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Abstract
We advance the state of the art in Mixed-Integer Linear Programming formulations
for Guillotine 2D Cutting Problems by (i) adapting a previously-known reduction to
our preprocessing phase (plate-size normalization) and by (ii) enhancing a previous
formulation (PP-G2KP from Furini et alli) by cutting down its size and symmetries.
Our focus is the Guillotine 2D Knapsack Problem with orthogonal and unrestricted
cuts, constrained demand, unlimited stages, and no rotation – however, the formulation
may be adapted to many related problems. The code is available. Concerning the set
of 59 instances used to benchmark the original formulation, the enhanced formulation
takes about 4 hours to solve all instances while the original formulation takes 12 hours
to solve 53 of them (the other six runs hit a three-hour time limit each). We integrate,
to both formulations, a pricing framework proposed for the original formulation; the
enhanced formulation keeps a significant advantage in this situation. Finally, in a
recently proposed set of 80 harder instances, the enhanced formulation (with and
without the pricing framework) found: 22 optimal solutions (5 already known, 17
new); better lower bounds for 25 instances; better upper bounds for 58 instances.
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1 Introduction

The problem we focus on in this work is the Guillotine 2D Knapsack Problem with
orthogonal (and unrestricted) cuts, constrained demand, unlimited stages, and no rota-
tion. We will refer to this specific variant as G2KP. The G2KP is a strongly NP-hard
problem [25]. The work also focuses on obtaining optimal solutions for this prob-
lem through Mixed-Integer Linear Programming (MILP). We propose two simple but
effective enhancements regarding a state-of-the-art MILP formulation for the G2KP
(which may also benefit some closely related problem variants).

1.1 Explanation of the problem and some close variants

An instance of the G2KP consists of: a rectangle of length L and width W (hereafter
called original plate); a set of rectangles J̄ (also referred to as pieces) where each
rectangle i ∈ J̄ has a length li , a width wi , a profit pi , and a demand ui . We assume,
without loss of generality, that all such values are positive integers.

TheG2KP seeks tomaximise the profit of the pieces obtained by cutting the original
plate. The guillotine qualifier means every cut always go from one side of a plate to
other; a cut never stops or starts from the middle of a plate. We cut the original plate
into intermediary plates j ∈ J , J ⊇ J̄ , which we further cut following the same rule.

If we do not cut a plate further, then it is either: thrown away as trim/waste for no
profit; or, if it has the same size as a piece, it may also be sold by the piece profit
value. Orthogonal cuts are always parallel to one side of a plate (and perpendicular
to the other). Consequently, any intermediary plate j is always a rectangle, and have
a well-defined l j and w j . Unrestricted cuts mean we are allowed to make horizontal
(vertical) cuts different from the length (width) of a piece. In constrast, restricted cuts
means horizontal (vertical) cuts can only happen at positions that match a piece length
(width), it may also mean that, in addition to this, a piece with matching length (width)
must be extracted from the first child plate of a restricted cut. In this paper, restricted
means only that the position of the cuts is restricted (not that the cut force a posterior
piece extraction), we create and employ the term position-only restricted to keep the
reader aware of what we mean. Solving the position-only restricted problem exactly
is a costly but high-quality primal heuristic for the G2KP.

Constrained demand means we can sell at most ui copies of piece i . The G2KP
with unconstrained demand is not stronglyNP-hard butweaklyNP-hard instead; exact
algorithms of pseudo-polynomial time complexity exist [2]. Consequently, if ui ≥ βi :
∀i ∈ J̄ , where βi is an upper bound on the number of copies of piece i that can be
produced from the original plate, then the instance is probably better solved as an
instance of the unconstrained G2KP instead. We avoid this kind of instances in our
experiments. Unlimited stages means there is no limit to the number of times the
guillotine switches between horizontal and vertical orientations. In the exact k-staged
G2KP, the guillotine is switched at most k − 1 times. Consequently, a 2-staged G2KP
has all cuts in some orientation before any cuts in the other orientation. The non-exact
k-staged G2KP adds one extra stage in which the only cuts allowed are the ones that
trim plates to the size of pieces. The no-rotation qualifier means we never switch
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Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem 675

Non-Guillotine Guillotined Non-Orthogonal Orthogonal

Unrestricted cuts Restricted cuts Unlimited stages Inexact 3-staged

Fig. 1 Examples of valid patterns for most of the discussed problem variants. In Non-Orthogonal, Unre-
stricted cuts, and Restricted cuts, the dashed line indicate the first cut of the pattern. In Inexact 3-staged,
the dashed line separates the three stages

length and width during the cutting process; especially, we cannot sell a plate j as a
piece of length w j and width l j .

If we further qualify the G2KP, we only mean to discard the qualifiers above
that directly conflict with the extra qualifiers, if any. For example, if we refer to the
unconstrained G2KP, then we meant to discard the constrained qualifier but keep the
remaining qualifiers, i.e., no rotation, unlimited stages, as well as guillotined, orthog-
onal, and unrestricted cuts. Figure1 may help to understand some of the discussed
characteristics.

While our work focuses on this specific problem, the enhanced formulation we
present may be readily adapted to, at least, the Guillotine 2D version of the following
problems: theCutting Stock Problem (and theBin Packing Problem); the Strip Packing
Problem; the Multiple Knapsack Problem; the Orthogonal Packing Problem; and the
variant allowing rotation for all previously mentioned problems. See [14] for more
details. We do not define or further discuss these problems or variants in this work.

1.2 Motivation

Guillotine cutting problems are of interest of the industry, especially the wood [22,
31] and glass cutting industries [9, 23], often because of machinery limitations. The
cutting optimization problem proposed in the ROADEF/EURO Challenge 2018 was a
guillotine cutting problem. The challenge was developed in collaboration with Saint-
Gobain Glass France (a reference on flat glass manufacture). See [23] for more details
on this challenge. The vast and growing literature on the subject, pointed out by two
recent surveys [17, 25], is also evidence of such interest.
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676 H. Becker et al.

We focus on MILP as the solving method (instead of ad hoc solutions) because its
adaptability amplifies the value of any enhancements we obtain.

1.3 Contributions and paper outline

The main contributions of this work are: an enhanced MILP formulation based on a
previous state-of-the-art formulation, its proof of correctness, and empirical evidence
of its better performance; a straightforward adaptation of a previously known reduction
procedure for both the original and the enhanced formulations, and empirical evidence
of its positive impact on their performance; finally, we present new upper and lower
bounds, aswell as optimal values, formany recently proposed hard instances from [30].
For such, we reimplement a state-of-the-art MILP formulation and an optional pricing
procedure used by it. This reimplementation allows us to compare both approaches
fully. For reproducibility, the exact version of the code employed in this paper is
available at [3]. However, we suggest using the better documented and maintained
master branch (https://github.com/henriquebecker91/GuillotineModels.jl) if perfect
reproduction is not necessary.

We organise the rest of the paper the following way: Sect. 2 analyses how our
work interacts with the pre-existing literature; Sect. 3 introduces some mathematical
concepts and explains the reduction we adapted from the literature; Sect. 4 describes
our enhanced formulation and briefly explains how it differs from the state-of-the-art
formulation it is based on; Sect. 6 presents our experiments and the empirical results
we derive from them; Sect. 7 delivers our conclusions and suggests future work.

2 Related work

Wedonot intend to provide a full overviewof the literature, insteadwe: refer to surveys;
discuss only closely related works and how they interact with our contributions; and
opportunely point out missing connections between related works.

Two relevant surveys have come out recently. [17] catalogues exact methods and
relaxations for 2D cutting problems including guillotine problems. [25] reviews the
literature of our particular problem at length – there G2KP is referred to as Constrained
2D Cutting or C2DC.Moreover, [25] points out three strategies employed by previous
exact solving methods which cause loss of optimality, i.e., these methods cannot be
considered exact anymore. Our work does not employ any of these three strategies.
One of these strategies is a dominance rule that is valid for the unconstrained case
but not for the constrained case. In 1972, [16] proposed a dominance rule for the
G2KP with unconstrained demand based on the same principle and warned about the
possibility of misusing the rule in the constrained case.

The first MILP formulation dealing with guillotine cuts and unlimited stages was
proposed by [5] in 2008. The problem considered by [5] is the Strip Packing Problem1,

1 The Strip Packing Problem is a two-dimensional cutting/packing problem in which the pieces do not
have profit values and the original plate does not have a predefined length (‘height’ in the context of the
problem); the objective is to minimize the height of the original plate while packing every piece.
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but adapting the formulation to the knapsack variant would not change its fundamen-
tals. Previously, [18] had proposed two MILP formulations for 2-staged G2KP. As
noted by [4], modeling k-staged cuts for k ≥ 3 (unlimited stages included) was con-
sidered difficult at the time. The size of most k-staged formulations is exponential on
the number of stages (i.e., k). The formulation of [5] had about 3n4/4 variables and
2n4 constraints (where n is the number of pieces) it also employed, according to the
authors, a “very loose linear relaxation” due to which “the practical interest of this
formulation is still limited”. The characterization of guillotine cuts proposed by [5]
seems to have been simultaneously proposed by [24].

The first MILP formulation specifically for the G2KP was proposed by [14] in
2016. An extended version of [14] appears in [29] (a PhD thesis). Their formulation
has pseudo-polynomial size,O((L+W )×L×W ) variables andO(L×W ) constraints,
and its relaxation provides a stronger bound than [5]. It was the first formulation able to
solve medium-sized instances of the literature. Besides the formulation, [14] proposes
two reductions and one pricing procedure; all of these are reimplemented by our
work. They also present and prove a theorem to assure the correctness of one of their
reductions (Cut-Position). A similar theorem and proof appear in [27].

In this work, we propose an enhanced formulation based on the one from [14] men-
tioned above. A significant advantage of our enhancement is to avoid the enumeration
of any cuts after themiddle of a plate. This advantage appears inmanyworks since [16].
Recently, [11] adapted a formulation for the one-dimensional Cutting Stock Problem
to obtain this same advantage. However, the way [11] changes their formulation to
obtain this advantage is not the same as our approach.

Themost recentMILP formulations for theG2KP come from threeworks byMartin
et alii [19–21]. These formulations are compared against the formulation of [14]. We
base our enhanced formulation on [14] and also compare against it. The formulations of
[19–21] have a looser relaxation bound compared to [14], but perform better than [14]
in instances for which [14] has a much larger number of variables. Considering the
instances used in [14], our enhanced formulation dominates the formulation of [14].
Our formulation also dramatically improves the running times of instances inwhich the
formulation of [14] performed worse than [19–21] (e.g., the gcut1–gcut12 instances).
Consequently, while it may be interesting for completeness sake, we do not compare
against the formulations proposed in [19–21].

3 Notation, discretization, and plate-size normalization

The performance of solving methods for cutting and packing problems often heavily
depends on the number of (cut/packing) positions considered. Since the seminal works
of [8] and [16], solving methods avoid considering each possible position, but instead
consider only a subset necessary to guarantee optimality. The literature includes many
such subsets, which are often referred to as discretizations. The most common way of
computing these discretizations are Dynamic Programming (DP) algorithms. These
DP algorithms usually only take a small fraction of the running time, but the size of
the position subset outputted by them strongly affects the time spent by the rest of the
solving method.
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Both [14] and our enhanced formulation have one constraint for each attainable
distinctly-sized plate and one variable for each potential cut over each of these plates.
Therefore, eliminating a single cutting position has the following effects: (i) it removes
one variable for each distinctly-sized plate that allowed that cutting position; (ii) if
that cutting position was the only way to produce some distinctly-sized plates2, then
it also removes the constraints associated with these plates; (iii) if (ii) excludes one or
more constraints/plates, then it also excludes all variables representing possible cuts
over the excluded plates; (iv) finally, if (iii) eliminates one or more variables/cuts, then
it may trigger (ii) again (i.e., other plates stop being attainable), cyclically.

In this work, the only cut subset (discretization) considered are the canonical dis-
sections of [16], hereafter referred to as normal cuts instead. We acknowledge the
existence of stricter discretizations: the raster points of [26, 28], the regular normal
patterns of [7] (named this way by [10]), and the Meet-in-the-Middle (MiM) of [10].
The reasons for our choice of discretization are numerous: it works well with the
Plate-Size Normalization procedure we describe below; it is the same discretization
employed by [14] (from which we base our enhanced formulation on); The main gain
of MiM is reducing the number of cut positions after the middle of a plate, which our
enhanced formulation already discards anyway; the regular normal patterns compute
a distinct subset-sum for each pair of plate and piece, which we consider excessive
(there may exist hundreds of thousands of intermediary plate possibilities); finally,
the raster points complicate our proofs and our Plate-Size Normalization weakens its
benefits.

The set O = {v, h} denotes the cut orientation: v is vertical (parallel to length,
perpendicular to width); h is horizontal (parallel to width, perpendicular to length).
Let us recall that the demand of a piece i ∈ J̄ is denoted by ui . If we define the set of
pieces fitting a plate j as I j = {i ∈ J̄ : li ≤ l j ∧ wi ≤ w j }, we can define N jo (i.e.,
the set of the normal cuts of orientation o over plate j) as:

N jo =
{ {q : 0 < q < l j ; ∃ni ∈ [0 . . ui ], ∀i ∈ I j , q = ∑

i∈I j ni li } if o = h,

{q : 0 < q < w j ; ∃ni ∈ [0 . . ui ], ∀i ∈ I j , q = ∑
i∈I j niwi } if o = v.

(1)

The sets defined above never include cuts at the plate extremities (i.e., 0, l j for
N jh , and w j for N jv). Any of these cuts will always create (i) a zero-area plate and
(ii) a copy of the plate that is being cut. Consequently, these cuts only add symmetries
and may be disregarded.

The set J can now be defined by the following procedure: the original plate (plate 0)
is added to J , then for every plate j ∈ J every cut in N jv ∪ N jh is applied to j , and
each child generated is added to J if it can fit at least one piece. The process finishes
when every plate in J was considered for cutting, and no new plates were generated.
Such procedure guarantees each piece i ∈ J̄ will always be present in J unless the
piece does not fit the original plate (in which case it is irrelevant to the problem and
could be removed a priori).

2 Note that the same cutting position, when applied to distinctly-sized plates, may generate different chil-
dren.
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The goal of the Plate-Size Normalization procedure we propose is to reduce the
number of distinctly-sized plates considered. Fewer distinctly-sized plates mean fewer
constraints and trigger the same cascading effect described by items (ii)–(iv) above.
The property exploited by the procedure is already known and similarly exploited
by [1] and by [12]. We state the property as:

Proposition 1 Given a plate j ∈ J , l j may always be replaced by l ′j = max{q : q ∈
Nkh, q ≤ l j } in which k ∈ J , wk = w j , but lk > l j , without loss of optimality. The
analogue is valid for the width.

In other words, if increasing the length (width) of plate j reveals that the original
length (width) did not match a normal cut position in the enlarged plate, then plate j
may be replaced by a shorter plate in which the length (width) is reduced to the
largest normal cut position smaller than the original length (width). For example,
given l = [5, 7], w = [3, 2], a 13x3 plate may be reduced to 12x3 (13 does not match
a normal cut while 5 + 7 = 12 does), and a 13x2 plate may be reduced to 7x2 (13
does not match a normal cut while 7 does). We do not replicate any proof here. We
can then define:

Definition 1 The length of a plate j is considered normalized if, and only if, l j = l ′j .
The analogue is valid for the width. The size of a plate is normalized if, and only if,
both its length and its width are normalized.

The Plate-Size Normalization procedure we propose consists only of replacing
every non-size-normalized plate enumerated by their normalized counterpart. The
number of distinctly-sized plates diminishes because the procedure replaces many
plates of distinct but similar dimensions by a single plate. The only extra effort added
by Plate-Size Normalization consists of binary searches over N jo sets for each plate j ,
and thesemay be carried out without increasing the overall complexity, given the setup
of O(LW ) vectors of size O(L + W ); a setup step which also does not increase the
overall complexity. However, in our implementation, we opted to increase the overall
complexity from O(L2W + LW 2) to O(L2Wlog(L) + LW 2log(W )) because the
fraction of time spent on the enumeration was not enough to justify the memory and
code complexity trade-off. In practice, even if ourworst-case complexity increases, the
time spent decreased because the actual number of plates (denoted in the complexity
by O(LW ) became more distant from the worst-case. A suitable Nko set for each
plate j was already computed by the plate enumeration procedure before introducing
the Plate-Size Normalization (no extra effort required).

Remark 1 If a normal cut divides a size-normalized plate, then the dimension perpen-
dicular to the cut, in the first child, is normalized. The dimension parallel to the cut
in the first child, and both dimensions of the second child, are not guaranteed to be
normalized.

Example 1 Consider three pieces with l = [5, 7, 9], w = [6, 4, 11], u = [3, 1, 1], and
a plate of dimensions 15x15. The plate dimensions are already normalized. The plate
length matches stacking the three copies of the first piece. The plate width matches
laying side-by-side the other two pieces. An horizontal cut at length 7 is a normal cut
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Fig. 2 Diagram of 1: a the three copies of the first piece stacked; b the second and third pieces side-by-side;
c both children of a horizontal normal cut over a normalized plate are not normalized themselves

because it matches the length of the second piece. If the cut is done, the width of both
children is not normalized anymore, nor is the length of the second child. The width
of both children is not normalized because the third piece does not fit either child so,
for both children, the largest width a valid packing may reach is 12. The length of the
second child is not normalized because the largest length a valid packing inside the
second child may reach is 7. The dimensions of both children may be normalized to
7x12. This example already shows an immediate gain, instead of creating two new
plate sizes, the enumeration only creates a single new plate type. The cut creates two
copies of this single type of plate.

4 Our changes to Furini’s model

The formulation proposed in [14] is elegant: the pieces are just intermediary plates
that may be sold. Our contribution consists of changes to both the preprocessing step
and to the formulation. These changes significantly reduce the number of variables.
Differently, these changes deepen the distinction between plates and pieces and, conse-
quently, may be regarded as sacrificing some elegance for performance. The essentials
of the formulation remain the same and, for this reason, we consider the model pre-
sented here as an enhanced model, not an entirely new model.

The cut enumeration in [14] excludes some symmetric cuts; that is, if two different
cuts create the same set of two child plates, then the symmetric cut in the second
half of the plate may be ignored. Differently, [8] disregards all cuts after the middle
of the plate because of symmetry. If [14] would do the same as [8] it could become
impossible to trim a plate to the size of a piece. For example, if there was a piece with
length larger than half the length of a plate, and such plate has no normal cut with the
exact length of the needed trim, then the piece could not be extracted from the plate,
even if the piece fits the plate. The goal of our changes is to reduce the number of
cuts (i.e., model variables) by getting closer to the symmetry-breaking rule used in [8]
without loss of optimality.
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Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem 681

4.1 The enhanced formulation

Our changes to the formulation are restricted to replacing the set of integer vari-
ables y j , i ∈ J̄ , with a new set of variables ei j , (i, j) ∈ E, E ⊆ J̄ × J , and
the necessary adaptations to accomodate this change. In the original formulation,
yi denoted the number of times a plate i was sold as the piece i , in this case, the plate
always had the exact size of the piece. Our extraction variables ei j denote a piece i
was extracted from plate j , which size may differ from the size of the piece. The
exact definition of set E is discussed over Sect. 4.2; for the purpose of presenting the
formulation, our intuitive definition of ei j just above is enough. For convenience, we
also define Ei∗ = { j : ∃ (i, j) ∈ E} and E∗ j = {i : ∃ (i, j) ∈ E}. The set O = {h, v}
denotes the horizontal and vertical cut orientations. The set Q jo (∀ j ∈ J , o ∈ O)
denotes the set of possible cuts (or cut positions) of orientation o over plate j .

The parameter a is a byproduct of the plate enumeration process. The value of aoqk j
indicates how many copies of a plate j ∈ J are produced by cutting a plate k ∈ J
with a cut of orientation o ∈ O at position q ∈ Qko. The description of this parameter
in [14] has a typo, as pointed out by [19]: “[...] there is a typo in their definition of
parameter aoqk j , as the indices j and k seem to be exchanged.”.

In a valid solution, the value of xoq j is the number of times a plate j ∈ J is cut with
orientation o ∈ O at position q ∈ Q jo; while the value of ei j is the number of sold
pieces of type i ∈ J̄ that were extracted from plates of type j ∈ J . The plate 0 ∈ J is
the original plate, and it may also be in J̄ , as there may exist a piece of the same size
as the original plate.

max.
∑

(i, j)∈E
pi ei j (2)

s.t.
∑
o∈O

∑
q∈Q jo

xoq j +
∑
i∈E∗ j

ei j ≤
∑
k∈J

∑
o∈O

∑
q∈Qko

aoqk j x
o
qk ∀ j ∈ J , j = 0, (3)

∑
o∈O

∑
q∈Q0o

xoq0 +
∑
i∈E∗0

ei0 ≤ 1 , (4)

∑
j∈Ei∗

ei j ≤ ui ∀i ∈ J̄ , (5)

xoq j ∈ N
0 ∀ j ∈ J , o ∈ O, q ∈ Q jo, (6)

ei j ∈ N
0 ∀(i, j) ∈ E . (7)

The objective function maximizes the profit of the extracted pieces (2). Con-
straint (3) guarantees that for every plate j that was further cut or had a piece extracted
from it (left-hand side), there must be a cut making available a copy of such plate
(right-hand side). One copy of the original plate is available from the start (4). The
amount of extracted copies of some piece type must respect the demand for that piece
type (a piece extracted is a piece sold) (5). Finally, the domain of all variables is the
non-negative integers (6)–(7).
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4.2 The revised variable enumeration

The variable enumeration described in [14] employs some rules to reduce the number
of variables; they are symmetry-breaking, Cut-Position, and Redundant-Cut. The two
last rules are not discussed here; [14] proves their correctness and they do not conflict
with the enhanced model.

The use of the x variables does not change from the original formulation to our
revised formulation – however, the size of the enumerated set of variables changes.
Our revised enumeration does not create any variable xojq in which (o = h ∧ q >

�w j/2�) ∨ (o = v ∧ q > �l j/2�).
The original formulation has variables yi , i ∈ J̄ , while the revised formulation

replaces them with variables ei j , (i, j) ∈ E , E ⊆ J̄ × J . Set J̄ × J is orders of
magnitude larger than J̄ . Consequently, set E must be a small subset to avoid having a
revisedmodel withmore variables than the original. A suitable subset may be obtained
by a simple rule: (i, j) ∈ E if, and only if, packing piece i in plate j does not allow
any other piece to be packed in j .

For the enhanced formulation to have more variables than the original formulation,
|E | > | J̄ | + |{xojq : j ∈ J ∧ o ∈ O ∧ q ∈ Q jo ∧ (o = h ∧ q > �w j/2�) ∨ (o =
v ∧q > �l j/2�)}| must hold, this is, the number of extraction variables must be larger
than the number of pieces plus the sum of the number of cuts after the middle of each
enumerated plate. Unfortunately, there is no closed formula for these sets (except J̄
which is given), what makes necessary to compute the full enumeration to verify the
difference.

4.3 The proof of correctness

The previous section presented a detailed explanation of the changes to the formu-
lation and variable enumeration. This section proves such changes do not affect the
correctness of the model. In [14], only the perfect symmetries described below are
removed. Our changes may be summarized to:

1. There is no variable for any cut that occurs after the middle of a plate.
2. A piece may be obtained from a plate if, and only if, the piece fits the plate, and

the plate cannot fit an extra piece (of any type).

The second change alone cannot affect the model correctness. The original formu-
lation was even more restrictive in this aspect: a piece could only be sold if a plate
of the same dimensions existed. In our revised formulation there will always exist an
extraction variable in such case: if a piece and plate match perfectly, there is no space
for any other piece, fulfilling our only criteria for the existence of extraction variables.
Consequently, what needs to be proved is that:

Theorem 1 Without changing the pieces obtained from a packing, we may replace any
normal cut after the middle of a plate by a combination of piece extractions and cuts
at the middle of a plate or before it.

Proof This is a proof by exhaustion. The set of all normal cuts after the middle of a
plate may be split into the following cases:
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Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem 683

1. The cut has a perfect symmetry.
2. The cut does not have a perfect symmetry.

(a) Its second child can fit at least one piece.
(b) Its second child cannot fit a single piece.

i. Its first child packs no pieces.
ii. Its first child packs a single piece.
iii. Its first child packs two or more pieces.

We believe to be self-evident that the union of item 1,item 2a,items 2(b)i to 2(b)iii is
equal to the set of all normal cuts after the middle of a plate. We present an individual
proof for each of these cases.

Item 1 – The cut has a perfect symmetry. If two distinct cuts have the same children
(with the only difference being the first child of one cut is the second child of the
other cut, and vice-versa), then the cuts are perfectly symmetric. Whether a plate is
the first or second child of a cut does not make any difference for the formulation
or for the problem. If the cut is in the second half of the plate, then its symmetry
is in the first half of the plate. Consequently, both cuts are interchangeable, and we
may keep only the cut in the first half of the plate.

Item 2a – Its second child can fit at least one piece. Proposition 1 allows us to replace
the second child by a size-normalized plate that can pack any demand-abiding set of
pieces the original second child could pack. The second child of a cut that happens
after the middle of the plate is smaller than half a plate, and its size-normalized
counterpart may only be the same size or smaller. So the size-normalized plate
could be cut as the first child by a normal cut in the first half of the plate. Moreover,
the old first child (now second child) have stayed the same size or grown (because
the size-normalization of its sibling), which guarantee this is possible.

Item 2(b)i – Its first child packs no piece. If both children of a single cut do not
pack any pieces, then the cut may be safely ignored.

Item 2(b)ii – Its first child packs a single piece. First, let us ignore this cut for a
moment and consider the plate being cut by it (i.e., the parent plate). The parent
plate either: can fit an extra piece together with the piece the first child would pack,
or cannot fit any extra pieces. If it cannot fit any extra pieces, this fulfills our criteria
for having an extraction variable, and the piece may be obtained through it. The
cut in question can then be disregarded (i.e., replaced by the use of such extraction
variable). However, if it is possible to fit another piece, then there is a normal cut in
the first half of the plate thatwould separate the two pieces, and such cutmay be used
to shorten the plate. This kind of normal cuts may successively shorten the plate
until it is impossible to pack another piece, and the single piece that was originally
packed in the first child may then be obtained employing an extraction variable.

Item 2(b)iii – Its first child packs two or more pieces. If the first child packs two or
more pieces, but the second child cannot fit a single piece (i.e., it is waste), then the
cut separating the first and second child may be omitted and any cuts separating
pieces inside the first child may still be done. If some of the plates obtained by such
cuts need the trimming that was provided by the omitted cut, then these plates will
be packing a single piece each, and they are already considered in item 2(b)ii.
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Item 2(b)iii

Fig. 3 Theorem 1 case examples. Item 1 and item 2(b)i are excluded given their simplicity. In all examples,
the parent plate is 15x15. In the example of item 2a, the cut would happen after the middle of the plate, but
then the pieces of the second child can be packed in the first child instead. In the example of item 2(b)i„
both cuts happen after the middle of the plate, and there are no other pieces; however, as no piece may be
extracted from the leftovers, then there is an extraction variable available. In the example of item 2(b)ii, we
assume a 2x7 piece exists but we do not intend to obtain it from the plate; therefore, the extraction variable
from the previous case does not exist; however, the 2x7 piece allows us to make a cut just to reduce the
plate length and, for the size of the second child, an extraction variable is available. Finally, in the example
of item 2(b)iii, which cut happens first may be changed, as there is no piece packed in the subplate that
would originally become the second child

Given the cases cover every cut after the middle of a plate, and each case has a
proof, then follows that Theorem 1 is correct. ��

5 The pricing phase

The pricing procedure described in [14, 29] was reimplemented by us. No significant
changes were made to the procedure. As our experiments include multiple compar-
isons involving this procedure, a summary of the procedure is presented below. For
simplicity, we consider the procedure takes an already built model (from either the
original formulation or our enhanced version), and any previous reductions mentioned
were already applied at this point.

1. Fix to zero all variables representing horizontal (vertical) cuts that do not match a
piece length (width)..

2. Remove all integrality constraints and solve the relaxed model to obtain an upper
bound for the position-only restricted problem.

3. Obtain a lower bound from an inexact 2-staged heuristic (see [12, 14]).
4. Employ the reduced costs of the model variables, the position-only restricted upper

bound, and the heuristic lower bound to price-out variables (more details below)
by fixing them to zero.
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5. Restore the integrality constraints, warm-start with the heuristic solution from
(step item 3), solve the model (currently, a reduced MILP model for the position-
only restricted variant of the problem) and obtain a probably better lower bound.
While unlikely, the heuristic may have already provided an optimal solution for the
position-only restricted problem.

6. Remove all integrality constraints again.
7. DO solve the relaxed model, compute the reduced cost of the fixed variables, and

unfix a subset of the variables with positive reduced cost WHILE variables with
positive reduced cost exist. This loop is responsible for reintroducing any variables
representing unrestricted cuts needed to solve the unrestricted variant back to the
model. More details on the subset of the variables selected are below.

8. Employ the reduced costs and the upper bound, both obtained from the last solve
in the loop, as well as the lower bound from the MILP solve of the position-only
restricted model (item 5), to price-out variables (similarly to what was done in
item 4).

9. Warm-start the model with the solution from item 5.
10. Restore integrality constraints, remove all variables yet fixed to zero, and return

the model.

In item 4 and item 8, a variable is priced out if �reduced_cost(var) + ub� ≤ lb,
where the upper and lower bounds are the ones available at the corresponding step. The
rationale behind this requirement is straightforward. If forcing var to assume value 1
is enough to reduce the upper bound from the relaxation to less than the lower bound,
then that variable (guillotine cut) cannot be used to provide a solution better than the
current lower bound. Note any variables necessary to produce the current lower bound
are kept.

The criteria for choosing the subset of variables in each iteration of item 7 takes
into account two parameters: nmax and p̄. If any variables have reduced cost above p̄
they define the subset; otherwise, the first nmax variables with positive reduced cost
define the subset. The original description of the procedure does mention an ordering
of the variable pool, so what constitutes the first nmax variables is not well-defined.
We chose to interpret that the nmax variables of largest reduced cost are selected. Both
parameters are automatically computed for each instance: nmax is one-fifth of the sum
of the demand vector u, and p̄ is one-fourth of the sum of the profits for every piece
(taking demand into account).

The original description of the procedure does not indicate if, during the process,
the variables are fixed and unfixed, or removed and added back. Preliminary tests
indicated that the fix-and-unfix approach had better performance, so we used it in our
experiments. In the last step, all variables yet fixed to zero are removed.

6 Experimental results

There are three formulation implementations that provide data used in our compar-
isons: original refers to the implementation presented in [14, 29]; faithful refers to our
reimplementation of original; enhanced refers to our enhanced formulation presented
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in Sect. 4. The original implementation was not available3 Consequently, all data rel-
ative to original presented in this work comes from [29]. Both faithful and enhanced
data were obtained by runs using the setup described in Sect. 6.1.

Each formulation may be modified by applying any combination of the following
optional procedures: priced – refer to the pricing procedure described in [14, 29] 5
(same as [14, 29]); normalized – the plate-size normalization procedure described
in Sect. 3; warmed – the MIP models solved were warm-started with a solution
found by a previous step; Cut-Position and Redundant-Cut – are reduction proce-
dures described in [14, 29], that may be enabled and disabled individually. For each
experiment described in the next sections, if we do not mention a procedure, then it is
disabled. The term restricted priced refers to the model for the position-only restricted
version of the problem that is solved inside the pricing procedure mentioned above.
Consequently, for each run of a priced variant, therewill be a restricted priced runwith
the same combination of optional procedures. The differences between the restricted
priced and the (unrestricted) priced models are mainly that: (i) the restricted priced
model never has a horizontal (vertical) cut that does not match the length (width) of a
piece; (ii) the restricted priced model is MIP-started with the solution of an heuristic
(described in [14]) while the priced model is MIP-started with the solution of the
restricted priced model; (iii) the distinct solutions used to MIP-start the respective
models are also used as the lower bound for the pricing procedure (details in [14]).

Without the set ofmodel variables (guillotine cuts) removed by the pricing, plates of
some dimensions may become impossible to obtain. These plates are not necessary to
obtain an optimal solution; otherwise, the pricing could not have removed all variables
that led to them.Most of these plates could be further cut, but the value of the variables
associated with such cuts can now only be zero and, therefore, these variables can be
removed too. This thinning effect may be recursive, as each newly removed variable
may render some plate sizes unobtainable, similarly to what is described in Sect. 3.
Hence, the pricing phase uncovers a set of unnecessary variables larger than the set it
directly removes. Our preliminary experiments have shown that removing this larger
set from the model, instead of just the variables directly removed by the pricing phase,
has basically no effect on the total time; even if, on average, they account for 65% of
the model variables after the pricing. Consequently, we believe the solver can detect
such variables and remove them by itself. However, as it is computationally cheap to
detect and remove the larger variable set, we decided to always apply this procedure
after the pricing phase, and present a model size that better corresponds to reality in
the results.

Each experiment helps to substantiate choices taken in the subsequent experiments:
Sect. 6.2 provides evidence that faithful is on par with original, allowing us to use it
as a replacement; Sect. 6.3 compares faithful to enhanced and shows the value of
our contributions (namely, the normalize procedure and the enhanced formulation);
Sect. 6.4 applies the methods with best results in the last experiment to prove new
optimal values and bounds for harder instances.

3 We asked the authors of [14] for the original implementation and Dimitri Thomopulos informed us it
was not available.
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6.1 Setup

Every experiment in this work uses the following setup unless stated otherwise. The
CPU was an AMD® RyzenTM 9 3900X 12-Core Processor (3.8GHz, cache: L1 –
768KiB, L2 – 6MiB,L3 – 64MiB) and 32GiBofRAMwere available (2 xCrucial Bal-
listix Sport Red DDR4 16GB 2.4GHz). The operating system used was Ubuntu 20.04
LTS (Linux 5.4.0-42-generic). Hyper-Threading was disabled. Each run executed on
a single thread, and no runs executed simultaneously. The computer did not run any
other CPU bound task during the experiments. The exact version of the code used
is available online (https://github.com/henriquebecker91/GuillotineModels.jl/tree/0.
2.4), and it was run using Julia 1.4.2 [6] with JuMP 0.20.1 [13] and Gurobi 9.0.2 [15].
The following Gurobi parameters had non-default values: Threads = 1; Seed = 1;
MIPGap = 10−6 (to guarantee optimality); and TimeLimit = 10800 (i.e., three
hours). For the root node relaxation of the final built model, the barrier algorithm
was employed (Method = 2). Whenever the run included the pricing phase, the
multiple continuous relaxations from such phase were solved by the dual simplex
algorithm Method = 1. In preliminary experiments, barrier took less time than dual
simplex to solve a model relaxation from scratch. However, if a previous base can be
exploited, as it is the case during the pricing phase, choosing dual simplex over barrier
made the pricing phase take less time.

6.2 Comparison of faithful against original

Without a reimplementation of original, any comparison would need to be made
directly against the data in [29]. However, such comparison would hardly be fair, as it
compares across machines, solvers, and programming languages. Also, for example,
it does not allow us to assess the benefits of applying the plate-size normalization
procedure to the original formulation. The purpose of this section is to show that
faithful may be fairly used in place of original. For this purpose, Table1 compares
the number of model variables and number of plates of the diverse model variants
presented in [14, 29]. The chosen dataset is, therefore, the same as the one used in
these works for the comparison to be possible. The dataset aggregates 59 instances of
the previous literature from many distinct sources, all instances are either artificially
generated, or of undisclosed origin. The number of enumerated plates has a strong
correlation to the number of constraints in the model. Both [14] and [29] present the
number of plates and not the number of constraints. To simplify the comparison, we
do the same.

The Priced PP-G2KP runs in [14, 29] had three time limits of one hour to solve:
the restricted model (i.e., obtaining a lower bound); the iterative variable pricing (i.e.,
obtaining an upper bound); the final model. Such configuration always generates a
final model. However, it also has two drawbacks: (i) the computer performance may
define the answer given in the first two phases, affecting the size of the final model
(and making it harder to make a fair comparison); (ii) if the position-only restricted
model, or the iterated variable pricing, cannot be done in one hour, then the final model
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Table 1 Comparison of faithful against original. The sum of columns T. L. (Time Limit) and E. R. (Early
Return) gives the number of instances excluded from consideration in the respective row.Column T. L. has
the number of instances for which faithful reached the time limit without generating the respective model
variant – these instances are:Hchl7s, okp2, and okp3.The columnE. R. has the number of instances forwhich
our reimplementation found an optimal solution before generating the respective model variant.ColumnsO.
#v and O. #p refer to original. Column O. #v (O. #p) presents the sum of variables (plates) for the instances
in which faithful generated a model.Columns F. %v and F. %p refer to faithful. Column R. %v (R. %p)
has the sum of variables (plates) in the generated models, as a percentage of the quantity obtained by the
original implementation

Variant T. L. E. R. O. #v F. %v O. #p F. %p

Complete PP-G2KP 0 0 156,553,107 100.00 1,882,693 100.00

Complete +Cut-Position 0 0 103,503,930 99.99 1,738,263 100.01

Complete +Redundant-Cut 0 0 121,009,381 109.94 1,882,693 100.00

PP-G2KP (CP + RC) 0 0 74,052,541 120.05 1,738,263 100.01

Restricted PP-G2KP 0 0 5,335,976 99.28 306,673 99.99

Priced Restricted PP-G2KP 0 1 3,904,683 102.20 305,690 99.99

Priced PP-G2KP 3 7 14,619,460 31.92 1,642,382 25.55

will probably hit the time limit too – in [14], every run that hits one of the two first
time limits also hits the third time limit. We chose to use a single three-hour time limit.

Table 1 references the names used in [14, 29]. The Complete PP-G2KP is the
formulation with all optional procedures disabled, while the PP-G2KP mean both
Cut-Position and Redundant-Cut are enabled. Restricted PP-G2KP and its priced
version are solved inside Priced PP-G2KP runs. If the lower and upper bounds found
during pricing are the same, then the optimal solution was found before generating the
final model. The instances in which this happened for an unrestricted solution are 3s,
A1s, CU1, CU2, W, cgcut1, and wang20. The instance A1s presented this behaviour
already in the pricing of the position-only restricted model.

The following conclusions can be derived from Table 1. All variants, except Priced
PP-G2KP, are within±0.01% of the expected number of plates (and, consequently, of
constraints). The Complete PP-G2KP, Complete +Cut-Position, and Restricted PP-
G2KP are within ±1% of the expected number of variables. The number of variables
in bothComplete +Redundant-Cut and PP-G2KP (CP + RC) is 10 ∼ 20% larger than
expected. Our reimplementation of Redundant-cut reduction seems responsible for
both deviations. However, it follows closely the description given in [29]. The number
of variables and plates in Priced variants is not entirely deterministic. The number of
variables of Priced variants is either slightly above (+2%) or lower (−6 ∼ 68%).

For all non-priced variants, the fraction of the running time spent in the model gen-
eration is negligible. Consequently, the comparison presented in Table 1 is sufficient.
We cannot say the same for the priced variants. [14, 29] does not report the size of
the multiple LP models solved inside the iterative pricing (a phase of the pricing). For
instances in which original and faithful executed all phases of pricing and solved the
final model, the original spent 34.35% of its time in the iterative pricing phase, while
faithful spent 61.69%. It is hard to pinpoint the source of this discrepancy. One possible
explanation is that, in original, other phases took more time than they took in faithful.
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For example, faithful uses the barrier algorithm for the root node relaxation of the
final model, which reduces the percentage of time spent in this phase. Nevertheless,
for the subset of the instances aforementioned, the total time spent by faithful was
about 13% of the time spent by original. While the difference between machines and
solvers does not allow us to infer much from that figure, we believe that the magnitude
of the difference guarantees that we are not making a gross misrepresentation.

6.3 Comparison of faithful against enhanced

The primary purpose of this section is to evaluate our contributions to the state of the
art. Our contributions are the normalize reduction (i.e., the plate-size normalization
presented in Sect. 3) and the enhanced formulation (presented in Sect. 4.1). The state
of the art consists in a formulation (Complete PP-G2KP), two reductions (Cut-Position
and Redundant-Cut), and a pricing procedure presented in [14, 29]. In this section,
we use our reimplementation of Complete PP-G2KP named faithful (to distinguish
from the data of the original). We also reimplemented the reductions and the pricing
procedure, but as enhanced may also enable them, we avoid labelling these procedures
as faithful as to avoid confusion.

The faithful and enhanced formulations cannot be combined. However, both
allow enabling any combination of the optional procedures. The only exception is
Redundant-Cut, which is unnecessary for enhanced and, therefore, never applied to it.
Outside of this exception, in this section, Redundant-Cut and Cut-Position are always
enabled. These reductions never increase the number of variables (or constraints), cost
a negligible amount of computational effort, and were already discussed in [14, 29].

We also examine the effects of warm-starting the non-priced model. The deter-
ministic heuristic used to MIP-start the non-priced models is the same used in the
restricted priced model solved inside the pricing procedure.

Considering the data from Table2 we can state that:

1. enhanced solves more instances than faithful (using at most 24% of its time);
2. the number of variables of ‘Enhanced’ is almost the same as ‘Priced F. +N. +W.’;
3. between ‘Enhanced’ and ‘Priced F. +N. +W.’ the former has better results;
4. normalize further reduces variables by 14 ∼ 32% and plates by 37 ∼ 65%;
5. MIP-starting enhanced makes its slightly slower in 52 instances;
6. MIP-starting enhanced saves more than one hour in the other 7 instances;
7. any benefit from MIP-start in ‘F. +N. +Warming’ was negated by its timeouts;
8. applying pricing to faithful is positive overall but loses one solved instance.

Considering the data from Table3 we can state that:

1. both E and H phases are almost negligible (at most 2% with H in enhanced);
2. together the RP and IP phases account for 74.5 ∼ 83.5%;
3. RP and IP swap percentages between enhanced and faithful;
4. faithful shows some overhead in all phases strongly affected by model size.
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Table 2 Comparison of faithful vs. enhanced over the 59 instances used in [29]. Themeaning of the columns
follow: T. T. (Total Time) – sum of the time spent in all instances including timeouts, in seconds; #e (early)
– number of instances in which pricing found an optimal solution (and, consequently, did not generate a
final model); #m (modeled) – number of instances that generated a final model; #s (solved) – number of
solved instances; #b (best) – number of instances that the respective variant solved faster than any other
variant; S. T. T. (Solved Total Time) – same as Total Time but excluding runs ended by time or memory
limit; #variables (#plates) – sum of the variables (plates) in all generated final models (see column #m).
The first row (Faithful) has two runs that ended in memory exhaustion. We count the time of these runs as
they were timeouts

Variant T. T. #e #m #s #b S. T. T. #variables #plates

Faithful 106,057 – 59 53 0 41,257 88,901,964 1,738,366

Enhanced 25,538 – 59 58 2 14,738 3,216,774 231,836

F. +Normalizing 60,078 – 59 56 0 27,678 60,316,964 610,402

E. +Normalizing 14,169 – 59 59 52 14,169 2,733,125 145,157

F. +N. +Warming 60,542 – 59 56 0 28,142 60,316,964 610,402

E. +N. +Warming 9,778 – 59 59 4 9,778 2,733,125 145,157

Priced F. +N. +W. 49,919 8 50 55 0 6,719 3,210,857 174,214

Priced E. +N. +W. 9,108 8 51 59 1 9,108 600,778 64,904

Table 3 Fraction of the total time spent in each step (only runs that executed all steps). Time is the sum of
all time (in seconds) spent in the 47 instances that had all phases executed by all four variants considered.
These are the same 47 indicated in row Priced F. +N. +W. of Table2. From the 59 instances dataset, 4
had timeout (Hchl4s, Hchl7s, okp2, and okp3), and 8 found an optimal solution inside pricing (3s, A1s,
CU1, CU2, W, cgcut1, okp4, and wang20). All remaining columns present percentages of the time spent
in a specific phase: E – enumeration of cuts and plates (and all reductions); H – restricted heuristic used
to warm-start the restricted priced model; RP – restricted pricing (not including the heuristic time); IP –
iterative pricing; FP – final pricing; LP – root node relaxation of the final model; BB – branch-and-bound
over the final model

Variant Time E % H % RP % IP % FP % LP % BB %

Priced Faithful +N. +W. 6,632 0.12 0.38 26.16 57.36 2.91 4.56 8.29

Priced Enhanced +N. +W. 1,178 0.03 2.18 50.89 23.66 0.46 2.70 19.95

6.4 Evaluating enhanced against harder instances

The purposes of the experiment described in this section are: (i) to show the limitations
of the enhanced formulation against more challenging instances; (ii) to provide better
bounds and new proven optimal values for such instances.

[30] proposes a set of 80 hard instances to test the limitations of their bounding
procedures; we use these instances in this section. The instances were artificially
generated and are divided in four classes of 20 instances each. The dataset focuses
on two characteristics: (i) the area of the pieces is small compared to the area of the
original plate (the average ratio vary between 1.6 and 5%); (ii) each class is defined by
the shape of the original plate, and the likely shape of the randomly generated pieces.
The original plates of the first two classes have one dimension two or four times larger
than the other dimension. In the first class, the pieces are likely to be larger in the same
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Table 4 Summary table for the instances proposed in [30]. The columns are: C. – instance class (described
in [30], 20 instances each); Variant – the solving method employed; #m (modeled) – number of instances
in which the model was built before timeout; Avg. #v and Avg. #p – the average number of variables and
plates in the #m instances that generated a final model for the respective variant; T. T. (Total Time) – sum
of the time spent in all instances in seconds, including timeouts; #s (solved) – number of instances solved;
Avg. S. T. (Avg. Solved Time) – as total time but excludes timeouts and divides by #s. Averages were used
instead of simple sums because the very different number of generated and solved models made the sums
misleading

C. Variant #m Avg. #v Avg. #p T. T. #s Avg. S. T.

1 Not Priced 20 1,787,864.55 22,316.50 172,574 5 2,114.85

Restricted Priced 13 467,692.15 17,139.00 180,051 5 3,610.29

Priced 5 264,315.80 11,978.40 196,733 3 4,377.77

2 Not Priced 20 1,533,490.70 18,638.50 167,973 5 1,194.68

Restricted Priced 20 453,159.70 18,638.30 155,184 8 3,198.11

Priced 8 394,613.88 9,735.50 178,812 4 1,503.01

3 Not Priced 20 2,895,300.75 33,249.40 171,155 5 1,831.11

Restricted Priced 10 431,913.00 15,895.80 174,569 5 2,513.80

Priced 5 372,597.00 13,287.80 179,712 4 1,728.08

4 Not Priced 20 3,201,374.45 35,197.10 167,776 7 3,910.89

Restricted Priced 10 497,802.20 17,011.00 197,047 2 1,323.65

Priced 2 211,093.00 14,227.00 199,477 2 2,538.79

dimension the original plate is larger; while, in the second class, the pieces are likely
to be larger in the dimension the original plate is shorter. The original plates of the
last two classes are squares. The pieces of the third class have, in average, the same
dimensionwith double the size of the other; while, in the fourth class, half of the pieces
follow the previous distribution, and the other half invert the favored dimension.

Only two configurations were selected for this experiment, the priced and non-
priced versions of enhanced with Cut-Position, normalize, and MIP-start enabled.
We also present the results for the restricted priced variant because it executes inside
priced (the same reductions apply to it). Table4 presents a summary of all runs, and
Tables 5, 6, 7, and 8 present the improved bounds and solved instances.

For this experiment,Gurobiwas allowed to use the 12 physical cores of ourmachine.
Gurobi distributes the effort of the B&B phase equally among all cores. Solving an
LP (as a root node relaxation, or not) calls barrier, primal simplex, and dual simplex.
Each of the simplex methods uses a single thread, while barrier uses all remaining
cores, and Gurobi stops when the first of them finishes.

Concerning the data from Table4, we want to highlight some unexpected results:
(i) the total number of instances solved by the restricted priced was slightly smaller
than non-priced, even with non-priced solving the harder unrestricted problem; (ii)
many runs reached time limit without solving the continuous relaxation of the position-
only restrictedmodel (necessary for creating restricted priced model); (iii) non-priced
solved more instances than priced in all cases. It is worth noting that the priced variant
could have been considered the best configuration in the previous dataset, as its total
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Table 5 Instances solved (position-only restricted or unrestricted) or with improved bounds. Stopped with
uselessly large upper bound. Value discarded to avoid breaking table formatting. We group lower and upper
bounds that are valid for the unrestricted problem. Column RP UB (restricted priced upper bound) is kept
separate as it is not a valid bound for the unrestricted problem. Bold indicates the best unrestricted bounds.
For the same instance and variant, if the LB and the UB are the same, both values are underlined. The
instance names follow the pattern Class_L_W_n_seed. The sub-headers mean: RP – Restricted Priced
(solved inside P runs); P – Priced; NP – Not Priced; V&U – obtained by Velasco and Uchoa in [30]

Instance Lower bounds for unrestricted RP UB Upper bounds for Unr.
RP P NP V&U P NP V&U

P1_100_200_25_1 27,251 27,251 27,251 27,251 27,251 27,251 27,251 27,340

P1_100_200_25_2 25,090 25,090 25,090 24,870 25,090 25,403 25,389 25,522

P1_100_200_25_3 25,730 25,730 25,730 25,730 25,730 25,974 25,909 26,088

P1_100_200_25_4 26,732 26,896 26,896 26,769 26,732 26,896 26,896 27,051

P1_100_200_25_5 26,152 – 26,152 25,772 26,565 – 26,617 26,857

P1_100_200_50_1 28,388 – 28,440 28,388 28,504 – 28,440 28,558

P1_100_200_50_2 26,276 26,276 26,276 26,276 26,276 26,276 26,276 26,326

P1_100_200_50_3 27,192 – 27,192 27,165 27,536 – 27,483 27,679

P1_100_200_50_4 28,058 – 28,095 27,977 28,345 – 28,340 28,388

P1_100_200_50_5 27,722 – 27,722 27,603 27,930 – 27,722 28,009

P1_100_400_25_1 53,247 – 53,008 53,904 54,540 – 54,707 55,038

P1_100_400_25_2 – – 41,275 44,581 – – 47,091 47,097

P1_100_400_25_3 42,748 – 46,222 47,455 ∗ – 49,371 49,473

P1_100_400_25_4 – – 38,567 40,517 – – 46,069 46,078

P1_100_400_25_5 44,482 – 53,220 53,205 ∗ – 54,120 54,063

P1_100_400_50_1 – – 53,831 55,856 – – 56,897 57,074

P1_100_400_50_2 – – 40,440 48,373 – – 51,754 51,893

P1_100_400_50_4 – – 55,107 52,708 – – 55,654 55,661

P1_100_400_50_5 – – 53,749 53,502 – – 55,005 55,454

∗Stopped with uselessly large upper bound. Value discarded to avoid breaking table formatting

time was shorter than non-priced, and both solved all instances. Ideally, the pricing
procedure would significantly reduce the size of the model and, consequently, the root
node relaxation and B&B phases would take much less time to solve. However, the
gain in decreasing the size of the (already reduced) enhanced model further does not
seem to compensate for the cost of solving hard LPs more than once. Also, previous
sections have shown that reducing the model size does not guarantee that the running
time will be reduced by the same magnitude.

The purpose of Tables 5, 6, 7, and 8 is to allow querying the exact values for specific
instances. Even so, there are some gaps to fill. For the instances presented in Tables 5,
6, 7, and 8, the min / mean / max gap between the heuristic lower bound and the final
lower bound were: 0.38 / 18.08 / 37.03 (non-priced); 0.68 / 20.62 / 37.29 (restricted
priced); 9.17 / 19.38 / 32.24 (priced). In other words, no solution, or best bound, was
given by the heuristic, and most of the time, its solution was considerably improved.
For the reader convenience, we can also summarize that our experiment has: proved 22
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Table 6 See Table 5 for reference

Instance Lower bounds for unrestricted RP UB Upper bounds for Unr.
RP P NP V&U P NP V&U

P2_200_100_25_1 21,494 21,494 21,494 21,494 21,494 21,494 21,494 21,494

P2_200_100_25_2 25,244 25,413 25,413 25,413 25,244 25,413 25,413 25,648

P2_200_100_25_3 25,282 25,397 25,397 25,397 25,282 25,640 25,647 25,723

P2_200_100_25_4 25,729 – 25,734 25,437 26,181 – 26,239 26,898

P2_200_100_25_5 26,211 26,413 26,413 26,220 26,211 26,728 26,413 26,898

P2_200_100_50_1 25,679 – 25,626 25,627 26,233 – 26,282 26,447

P2_200_100_50_2 27,801 27,801 27,801 27,789 27,801 27,801 27,801 27,943

P2_200_100_50_3 27,435 27,453 27,453 27,453 27,435 27,584 27,579 27,596

P2_200_100_50_4 27,395 – 27,439 27,362 27,668 – 27,704 27,718

P2_200_100_50_5 29,386 29,386 29,386 29,386 29,386 29,386 29,386 29,386

P2_400_100_25_1 49,327 – 49,947 49,026 50,218 – 50,365 51,006

P2_400_100_25_2 48,312 – 48,542 47,773 49,268 – 49,315 49,908

P2_400_100_25_3 46,970 – 46,860 45,406 47,113 – 47,204 48,938

P2_400_100_25_4 51,051 – 49,847 49,521 51,526 – 51,600 52,229

P2_400_100_25_5 49,620 – 48,832 47,403 50,440 – 50,580 54,248

P2_400_100_50_1 54,550 54,550 54,679 52,890 54,550 54,981 54,916 55,629

P2_400_100_50_2 54,821 – 54,768 53,492 55,183 – 55,181 55,543

P2_400_100_50_3 54,141 – 54,747 54,216 55,537 – 55,709 56,065

P2_400_100_50_4 53,375 – 54,240 48,649 54,857 – 54,987 55,604

P2_400_100_50_5 53,763 – 53,541 50,047 54,893 – 54,918 55,471

Table 7 See Table 5 for reference

Instance Lower bounds for unrestricted RP UB Upper bounds for Unr.
RP P NP V&U P NP V&U

P3_150_150_25_1 29,896 29,989 29,989 29,896 29,896 29,989 29,989 30,005

P3_150_150_25_2 29,345 – 29,196 29,101 29,906 – 29,965 29,961

P3_150_150_25_3 30,286 30,286 30,286 30,286 30,286 30,286 30,286 30,327

P3_150_150_25_5 31,332 31,332 31,332 30,924 31,332 31,715 31,682 31,839

P3_150_150_50_1 31,377 31,701 31,701 31,701 31,377 31,701 31,701 31,892

P3_150_150_50_2 30,846 – 30,884 30,884 31,110 – 31,008 31,115

P3_150_150_50_3 32,037 32,121 32,121 32,050 32,037 32,121 32,121 32,240

P3_150_150_50_4 31,925 – 31,925 31,925 32,210 – 31,925 32,070

P3_150_150_50_5 31,631 – 31,521 31,448 31,857 – 31,896 31,901

P3_250_250_25_1 – – 51,027 58,480 – – 60,548 60,611

P3_250_250_25_2 – – 63,646 68,070 – – 73,316 73,339

P3_250_250_50_1 – – 59,072 67,603 – – 76,117 76,341

P3_250_250_50_2 – – 62,772 75,569 – – 82,644 82,666
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Table 8 See Table 5 for reference

Instance Lower bounds for unrestricted RP UB Upper bounds for Unr.
RP P NP V&U P NP V&U

P4_150_150_25_1 30,870 – 30,923 30,923 31,094 – 30,923 31,130

P4_150_150_25_2 30,576 – 30,687 30,460 30,786 – 30,687 30,931

P4_150_150_25_3 30,257 – 30,352 30,352 30,501 – 30,352 30,352

P4_150_150_25_4 30,055 30,106 30,106 30,106 30,055 30,106 30,106 30,106

P4_150_150_25_5 30,582 – 30,102 30,582 30,952 – 31,228 31,286

P4_150_150_50_1 31,673 31,673 31,673 31,673 31,673 31,673 31,673 31,673

P4_150_150_50_2 32,302 – 32,317 32,317 32,434 – 32,317 32,423

P4_150_150_50_3 30,906 – 30,913 30,882 31,500 – 31,519 31,756

P4_150_150_50_4 31,912 – 31,961 31,912 32,206 – 31,961 32,140

P4_150_150_50_5 32,027 – 31,845 31,864 32,331 – 32,308 32,484

P4_250_250_25_4 – – 69,530 79,476 – – 81,634 81,839

P4_250_250_50_2 – – 67,675 77,206 – – 87,314 87,331

P4_250_250_50_4 – – 69,063 78,359 – – 86,941 87,069

unrestricted optimal values (5 already proven by [30], confirming their results); proved
22 restricted optimal values (in an overlapping but distinct subset of the instances);
improved lower bounds for 25 instances; improved upper bounds for 58 instances.

7 Conclusions

The present work advances the state of the art onMILP formulations for the G2KP.We
improve the performance of one of the most competitive MILP formulations for the
G2KP by at least one order of magnitude. In the instance set selected by the original
formulation, our enhanced formulation dominates the original formulation. Concern-
ing other competitive MILP formulations in the literature, we keep the advantage of
tighter bounds the original formulation had over them, and greatly reduce the model
size and running times for instances that these other formulations had the advantage.

In the experiments, we have already discussed some elementary inferences, for
example: the limitations (and partial success) of our improved formulation against
the most recent and challenging instances in the literature; and the impact on the
performance caused by the LP-solving algorithm, by the specific changes wemade, by
MIP-starting the models, and by some procedures proposed together with the original
model (i.e., pricing and some preprocessing reductions). Herewe presentmore general
conclusions from a broader perspective.

We believe symmetry-breaking plays a significant part in the success of our
enhanced formulation. In our experiments, we focus on the significant reduction of the
model size because it is easier to measure. The solver can, however, always reduce the
model size even further, by disregarding loose constraints or variables which cannot
assume non-zero values. This does not seem to be the case of the variables removed
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by our enhanced model, which could assume non-zero values and compose symmetric
solutions. A single extraction variablemay replacemany distinct sequences of cuts that
would extract the same piece from the same slightly-larger plate. The enhanced formu-
lation did not present consistent gains in the LP relaxation, for them to be responsible
for the observed improvement in performance. We also believe our results suggest
that clever dominance rules may considerably improve pseudo-polynomial models
(which often have tight bounds but large formulations) before resorting to more com-
plicated techniques (as the pricing procedure proposed in [14] or column generation
techniques).

Our suggestions for future works follow: adapt the formulation for closely related
problem variants and compare to their state-of-the-art solving procedure; expand on
the symmetry-breaking; consider other frameworks besides the pricing framework
of [14].

Acknowledgements We would like to thank Dimitri Thomopulos for informing us that the code used
in [14, 29] was, unfortunately, not available anymore. Also, we would like to thank Mateus Pereira Martin
for sharing his partial reimplementation of the code above mentioned, while not used in this paper his code
allowed us to double-check our own reimplementation.

Author Contributions The authors’ contributions may be summarised as: 1. an enhancedMILP formulation
based on a previous state-of-the-art formulation; 2. the proof of correctness of the aforementioned enhance-
ment; 3. empirical evidence of the better performance obtained by the enhancement; 4. the adaptation of a
known reduction for our specific case; 5. empirical evidence of the gains obtained by this reduction in our
case; 6.17 new optimal solution values of hard instances (unrestricted problem); 7. 22 new optimal solution
values of hard instances (position-only restricted); 8. better lower bounds for 25 instances (unrestricted
problem); 9. better upper bounds for 58 instances (unrestricted problem).

Funding This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior-Brasil (CAPES)-Finance Code 001.

Data Availability The Jupyter notebooks and raw CSVs used for generating the tables in this work are
available in .

Declarations

Conflict of interest The authors declare that they have no conflict of interest.

Code availability The code, in the specific version used, is available at [3]. The code is in public domain
(by means of the Unlicense template, see https://unlicense.org/ for details).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

123

https://github.com/henriquebecker91/phd/tree/MPC-1/latex/revised_PPG2KP/notebooks
https://unlicense.org/
http://creativecommons.org/licenses/by/4.0/


696 H. Becker et al.

References

1. Alvarez-Valdes, R., Parreño, F., Tamarit, J.M.: A branch and bound algorithm for the strip packing
problem. OR Spectr. 31(2), 431–459 (2009). https://doi.org/10.1007/s00291-008-0128-5

2. Beasley, J.E.: Algorithms for unconstrained Two-dimensional guillotine cutting. J. Oper. Res. Soc.
36(4), 297–306 (1985). https://doi.org/10.1057/jors.1985.51.

3. Becker, H.: Guillotinemodels.jl (2022). https://doi.org/10.5281/zenodo.6486737. https://github.com/
henriquebecker91/GuillotineModels.jl/tree/MPC_EXPERIMENTS

4. Belov, G.: Problems, models and algorithms in one- and two-dimensional cutting. FakultätMathematik
und Naturwissenschaften der Technischen Universität Dresden (2003). https://d-nb.info/970782489/

5. BenMessaoud, S., Chu, C., Espinouse, M.L.: Characterization and modelling of guillotine constraints.
Eur. J. Oper. Res. 191(1), 112–126 (2008). https://doi.org/10.1016/j.ejor.2007.08.029

6. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

7. Boschetti, M.A., Mingozzi, A., Hadjiconstantinou, E.: New upper bounds for the two-dimensional
orthogonal non-guillotine cutting stock problem. IMA J. Manag. Math. 13(2), 95–119 (2002). https://
doi.org/10.1093/imaman/13.2.95

8. Christofides, N., Whitlock, C.: An algorithm for Two-Dimensional cutting problems. Oper. Res. 25(1),
30–44 (1977). https://doi.org/10.1287/opre.25.1.30

9. Clautiaux, F., Sadykov, R., Vanderbeck, F., Viaud, Q.: Pattern-based diving heuristics for a two-
dimensional guillotine cutting-stock problem with leftovers. EURO J. Comput. Optim. 7(3), 265–297
(2019). https://doi.org/10.1007/s13675-019-00113-9

10. Côté, J.F., Iori, M.: The meet-in-the-middle principle for cutting and packing problems. INFORMS J.
Comput. 30(4), 646–661 (2018). https://doi.org/10.1287/ijoc.2018.0806

11. Delorme, M., Iori, M.: Enhanced pseudo-polynomial formulations for bin packing and cutting stock
problems. INFORMS J. Comput. 32(1), 101–119 (2019). https://doi.org/10.1287/ijoc.2018.0880

12. Dolatabadi, M., Lodi, A., Monaci, M.: Exact algorithms for the two-dimensional guillotine knapsack.
Computers Oper. Res. 39(1), 48–53 (2012). https://doi.org/10.1016/j.cor.2010.12.018

13. Dunning, I., Huchette, J., Lubin,M.: Jump: a modeling language for mathematical optimization. SIAM
Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/15M1020575

14. Furini, F., Malaguti, E., Thomopulos, D.: Modeling Two-Dimensional guillotine cutting problems
via integer programming. INFORMS J. Comput. 28(4), 736–751 (2016). https://doi.org/10.1287/ijoc.
2016.0710

15. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020). http://www.gurobi.com
16. Herz, J.C.: Recursive computational procedure for two-dimensional stock cutting. IBM J. Res. Dev.

16(5), 462–469 (1972). https://doi.org/10.1147/rd.165.0462
17. Iori, M., de Lima, V.L., Martello, S., Miyazawa, F.K., Monaci, M.: Exact solution techniques for Two-

dimensional cutting and packing. Eur. J. Oper. Res. p. S0377221720306111 (2020). https://doi.org/
10.1016/j.ejor.2020.06.050. http://arxiv.org/abs/2004.12619. ArXiv: 2004.12619

18. Lodi, A., Monaci, M.: Integer linear programming models for 2-staged two-dimensional Knapsack
problems. Math. Program. 94(2), 257–278 (2003). https://doi.org/10.1007/s10107-002-0319-9

19. Martin, M., Birgin, E.G., Lobato, R.D., Morabito, R., Munari, P.: Models for the two-dimensional rect-
angular single large placement problem with guillotine cuts and constrained pattern. Int. Transactions
Oper. Res. 27(2), 767–793 (2020). https://doi.org/10.1111/itor.12703

20. Martin, M., Morabito, R., Munari, P.: A bottom-up packing approach for modeling the constrained
two-dimensional guillotine placement problem. Computers Oper. Res. 115 (2020). https://doi.org/10.
1016/j.cor.2019.104851. http://www.sciencedirect.com/science/article/pii/S030505481930293X

21. Martin, M., Morabito, R., Munari, P.: A top-down cutting approach for modeling the constrained two-
and three-dimensional guillotine cutting problems. J. Oper. Res. Soc. (2020). https://doi.org/10.1080/
01605682.2020.1813640

22. Morabito, R., Belluzzo, L.: Optimising the cutting of wood fibre plates in the hardboard industry. Eur.
J. Oper. Res. 183(3), 1405–1420 (2007). https://doi.org/10.1016/j.ejor.2005.11.066

23. Parreño, F., Alonso, M.T., Alvarez-Valdes, R.: Solving a large cutting problem in the glass manu-
facturing industry. Eur. J. Oper. Res. 287(1), 378–388 (2020). https://doi.org/10.1016/j.ejor.2020.05.
016

123

https://doi.org/10.1007/s00291-008-0128-5
https://doi.org/10.1057/jors.1985.51.
https://doi.org/10.5281/zenodo.6486737
https://github.com/henriquebecker91/GuillotineModels.jl/tree/MPC_EXPERIMENTS
https://github.com/henriquebecker91/GuillotineModels.jl/tree/MPC_EXPERIMENTS
https://d-nb.info/970782489/
https://doi.org/10.1016/j.ejor.2007.08.029
https://doi.org/10.1137/141000671
https://doi.org/10.1093/imaman/13.2.95
https://doi.org/10.1093/imaman/13.2.95
https://doi.org/10.1287/opre.25.1.30
https://doi.org/10.1007/s13675-019-00113-9
https://doi.org/10.1287/ijoc.2018.0806
https://doi.org/10.1287/ijoc.2018.0880
https://doi.org/10.1016/j.cor.2010.12.018
https://doi.org/10.1137/15M1020575
https://doi.org/10.1287/ijoc.2016.0710
https://doi.org/10.1287/ijoc.2016.0710
http://www.gurobi.com
https://doi.org/10.1147/rd.165.0462
https://doi.org/10.1016/j.ejor.2020.06.050
https://doi.org/10.1016/j.ejor.2020.06.050
http://arxiv.org/abs/2004.12619
http://arxiv.org/abs/2004.12619
https://doi.org/10.1007/s10107-002-0319-9
https://doi.org/10.1111/itor.12703
https://doi.org/10.1016/j.cor.2019.104851
https://doi.org/10.1016/j.cor.2019.104851
http://www.sciencedirect.com/science/article/pii/S030505481930293X
https://doi.org/10.1080/01605682.2020.1813640
https://doi.org/10.1080/01605682.2020.1813640
https://doi.org/10.1016/j.ejor.2005.11.066
https://doi.org/10.1016/j.ejor.2020.05.016
https://doi.org/10.1016/j.ejor.2020.05.016


Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem 697

24. Pisinger, D., Sigurd, M.: Using decomposition techniques and constraint programming for solving the
Two-Dimensional bin-packing problem. INFORMS J. Comput. 19(1), 36–51 (2007). https://doi.org/
10.1287/ijoc.1060.0181

25. Russo, M., Boccia, M., Sforza, A., Sterle, C.: Constrained two-dimensional guillotine cutting problem:
upper-bound review and categorization. Int. Transactions Oper. Res. 27(2), 794–834 (2020). https://
doi.org/10.1111/itor.12687

26. Scheithauer, G., Terno, J.: The g4-heuristic for the pallet loading problem. J. Oper. Res. Soc. 47(4),
511–522 (1996). https://doi.org/10.1057/jors.1996.57

27. Song, X., Chu, C.B., Lewis, R., Nie, Y.Y., Thompson, J.: A worst case analysis of a dynamic
programming-based heuristic algorithm for 2D unconstrained guillotine cutting. Eur. J. Oper. Res.
202(2), 368–378 (2010). https://doi.org/10.1016/j.ejor.2009.05.047

28. Terno, J., Lindemann, R., Scheithauer, G.: Zuschnittprobleme und ihre praktische lösung. Verlag Harri
Deutsch, Thun und Frankfurt/Main (1987)

29. Thomopulos, D.: Models and solutions of resource allocation problems based on integer linear and
nonlinear programming. Ph.D. thesis,University ofBologna (2016). http://amsdottorato.unibo.it/7399/

30. Velasco, A.S., Uchoa, E.: Improved state space relaxation for constrained two-dimensional guillotine
cutting problems. Eur. J. Oper. Res. 272(1), 106–120 (2019). https://doi.org/10.1016/j.ejor.2018.06.
016

31. Yanasse, H.H., Morabito, R.: A note on linear models for two-group and three-group two-dimensional
guillotine cutting problems. Int. J. Prod. Res. 46(21), 6189–6206 (2008). https://doi.org/10.1080/
00207540601011543

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://doi.org/10.1287/ijoc.1060.0181
https://doi.org/10.1287/ijoc.1060.0181
https://doi.org/10.1111/itor.12687
https://doi.org/10.1111/itor.12687
https://doi.org/10.1057/jors.1996.57
https://doi.org/10.1016/j.ejor.2009.05.047
http://amsdottorato.unibo.it/7399/
https://doi.org/10.1016/j.ejor.2018.06.016
https://doi.org/10.1016/j.ejor.2018.06.016
https://doi.org/10.1080/00207540601011543
https://doi.org/10.1080/00207540601011543

	Enhanced formulation for the Guillotine 2D Cutting Knapsack Problem
	Abstract
	1 Introduction
	1.1 Explanation of the problem and some close variants
	1.2 Motivation
	1.3 Contributions and paper outline

	2 Related work
	3 Notation, discretization, and plate-size normalization
	4 Our changes to Furini's model
	4.1 The enhanced formulation
	4.2 The revised variable enumeration
	4.3 The proof of correctness

	5 The pricing phase
	6 Experimental results
	6.1 Setup
	6.2 Comparison of faithful against original
	6.3 Comparison of faithful against enhanced
	6.4 Evaluating enhanced against harder instances

	7 Conclusions
	Acknowledgements
	References




