
Self-adaptive ADMM for semi-strongly convex problems

Tianyun Tang ∗, Kim-Chuan Toh†

October 3, 2023

Abstract

In this paper, we develop a self-adaptive ADMM that updates the penalty pa-
rameter adaptively. When one part of the objective function is strongly convex i.e.,
the problem is semi-strongly convex, our algorithm can update the penalty parameter
adaptively with guaranteed convergence. We establish various types of convergence
results including accelerated convergence rate of O(1/k2), linear convergence and con-
vergence of iteration points. This enhances various previous results because we allow
the penalty parameter to change adaptively. We also develop a partial proximal point
method with the subproblem solved by our adaptive ADMM. This enables us to solve
problems without semi-strongly convex property. Numerical experiments are conducted
to demonstrate the high efficiency and robustness of our method.

keywords: Adaptive ADMM, Semi-strongly convex, Partial proximal point method

Mathematics subject classification: 90C06, 90C25, 90C90

1 Introduction

1.1 Adaptive ADMM

In this paper, we consider the following linearly constrained convex optimization problem

min {f(y) + g(z) | By + Cz = b} , (1)

where B ∈ Rm×n1 , C ∈ Rm×n2 , f : Rn1 → (−∞,∞] and g : Rn2 → (−∞,∞] are proper
lower semi-continuous and convex functions. One of the most popular methods to solve the
problem (1) is alternating direction method of multiplier i.e., ADMM [13,15]. The conver-
gence analysis of the traditional ADMM often assumes that the penalty parameter is fixed;
see for example [7,10,12,21,27]. Because the efficiency of ADMM is highly sensitive to the
penalty parameter, in practice, one would prefer to adaptively update the penalty parame-
ter to avoid laborious tuning; see for example [31,43]. Existing works on the convergence of

∗Department of Mathematics, National University of Singapore, Singapore 119076 (ttang@u.nus.edu).
†Department of Mathematics, and Institute of Operations Research and Analytics, National University

of Singapore, Singapore 119076 (mattohkc@nus.edu.sg). The research of this author is supported by the
Ministry of Education, Singapore, under its Academic Research Fund Tier 3 grant call (MOE-2019-T3-1-
010).

1

ar
X

iv
:2

31
0.

00
37

6v
1

 [
m

at
h.

O
C

]
 3

0
Se

p
20

23

adaptive ADMM mostly assume that the ratio between two consecutive parameters tends
to 1 rapidly, and the algorithm quickly behaves just like the ADMM with a fixed penalty
parameter [20,47–49]. In this paper, we aim to partially close the gap between theory and
practice. In detail, we assume that one of the objective function g(·) is strongly convex,
that is, for any x ∈ Rn2 , y ∈ Rn2 ,

g(x)− g(y) ≥ ⟨ξ, x− y⟩+ σg∥x− y∥2/2, for any ξ ∈ ∂g(y), (2)

where σg > 0 is the strong convexity parameter and ∥·∥ stands for the Euclidean norm. We
call this problem semi-strongly convex, which is also used in [41]. With this assumption,
we may greatly increase the freedom of adaptively adjusting the penalty parameter with
guaranteed convergence. In Section 2, we will propose an adaptive ADMM with a special
penalty updating scheme. That is, at every iteration, we define an interval to choose the
new penalty parameter. The interval’s length may tend to infinity, with floating lower
bound and upper bound. We allow the parameter to increase to infinity at the rate of
O(k), where k is the iteration counter, and decrease at a linear rate as long as there is a
lower bound. We obtain various convergence results within this framework, which will be
described in the next subsection.

1.2 Convergence analysis

In Section 3, we will analyse the convergence property of our algorithm. We first prove
that our algorithm achieves accelerated convergence rate of O(1/k2) in terms of objective
function value and primal feasibility. Accelerating algorithms for constrained optimization
problems has been an active research area; see [4,5,26,34,40,41] for examples. Since Gold-
stein et al. [16] proposed an accelerated ADMM with the convergence rate of O(1/k2) by
making rather strong assumptions including one that assumes both f and g are strongly
convex, various attempts have been made to weaken the assumptions while maintaining
the convergence rate of O(1/k2). In [44], Xu proposed an accelerated ADMM by increasing
the penalty parameter while assuming that one of the component objective functions g(·) is
strongly convex. This work significantly weakens the assumptions of Goldstein et al. Since
then, Xu’s framework of increasing the penalty parameter has been generalised and mod-
ified by other researchers, see [37, 39, 46]. Among them, Tran-Dinh increases the penalty
parameter at a quadratic rate O(k2) to achieve the non-ergodic convergence rate of O(1/k2).
Although the technique of increasing the penalty parameter can result in a nice convergence
rate, this framework has two issues that prevent it from being practical. First, the conver-
gence analysis focuses on the objective function value and primal feasibility, which doesn’t
involve the dual variables. In practice, we cannot check the optimality of a solution without
the dual variable because the optimal objective value is unknown in advance. Therefore,
it is necessary for us to analyse the convergence of the dual variable. Another issue is
that, if we keep increasing the penalty parameter to very large values, the dual feasibility
will not be penalised enough, and that will deteriorate the convergence speed of the dual
feasibility. This observation will also be illustrated in the numerical experiments. In order
to overcome these two issues, we update the penalty parameter adaptively to balance the
primal and dual KKT residue. Moreover, we prove the convergence of primal-dual iterates,
which has not been shown before for accelerated ADMM or adaptive ADMM. Our result

2

implies that we can use the KKT residue in the stopping criterion because the dual variable
also converges. Apart from the sub-linear convergence rate, we also consider the condition
for our algorithm to achieve linear convergence. For this aspect, our algorithm can achieve
linear convergence if g is strongly convex and Lipschitz continuously differentiable, and the
matrix C has full row-rank. Note that the linear convergence of ADMM has been studied
before, see [3, 10, 14, 22, 33] to just name a few. However, our analysis allows the penalty
parameter to change adaptively. As far as we know, this paper is the first to analyse the
linear convergence of an adaptive ADMM.

1.3 Partial proximal point method

Because our adaptive method is designed to solve a semi-strongly convex problem, in Sec-
tion 4, we consider how to apply it to solve problem (1) if neither f nor g is strongly convex.
The idea is that we add a proximal term to one of the variable and solve a sequence of
problems. This method is called partial proximal point method (PPPM), which has been
used in [24] by Jiang et al. Note that our formulation is different from that in [24] in the
sense that their subproblem is strongly convex while our subproblem is only semi-strongly
convex. While the convergence of the PPPM was done in [19], the stopping conditions for
solving the subproblems are based on practically unverifiable conditions. Here we prove
the convergence of the PPPM with the subproblems solved inexactly under verifiable con-
ditions. Because the subproblem becomes a semi-strongly convex problem, we may use the
adaptive ADMM to solve it. In Section 6, we conduct numerical experiments to verify the
efficiency of the PPPM against different types of ADMM.

1.4 Organization of the paper

In Section 2, we present our main algorithm. In Section 3, we conduct the convergence
analysis of the algorithm. In Section 4, we discuss the partial proximal point method and
its convergence analysis. In Section 5, we discuss some implementation strategies of our
algorithm. In Section 6, we present numerical results to verify the robustness, convergence
rate and efficiency of IADMM. In Section 7, we give a brief conclusion. The proofs of some
results are put in the appendix.

2 Self-adaptive ADMM

2.1 Preliminaries

Before we state our algorithm, we provide several useful definitions and notations. Define
x = (y, z), we say that (y, z, λ) is KKT solution of (1) if the following conditions hold.

0 ∈ ∂f(y) +B⊤λ

0 ∈ ∂g(z) + C⊤λ

By + Cz − b = 0.

(3)

Define

F(x) := f(y) + g(z), Ax := By + Cz, L(x, λ) := F(x) + ⟨λ, Ax− b⟩.

3

We assume that the KKT solution set for (1) is nonempty and let (x∗ := (y∗, z∗), λ∗) be a
KKT solution of (1). Then we have 0 ∈ ∂xL(x∗, λ∗). Hence L(x, λ∗) − L(x∗, λ∗) ≥ 0, and
L(x, λ∗)− L(x∗, λ∗) = 0 if and only if 0 ∈ ∂xL(x, λ∗). Thus, we have the following result

L(x, λ∗)− L(x∗, λ∗) = 0, ∥Ax− b∥2 = 0 ⇐⇒ (x, λ∗) is a KKT solution. (4)

For a given n×n symmetric positive semidefinite matrix D and vectors x, y, z ∈ Rn, define

ηD(x, y, z) := ⟨D(z − y), x− z⟩, ξD(x, y, z) :=
1

2
∥x− y∥2D − 1

2
∥x− z∥2D,

where ∥w∥D :=
√

⟨w,Dw⟩ for any w ∈ Rn. Simple calculation shows that ηD(x, y, z) =
ξD(x, y, z)− ∥y − z∥2D/2.

2.2 Algorithm statement

Now we present our algorithm as follows.

Algorithm 1 IADMM

Initialization: Choose (x1, λ1) and set constant parameters γ ∈
(
1, 1+

√
5

2

)
, ϵ, β, τ ∈

(0, 1), initial penalty parameter β1 ∈ [β,+∞). Choose a matrix Q ⪰ 0. For all k ≥ 1,
choose matrix Pk ⪰ 0 such that βk+1Pk+1 ⪯ βkPk. Let Qk = βkQ.
for k = 1, 2, . . . do

1, yk+1 ∈ argminy

{
f(y) + ⟨λk, By⟩+ βk

2 ∥By + Czk − b∥2 + 1
2∥y − yk∥2Pk

}
2, zk+1 ∈ argminz

{
g(z) + ⟨λk, Cz⟩+ βk

2 ∥Byk+1 + Cz − b∥2 + 1
2∥z − zk∥2Qk

}
3, λk+1 = λk + γβk(Byk+1 + Czk+1 − b)

4, Choose βk+1 ∈
[
max{β, τβk},

√
β2
k +

(1−ϵ)σgβk

λmax(C⊤C+Q)

]
end for

Algorithm 1 is similar to the traditional (proximal) ADMM. The only difference is that
in step 4, we choose a new penalty parameter in an interval containing the current penalty
parameter. This is why we call the algorithm IADMM, where ”I” stands for interval. The
parameters (ϵ, β) > 0 are introduced only for theoretical analysis. In practice, we may
choose (ϵ, β) to be small numbers. For simplicity, we only consider the case where the
step-length γ > 1 since in practice this choice typically will lead to a faster convergence
compared to the case where γ ∈ (0, 1). But note that our IADMM still works for the
latter case. Some remarks on Algorithm IADMM are in order. First, the algorithm is still
applicable to the case where the function g(·) is not strongly convex, i.e., σg = 0. In this
case, the penalty parameters {βk} must be non-increasing. Second, when the parameters
βk is fixed for all k, IADMM reduces to the proximal ADMM in [12] when we set Pk = βkP
for some given P ⪰ 0. Third, we can also add a smooth function to the g-part, and perform
a majorization in every iteration like the algorithm in [44]. The convergence analysis is
similar but includes more tedious details. For simplicity, we only consider problem (1).
Last, we assume that every subproblem is well-defined with an optimal solution.

4

3 Convergence rate analysis

In this section, we will analyse the convergence property of IADMM. We first state some
useful lemmas. Their proofs are put in the appendix.

3.1 Useful lemmas

The following lemma serves as the foundation in the convergence analysis of our IADMM.
Many theorems later are based on this lemma. Note that it holds even if σg = 0.

Lemma 3.1. Let δ := 1 + γ − γ2 > 0. Then for any (x, λ) satisfying Ax− b = 0, we have

βk

(
L(xk+1, λ)− L(x, λ)

)
+

δβ2
k−1

2γ
∥Axk − b∥2 +

δβ2
k

2
∥C(zk+1 − zk)∥2

+
βk
2
∥yk − yk+1∥2Pk

+
β2
k

2
∥zk − zk+1∥2Q

≤ Φk(x, λ)− Φk+1(x, λ)− σgβk∥zk − zk+1∥2 − ϵσgβk
2

∥z − zk+1∥2, (5)

where

Φk(x, λ) =
1

2γ
∥λ− λk∥2 +

(2− γ)β2
k−1

2
∥Axk − b∥2 +

β2
k

2
∥z − zk∥2C⊤C+Q

+
β2
k−1

2
∥zk − zk−1∥2Q +

βk
2
∥y − yk∥2Pk

. (6)

In the above lemma, Φk(x, λ) serves as a kind of energy function for us to measure
the progress of each IADMM iteration. In particular, the left-hand-side of (5) gives the
reduction in the “energy” one can expect at each iteration.

The next lemma also appears in Xu’s convergence analysis of accelerated ADMM in [44].

Lemma 3.2. Consider a continuous function D(λ). Suppose for any λ ∈ Rm, L(xk, λ) −
L(x∗, λ) ≤ h(k)D(λ), where h(k) ≥ 0. Then ∥Axk − b∥ = O(h(k)), |F(xk) − F(x∗)| =
O(h(k))

With Lemma 3.1 and Lemma 3.2, we are able to state and prove the convergence results
about accelerated convergence, primal-dual iterative convergence and linear convergence in
the following three subsections respectively.

3.2 Ergodic convergence rate of O(1/k2)

Theorem 3.3. Define vk :=
∑k

i=1 βix
i+1∑k

i=1 βi
and γk :=

∑k
i=1 βi Then

|F(vk)−F(x∗)| = O(1/γk), ∥Avk − b∥ = O(1/γk).

Proof. Since the right-hand-side of (5) in Lemma 3.1 is summable, we choose x = x∗ for
some optimal solution and take summation of the inequality (5) from 1 to k, then we get

k∑
i=1

βi
(
L(xi+1, λ)− L(x∗, λ)

)
≤ D(λ) := Φ1(x

∗, λ). (7)

5

Note that when deriving (7), we have ignored many nonnegative terms in (5). From the
convexity of L(x, λ) as a function of x, we have

γk

(
L(vk, λ)− L(x∗, λ)

)
≤ D(λ). (8)

By applying Lemma 3.2 to the above inequality, we get Theorem 3.3.

Since βi ≥ β for any i, then γk = Ω(k)1. The following corollary can be derived from
Theorem 3.3 directly.

Corollary 3.4. Let vk, γk be defined as in Theorem 3.3. Then we have

|F(vk)−F(x∗)| = O(1/k), ∥Avk − b∥ = O(1/k).

Moreover, if γk = Ω(k2), then

|F(vk)−F(x∗)| = O(1/k2), ∥Avk − b∥ = O(1/k2).

Remark. Note that from Corollary 3.4, the convergence rate is at least O(1/k), even if
σg = 0. Also, when σg > 0, we see that it is possible to choose βi such that βi = Ω(i).
Indeed, if we choose βi+1 to be the upper bound of the interval in Step 4 of Algorithm 1 at
every iteration, we get βi = Ω(i) and so γk = Ω(k2). Thus, our algorithm can achieve the
convergence rate of O(1/k2) when σg > 0. However, we should note that even though the
objective value gap and primal feasibility decrease at the rate of O(1/k2), the dual feasibility
may not. In the next subsection, we will establish the convergence the the sequence (xk, λk).

3.3 Nonergodic convergence of iteration points

In this section, we give a proof of the convergence of the iteration points of IADMM.
Suppose (x∗, λ∗) is a KKT solution. Our convergence theorem is as follows.

Theorem 3.5. Suppose βkPk + β2
kB

⊤B ⪰ Θ ∀ k for some Θ ≻ 0. Then (yk, zk, λk)
converges to a KKT solution (y∗, z∗, λ∗) as k → ∞.

Proof. If we choose (x, λ) = (x∗, λ∗) in Lemma 3.1 and define the quantity

Φk := Φk(x
∗, λ∗) =

1

2γ
∥λ∗ − λk∥2 +

(2− γ)β2
k−1

2
∥Axk − b∥2 +

β2
k

2
∥z∗ − zk∥2C⊤C+Q

+
β2
k−1

2
∥zk − zk−1∥2Q +

βk
2
∥y∗ − yk∥2Pk

, (9)

we get

δβ2
k−1

2γ ∥Axk − b∥2 + β2
k
2 ∥zk − zk+1∥2Q +

δβ2
k

2 ∥C(zk − zk+1)∥2

+βk
2 ∥yk − yk+1∥2Pk

+ σgβk∥zk − zk+1∥2 + ϵσgβk

2 ∥z∗ − zk+1∥2

 ≤ Φk − Φk+1, (10)

1A sequence {ak}k∈N+ is said to be Ω(k) if there exists some positive number c and integer N0 such that
ak ≥ ck for any k ≥ N0.

6

Note that when deriving the above inequality, we have used the inequality L(xk+1, λ∗) −
L(x∗, λ∗) ≥ 0. By taking summation in (10), we have that the infinite sum on the left-hand-
side sequence is finite. Thus we have the following fact.

Fact 1. β2
k−1∥Axk − b∥2 = o(1), βk∥yk − yk+1∥2Pk

= o(1), β2
k∥zk − zk+1∥2

C⊤C+Q
= o(1),

βk∥zk+1 − z∗∥2 = o(1), and

∞∑
k=1

σg
βk

(
β2
k∥zk − zk+1∥2 +

ϵβ2
k

2
∥z∗ − zk+1∥2

)
< ∞. (11)

Moreover, for the sequence of parameters {βk} in Step 4, we can easily prove that βk ≤
β1+

(1−ϵ)σg(k−1)
λmax(C⊤C+Q)

= O(k), which implies that
∑∞

k=1 1/βk = ∞. Together with the fact that

σg > 0 and (11), we have the following result.

Fact 2. lim inf
k→∞

β2
k∥zk − zk+1∥2 + ϵβ2

k
2 ∥z∗ − zk+1∥2 = 0.

From (10), we know that {Φk} is a nonincreasing sequence and it is bounded. Hence,
from the definition of Φk in (9), we have the boundedness of the following sequences:

{∥λ∗ − λk∥}, {σgβk∥z∗ − zk∥2}, {β2
k∥z∗ − zk∥2C⊤C+Q}, {βk∥y∗ − yk∥2Pk

}, (12)

where the boundedness of the second term comes from Fact 1 and the boundedness of
{βk+1/βk}. Since {βk/βk+1} is bounded, from the third sequence in (12), {β2

k∥C(zk+1 −
z∗)∥2} is also bounded. Next we show that {∥y∗ − yk∥} is bounded. From the convexity
of the function ∥ · ∥2 and Axk+1 − b = B(yk+1 − y∗) +C(zk+1 − z∗), we have the following
inequality

β2
k∥B(yk+1 − y∗)∥2 ≤ 2β2

k∥Axk+1 − b∥2 + 2β2
k∥C(zk+1 − z∗)∥2,

then the boundedness of {β2
k∥Axk+1 − b∥2} in Fact 1 and that of {β2

k∥C(zk+1 − z∗)∥}
(just mentioned above) imply that {β2

k∥yk+1 − y∗∥2
B⊤B

} is bounded. Because {βk+1/βk} is

bounded, {β2
k+1∥yk+1 − y∗∥2

B⊤B
} is also bounded. From the condition in the theorem, we

have the fact that ∥y∗ − yk∥2Θ ≤ βk∥y∗ − yk∥2Pk
+ β2

k∥y∗ − yk∥2
B⊤B

and Θ ≻ 0. This implies

that {∥y∗ − yk∥} is bounded.
From the above results, we can conclude that {(yk, zk, λk)} is bounded. From Fact 1,

we have that zk → z∗. Combine these two results and Fact 2, we can see that there exists
a sequence {jk}k≥1 such that (yjk+1, zjk+1, λjk+1) converges to a limit point (y, z∗, λ), and
β2
jk
∥zjk − zjk+1∥2 = o(1), β2

jk
∥z∗ − zjk+1∥2 = o(1). We summarize the results as follows.

Fact 3. (yjk+1, zjk+1, λjk+1) → (y, z∗, λ), β2
jk
∥zjk−zjk+1∥2 = o(1), β2

jk
∥z∗−zjk+1∥2 = o(1).

We will next show that ∥yjk −yjk+1∥ = o(1). First, from the fact that β2
k∥Axk+1−b∥2 =

o(1) in Fact 1 and the boundedness of {βk+1/βk}, we can readily show that β2
k∥A(xk+1 −

xk)∥2 = o(1). Next, from

β2
jk
∥B(yjk+1 − yjk)∥2 ≤ 2β2

jk
∥A(xjk+1 − xjk)∥2 + 2β2

jk
∥C(zjk+1 − zjk)∥2

≤ 2β2
jk
∥A(xjk+1 − xjk)∥2 + 2λmax(C

⊤C)β2
jk
∥zjk+1 − zjk∥2,

7

and Fact 3, we get β2
jk
∥B(yjk+1 − yjk)∥2 = o(1). From Fact 1, we also have βjk∥yjk −

yjk+1∥2Pjk
= o(1). Thus, from the condition in the theorem, ∥yjk+1 − yjk∥2Θ ≤ βjk∥yjk −

yjk+1∥2Pjk
+β2

jk
∥B(yjk+1−yjk)∥2 = o(1). Since Θ ≻ 0, this implies that ∥yjk+1−yjk∥ = o(1).

From (55) and (56) in the Appendix, which are the optimality conditions in Step 1 and
Step 2 of Algorithm 1, we know that

Pjk(y
jk − yjk+1) + βjkB

⊤C(zjk+1 − zjk) + (γ − 1)βjkB
⊤(Axjk+1 − b) ∈ ∂f(yjk+1) +B⊤λjk+1

Qjk(z
jk − zjk+1) + (γ − 1)βjkC

⊤(Axjk+1 − b) ∈ ∂g(zjk+1) + C⊤λjk+1. (13)

Since ∥yjk+1 − yjk∥ = o(1) and 0 ⪯ Pjk ⪯ (βj1/β)Pj1 , we have that Pjk(y
jk − yjk+1) → 0.

From Fact 1, all the following terms, βjkB
⊤C(zjk+1−zjk), Qjk(z

jk−zjk+1), βjkC
⊤(Axjk+1−

b) and βjkB
⊤(Axjk+1 − b) converge to 0. With all of the mentioned convergence results

and the demi-closedness of ∂f and ∂g, after letting k → ∞ in (13), we have that

0 ∈ ∂f(y) +B⊤λ, 0 ∈ ∂g(z∗) + C⊤λ.

Together with Ax− b = limk→∞Axjk+1− b = 0, we know that (y, z∗, λ) is a KKT solution.
For convenience, we let (y, z∗, λ) = (y∗, z∗, λ∗).

From (10), we know that 0 ≤ Φk+1 ≤ Φk and limk→∞Φk exists. From the condition of
Pk in Algorithm 1, we have that βjk+1∥y∗− yjk+1∥2Pjk+1

≤ β1λmax(P1)∥y∗− yjk+1∥2 = o(1).

Combine this and Fact 1, Fact 3, the boundedness of {βjk+1/βjk} and the definition of Φk,
we have that limk→∞Φjk+1 = 0. Thus limk→∞Φk = 0. From here, we get

βk∥y∗ − yk∥2Pk
= o(1), β2

k∥z∗ − zk∥2C⊤C+Q = o(1), ∥λ∗ − λk∥2 = o(1), (14)

which implies that limk→∞ λk = λ∗. Note that from Fact 1 and βk ≥ β > 0 for all k, we
have ∥z∗ − zk∥ = o(1), i.e., limk→∞ zk = z∗. Moreover, from limk→∞Φk = 0, we have that

β2
k∥B(yk − y∗)∥2 ≤ 2

(βk
βk−1

)2
β2
k−1∥Axk − b∥2 + 2β2

k∥C(zk − z∗)∥2 = o(1). (15)

From (14), (15), ∥y∗ − yk∥2Θ ≤ βk∥y∗ − yk∥2Pk
+ β2

k∥B(yk − y∗)∥2 = o(1) and Θ ≻ 0, we get

∥y∗ − yk∥ = o(1), i.e., limk→∞ yk = y∗. The proof is completed.

Remark 3.6. In Theorem 3.5, we have assumed that σg > 0. By modifying the proof
slightly, one can prove that the theorem also holds when σg = 0, provided C⊤C + Q ≻ 0.
Note that in this case, βk decreases monotonically. More specifically, when C⊤C +Q ≻ 0,
one can see from (10) that {β2

k∥z∗ − zk∥2} is bounded. From there, one can show that the
results in Fact 3 are valid, and the rest of the proof of Theorem 3.5 can carry through.

3.4 Nonergodic linear convergence

In this subsection, in addition to assuming that g is strongly convex with parameter σg > 0,
we also assume that it is continuously differentiable and ∇g is Lipschitz continuous with
parameter Lg. Moreover, we choose Pk = 0 for all k ≥ 1 and assume that Step 1 of
Algorithm 1 is well defined. To begin with, we choose (x, λ) = (x∗, λ∗) in Lemma 3.1 to
get the following lemma.

8

Lemma 3.7. For any KKT solution (x∗, λ∗),

βk

(
L(xk+1, λ∗)− L(x∗, λ∗)

)
+

(2− γ)β2
k

2
∥Axk+1 − b∥2 +

(
β2
k +

σgβk
λmax(Q)

)
∥zk+1 − zk∥2Q

+

(
β2
k+1

2
+

ϵσgβk
4λmax(C⊤C +Q)

)
∥z∗ − zk+1∥2C⊤C+Q +

1

2γ
∥λ∗ − λk+1∥2

≤
(2− γ − δ/γ)β2

k−1

2
∥Axk − b∥2 +

β2
k−1

2
∥zk − zk−1∥2Q +

β2
k

2
∥z∗ − zk∥2C⊤C+Q +

1

2γ
∥λ∗ − λk∥2

− ϵσgβk
4

∥z∗ − zk+1∥2. (16)

We also need the following lemma, which is motivated from Lemma 3.2 in [10].

Lemma 3.8. For any 0 < α < 1
2 ,

(1− 2α)λmin(CC⊤)∥λk+1 − λ∗∥2

≤ 1

α
λmax(CC⊤)(1− γ)2β2

k∥Axk+1 − b∥2 + 1

α
λmax(Q)β2

k∥zk+1 − zk∥2Q + L2
g∥zk+1 − z∗∥2.

(17)

Now, we are ready to state the main convergence theorem.

Theorem 3.9. Suppose ∇g is Lipschitz continuous with parameter Lg and C has full row
rank. Choose Pk = 0 for all k and assume that Step 1 of Algorithm 1 is well-defined.
Suppose β ≤ βk ≤ β̄ for any k, then L(xk, λ∗) − L(x∗, λ∗), ∥Axk − b∥2 and ∥λk − λ∗∥2
converges to zero R-linearly as k → ∞.

Proof. Multiply the inequality in Lemma 3.8 by ϕ > 0 such that ϕ ≤ ϵσgβ/(4L
2
g) and add

it to the inequality in Lemma 3.7, we get

βk

(
L(xk+1, λ∗)− L(x∗, λ∗)

)
+

(
2− γ − 2ϕ

α
λmax(CC⊤)(1− γ)2

)
β2
k

2
∥Axk+1 − b∥2

+

(
β2
k +

σgβk
λmax(Q)

− ϕ

α
λmax(Q)β2

k

)
∥zk+1 − zk∥2Q

+

(
β2
k+1

2
+

ϵσgβk
4λmax(C⊤C +Q)

)
∥z∗ − zk+1∥2C⊤C+Q +

(
1

2γ
+ ϕ(1− 2α)λmin(CC⊤)

)
∥λ∗ − λk+1∥2

≤ (2− γ − δ/γ)
β2
k−1

2
∥Axk − b∥2 +

β2
k−1

2
∥zk − zk−1∥2Q +

β2
k

2
∥z∗ − zk∥2C⊤C+Q +

1

2γ
∥λ∗ − λk∥2.

Note that in the last inequality, we removed the nonpositive term (ϕL2
g−

ϵσgβ
4)∥zk+1−z∗∥2.

9

By using the fact that β ≤ βk ≤ β̄ for any k ≥ 0 in the above inequality, we get

βk

(
L(xk+1, λ∗)− L(x∗, λ∗)

)
+

(
1 +

δ/γ − 2ϕλmax(CC⊤)(γ − 1)2/α

2− γ − δ/γ

)
(2− γ − δ/γ)β2

k

2
∥Axk+1 − b∥2

+

(
2 +

2σg

λmax(Q)β̄
− 2ϕ

α
λmax(Q)

)
β2
k

2
∥zk+1 − zk∥2Q

+

(
1 +

ϵσgβ

2λmax(C⊤C +Q)β̄2

)
β2
k+1

2
∥z∗ − zk+1∥2C⊤C+Q +

(
1 + 2γϕ(1− 2α)λmin(CC⊤)

) 1

2γ
∥λ∗ − λk+1∥2

≤ E(k) :=
(2− γ − δ/γ)β2

k−1

2
∥Axk − b∥2 +

β2
k−1

2
∥zk − zk−1∥2Q +

β2
k

2
∥z∗ − zk∥2C⊤C+Q +

1

2γ
∥λ∗ − λk∥2.

Note that from δ = 1 + γ − γ2 and γ > 1, we have 2− γ − δ/γ > 0. If we choose ϕ > 0
to be sufficiently small so that all coefficients in the parentheses on the left-hand-side are
positive, then we have that

E(k + 1) ≤ M(ϕ)E(k), (18)

where

M(ϕ) := max

{
1

1 + δ/γ−2ϕλmax(CC⊤)(γ−1)2/α
2−γ−δ/γ

,
1

2 +
2σg

λmax(Q)β̄
− 2ϕ

α λmax(Q)
,

1

1 +
ϵσgβ

2λmax(C⊤C+Q)β̄2

,
1

1 + 2γϕ(1− 2α)λmin(CC⊤)

}
.

Note that we have ignored the nonnegative term βk
(
L(xk+1, λ∗)− L(x∗, λ∗)

)
. It is easy to

see that if ϕ > 0 is sufficiently small, then 0 < M(ϕ) < 1, which implies that E(k) → 0
linearly. From the definition of E(k) and the lower boundedness of βk, we can see that
L(xk, λ∗)− L(x∗, λ∗), ∥Axk − b∥2 and ∥λk − λ∗∥2 all converge R-linearly to zero.

4 A partial proximal point method with IADMM for solving
non-semi-strongly convex problem

The theoretical analysis in the previous section is based on the semi-strongly convexity of
the problem (1). However, in practice, many composite programming problems may not be
semi-strongly convex. In this section, in order to resolve this issue, we introduce a partial
proximal point method to solve (1) where in each iteration of the algorithm, we solve the
following perturbed subproblem with a proximal term inexactly by our IADMM:

(yk+1, zk+1) ≈ min
{
f(y) + g(z) +

σ

2
∥z − zk∥2 : By + Cz = b

}
, (19)

where σ > 0. The subproblem (19) is similar to the subproblem of a proximal point method.
However, we only add the proximal term to one of the variables. Since the subproblem (19)
is not equivalent to problem (1), we will solve a sequence of such subproblems inexactly to
obtain a solution of (1).

10

Algorithm 2 PPPM

Initialization: Choose (y1, z1) ∈ Rn1 × Rn2 .
for k = 1, 2, . . . do
1, Choose parameter σk ≥ 0
2, Compute an approximate KKT solution (yk+1, zk+1, λk+1) of (19) with σ = σk by
IADMM.

end for

We use the following inexact KKT condition to measure the accuracy of the subproblem.
ϵ1k ∈ ∂f(yk) +B⊤λk

ϵ2k ∈ ∂g(zk) + C⊤λk + σk(zk − zk−1)

ϵ3k = Byk + Czk − b

(20)

where (yk, zk, λk) is the outcome of the kth subproblem and
(
ϵ1k, ϵ

2
k, ϵ

3
k

)
∈ Rn1 × Rn2 × Rm

is the error term. Note that we use subscripts to differentiate the iterations in the partial
proximal point method and IADMM.

The convergence analysis of inexact proximal point methods have been a popular re-
search topic because of its wide applications and connection to augmented Lagrangian
methods [9,11,29,35,50]. Here we give the convergence theorem of the PPPM to make the
paper self-contained.

Theorem 4.1. Suppose 0 ≤ σk−1 ≤ σk,
∑∞

k=1 (1 + ∥yk∥) ∥ϵ1k∥ < ∞,
∑∞

k=1 (1 + ∥zk∥) ∥ϵ2k∥ <
∞ and

∑∞
k=1 (1 + ∥λk∥) ∥ϵ3k∥ < ∞, then the sequence (yk, zk, λk) generated from Algorithm 2

satisfies

lim
k→∞

max
{
dist(0, ∂f(yk) +B⊤λk), dist(0, ∂g(zk) + C⊤λk), ∥Axk − b∥, |F(xk)−F(x∗)|

}
= 0,

where x∗ is an optimal solution of (1).

Proof. Let (x∗, λ∗) be a KKT solution of problem (1). Combine (20) and the convexity of
f and g, we obtain the following inequalities

f(yk) + ⟨ϵ1k −B⊤λk, y
∗ − yk⟩ ≤ f(y∗), (21)

g(zk) + ⟨ϵ2k − C⊤λk − σk(zk − zk−1), z
∗ − zk⟩ ≤ g(z∗). (22)

Adding (21) and (22), we have that

F(xk) + ⟨ϵ1k, y∗ − yk⟩+ ⟨ϵ2k, z∗ − zk⟩+ ⟨λk, B(yk − y∗) + C(zk − z∗)⟩
≤ F(x∗) + σkη(z

∗, zk−1, zk). (23)

Using By∗ + Cz∗ = b in (23) together with Cauchy-Schwarz inequality, we get

F(xk)−F(x∗) + σk∥zk−1 − zk∥2/2 ≤ (∥y∗∥+ ∥yk∥)∥ϵ1k∥+ (∥z∗∥+ ∥zk∥)∥ϵ2k∥+ ∥λk∥∥ϵ3k∥
+σk∥zk−1 − z∗∥2/2− σk∥zk − z∗∥2/2. (24)

11

Moreover, from the convexity of L(x, λ∗) and 0 ∈ ∂xL(x∗, λ∗) we have that L(xk, λ∗) ≥
L(x∗, λ∗). This implies

F(xk) ≥ F(x∗)− ⟨λ∗,Axk − b⟩ ≥ F(x∗)− ∥λ∗∥∥Axk − b∥ ≥ F(x∗)− ∥λ∗∥∥ϵ3k∥. (25)

Substitute (25) into (24) and σk−1 ≥ σk, we get

0 ≤ F(xk)−F(x∗) + σk∥zk−1 − zk∥2/2 + ∥λ∗∥∥ϵ3k∥ ≤ (∥y∗∥+ ∥yk∥)∥ϵ1k∥
+ (∥z∗∥+ ∥zk∥)∥ϵ2k∥+ (∥λ∗∥+ ∥λk∥)∥ϵ3k∥+ σk−1∥zk−1 − z∗∥2/2− σk∥zk − z∗∥2/2. (26)

From the condition in the theorem, we have that the sum of right-hand-side of (26) is upper
bounded. Thus, we get

lim
k→∞

F(xk)−F(x∗) + σk∥zk−1 − zk∥2/2 + ∥λ∗∥∥ϵ3k∥ = 0. (27)

Using (25) in (27), we get

lim
k→∞

F(xk)−F(x∗) + ∥λ∗∥∥ϵ3k∥ = 0, lim
k→∞

σk∥zk−1 − zk∥2 = 0. (28)

Because 0 ≤ σk ≤ σ1, we have that lim
k→∞

σ2
k∥zk−1−zk∥2 = 0. This implies that lim

k→∞
σk∥zk−1−

zk∥ = 0. Substitute this into (20), we have that

lim
k→∞

max
{
dist(0, ∂f(yk) +B⊤λk), dist(0, ∂g(zk) + C⊤λk), ∥Axk − b∥

}
= 0. (29)

Because lim
k→∞

∥λ∗∥∥ϵ3k∥ = 0, from (28), we get

lim
k→∞

F(xk)−F(x∗) = 0. (30)

Combining (29) and (30), we get Theorem 4.1.

Because from Theorem 3.5, the sequence generated of IADMM is convergent. We can
control the size of (1+∥yk∥)∥ϵ1k∥, (1+∥zk∥)∥ϵ2k∥ and (1+∥λk∥)∥ϵ3k∥ by solving the subproblem
accurately enough. Therefore, the condition in Theorem 4.1 can be guaranteed.

5 Practical implementation

In this section, we will move on to consider the practical usage of Algorithm 1 and Algo-
rithm 2.

5.1 Application in LASSO type problems

In this subsection, we consider the problem

min {f(λ) + g(b−Aλ)} , (31)

where A ∈ Rm×n, b ∈ Rm are given data. We assume that f and g are lower semi-
continuous and convex, g is differentiable with gradient that is Lipschitz with modulus Lg.

12

We can rewrite the above problem equivalently as min {f(λ) + g(µ) : Aλ+ µ = b} . The
corresponding dual problem is

min
λ

{
f∗(A⊤z) + g∗(z)− ⟨z, b⟩

}
,

which is equivalent to

min
{
f∗(y) + g∗(z)− ⟨z, b⟩ | y −A⊤z = 0

}
. (32)

The following lemma shows the relation between (31) and (32).

Lemma 5.1. If (y∗, z∗, λ∗) is a KKT solution to (32), then λ∗ is an optimal solution to
(31).

Proof. From the optimality conditions of (32), we have 0 ∈ ∂f∗(y∗)−λ∗, 0 ∈ ∂g∗(z∗)− b+
Aλ∗ and y∗−A⊤z∗ = 0. Then A⊤z∗ ∈ A⊤∂g(b−Aλ∗), y∗ ∈ ∂f(λ∗), from which we deduce
0 ∈ ∂f(λ∗) − A⊤∂g(b − Aλ∗). Then λ∗ is an optimal solution to min {f(λ) + g(b−Aλ)} ,
so λ∗ is an optimal solution to (31).

By Proposition 12.60 of [36], we know that g∗ is strongly convex with parameter
σg := 1/Lg. Thus, we can use Algorithm 1 to solve problem (32). To avoid computing
the conjugate function, we may use the following identity (see Theorem 14.3 in [2]) due to
Moreau to solve the subproblem.

Proposition 5.2. Let F be a convex lower semi-continuous function. For any α > 0, we
have

Proxα−1F ∗(x) = x− 1

α
ProxαF (αx).

With Proposition 5.2, IADMM for solving (32) is presented as follows.

Algorithm 3 IADMM for solving (31)

Initialization: Given (x1, λ1) and constants γ ∈
(
1, 1+

√
5

2

)
, ϵ, β, τ ∈ (0, 1), choose the

initial penalty parameter β1 ∈ [β,∞) and positive semidefinite matrix Q such that AA⊤+
Q ≻ 0. Set Pk = 0, Qk = βkQ.
for k = 1, 2, . . . do
1. yk+1 = A⊤zk − λk

βk
− 1

βk
Proxβkf

(
βkA

⊤zk − λk
)

2. zk+1 = argminz

{
g∗(z)− ⟨z, b⟩+ ⟨λk,−A⊤z⟩+ βk

2 ∥yk+1 −A⊤z∥2 + 1
2∥z − zk∥2Qk

}
3. λk+1 = λk + γβk(y

k+1 −A⊤zk+1)

4. Choose βk+1 ∈
[
max{β, τβk},

√
β2
k +

(1−ϵ)σgβk

λmax(C⊤C+Q)

]
end for

Note that to make subproblem in Step 2 of Algorithm 3 easier to solve, we may choose
Q := λmax(AA

⊤)I −AA⊤. Then Step 2 becomes

zk+1 = ak − 1

βkλmax(AA⊤)
Proxβkλmax(AA⊤)g

(
βkλmax(AA

⊤)ak
)
,

where

ak =
b+Aλk + βk

(
λmax(AA

⊤)I −AA⊤) zk + βkAy
k+1

βkλmax(AA⊤)
.

13

5.2 Strategies for updating βk

In this subsection, we consider how to update the penalty parameter βk. Note that if
we fix βk as a constant, then IADMM is equivalent to the traditional ADMM. Also, Xu’s
accelerated ADMM in [44] is essentially IADMM with the following monotone updating
strategy:

β1 = β, βk+1 =

√
β2
k +

(1− ϵ)σgβk
λmax(C⊤C +Q)

,∀k ∈ N+. (33)

It is called accelerated ADMM because the function value gap and primal feasibility achieve
the ergodic convergence rate of O(1/n2) as shown in Section 3. But as we will see later in the
numerical experiments, a better strategy is to adaptively adjust the penalty parameter βk in
IADMM based on the ratio between the normalised primal feasibility Rk+1

p and normalised

dual feasibility Rk+1
d for the computed iterate (yk+1, zk+1, λk+1), where

Rk+1
p := ∥Byk+1+Czk+1−b∥

max{∥Byk+1∥,∥Czk+1∥,∥b∥} ,

Rk+1
d := max

{
∥yk+1−Proxf (y

k+1−B⊤λk+1)∥
max{∥yk+1∥,∥B⊤λk+1∥} ,

∥zk+1−Proxg(zk+1−C⊤λk+1)∥
max{∥zk+1∥,∥C⊤λk+1∥}

}
.

The KKT residue of the computed (yk+1, zk+1, λk+1) is defined to be max{Rk+1
p , Rk+1

d }.
Our adaptive strategy is that after iteration k, we check the ratio between Rk+1

p and Rk+1
d ,

and update βk as follows:

βk+1 :=

√
β2
k +

(1−ϵ)σgβk

λmax(C⊤C+Q)
Rk+1

p > Rk+1
d ,

max {β, βk/1.5} Rk+1
p < Rk+1

d /10,

βk Rk+1
d /10 ≤ Rk+1

p ≤ Rk+1
d .

(34)

It is easy to see that this strategy belongs to the framework of Algorithm 1. Note that
updating the penalty according to the ratio between primal and dual feasibility is popular
in the literature (see [20,47]). However, our adaptive strategy has guaranteed convergence.
The adaptive strategy for IADMM is not necessarily restricted to the one presented in (34).
One can choose any other adaptive strategy, and as long as the new penalty parameter lies
in the interval in Step 4 of Algorithm 1, the convergence is guaranteed. In practice, we
choose γ = 1.618 and ϵ = 10−4, β = 10−6.

5.3 Strategies for partial proximal point method

In this section, we consider the implementation of Algorithm 2. Because the conver-
gence analysis in Theorem 4.1 requires σk to be monotonically decreasing, we will choose
σk = max{1/2k, 10−6}. A geometrically decreasing proximal parameter usually reduces the
number of outer iterations in the partial proximal point method. Let R̂k

p , R̂
k
d be the pri-

mal and dual KKT residue of the kth subproblem (19). Let Rk
p , R

k
d be the KKT residue

of the original problem (1). Because problems (1) and (19) have the same constraints,
we get R̂k

p = Rk
p . Also, when the subproblem (19) is solved exactly, we will have that

14

Rk
p = R̂k

p = R̂k
d = 0 but Rk

d may not equal to zero. This is because problem (1) is generally
not equivalent to subproblem (19). We stop the IADMM for solving the subproblem when
the following conditions are satisfied:

Rk
p < Rk

d/10, max
{
R̂k

p , R̂
k
d

}
< 1/(10k3). (35)

The first condition in (35) uses the relation between the primal and dual KKT residues. It
has been used in augment Lagrangian method [11]. The second condition in (35) ensures
that the KKT residues of the subproblems tend to zero rapidly with the rate O(1/k3). It
corresponds to the condition of the error term in Theorem 4.1.

We should add that the initial penalty parameter β1 used by the IADMM to solve
the k-th PPPM subproblem in Algorithm 2 is adaptively adjusted as follows. In detail,
if the penalty parameter of the previous IADMM inner loop keeps increasing in the last
few iterations, it is likely to be too small and will continue to increase in the new IADMM
inner loop. In this case, we set the initial penalty parameter to be η times the last penalty
parameter of the previous IADMM inner loop for some constant η > 1. Otherwise, we
simply choose the initial penalty parameter to be the same as the last penalty parameter
of the previous IADMM inner loop. By doing so, Algorithm 2 can increase the penalty
parameter drastically between different outer iterations and refine it by the scheme in (34)
at each inner loop. From our numerical experiment, Algorithm 2 can always identify a good
penalty parameter after only a few outer iterations and becomes stable after that.

6 Numerical experiments

In this section, we apply our algorithms to different problems to demonstrate the robustness,
convergence results and efficiency. Although in our theoretical analysis, the proximal term
of y can be nonzero, we simply choose P = 0 in the following numerical experiments. This
is because the ADMM subproblem for y already has a closed form solution and we don’t
have to add a proximal term to simplify it. All the experiments are run using Matlab
R2021b on a Workstation with a Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz Processor
and 128GB RAM.

6.1 Testing the robustness of IADMM

In this section, we test several regression problems to verify the robustness of adaptive
IADMM.

Example 6.1. Total variation regularized least squares problem.

We consider following problem, which is considered in example 6.3 of [25]:

min

{
∥Hx− b∥2/2 + γ

n−1∑
i=1

|xi+1 − xi| : x ∈ Rn

}
, (36)

where H ∈ Rr×n, b ∈ Rr. To solve (36), we apply IADMM to its dual problem as in Subsec-
tion 5.1. In this case, f(x) = γ

∑n−1
i=1 |xi+1 − xi| and g(x) = ∥x∥2/2. To compute the prox-

imal mapping of f , we use Condat’s direct algorithm in [8]. We use synthetic data similar

15

to example 6.3 in [25]. We randomly generate the matrix H as H = randn(r,n)/sqrt(n)

and b as b = H*x true+nf*randn(r,1), where x true is a randomly generated vector such
that (x2 − x1, x3 − x2, . . . , xn − xn−1) only has a few non-zero elements. We choose the
noise factor nf = 1/norm(H,’fro’).

Example 6.2. Elastic net regularized support vector machine

We consider the following problem which is considered in section 3.3 of [44]:

min

{
1

m
e⊤[y]+ + µ1∥x∥1 +

µ2

2
∥x∥2 : Bx+ y = e, x ∈ Rp, y ∈ Rm

}
, (37)

where B ∈ Rm×p and e ∈ Rm is the vector of all ones. We choose µ1 = µ2 = 0.01 and
generate synthetic data matrix B in the same way as section 3.3 of [44] (also see section
3.1.1 of [45]).

Example 6.3. Elastic net regularized problem with square-root loss

We consider the following problem which is considered in section 5.2. of [39]:

min
{
∥x∥2 + µ1∥y∥1 +

µ2

2
∥y∥2 : −x+By = c, x ∈ Rn, y ∈ Rp

}
, (38)

where B ∈ Rn×p and c ∈ Rn. We choose µ1 = 0.01, µ2 = 0.1 and generate synthetic data
matrix B, c in the same way as section 5.2 of [39].

For all the above problems, we test three algorithms: traditional ADMM with fixed-
penalty parameter, IADMM with adaptive strategy (34) and ADMM with a heuristic adap-
tive strategy (which we denote as Heu-ADMM) as follows:

βk+1 :=

1.5βk Rk+1

p > 10Rk+1
d ,

βk/1.5 Rk+1
p < Rk+1

d /10,

βk Rk+1
d /10 ≤ Rk+1

p ≤ 10Rk+1
d .

(39)

We choose the initial penalty parameter to be from 10−5 to 105. We stop the algorithms
when max{Rk+1

p , Rk+1
d } < 10−5 or when the maximum iteration number is reached.

The results of this experiment are shown in Figure 1. The x−axis is the initial penalty
parameter and the y−axis is the number of iterations that the algorithm needs to achieve
the accuracy of 10−5. From the plots in Figure 1, we can see that the fixed parameter
ADMM is very fast once the penalty parameter is optimally tuned. However, its speed is
very sensitive to the initial penalty parameter. However, IADMM and Heu-ADMM can
solve all the problems efficiently, without being affected seriously by the initial parameter,
because they can adaptively tune their penalty parameters. Apart from the convergence
guarantee, our adaptive strategy (34) is also more stable than the heuristic strategy (39).
Moreover, when the initial penalty parameter is too small, IADMM is usually faster than
Heu-ADMM. One possible reason is that in the strategy (34), βk has a super-exponential
growth when it is too small.

16

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

TV: r=10,n=200

IADMM

ADMM

Heu-ADMM

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

TV: r=100,n=1000

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

SVM: p=50,m=500,s=10

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

SVM: p=500,m=100,s=50

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

SVM: p=2000,m=200,s=100

10-5 100 105

Initial penalty

10

102

103

Ite
ra

tio
ns

L2: p=300,n=100,s=30

10-5 100 105

Initial penalty

10

102

103

Ite
ra

tio
ns

L2: p=1000,n=200,s=50

10-5 100 105

Initial penalty

10

102

103

Ite
ra

tio
ns

L2: p=5000,n=1750,s=500

10-5 100 105
10

102

103

104

Ite
ra

tio
ns

TV: r=500,n=100

Figure 1: Results for Example 5.1, 5.2 and 5.3. “IADMM” is adaptive ADMM with strat-
egy (34), “ADMM” is ADMM with a fixed-penalty parameter, “Heu-ADMM” is adaptive
ADMM with strategy (39). “s” is a parameter for the generating data, readers may refer
to [39,44].

17

6.2 Verifying the convergence rate of IADMM

In this section, we consider the following dense convex quadratic program, which is consid-
ered in section 5.1 of [39].

Example 6.4. Dense convex quadratic programs

min

{
1

2
y⊤Hy + h⊤y : y ∈ Rm, a ≤ By ≤ b

}
, (40)

where a, b ∈ Rn, h ∈ Rm, B ∈ Rn×m and H ∈ Sm is a positive definite matrix. After
introducing another variable z ∈ Rn, (40) becomes:

min

{
1

2
y⊤Hy + h⊤y + δ[a,b] (z) : By − z = 0, y ∈ Rm

}
, (41)

where δ[a,b](.) is the indicator function of the set {x ∈ Rn : a ≤ x ≤ b} . Since 1
2y

⊤Hy+h⊤y
is strongly convex, we can use IADMM to solve (41). We generate data in the same way as
section 5.1 of [39]. We choose n = m = 2000 and the smallest eigenvalue of H is 1, 0.5, 0.1
for different choices of H. Moreover, we choose B as a matrix with full row rank. Therefore,
from Theorem 3.9, IADMM has linear convergence as long as the penalty parameters are
bounded.

We will compare IADMM with Tran-Dinh and Zhu’s accelerated ADMM in section
4.4 of [41], Kim’s accelerated ADMM in section 6.4 of [25] and Xu’s accelerated ADMM
in [44]. We call them “acc1-ADMM”, “acc2-ADMM”, “acc3-ADMM”, respectively. For
acc1-ADMM, we update the parameters as suggested in [41]2. For acc2-ADMM, we choose
the initial penalty parameter to be 25/(2∥B∥22), which is nearly optimally-tuned. For acc3-
ADMM, we choose β1 = β = 1/(2∥B∥22) and use the strategy presented in (33) to update
βk. For IADMM, we choose β1 = β = 1/(2∥B∥22) and use the strategy in (34) to update βk.

The results of this experiment are shown in Figure 2. The first column of plots is on
the primal and dual infeasibility. We use the matlab function semilogy to visualize the
linear convergence of IADMM. The second column of plots is on the KKT-residue. We
use the matlab function loglog to show the sub-linear convergence rate of different types
of ADMM algorithms. The third column of plots is on the penalty parameters. We use
loglog to show the growth rate of the penalty parameters. From the plots of Figure 2,
we can see that IADMM is the most efficient algorithm. The convergence rate of acc2-
ADMM is close to O(1/n), which is consistent with the theory in [25]. This example also
implies that the convergence rate of O(1/n) for acc2-ADMM cannot be improved even if
one part of the objective function is strongly convex. We also see that the convergence rate
of acc1-ADMM is close to O(1/n2), which verifies the theory in [41]. For acc3-ADMM, its
convergence rate is surprisingly much faster than the ergodic convergence rate of O(1/n2)
proved in Section 3. IADMM is the only algorithm which has linear convergence. This
is consistent with Theorem 3.9 because from the third plot, the penalty parameter for
IADMM is bounded. However, since the penalty parameter for acc3-ADMM tends to

2The parameters used in acc1-ADMM are quite different from the traditional ADMM, so we omit the
details here. Readers may refer to [41] (31) case 2 and section 5.1 case 2 for details.

18

0 100 200 300 400 500

Iterations

10
-15

10
-10

10
-5

10
0

p
ri
m

a
l
a
n
d
 d

u
a
l
in

fe
a
s
ib

il
it
y

QP:
min

(H)=1

10
0

10
1

10
2

10
3

Iterations

10
-15

10
-10

10
-5

10
0

K
K

T
-R

e
s
id

u
e

QP:
min

(H)=1

10
0

10
1

10
2

10
3

Iterations

10
-1

10
0

10
2

10
4

p
e
n
a
lt
y
 p

a
ra

m
e
te

r

QP:
min

(H)=1

0 100 200 300 400 500

Iterations

10
-15

10
-10

10
-5

10
0

p
ri
m

a
l
a
n
d
 d

u
a
l
in

fe
a
s
ib

il
it
y

QP:
min

(H)=0.5

IADMM-p

IADMM-d

acc1-ADMM-p

acc1-ADMM-d

acc2-ADMM-p

acc2-ADMM-d

acc3-ADMM-p

acc3-ADMM-d

10
0

10
1

10
2

10
3

Iterations

10
-15

10
-10

10
-5

10
0

K
K

T
-R

e
s
id

u
e

QP:
min

(H)=0.5

IADMM

acc1-ADMM

acc2-ADMM

acc3-ADMM

(1/n)

(1/n
2
)

10
0

10
1

10
2

10
3

Iterations

10
-1

10
2

10
4

p
e
n
a
lt
y
 p

a
ra

m
e
te

r

QP:
min

(H)=0.5

IADMM

acc1-ADMM

acc2-ADMM

acc3-ADMM

(n)

(n
2
)

0 100 200 300 400 500

Iterations

10
-15

10
-10

10
-5

10
0

p
ri
m

a
l
a
n
d
 d

u
a
l
in

fe
a
s
ib

il
it
y

QP:
min

(H)=0.1

10
0

10
1

10
2

10
3

Iterations

10
-15

10
-10

10
-5

10
0

K
K

T
-R

e
s
id

u
e

QP:
min

(H)=0.1

10
0

10
1

10
2

10
3

Iterations

10
-2

10
0

10
2

10
4

p
e
n
a
lt
y
 p

a
ra

m
e
te

r

QP:
min

(H)=0.1

Figure 2: Results for the quadratic program (41) with different H. In the left panel, the
curves ***-p and ***-d correspond to the primal feasibility and dual feasibility, respectively.

19

infinity, the condition of Theorem 3.9 is not satisfied and acc3-ADMM does not exhibit
linear convergence. Moreover, it is easy to see that when the penalty parameter is too
large, the primal feasibility of acc3-ADMM is much smaller than the dual feasibility of
acc3-ADMM3. This is because the penalty on the dual feasibility becomes weaker with a
larger βk. That’s why we had better choose the penalty parameter adaptively.

We have also tested (41) on other random instances, but the behaviours of acc1-ADMM,
acc2-ADMM, acc3-ADMM and IADMM are similar to the ones presented in Figure 2.

6.3 Testing the efficiency of partial proximal point method for solving
non-semi-strongly convex problems

In this section, we verify the efficiency of Algorithm 2. We consider the following two
examples.

Example 6.5. Standard convex quadratic programming

min

{
1

2
x⊤Qx+ c⊤x : Ax = b, l ≤ x ≤ u, x ∈ Rn

}
, (42)

where Q ∈ Sn+, c ∈ Rn, A ∈ Rm×n, b ∈ Rm, l, u ∈ (R ∪ {±∞})n .

Problem (43) is the standard form of a convex quadratic programming problem. We
reformulate problem (43) into the following problem:

min

{
1

2
z⊤Qz + c⊤z + δ[l,u](z) + δΩ(y) : y = z, y, z ∈ Rn

}
, (43)

where Ω = {y ∈ Rn | Ay = b}. The above problem can be solved by ADMM-type algo-
rithms. Because the matrix Q may not be positive definite, we use the partial proximal
point method to solve it. For the IADMM subproblem with respect to z, we use the semi-
smooth Newton method to solve its dual problem. In detail, after some simplification, we
subproblem with respect to z can be written as

min
{
z⊤Qz/2 + β∥z − ẑ∥2/2 + δ[l,u](z) : z ∈ Rn

}
, (44)

for some β > 0 and ẑ ∈ Rn. Without loss of generality, we assume that Q is positive definite.
This is because otherwise we can reformulate the above problem as

min
{
z⊤ (Q+ ϵI) z/2 + (β − ϵ) ∥z − βẑ/(β − ϵ)∥2/2 + δ[l,u](z) : z ∈ Rn

}
(45)

for some small constant ϵ > 0. Problem (44) and (45) only differ by a constant. Since Q
is positive definite, we can apply Cholesky factorization to decompose it as Q := LL⊤ for
some lower triangular matrix L. Note that we only have to do this once at the beginning
because Q is a constant matrix. Thus, problem (44) can be further written as

min
{
∥L⊤z∥2/2 + β∥z − ẑ∥2/2 + δ[l,u](z) : z ∈ Rn

}
. (46)

3Note that the acc1-ADMM is quite different from the traditional ADMM. Its primal and dual feasibility
is close to each other even if its penalty parameter increases rapidly.

20

After introducing another variable y = L⊤z, problem (46) becomes

min
{
∥y∥2/2 + β∥z − ẑ∥2/2 + δ[l,u](z) : y = L⊤z, y ∈ Rn, z ∈ Rn

}
, (47)

whose dual problem is

min
{
β
(
∥ẑ − Lλ/β∥2 − dist ([l, u], ẑ − Lλ/β)2

)
/2 + ∥λ∥2/2 : λ ∈ Rn

}
, (48)

which is an unconstraint optimization problem with the objective function being strongly
convex and Lipschitz continuous differentiable. One can use semi-smooth newton method
to solve (48) efficiently. In our experiment, we set the tolerance of the gradient norm to be
less than 10−10 to terminate the semi-smooth Newton method.

We compare Algorithm 2 with the barrier method of Gurobi [18] 9.5.2 with 2 threads
on the modified Maros-Mészáros benchmark dataset [32]. Because the matrix Q of some of
the instances in [32] is diagonal, Gurobi can solve such problems very efficiently by making
use of this highly special structure. In order to make the problems more challenging, we
add a small perturbation to Q whenever it is diagonal as follows:

B=randn(n,n); BB = B*B’; Q = Q+1e-6*norm(Q,’fro’)*BB/norm(BB,’fro’).

We use “*” to indicate the perturbed instances in the following table. After the random
perturbation, Q becomes a dense matrix. We only test the problems in [32] with standard
form and 1000 ≤ n ≤ 10000.When n is greater than 10000, the dense Cholesky factorization
is too expensive for both Algorithm 2 and Gurobi. We use the following standard KKT
residue for convex QP problem to measure the accuracy:

Resp :=
∥Ax− b∥
1 + ∥b∥

, Resd :=
∥Proj[l,u]

(
x−

(
Qx+ c−A⊤λ

))
− x∥

1 + ∥Qx+ c∥
(49)

Since Gurobi use a different stopping criterion instead of KKT residue, we first use
Gurobi to solve one problem with tolerance 10−5 to get the outcome. Then we compute the
KKT residue i.e., max{Resp,Resd} of the outcome, say α, and set the tolerance of PPPM
to be min{10−5, α}. By doing so, the outcome of our algorithm will be more accurate than
Gurobi and the comparison of running time will be fair.

Table 1: Comparison of PPPM(IADMM), and Gurobi for modified
Maros-Mészáros convex QP problem; (n,m) denotes the number of vari-
ables and affine constraints.

Problem Algorithm Resp Resd Fval Time [s]

AUG3DCQP* PPPM 9.61e-06 1.81e-06 -9.4314271e+02 4.06e+00
(3873,1000) Gurobi 4.64e-11 4.64e-04 -9.4313492e+02 9.93e+01

AUG3DQP* PPPM 9.38e-06 4.06e-06 -6.6126864e+02 1.44e+01
(3873,1000) Gurobi 1.82e-14 1.31e-03 -6.6125924e+02 9.95e+01

CONT-050* PPPM 7.79e-07 8.39e-07 -4.5638482e+00 2.77e+02
(2597,2401) Gurobi 2.45e-12 8.51e-07 -4.5638481e+00 2.41e+01

CVXQP1 L PPPM 4.58e-09 6.78e-09 1.0870480e+08 4.71e+00
(10000,5000) Gurobi 7.37e-09 4.40e-09 1.0870481e+08 1.56e+01

21

Table 1: Comparison of PPPM(IADMM), and Gurobi for modified
Maros-Mészáros convex QP problem; (n,m) denotes the number of vari-
ables and affine constraints.

Problem Algorithm Resp Resd Fval Time [s]

CVXQP1 M PPPM 1.95e-08 6.07e-08 1.0875116e+06 1.51e-01
(1000,500) Gurobi 6.90e-08 2.90e-08 1.0875127e+06 1.88e-01

CVXQP2 L PPPM 1.53e-09 8.70e-09 8.1842458e+07 5.50e+00
(10000,2500) Gurobi 2.85e-12 8.90e-09 8.1842458e+07 7.12e+00

CVXQP2 M PPPM 2.42e-08 1.22e-07 8.2015543e+05 2.16e-01
(1000,250) Gurobi 1.85e-10 1.24e-07 8.2015543e+05 1.01e-01

CVXQP3 L PPPM 9.90e-10 8.38e-09 1.1571110e+08 6.25e+00
(10000,7500) Gurobi 8.45e-09 5.54e-09 1.1571112e+08 2.03e+01

CVXQP3 M PPPM 7.54e-08 2.04e-07 1.3628288e+06 2.19e+00
(1000,750) Gurobi 2.18e-07 4.41e-08 1.3628301e+06 2.60e-01

HUES-MOD* PPPM 8.98e-06 2.81e-06 3.4824562e+07 3.01e+01
(10000,2) Gurobi 4.00e-15 2.59e-05 3.4824489e+07 1.27e+03

HUESTIS* PPPM 4.38e-08 1.38e-08 3.4824489e+11 3.34e+01
(10000,2) Gurobi 3.66e-15 5.53e-08 3.4824489e+11 1.74e+03

QSCSD6 PPPM 9.95e-06 8.17e-06 5.0808222e+01 1.00e+00
(1350,147) Gurobi 2.99e-13 1.08e-05 5.0808253e+01 1.48e-02

QSCSD8 PPPM 9.38e-06 6.29e-06 9.4076384e+02 1.11e+00
(2750,397) Gurobi 2.68e-14 3.30e-05 9.4076594e+02 2.40e-02

STCQP1 PPPM 7.14e-07 1.59e-06 1.5514388e+05 1.76e+00
(4097,939) Gurobi 3.70e-11 1.60e-06 1.5514356e+05 1.73e-01

STCQP2 PPPM 1.11e-06 9.89e-06 2.2327448e+04 6.63e-01
(4097,2052) Gurobi 3.57e-13 1.69e-05 2.2327319e+04 3.27e-01

From Table 1, we can see that Algorithm 2 can solve all the instances to the required
accuracy. Gurobi does not reach the tolerance for some instances because it uses a different
stopping criterion. Algorithm 2 is faster than Gurobi for more than half of the instances.
This shows that when Q is not well structured, our algorithm (PPPM with IADMM as
subproblem solver) is efficient enough to compete favourably with Gurobi, which is a well-
developed solver for convex QP problems.

Next we consider another class of non-semi-strongly convex problems, rank lasso prob-
lems, to evaluate the efficiency of IADMM within the PPPM framework.

Example 6.6. Rank LASSO problem

min

 2

n(n− 1)

∑
1≤i<j≤n

∣∣∣(bi − a⊤i x)− (bj − a⊤j x)
∣∣∣+ λ∥x∥1 : x ∈ Rm

 . (50)

Problem (50) was proposed by Wang et al. in [42]. Its computational aspect is recently
studied in [1,38]. Let A := (a1, a2, . . . , an)

⊤ and b = (b1, b2, . . . , bm)⊤ . Problem (50) is also
called tuning-free robust regression because its regularization parameter has the following
formula (see (7) of [42]).

λ = cG−1
∥Sn∥∞(1− α0), (51)

22

where α0 = 0.1, c = 1.1 and G−1
∥Sn∥∞(1−α0) denotes the (1−α0)−quantile of the distribution

of ∥Sn∥∞. Here Sn = −2A⊤ξ/n(n − 1) and ξ = 2r − (n + 1) with r following the uniform
distribution on the permutations of the integers {1, 2, . . . , n}. Problem (50) can be written
as the following problem:

min {h(y) + λ∥z∥1 : Az − b = y, z ∈ Rm, y ∈ Rn} , (52)

where h(y) := 2
n(n−1)

∑
1≤i<j≤n |yi−yj |. Because problem (52) is not semi-strongly convex,

we use the partial proximal point method to solve it. When we use IADMM to solve the
proximal subproblem of (52), updating z corresponds to solving the following problem:

min
{
λ∥z∥1 + β∥Az − b− y − λ/β∥2/2 + σ∥z − zk∥2/2 : z ∈ Rm

}
, (53)

which is similar to the proximal point subproblem of the square LASSO problem. We can
use the semi-smooth Newton method [28] to solve its dual problem efficiently. Updating
y can be done easily by computing the proximal mapping of h(y). We can use the direct
solver developed in [30] to solve it in nearly linear time. Because updating the variable z
doesn’t have a closed form solution for a general matrix A, we compare Algorithm 2 two
variants of ADMM’s. The first one is linearized ADMM, which is presented in Algorithm
4.

Algorithm 4 LADMM

Initialization: Given (x1, λ1) and constants γ ∈
(
1, 1+

√
5

2

)
.

for k = 1, 2, . . . do

1. yk+1 = argminy

{
h(y) + βk

2 ∥Azk − y − b− λk/βk∥2
}

2. zk+1 = argminz

{
λ∥z∥1 + βk

2 ∥Az − yk+1 − b+ λkβk∥2 + βk
2 ∥z − zk∥2

λmax(A⊤A)I−A⊤A

}
3. λk+1 = λk − γβk(A

⊤zk+1 − yk+1 − b)
4. Update βk+1 from (39)

end for

In Step 2 of Algorithm 4, the proximal term with the weighted matrix βk(λmax(A
⊤A)I−

A⊤A) can simplify the subproblem into computing the proximal mapping of λ∥ · ∥, which
has a closed form solution. The second variant is that we introduce another variable u ∈ Rm

and write problem (52) equivalently as follows:

min {h(y) + λ∥z∥1 : Au− b = y, u = z, z ∈ Rm, y ∈ Rn, u ∈ Rm} . (54)

We can use the ADMM presented in Algorithm 5 to solve (54).
In Algorithm 5, Step 1 is essentially solving a positive definite linear system with the

coefficient matrix Im + A⊤A. Note that we can apply the Sherman-Morrison-Woodbury
formula [17] when n is smaller thanm.We also store the Cholesky decomposition of I+AA⊤

to use it to solve the linear system in Step 1. Step 2 is equivalent to computing the proximal
mappings of h(y) and λ∥z∥1 independently. Apart from ADMM, we can also formulate
problem (50) as a linear programming problem as mentioned in section 4.2 of [42]. However,

23

Algorithm 5 ADMM

Initialization: Given (y1, z1, u1, λ1, µ1) and constants γ ∈
(
1, 1+

√
5

2

)
.

for k = 1, 2, . . . do

1. uk+1 = argminy

{
βk
2 ∥Au− b− yk − λk/βk∥2 + βk

2 ∥u− zk − µk/βk∥2
}

2.

(yk+1, zk+1) = argmin
(y,z)

{
h(y) + βk

2 ∥Auk+1 − b− y − λk/βk∥2
+λ∥z∥1 + βk

2 ∥uk+1 − z − µk/βk∥2

}

3. λk+1 = λk − γβk(A
⊤uk+1 − yk+1 − b), µk+1 = µk − γβk(u

k+1 − zk+1)
4. Update βk+1 from (39)

end for

the linear programming formulation has huge number of variables and constraints. Thus
we only test the linear programming model for small problems.

For ADMM solvers, we terminate the algorithms when the KKT residue is smaller than
10−5. We choose the initial penalty parameter to be max{100/λmax(B)2, 10−6}. We set the
maximum running time to be 3600s. For the linear programming model, we use the barrier
method in Gurobi 9.5.2 with 2 threads. We also set the tolerance to be 10−5 and the
maximum running time to be 3600s;

We first consider synthetic dataset. We generated the data A and b in the same way as
mentioned in example 1 of [42]. In detail, the rows of A are generated from a p−dimensional
multivariable normal distribution Np(0,Σ), where the covariance matrix satisfies Σi,j = 0.5

for i ̸= j and Σi,j = 1 for i = j. The ground truth x̂ :=
(√

3,
√
3,
√
3, 0, . . . , 0

)⊤
.We generate

b as b = Ax̂+ ϵ, where ϵi satisfies six different distributions: (1) N(0, 0.25); (2) N(0, 1); (3)
N(0, 2); (4) 0.95N(0, 1) + 0.05N(0, 100) (denoted by MN); (5)

√
2t(4), where t(4) denotes

the t distribution with 4 degree of freedom; (6) Cauchy(0,1). We choose λ from the formula
(51) by randomly generating 1000 permutations of the integers {1, 2, . . . , n} and computing
the approximate (1− α0)−quantile.

We first test small problems where n = 200 and m = 1000. In this case, we may
compared the above mentioned four algorithms.

Table 2: Comparison of PPPM(IADMM), LADMM, ADMM and Gurobi
for randomly generated rank LASSO problem. n = 200, m = 1000. For
Algorithm 2, “Iter” means number of ADMM iterations.

Problem Algorithm Resp Resd Iter Fval Time [s]

n = 200 PPPM 4.18e-06 7.67e-06 80 1.9747008e+00 1.60e-01
m = 1000 LADMM 9.92e-06 9.79e-06 3357 1.9747001e+00 2.07e+00
κ = 0.32 ADMM 8.35e-06 1.00e-05 4206 1.9747004e+00 3.13e+00
N(0, 0.25) Gurobi 9.99e-19 4.74e-06 28 1.9747009e+00 6.13e+01

n = 200 PPPM 5.84e-06 9.98e-06 138 2.8465270e+00 1.69e-01
m = 1000 LADMM 9.17e-06 9.99e-06 3560 2.8465223e+00 1.96e+00
κ = 0.32 ADMM 9.95e-06 9.27e-06 178321 2.8465172e+00 1.31e+02
N(0, 1) Gurobi 6.30e-18 1.39e-06 22 2.8465242e+00 4.99e+01

24

Table 2: Comparison of PPPM(IADMM), LADMM, ADMM and Gurobi
for randomly generated rank LASSO problem. n = 200, m = 1000. For
Algorithm 2, “Iter” means number of ADMM iterations.

Problem Algorithm Resp Resd Iter Fval Time [s]

n = 200 PPPM 7.45e-06 9.46e-06 154 4.0089871e+00 1.87e-01
m = 1000 LADMM 9.98e-06 1.00e-05 6154 4.0089518e+00 3.60e+00
κ = 0.32 ADMM 9.72e-06 9.93e-06 22269 4.0089440e+00 1.62e+01
N(0, 2) Gurobi 1.32e-17 2.36e-06 17 4.0089541e+00 4.00e+01

n = 200 PPPM 7.19e-06 9.92e-06 195 6.8206437e+00 1.51e+00
m = 1000 LADMM 9.61e-06 9.95e-06 6743 6.8203775e+00 3.51e+00
κ = 0.32 ADMM 9.81e-06 3.59e-06 18699 6.8203800e+00 1.32e+01

MN Gurobi 2.38e-17 5.35e-07 18 6.8203778e+00 4.45e+01

n = 200 PPPM 1.50e-06 9.90e-06 152 3.8513292e+00 1.32e-01
m = 1000 LADMM 9.88e-06 9.96e-06 3918 3.8513145e+00 2.19e+00
κ = 0.32 ADMM 9.99e-06 7.73e-06 28135 3.8513183e+00 2.01e+01√

2t4 Gurobi 6.43e-18 1.16e-05 26 3.8513196e+00 5.75e+01

n = 200 PPPM 4.27e-06 7.18e-06 73 9.5835201e+00 8.57e-02
m = 1000 LADMM 8.52e-06 9.99e-06 4190 9.5833821e+00 2.41e+00
κ = 0.32 ADMM 9.98e-06 8.92e-06 11156 9.5834183e+00 8.04e+00
Cauchy Gurobi 6.95e-18 1.31e-07 38 9.5833823e+00 8.37e+01

From Table 2, we can see that all the algorithms can solve the small size problems
to the required accuracy. Gurobi is slow compared with ADMM-type methods except for
the second instance. This is because the linear programming formulation of problem (50)
contains too many constraints and variables. Among the ADMM-type algorithms, the
partial proximal point method (with IADMM as its subproblems solver) is more than 10
times faster than the other two algorithms. The main reason is that with the proximal
term, we can use the powerful semi-smooth Newton method to solve the subproblem (53)
to update the variable z.

Now, we move on to test some large randomly generated problems. We do not consider
Gurobi because it suffers from memory issue for large problems. For convenience, we only
consider the first type of noise, i.e., N(0, 0.25) when we generate the dataset.

Table 3: Comparison of PPPM(IADMM) and LADMM and ADMM for
randomly generated rank LASSO problem.

Problem Algorithm Resp Resd Iter Fval Time [s]

n = 1000 PPPM 4.37e-06 1.53e-06 51 1.0338039e+00 6.75e-01
m = 2000 LADMM 6.05e-06 1.00e-05 2193 1.0338041e+00 8.70e+00
κ = 0.15 ADMM 5.52e-06 9.99e-06 4350 1.0338050e+00 2.70e+01

n = 1000 PPPM 5.83e-06 5.73e-06 53 1.0627181e+00 1.45e+00
m = 4000 LADMM 5.02e-06 9.99e-06 2606 1.0627179e+00 3.03e+01
κ = 0.15 ADMM 4.56e-06 1.00e-05 6802 1.0627190e+00 9.94e+01

n = 2000 PPPM 4.30e-06 6.66e-06 52 8.3477708e-01 3.91e+00
m = 4000 LADMM 9.98e-06 6.53e-06 3469 8.3477689e-01 1.73e+02
κ = 0.11 ADMM 9.77e-06 9.46e-06 7317 8.3477629e-01 4.23e+02

n = 2000 PPPM 3.48e-06 4.34e-06 60 8.5790776e-01 9.32e+00
m = 8000 LADMM 9.94e-06 9.10e-06 3750 8.5790787e-01 3.75e+02

25

Table 3: Comparison of PPPM(IADMM) and LADMM and ADMM for
randomly generated rank LASSO problem.

Problem Algorithm Resp Resd Iter Fval Time [s]

κ = 0.11 ADMM 9.88e-06 9.63e-06 31187 8.5791123e-01 3.40e+03

n = 4000 PPPM 1.88e-06 6.87e-06 56 6.8255971e-01 1.94e+01
m = 8000 LADMM 9.95e-06 6.99e-06 4465 6.8255971e-01 8.12e+02
κ = 0.08 ADMM 2.21e-05 7.79e-06 17604 6.8255852e-01 3.60e+03

n = 4000 PPPM 2.57e-06 6.28e-06 58 6.9040873e-01 2.21e+01
m = 10000 LADMM 9.93e-06 7.22e-06 4078 6.9040871e-01 9.08e+02
κ = 0.08 ADMM 3.32e-05 1.26e-05 14239 6.9040667e-01 3.60e+03

From Table 3, we can see that the Algorithm 2 is readily more than 10 times faster
than the other two algorithms. For the randomly generated datasets, the LADMM and
ADMM can return a solution of moderate accuracy for all of the instances. This is because
random problems are usually well-conditioned. Apart from synthetic data, we also test
on some real data instances, which are collected from LIBSVM datasets [6]. We expand
the features of the original data using the polynomial basis functions mentioned in [23].
Different from randomly generated problems, the coefficient matrices A for real datasets
are usually ill-conditioned (with condition numbers ranging from the order of 103 to the
order of more than 1012) and problem (19) is difficult to be solved by traditional first order
method. We don’t show the results of certain algorithm if it reaches the maximum running
time but the solution is very inaccurate.

Table 4: Comparison of PPPM(IADMM) and LADMM and ADMM for
real datasets. (n,m) denotes the sample size and expanded feature size.

Problem Algorithm Resp Resd Iter Fval Time [s]

abalone7 PPPM 1.20e-06 8.53e-06 59 2.6709065e+00 7.87e+00
(4177,6435) LADMM 9.97e-06 8.17e-06 3706 2.6596874e+00 5.77e+02
κ = 0.03 ADMM 6.06e-06 9.95e-06 10843 2.6597018e+00 1.98e+03

bodyfat7 PPPM 1.88e-06 8.48e-06 64 4.3262740e-03 6.31e+00
(252,116280) LADMM - - - - -
κ = 0.06 ADMM - - - - -

E2006.test PPPM 7.74e-06 5.76e-06 62 3.6089303e-01 6.50e+00
(3308,150358) LADMM 9.99e-06 1.89e-06 655 3.5726244e-01 1.15e+02

κ = 0.02 ADMM 1.46e-06 9.87e-06 2537 3.5701485e-01 4.76e+02

housing7 PPPM 1.47e-06 6.96e-06 66 7.2903775e+00 1.20e+01
(506,77520) LADMM 1.76e-05 3.32e-05 16685 7.2707283e+00 3.60e+03
κ = 0.10 ADMM 1.43e-04 3.06e-05 15777 7.2704069e+00 3.60e+03

mpg7 PPPM 1.46e-06 5.35e-06 69 5.0256912e+00 2.16e-01
(392,3432) LADMM 9.15e-06 6.95e-06 1472 5.0191357e+00 3.07e+00
κ = 0.10 ADMM 9.88e-06 5.25e-06 7906 5.0191178e+00 2.14e+01

pyrim5 PPPM 7.32e-06 9.29e-06 93 1.3603816e-01 5.79e+00
(74,201376) LADMM 4.43e-05 1.82e-04 38099 1.3603915e-01 3.60e+03
κ = 0.37 ADMM 6.88e-04 1.78e-03 36569 1.3910683e-01 3.60e+03

space ga9 PPPM 3.70e-06 8.81e-06 53 1.6569455e-01 3.16e+00
(3107,5005) LADMM 4.99e-06 9.93e-06 281 1.6569433e-01 2.74e+01
κ = 0.02 ADMM - - - - -

26

Table 4: Comparison of PPPM(IADMM) and LADMM and ADMM for
real datasets. (n,m) denotes the sample size and expanded feature size.

Problem Algorithm Resp Resd Iter Fval Time [s]

triazines4 PPPM 7.41e-06 2.67e-06 95 1.6628905e-01 3.08e+01
(186,635376) LADMM 2.67e-05 9.53e-05 6381 1.6632803e-01 3.60e+03
κ = 0.29 ADMM - - - - -

E2006.train PPPM 7.96e-06 9.66e-06 85 3.7853164e-01 3.76e+01
(16087,150360) LADMM - - - - -

κ = 0.01 ADMM 8.19e-06 9.85e-06 353 3.7842288e-01 3.52e+02

log1p.E2006.test PPPM 9.98e-06 4.28e-06 69 4.3580711e-01 6.68e+01
(3308,4272226) LADMM 8.32e-04 4.17e-03 3027 4.1710211e-01 3.60e+03

κ = 0.10 ADMM - - - - -

log1p.E2006.train PPPM 8.92e-06 1.72e-06 71 4.1277825e-01 2.40e+02
(16087,4272227) LADMM - - - - -

κ = 0.05 ADMM - - - - -

From Table 4, we can see that Algorithm 2 is the only solver that can solve all the
problems to the required accuracy. Moreover, Algorithm 2 is much more efficient than
the other two algorithms. For the instances housing7 and pyrim5, Algorithm 2 is more
than 100 times faster than the other two algorithms. This implies that our algorithm is
less affected by ill-conditioning of the dataset. This verifies the efficiency and robustness
of the partial proximal point method (with IADMM as its subproblems solver) for solving
non-semi-strongly convex problems of the form (1).

7 Conclusion

We have proposed an adaptive ADMM which can adjust the penalty parameters adaptively
with a large degree of freedom. Various types of convergence results for IADMM have been
established under the semi-strongly convex condition. We have also proposed a partial
proximal point method (together with IADMM as its subproblems solver) to solve prob-
lems without semi-strongly convexity. Numerical experiments show that the convergence
of IADMM with self-adaptive parameters adjustment is insensitive to the initial parame-
ter chosen as compared to the fixed-parameter ADMM. Also, the partial proximal point
method is much more efficient compared with other ADMM-type methods. There are fur-
ther research questions that we can explore, and these include analyzing the convergence
rate of partial proximal point method and applying this method to solve other problems
with two non-smooth functions.

Acknowledgement

We thank the reviewers and Associate Editor for many helpful suggestions to improve the
quality of the paper.

27

References

[1] X. Bai and Q. Li. A highly efficient adaptive-sieving-based algorithm for the high-
dimensional rank lasso problem. arXiv preprint arXiv:2207.12753, 2022.

[2] H. H. Bauschke, P. L. Combettes, et al. Convex analysis and monotone operator theory
in Hilbert spaces, volume 408. Springer, 2011.

[3] D. Boley. Local linear convergence of the alternating direction method of multipliers
on quadratic or linear programs. SIAM Journal on Optimization, 23(4):2183–2207,
2013.

[4] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of mathematical imaging and vision, 40:120–145,
2011.

[5] A. Chambolle and T. Pock. On the ergodic convergence rates of a first-order primal–
dual algorithm. Mathematical Programming, 159(1-2):253–287, 2016.

[6] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM
transactions on intelligent systems and technology (TIST), 2(3):1–27, 2011.

[7] L. Chen, D. Sun, and K.-C. Toh. A note on the convergence of admm for linearly con-
strained convex optimization problems. Computational Optimization and Applications,
66:327–343, 2017.

[8] L. Condat. A direct algorithm for 1-d total variation denoising. IEEE Signal Processing
Letters, 20(11):1054–1057, 2013.

[9] Y. Cui, D. Sun, and K.-C. Toh. On the r-superlinear convergence of the kkt residuals
generated by the augmented lagrangian method for convex composite conic program-
ming. Mathematical Programming, 178:381–415, 2019.

[10] W. Deng and W. Yin. On the global and linear convergence of the generalized alter-
nating direction method of multipliers. Journal of Scientific Computing, 66:889–916,
2016.

[11] J. Eckstein and P. J. Silva. A practical relative error criterion for augmented la-
grangians. Mathematical Programming, 141(1-2):319–348, 2013.

[12] M. Fazel, T. K. Pong, D. Sun, and P. Tseng. Hankel matrix rank minimization with
applications to system identification and realization. SIAM Journal on Matrix Analysis
and Applications, 34(3):946–977, 2013.

[13] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers & mathematics with applica-
tions, 2(1):17–40, 1976.

[14] P. Giselsson and S. Boyd. Linear convergence and metric selection for douglas-rachford
splitting and admm. IEEE Transactions on Automatic Control, 62(2):532–544, 2016.

28

[15] R. Glowinski and A. Marroco. Sur l’approximation, par éléments finis d’ordre un,
et la résolution, par pénalisation-dualité d’une classe de problèmes de dirichlet non
linéaires. Revue française d’automatique, informatique, recherche opérationnelle. Anal-
yse numérique, 9(R2):41–76, 1975.

[16] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk. Fast alternating direction
optimization methods. SIAM Journal on Imaging Sciences, 7(3):1588–1623, 2014.

[17] G. H. Golub et al. Cf vanloan, matrix computations. The Johns Hopkins, 113(10):23–
36, 1996.

[18] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023.

[19] C. D. Ha. A generalization of the proximal point algorithm. SIAM Journal on Control
and Optimization, 28(3):503–512, 1990.

[20] B. He, H. Yang, and S. Wang. Alternating direction method with self-adaptive penalty
parameters for monotone variational inequalities. Journal of Optimization Theory and
applications, 106:337–356, 2000.

[21] B. He and X. Yuan. On the o(1/n) convergence rate of the douglas–rachford alternating
direction method. SIAM Journal on Numerical Analysis, 50(2):700–709, 2012.

[22] M. Hong and Z.-Q. Luo. On the linear convergence of the alternating direction method
of multipliers. Mathematical Programming, 162(1-2):165–199, 2017.

[23] L. Huang, J. Jia, B. Yu, B.-G. Chun, P. Maniatis, and M. Naik. Predicting execution
time of computer programs using sparse polynomial regression. Advances in neural
information processing systems, 23, 2010.

[24] K. Jiang, D. Sun, and K.-C. Toh. Solving nuclear norm regularized and semidefinite
matrix least squares problems with linear equality constraints. Discrete Geometry and
Optimization, pages 133–162, 2013.

[25] D. Kim. Accelerated proximal point method for maximally monotone operators. Math-
ematical Programming, 190(1-2):57–87, 2021.

[26] H. Li and Z. Lin. Accelerated alternating direction method of multipliers: An optimal
o (1/k) nonergodic analysis. Journal of Scientific Computing, 79:671–699, 2019.

[27] M. Li, D. Sun, and K.-C. Toh. A majorized admm with indefinite proximal terms for
linearly constrained convex composite optimization. SIAM Journal on Optimization,
26(2):922–950, 2016.

[28] X. Li, D. Sun, and K.-C. Toh. A highly efficient semismooth newton augmented
lagrangian method for solving lasso problems. SIAM Journal on Optimization,
28(1):433–458, 2018.

[29] L. Liang, D. Sun, and K.-C. Toh. An inexact augmented lagrangian method for
second-order cone programming with applications. SIAM Journal on Optimization,
31(3):1748–1773, 2021.

29

[30] M. Lin, Y.-J. Liu, D. Sun, and K.-C. Toh. Efficient sparse semismooth newton methods
for the clustered lasso problem. SIAM Journal on Optimization, 29(3):2026–2052, 2019.

[31] Z. Lin, R. Liu, and Z. Su. Linearized alternating direction method with adaptive
penalty for low-rank representation. Advances in neural information processing sys-
tems, 24, 2011.

[32] I. Maros and C. Mészáros. A repository of convex quadratic programming problems.
Optimization Methods and Software, 11(1-4):671–681, 1999.

[33] R. Nishihara, L. Lessard, B. Recht, A. Packard, and M. Jordan. A general analysis
of the convergence of admm. In International conference on machine learning, pages
343–352. PMLR, 2015.

[34] Y. Ouyang, Y. Chen, G. Lan, and E. Pasiliao Jr. An accelerated linearized alternating
direction method of multipliers. SIAM Journal on Imaging Sciences, 8(1):644–681,
2015.

[35] R. T. Rockafellar. Augmented lagrangians and applications of the proximal point
algorithm in convex programming. Mathematics of operations research, 1(2):97–116,
1976.

[36] R. T. Rockafellar and R. J.-B. Wets. Variational analysis, volume 317. Springer Science
& Business Media, 2009.

[37] S. Sabach and M. Teboulle. Faster lagrangian-based methods in convex optimization.
SIAM Journal on Optimization, 32(1):204–227, 2022.

[38] P. Tang, C. Wang, and B. Jiang. A proximal-proximal majorization-minimization
algorithm for nonconvex tuning-free robust regression problems. arXiv preprint
arXiv:2106.13683, 2021.

[39] Q. Tran-Dinh. Proximal alternating penalty algorithms for nonsmooth constrained
convex optimization. Computational Optimization and Applications, 72:1–43, 2019.

[40] Q. Tran-Dinh, O. Fercoq, and V. Cevher. A smooth primal-dual optimization frame-
work for nonsmooth composite convex minimization. SIAM Journal on Optimization,
28(1):96–134, 2018.

[41] Q. Tran-Dinh and Y. Zhu. Non-stationary first-order primal-dual algorithms with
faster convergence rates. SIAM Journal on Optimization, 30(4):2866–2896, 2020.

[42] L. Wang, B. Peng, J. Bradic, R. Li, and Y. Wu. A tuning-free robust and efficient ap-
proach to high-dimensional regression. Journal of the American Statistical Association,
115(532):1700–1714, 2020.

[43] B. Wohlberg. Admm penalty parameter selection by residual balancing. arXiv preprint
arXiv:1704.06209, 2017.

30

[44] Y. Xu. Accelerated first-order primal-dual proximal methods for linearly constrained
composite convex programming. SIAM Journal on Optimization, 27(3):1459–1484,
2017.

[45] Y. Xu, I. Akrotirianakis, and A. Chakraborty. Proximal gradient method for huberized
support vector machine. Pattern Analysis and Applications, 19:989–1005, 2016.

[46] Y. Xu and S. Zhang. Accelerated primal–dual proximal block coordinate updating
methods for constrained convex optimization. Computational Optimization and Ap-
plications, 70:91–128, 2018.

[47] Z. Xu, M. Figueiredo, and T. Goldstein. Adaptive admm with spectral penalty param-
eter selection. In Artificial Intelligence and Statistics, pages 718–727. PMLR, 2017.

[48] Z. Xu, M. A. Figueiredo, X. Yuan, C. Studer, and T. Goldstein. Adaptive relaxed
admm: Convergence theory and practical implementation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pages 7389–7398, 2017.

[49] Z. Xu, G. Taylor, H. Li, M. A. Figueiredo, X. Yuan, and T. Goldstein. Adaptive
consensus admm for distributed optimization. In International Conference on Machine
Learning, pages 3841–3850. PMLR, 2017.

[50] L. Yang and K.-C. Toh. Bregman proximal point algorithm revisited: A new inexact
version and its inertial variant. SIAM Journal on Optimization, 32(3):1523–1554, 2022.

A Proof details

A.1 Proof of Lemma 3.1

Proof. From the optimality conditions in step 1 and 2, we have that

−
(
B⊤λk + βkB

⊤(Byk+1 + Czk − b) + Pk(y
k+1 − yk)

)
∈ ∂f(yk+1) (55)

−
(
C⊤λk + βkC

⊤(Byk+1 + Czk+1 − b) +Qk(z
k+1 − zk)

)
∈ ∂g(zk+1). (56)

From (55) and the convexity of f , we have that

f(yk+1)− f(y) ≤ ⟨B⊤λk + βkB
⊤(Byk+1 + Czk − b) + Pk(y

k+1 − yk), y − yk+1⟩
= ⟨λk + βk(Byk+1 + Czk − b), By −Byk+1⟩+ ηPk

(y, yk, yk+1). (57)

Similarly, from (56) and (2), we have that

g(zk+1)− g(z)

≤ ⟨λk + βk(Byk+1 + Czk+1 − b), Cz − Czk+1⟩+ ηQk
(z, zk, zk+1)− σg

2
∥zk+1 − z∥2

= ⟨λk + βk(Byk+1 + Czk − b), Cz − Czk+1⟩+ ηβkC⊤C+Qk
(z, zk, zk+1)− σg

2
∥zk+1 − z∥2.

(58)

31

From (57), (58) we have that

F(xk+1)−F(x)

≤ ⟨λk + βk(Byk+1 + Czk − b), b−Axk+1⟩+ ηβkC⊤C+Qk
(z, zk, zk+1) + ηPk

(y, yk, yk+1)

− σg
2
∥z − zk+1∥2

= ⟨λk + βk(Axk+1 − b), b−Axk+1⟩+ βk⟨C(zk − zk+1), b−Axk+1⟩

+ ηβkC⊤C+Qk
(z, zk, zk+1) + ηPk

(y, yk, yk+1)− σg
2
∥z − zk+1∥2

= ⟨λk+1, b−Axk+1⟩+ (γ − 1)βk∥Axk+1 − b∥2 + βk⟨C(zk − zk+1), b−Axk+1⟩

+ ηβkC⊤C+Qk
(z, zk, zk+1) + ηPk

(y, yk, yk+1)− σg
2
∥z − zk+1∥2, (59)

where we have used step 3 to get the last equality. From (59), we have

L(xk+1, λ)− L(x, λ)
≤ ⟨λk+1 − λ, b−Axk+1⟩+ (γ − 1)βk∥Axk+1 − b∥2 + βk⟨C(zk − zk+1), b−Axk+1⟩

+ ηβkC⊤C+Qk
(z, zk, zk+1) + ηPk

(y, yk, yk+1)− σg
2
∥z − zk+1∥2

=
〈
λk+1 − λ,

λk − λk+1

βkγ

〉
+ (γ − 1)βk∥Axk+1 − b∥2 + βk⟨C(zk − zk+1), b−Axk+1⟩

+ ηβkC⊤C+Qk
(z, zk, zk+1) + ηPk

(y, yk, yk+1)− σg
2
∥z − zk+1∥2. (60)

Now, we need to estimate βk⟨C(zk − zk+1), b−Axk+1⟩. From (56), we know that

− C⊤λk − βkC
⊤(Axk+1 − b)−Qk(z

k+1 − zk) ∈ ∂g(zk+1)

− C⊤λk−1 − βk−1C
⊤(Axk − b)−Qk−1(z

k − zk−1) ∈ ∂g(zk)

Combining the above two equations together with the strongly convexity of g, we get〈 C⊤(λk−1 − λk)− βkC
⊤(Axk+1 − b)−Qk(z

k+1 − zk)
+βk−1C

⊤(Axk − b) +Qk−1(z
k − zk−1)

, zk+1 − zk
〉
≥ σg∥zk − zk+1∥2,

which, together with step 3, implies that

σg∥zk − zk+1∥2

≤ ⟨λk−1 + βk−1(Axk − b)− λk − βk(Axk+1 − b), C(zk+1 − zk)⟩
+ ⟨−Qk(z

k+1 − zk) +Qk−1(z
k − zk−1), zk+1 − zk⟩

= ⟨(1− γ)βk−1(Axk − b)− βk(Axk+1 − b), C(zk+1 − zk)⟩
+ ⟨−Qk−1(z

k+1 − zk) +Qk−1(z
k − zk−1), zk+1 − zk⟩ − (βk − βk−1)∥zk+1 − zk∥2Q.

32

The above inequality implies that

βk⟨Axk+1 − b, C(zk+1 − zk)⟩
≤ (γ − 1)⟨βk−1(b−Axk), C(zk+1 − zk)⟩ − ∥zk+1 − zk∥2Qk

+ βk−1⟨Q(zk − zk−1), zk+1 − zk⟩ − σg∥zk − zk+1∥2

≤
(γ − 1)β2

k−1

2γβk
∥Axk − b∥2 + (γ − 1)γβk

2
∥C(zk+1 − zk)∥2 − ∥zk+1 − zk∥2Qk

+
β2
k−1

2βk
∥zk − zk−1∥2Q +

βk
2
∥zk+1 − zk∥2Q − σg∥zk − zk+1∥2.

=
(γ − 1)β2

k−1

2γβk
∥Axk − b∥2 + (1− δ)βk

2
∥C(zk+1 − zk)∥2 +

β2
k−1

2βk
∥zk − zk−1∥2Q − βk

2
∥zk+1 − zk∥2Q

− σg∥zk − zk+1∥2,

In the above, we use the fact that γ(γ− 1) = 1− δ. Now, we plug the above inequality into
(60), we get

L(xk+1, λ)− L(x, λ)

≤
〈
λk+1 − λ,

λk − λk+1

βkγ

〉
+ (γ − 1)βk∥Axk+1 − b∥2 +

(γ − 1)β2
k−1

2γβk
∥Axk − b∥2 + ηPk

(y, yk, yk+1)

+ ηβkC⊤C+Qk
(z, zk, zk+1) +

(1− δ)βk
2

∥C(zk+1 − zk)∥2 +
β2
k−1

2βk
∥zk − zk−1∥2Q − βk

2
∥zk+1 − zk∥2Q

− σg∥zk − zk+1∥2 − σg
2
∥z − zk+1∥2

≤
〈
λk+1 − λ,

λk − λk+1

βkγ

〉
+ (γ − 1)βk∥Axk+1 − b∥2 +

(γ − 1)β2
k−1

2γβk
∥Axk − b∥2 + ηPk

(y, yk, yk+1)

+ ξβkC⊤C+Qk
(z, zk, zk+1)− δβk

2
∥C(zk+1 − zk)∥2 +

β2
k−1

2βk
∥zk − zk−1∥2Q − βk∥zk+1 − zk∥2Q

− σg∥zk − zk+1∥2 − σg
2
∥z − zk+1∥2. (61)

Note that from step 4, we can derive that

βk

(
ξβkC⊤C+Qk

(z, zk, zk+1)− (1− ϵ)σg
2

∥z − zk+1∥2
)

≤
β2
k

2
∥z − zk∥2C⊤C+Q −

β2
k+1

2
∥z − zk+1∥2C⊤C+Q.

33

Multiply (61) by βk and use the above inequality, we obtain that

βk

(
L(xk+1, λ)− L(x, λ)

)
≤ 1

γ
⟨λk+1 − λ, λk − λk+1⟩+ (γ − 1)β2

k∥Axk+1 − b∥2 +
(γ − 1)β2

k−1

2γ
∥Axk − b∥2

+ βkηPk
(y, yk, yk+1) +

β2
k

2
∥z − zk∥2C⊤C+Q −

β2
k+1

2
∥z − zk+1∥2C⊤C+Q −

δβ2
k

2
∥C(zk+1 − zk)∥2

+
β2
k−1

2
∥zk − zk−1∥2Q − β2

k∥zk+1 − zk∥2Q − σgβk∥zk − zk+1∥2 − ϵσgβk
2

∥z − zk+1∥2

=
1

γ
ξ(λ, λk, λk+1)−

(2− γ)β2
k

2
∥Axk+1 − b∥2 +

(γ − 1)β2
k−1

2γ
∥Axk − b∥2

+ βkηPk
(y, yk, yk+1) +

β2
k

2
∥z − zk∥2C⊤C+Q −

β2
k+1

2
∥z − zk+1∥2C⊤C+Q −

δβ2
k

2
∥C(zk+1 − zk)∥2

+
β2
k−1

2
∥zk − zk−1∥2Q − β2

k∥zk+1 − zk∥2Q − σgβk∥zk − zk+1∥2 − ϵσgβk
2

∥z − zk+1∥2

where we have used the fact that ⟨λk+1−λ, λk−λk+1⟩ = 1
2∥λ−λk∥2− 1

2∥λ−λk+1∥2− 1
2∥λk−

λk+1∥2 and λk+1−λk = γβk(Axk+1− b). Note that since γ ∈ (1, 1+
√
5

2), δ = 1+γ−γ2 > 0.

Using the identity, γ−1
2γ = (2−γ)

2 − δ
2γ , we deduce that

βk

(
L(xk+1, λ)− L(x, λ)

)
+

δβ2
k−1

2γ
∥Axk − b∥2

≤ 1

γ
ξ(λ, λkλk+1) +

(2− γ)β2
k−1

2
∥Axk − b∥2 −

(2− γ)β2
k

2
∥Axk+1 − b∥2

+ βkηPk
(y, yk, yk+1) +

β2
k

2
∥z − zk∥2C⊤C+Q −

β2
k+1

2
∥z − zk+1∥2C⊤C+Q −

δβ2
k

2
∥C(zk+1 − zk)∥2

+
β2
k−1

2
∥zk − zk−1∥2Q − β2

k∥zk+1 − zk∥2Q − σgβk∥zk − zk+1∥2 − ϵσgβk
2

∥z − zk+1∥2.

From here, one can readily get the required inequality in Lemma 3.1.

A.2 Proof of Lemma 3.2

Proof. Because (x∗, λ∗) is a KKT solution, we have that 0 ∈ ∂xL(x∗, λ∗). Since L(x, λ∗) is
a convex function of x, we then have that

L(x∗, λ∗) ≤ L(x, λ∗) for any x, (62)

from which we get
−⟨λ∗, Axk − b⟩ ≤ F(xk)−F(x∗). (63)

Consider all λ ∈ Rm such that ∥λ∥ ≤ ∥λ∗∥+ 1 in L(xk, λ)−L(x∗, λ) ≤ h(k)D(λ), we have

F(xk)−F(x∗) + (∥λ∗∥+ 1)∥Axk − b∥ ≤ h(k) max
∥λ∥≤∥λ∗∥+1

D(λ). (64)

34

Using (63) in (64), we get

∥Axk − b∥ ≤ h(k) max
∥λ∥≤∥λ∗∥+1

D(λ) = O(h(k)). (65)

Now, using (65) in (63) and (64) respectively, we get |F(xk)−F(x∗)| = O(h(k)).

A.3 Proof of Lemma 3.7

Proof. Substitute (x∗, λ∗) into (5), we get the following long inequality

βk

(
L(xk+1, λ∗)− L(x∗, λ∗)

)
+

1︷ ︸︸ ︷
δβ2

k−1

2γ
∥Axk − b∥2+

0︷ ︸︸ ︷
δβ2

k

2
∥C(zk+1 − zk)∥2

+

0︷ ︸︸ ︷
βk
2
∥yk − yk+1∥2Pk

+
β2
k

2
∥zk − zk+1∥2Q +

1

2γ
∥λ∗ − λk+1∥2 +

(2− γ)β2
k

2
∥Axk+1 − b∥2

+
β2
k+1

2
∥z∗ − zk+1∥2C⊤C+Q +

β2
k

2
∥zk+1 − zk∥2Q +

0︷ ︸︸ ︷
βk+1

2
∥y∗ − yk+1∥2Pk+1

≤ 1

2γ
∥λ∗ − λk∥2 +

(2− γ)β2
k−1

2
∥Axk − b∥2 +

β2
k

2
∥z∗ − zk∥2C⊤C+Q +

β2
k−1

2
∥zk − zk−1∥2Q

+

0︷ ︸︸ ︷
βk
2
∥y∗ − yk∥2Pk

−

2︷ ︸︸ ︷
σgβk∥zk − zk+1∥2−

3︷ ︸︸ ︷
ϵσgβk
2

∥z∗ − zk+1∥2 (66)

Now, we apply several operations to the above inequality: 1, ignore terms under “0” since
P = 0; 2, move the term under “1” to the right hand side; 3, move the term under “2” to
the left hand side and apply ∥zk+1 − zk∥2Q/λmax(Q) ≤ ∥zk − zk+1∥2; 4, move one half of

“4” to the left hand side and apply ∥zk+1 − z∗∥2 ≤ ∥zk+1 − z∗∥2
C⊤C+Q

/λmax(C⊤C+Q). After

all these operations, we will get the inequality (16).

A.4 Proof of Lemma 3.8

Proof. From step 2 and step 3 in IADMM, we have that

0 = ∇g(zk+1) + C⊤λk+1 + (1− γ)βkC
⊤(Axk+1 − b) +Qk(z

k+1 − zk).

Since (y∗, z∗, λ∗) is a KKT solution, we have 0 = ∇g(z∗) + C⊤λ∗. Combining these two
equations together with the Lipschitz continuity of ∇g, we have

∥C⊤(λk+1 − λ∗) + (1− γ)βkC
⊤(Axk+1 − b) +Qk(z

k+1 − zk)∥2 = ∥∇g(zk+1)−∇g(z∗)∥2

≤ L2
g∥zk+1 − z∗∥2. (67)

35

For 0 < α < 1
2 , by using the inequality ∥u+ v +w∥2 ≥ (1− 2α)∥u∥2 − 1

α∥v∥
2 − 1

α∥w∥
2, we

have that

∥C⊤(λk+1 − λ∗) + (1− γ)βkC
⊤(Axk+1 − b) +Qk(z

k+1 − zk)∥2

≥ (1− 2α)∥C⊤(λk+1 − λ∗)∥2 − 1

α
∥(1− γ)βkC

⊤(Axk+1 − b)∥2 − 1

α
∥Qk(z

k+1 − zk)∥2

≥ (1− 2α)λmin(CC⊤)∥λk+1 − λ∗∥2 − 1

α
λmax(CC⊤)(1− γ)2β2

k∥Axk+1 − b∥2 − 1

α
∥Qk(z

k+1 − zk)∥2.

Plug this into (67), we get

(1− 2α)λmin(CC⊤)∥λk+1 − λ∗∥2

≤ 1

α
λmax(CC⊤)(1− γ)2β2

k∥Axk+1 − b∥2 + 1

α
∥Qk(z

k+1 − zk)∥2 + L2
g∥zk+1 − z∗∥2

≤ 1

α
λmax(CC⊤)(1− γ)2β2

k∥Axk+1 − b∥2 + 1

α
λmax(Q)β2

k∥zk+1 − zk∥2Q + L2
g∥zk+1 − z∗∥2.

This completes the proof.

36

	Introduction
	Adaptive ADMM
	Convergence analysis
	Partial proximal point method
	Organization of the paper

	Self-adaptive ADMM
	Preliminaries
	Algorithm statement

	Convergence rate analysis
	Useful lemmas
	Ergodic convergence rate of O(1/k2)
	Nonergodic convergence of iteration points
	Nonergodic linear convergence

	A partial proximal point method with IADMM for solving non-semi-strongly convex problem
	Practical implementation
	Application in LASSO type problems
	Strategies for updating k
	Strategies for partial proximal point method

	Numerical experiments
	Testing the robustness of IADMM
	Verifying the convergence rate of IADMM
	Testing the efficiency of partial proximal point method for solving non-semi-strongly convex problems

	Conclusion
	Proof details
	Proof of Lemma 3.1
	Proof of Lemma 3.2
	Proof of Lemma 3.7
	Proof of Lemma 3.8

