929
(2002)

17. Nemirovsky, A.S., Yudin, D.B.: Problem complexity and method efficiency in optimization. In:Wiley-
Interscience Series in Discrete Mathematics. Wiley, New York (1983)

18. Nesterov, Y.E.: A method of solving a convex programming problem with convergence rate o(1/k2).
Sov. Math. Doklady 27, 372–376 (1983)

19. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer (2003)
20. Nesterov, Y.E.: Gradient methods for minimizing composite functions. Math. Program. 140(1), 125–

161 (2013)
21. Nocedal, J., Wright, S.: Numerical Optimization, 2nd edn. Springer (2006)
22. Polyak, B.T.: Gradient methods for minimizing functionals. Zhurnal Vychislitel’noi Matematiki i

Matematicheskoi Fiziki 3(4), 643–653 (1963)
23. Salzo, S., Villa, S.: Parallel random block-coordinate forward–backward algorithm: a unified conver-

gence analysis. Math. Program. 66, 1–45 (2021)
24. Shi, W., Ling, Q., Wu, G., Yin, W.: Extra: an exact first-order algorithm for decentralized consensus

optimization. SIAM J. Optim. 25(2), 944–966 (2015)
25. Tseng, P.: OnAccelerated ProximalGradientMethods for Convex–ConcaveOptimization. Department

of Mathematics, University of Washington, Tech. rep. (2008)
26. Wang, P.W., Lee, C., Lin, C.J.: The common-directions method for regularized empirical risk mini-

mization. J. Mach. Learn. Res. 20(58), 1–49 (2019)
27. Zhang, Y., Xiao, L.: DiSCO: distributed optimization for self-concordant empirical loss. In: Proceed-

ings of the Thirty Second International Conference onMachine Learning (ICML), pp. 362–370 (2015)
28. Zhuang, Y., Chin, W.S., Juan, Y.C., Lin, C.J.: Distributed Newton method for regularized logistic

regression. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining
(PAKDD) (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

http://proceedings.mlr.press/v97/lee19e.html
http://proceedings.mlr.press/v97/lee19e.html
http://www.csie.ntu.edu.tw/~cjlin/papers/multicore_liblinear_icdm.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/spark-liblinear/spark-liblinear.pdf

	Limited-memory common-directions method for large-scale optimization: convergence, parallelization, and distributed optimization
	Abstract
	1 Introduction
	1.1 Related work and our contributions
	1.2 Notations and assumptions
	1.3 Organization
	2 Limited-memory common-directions method with optimal convergence rates
	3 Practical limited-memory common-directions method
	3.1 Cost per iteration

	4 Convergence analysis
	5 Implementation details
	5.1 Choices of the common directions
	5.2 Problem structure for efficient implementation
	5.2.1 Summary of cost analysis

	6 Numerical experiments
	7 Multicore parallelization
	7.1 Multicore experiments

	8 Distributed optimization
	8.1 Distributed experiments

	9 Conclusions
	Acknowledgements
	A Proofs
	A.1 Proof of Theorem 1
	A.2 Proof of Proposition 1
	A.3 Proof of Proposition 2
	A.4 Proof of Theorem 2
	A.5 Proof of Theorem 3
	A.6 Proof of Theorem 4
	A.7 Proof of Theorem 5
	References

