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Abstract

Among the unsolved problems in computational biology, protein fold-
ing is one of the most interesting challenges. To study this folding, tools
like neural networks and genetic algorithms have received a lot of at-
tention, mainly due to the NP-completeness of the folding process. The
background idea that has given rise to the use of these algorithms is ob-
viously that the folding process is predictable. However, this important
assumption is disputable as chaotic properties of such a process have been
recently highlighted. In this paper, which is an extension of a former work
accepted to the 2011 International Joint Conference on Neural Networks
(IJCNN11), the topological behavior of a well-known dynamical system
used for protein folding prediction is evaluated. It is mathematically es-
tablished that the folding dynamics in the 2D hydrophobic-hydrophilic
(HP) square lattice model, simply called “the 2D model” in this document,
is indeed a chaotic dynamical system as defined by Devaney. Furthermore,
the chaotic behavior of this model is qualitatively and quantitatively deep-
ened, by studying other mathematical properties of disorder, namely: the
indecomposability, instability, strong transitivity, and constants of expan-
sivity and sensitivity. Some consequences for both biological paradigms
and structure prediction using this model are then discussed. In particu-
lar, it is shown that some neural networks seems to be unable to predict
the evolution of this model with accuracy, due to its complex behavior.

1 Introduction

Proteins, polymers formed by different kinds of amino acids, fold to form a
specific tridimensional shape. This geometric pattern defines the majority of
functionality within an organism, i.e., the macroscopic properties, function, and
behavior of a given protein. For instance, the hemoglobin is able to carry oxygen
to the blood stream due to its 3D geometric pattern. However, contrary to the
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mapping from DNA to the amino acids sequence, the complex folding of this last
sequence still remains not well-understood. Moreover, the determination of 3D
protein structure from the amino acid linear sequence, that is to say, the exact
computational search for the optimal conformation of a molecule, is completely
unfeasible. It is due to the astronomically large number of possible 3D protein
structures for a corresponding primary sequence of amino acids [1]: the compu-
tation capability required even for handling a moderately-sized folding transition
exceeds drastically the computational capacity around the world. Additionally,
the forces involved in the stability of the protein conformation are currently not
modeled with
enough accuracy [1], and one can even wonder if one day a fully accurate model
can be found.

Then it is impossible to compute exactly the 3D structures of the proteins.
Indeed, the Protein Structure Prediction (PSP) problem is NP-complete [2].
This is why the 3D conformations of proteins are predicted : the most stable
energy-free states are looked for by using computational intelligence tools like
genetic algorithms [3], ant colonies [4], particle swarm [5], memetic algorithms
[6], or neural networks [7]. This search is justified by the Afinsen’s “Thermo-
dynamic Hypothesis”, claiming that a protein’s native structure is at its low-
est free energy minimum [8]. The use of computational intelligence tools cou-
pled with proteins energy approximation models (like AMBER, DISCOVER, or
ECEPP/3), come from the fact that finding the exact minimum energy of a 3D
structure of a protein is a very time consuming task. Furthermore, in order to
tackle the complexity of the PSP problem, authors that try to predict the pro-
tein folding process use models of various resolutions. In low resolution models,
atoms in the same amino acid can for instance be considered as the same en-
tity. These low resolution models are used as the first stage of the 3D structure
prediction: the backbone of the 3D conformation is determined. Then, high
resolution models come next for further exploration. Such a prediction strategy
is commonly used in PSP softwares like ROSETTA [9, 10] or TASSER [11].

In this paper, which is an extension of [12], we mathematically demonstrate
that a particular dynamical system, used in low resolutions models to predict
the backbone of the protein, is chaotic according to the Devaney’s formulation.
Chaos in protein folding has been already investigated in the past years. For in-
stance, in [13], the Lyapunov exponent of a folding process has been experimen-
tally computed, to show that protein folding is highly complex. More precisely,
the author has established that the crambin protein folding process, which is a
small plant seed protein constituted by 46 amino acids from Crambe Abyssinica,
has a positive Lyapunov exponent. In [14], an analysis of molecular dynamics
simulation of a model α-helix indicates that the motion of the helix system is
chaotic, i.e., has nonzero Lyapunov exponents, broad-band power spectra, and
strange attractors. Finally, in [15], the authors investigated the response of a
protein fragment in an explicit solvent environment to very small perturbations
of the atomic positions, showing that very tiny changes in initial conditions are
amplified exponentially and lead to vastly different, inherently unpredictable
behavior. These papers have studied experimentally the dynamics of protein

2



folding and stated that this process exhibits some chaotic properties, where
“chaos” refers to various physical understandings of the phenomenon. They
noted the complexity of the process in concrete cases, without offering a study
framework making it possible to understand the origins of such a behavior.

The approach presented in this research work is different for the two follow-
ing reasons. First, we focus on mathematical aspects of chaos, like the Devaney’s
formulation of a chaotic dynamical system. This well-known topological notion
for a chaotic behavior is one of the most established mathematical definition
of unpredictability for dynamical systems. Second, we do not study the bio-
logical folding process, but the protein folding process as it is described in the
2D hydrophobic-hydrophilic (HP) lattice model [16]. In other words, we math-
ematically study the folding dynamics used in this model, and we wonder if
this model is stable through small perturbations. For instance, what are the
effects in the 2D model of changing a residue from hydrophobic to hydrophilic?
Or what happens if we do not realize exactly the good rotation on the good
residue, at one given stage of the 2D folding process, due to small errors in the
knowledge of the protein?

Let us recall that the 2D HP square lattice model is a popular model with low
resolution that focuses only on hydrophobicity by separating the amino acids
into two sets: hydrophobic (H) and hydrophilic (or polar P) [17]. This model has
been used several times for protein folding prediction [3, 15, 18, 19, 20]. In what
follows, we show that the folding process is unpredictable (chaotic) in the 2D HP
square lattice model used for prediction, and we investigate the consequences of
this fact. Chaos here refers to our inability to make relevant prediction with this
model, which does not necessarily imply that the biological folding dynamics is
chaotic, too. In particular, we do not claim that these biological systems must
try a large number of conformations in order to find the best one. Indeed, the
prediction model is proven to be chaotic, but this fact is not clearly related to
the impact of environmental factors on true biological protein folding.

After having established by two different proofs the chaos, as defined in the
Devaney’s formulation, of the dynamical system used in the 2D model, we will
deepen the evaluation of the disorder generated by this system for backbone
prediction. A qualitative topological study shows that its folding dynamics
is both indecomposable and unstable. Moreover, the unpredictability of the
system is evaluated quantitatively too, by computing the constant of sensibility
to the initial conditions and the constant of expansivity. All of these results
show that the dynamical system used for backbone prediction in the 2D model
has a very intense chaotic behavior and is highly unpredictable.

Consequences of these theoretical results are then outlined. More precisely,
we will focus on the following questions. First, some artificial intelligence tools
used for protein folding prediction are then based, for the backbone evaluation,
on a dynamical system that presents several chaotic properties. It is reasonable
to wonder whether these properties impact the quality of the prediction. More
specifically, we will study if neural networks are able to learn a topological
chaotic behavior, and if predictions resulting from this learning are close to the
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reality. Moreover, the initial conformation, encompassing the sequence of amino
acids, their interactions, and the effects of the outside world, are never known
with infinite precision. Taking into account the fact that the model used for
prediction embeds a dynamical system being sensitive to its initial condition,
what can we conclude about the confidence put into the final 3D conformation?
Concerning the biological aspects of the folding process, the following facts can
be remarked. On the one hand, a chaotic behavior seems to be incompatible
with approximately one thousand general categories of folds: this final kind
of order seems in contradiction with chaos. Additionally, sensibility to initial
conditions seems to be contradictory with the fact that a sequence of amino acids
always folds in the same conformation, whatever the environment dependency.
So, as the 2D HP lattice model for backbone prediction is chaotic whereas
the whole folding process seems not, one can wonder whether this backbone
prediction is founded or not. On the other hand, recent experimental researches
recalled previously tend to prove that the folding process presents, at least
to a certain extent, some characteristics of a chaotic behavior [13, 14, 15]. If
this theory is confirmed and biological explanations are found (for instance,
regulatory processes could repair or delete misfolded proteins), then this research
work could appear as a first step in the theoretical study of the chaos of protein
folding.

In fact, the contradiction raised above is only apparent, as it is wrong to
claim that all of the sequences of amino acids always fold in a constant and
well-defined conformation. More precisely, a large number of proteins, called
“intrinsically unstructured proteins” or “intrinsically disordered proteins”, lay
at least in part outside this rule. More than 600 proteins are proven to be of this
kind: antibodies, p21 and p27 proteins, fibrinogen, casein in mammalian milk,
capsid of the Tobacco mosaic virus, proteins of the capsid of bacteriophages, to
name a few. Indeed, a large number of proteins have at least a disordered region
of greater or lesser size. This flexibility allow them to exert various functions
into an organism or to bind to various macromolecules. For instance, the p27
protein can be binded to various kind of enzymes. Furthermore, some studies
have shown that between 30% and 50% of the eukaryote proteins have at least
one large unstructured region [21, 22]. Hence, regular and disordered proteins
can be linked to the mathematical notions of chaos as understood by Devaney,
or Knudsen, which consist in the interlocking of points having a regular behavior
with points whose desire is to visit the whole space.

The remainder of this paper is structured as follows. In the next section
we recall some notations and terminologies on the 2D model and the Devaney’s
definition of chaos. In Section 3, the folding process in the 2D model is written
as a dynamical system on a relevant metrical space. Compared to [12], we have
simplified the folding function and refined the metrical space to the set of all
acceptable conformations. This work, which is the first contribution of this
paper, has been realized by giving a complete understanding of the so-called
Self-Avoiding Walk (SAW) requirement. In Sections 4 and 5, proofs of the
chaotic behavior of a dynamical system used for backbone prediction, are taken
from [12] and adapted to this set of acceptable conformations. This adaptation
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is the second contribution of this research work. The first proof is directly
achieved in Devaney’s context whereas the second one uses a previously proven
result concerning chaotic iterations [23]. The following section is devoted to
qualitative and quantitative evaluations of the disorder exhibited by the folding
process. This is the third theoretical contribution of this extension of [12].
Consequences of this unpredictable behavior are given in Section 7. Among
other things, it is regarded whether chaotic behaviors are harder to predict
than “normal” behaviors or not, and if such behaviors are easy to learn. This
section extends greatly the premises outlined formerly in [12]. Additionally,
reasons explaining why a chaotic behavior unexpectedly leads to approximately
one thousand categories of folds are proposed. This paper ends by a conclusion
section, in which our contribution is summarized and intended future work is
presented.

2 Basic Concepts

In the sequel Sn denotes the nth term of a sequence S and Vi the ith component
of a vector V . The kth composition of a single function f is represented by fk =
f ◦ ... ◦ f . The set of congruence classes modulo 4 is denoted by Z/4Z. Finally,
given two integers a < b, the following notation is used: Ja; bK = {a, a+1, . . . , b}.

2.1 2D Hydrophilic-Hydrophobic (HP) Model

HP Model

In the HP model, hydrophobic interactions are supposed to dominate protein
folding. This model was formerly introduced by Dill, who considers in [17]
that the protein core freeing up energy is formed by hydrophobic amino acids,
whereas hydrophilic amino acids tend to move in the outer surface due to their
affinity with the solvent (see Fig. 1).

In this model, a protein conformation is a “self-avoiding walk (SAW)” on a
2D or 3D lattice such that its energy E, depending on topological neighboring
contacts between hydrophobic amino acids that are not contiguous in the pri-
mary structure, is minimal. In other words, for an amino-acid sequence P of
length N and for the set C(P ) of all SAW conformations of P , the chosen confor-
mation will be C∗ = argmin

{
E(C)

/
C ∈ C(P )

}
[24]. In that context and for a

conformation C,
E(C) = −q where q is equal to the number of topological hydrophobic neigh-
bors. For example, E(c) = −5 in Fig. 1.

Protein Encoding

Additionally to the direct coordinate presentation, at least two other isomorphic
encoding strategies for HP models are possible: relative encoding and absolute
encoding. In relative encoding [1], the move direction is defined relative to
the direction of the previous move. Alternatively, in absolute encoding [25],
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Figure 1: Hydrophilic-hydrophobic model (black squares are hydrophobic
residues)

which is the encoding chosen in this paper, the direct coordinate presentation is
replaced by letters or numbers representing directions with respect to the lattice
structure.

For absolute encoding in the 2D square lattice, the permitted moves are:
forward → (denoted by 0), down ↓ (1), backward ← (2), and up ↑ (3). A 2D
conformation C of N+1 residues for a protein P is then an element C of Z/4ZN,
with a first component equal to 0 (forward) [1]. For instance, in Fig. 1, the 2D
absolute encoding is 00011123322101 (starting from the upper left corner). In
that situation, at most 4N conformations are possible when considering N + 1
residues, even if some of them are invalid due to the SAW requirement.

2.2 Devaney’s Chaotic Dynamical Systems

From a mathematical point of view, deterministic chaos has been thoroughly
studied these last decades, with different research works that have provide vari-
ous definitions of chaos. Among these definitions, the one given by Devaney [26]
is perhaps the most well established.

Consider a topological space (X , τ) and a continuous function f on X . Topo-
logical transitivity occurs when, for any point, any neighborhood of its future
evolution eventually overlap with any other given region. More precisely,

Definition 1 f is said to be topologically transitive if, for any pair of open sets
U, V ⊂ X , there exists k > 0 such that fk(U) ∩ V 6= ∅.

This property implies that a dynamical system cannot be broken into simpler
subsystems. It is intrinsically complicated and cannot be simplified. Besides, a
dense set of periodic points is an element of regularity that a chaotic dynamical
system has to exhibit.
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Definition 2 An element (a point) x is a periodic element (point) for f of
period n ∈ N∗, if fn(x) = x.

Definition 3 f is said to be regular on (X , τ) if the set of periodic points for
f is dense in X : for any point x in X , any neighborhood of x contains at least
one periodic point.

This regularity “counteracts” the effects of transitivity. Thus, due to these
two properties, two points close to each other can behave in a completely dif-
ferent manner, leading to unpredictability for the whole system. Then,

Definition 4 (Devaney’s chaos) f is said to be chaotic on (X , τ) if f is reg-
ular and topologically transitive.

The chaos property is related to the notion of “sensitivity”, defined on a
metric space (X , d) by:

Definition 5 f has sensitive dependence on initial conditions if there exists
δ > 0 such that, for any x ∈ X and any neighborhood V of x, there exist y ∈ V
and n ≥ 0 such that d (fn(x), fn(y)) > δ.

δ is called the constant of sensitivity of f .

Indeed, Banks et al. have proven in [27] that when f is chaotic and (X , d)
is a metric space, then f has the property of sensitive dependence on initial
conditions (this property was formerly an element of the definition of chaos).
To sum up, quoting Devaney in [26], a chaotic dynamical system “is unpre-
dictable because of the sensitive dependence on initial conditions. It cannot be
broken down or simplified into two subsystems which do not interact because
of topological transitivity. And in the midst of this random behavior, we nev-
ertheless have an element of regularity”. Fundamentally different behaviors are
consequently possible and occur in an unpredictable way.

3 A Dynamical System for the 2D HP Square
Lattice Model

The objective of this research work is to establish that the protein folding pro-
cess, as it is described in the 2D model, has a chaotic behavior. To do so, this
process must be first described as a dynamical system.

3.1 Initial Premises

Let us start with preliminaries introducing some concepts that will be useful in
our approach.

The primary structure of a given protein P with N + 1 residues is coded
by 00 . . . 0 (N times) in absolute encoding. Its final 2D conformation has an
absolute encoding equal to 0C∗1 . . . C

∗
N−1, where ∀i, C∗i ∈ Z/4Z, is such that
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E(C∗) = argmin
{
E(C)

/
C ∈ C(P )

}
. This final conformation depends on the

repartition of hydrophilic and hydrophobic amino acids in the initial sequence.
Moreover, we suppose that, if the residue number n+1 is forward the residue

number n in absolute encoding (→) and if a fold occurs after n, then the forward
move can only by changed into up (↑) or down (↓). That means, in our simplistic
model, only rotations of +π

2 or −π2 are possible.
Consequently, for a given residue that is supposed to be updated, only one

of the two possibilities below can appear for its absolute move during a fold:

• 0 7−→ 1, 1 7−→ 2, 2 7−→ 3, or 3 7−→ 0 for a fold in the clockwise direction,
or

• 1 7−→ 0, 2 7−→ 1, 3 7−→ 2, or 0 7−→ 3 for an anticlockwise.

This fact leads to the following definition:

Definition 6 The clockwise fold function is the function f : Z/4Z −→ Z/4Z
defined by f(x) = x+ 1(mod 4).

Obviously the dual anticlockwise fold function is
f−1(x) = x− 1(mod 4).

Thus at the nth folding time, a residue k is chosen and its absolute move is
changed by using either f or f−1. As a consequence, all of the absolute moves
must be updated from the coordinate k until the last one N by using the same
folding function.

Example 1 If the current conformation is C = 000111, i.e.,

and if the third residue is chosen to fold by a rotation of −π2 (mapping f), the
new conformation will be:

(C1, C2, f(C3), f(C4), f(C5), f(C6)) = (0, 0, 1, 2, 2, 2).

That is,

These considerations lead to the formalization described hereafter.
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3.2 Formalization and Notations

Let N + 1 be a fixed number of amino acids, where N ∈ N∗. We define

X̌ = Z/4ZN × J−N;NKN

as the phase space of all possible folding processes. An element X = (C,F ) of
this dynamical folding space is constituted by:

• A conformation of the N+1 residues in absolute encoding: C = (C1, . . . , CN) ∈
Z/4ZN. Note that we do not require self-avoiding walks here.

• A sequence F ∈ J−N;NKN of future folds such that, when Fi ∈ J−N;NK is
k, it means that it occurs:

– a fold after the k−th residue by a rotation of −π2 (mapping f) at the
i−th step, if k = Fi > 0,

– no fold at time i if k = 0,

– a fold after the |k|−th residue by a rotation of π
2 (i.e., f−1) at the

i−th time, if k < 0.

On this phase space, the protein folding dynamic in the 2D model can be for-
malized as follows.

Denote by i the map that transforms a folding sequence in its first term (i.e.,
in the first folding operation):

i : J−N;NKN −→ J−N;NK
F 7−→ F 0,

by σ the shift function over J−N;NKN, that is to say,

σ : J−N;NKN −→ J−N;NKN(
F k
)
k∈N 7−→

(
F k+1

)
k∈N ,

and by sign the function:

sign(x) =

 1 if x > 0,
0 if x = 0,
−1 else.

Remark that the shift function removes the first folding operation from the
folding sequence F once it has been achieved.

Consider now the map G : X̌ → X̌ defined by:

G ((C,F )) =
(
fi(F )(C), σ(F )

)
,

where ∀k ∈ J−N;NK, fk : Z/4ZN → Z/4ZN is defined by:

fk(C1, . . . , CN) =

9



(C1, . . . , C|k|−1, f
sign(k)(C|k|), . . . , f

sign(k)(CN)).

Thus the folding process of a protein P in the 2D HP square lattice model, with
initial conformation equal to (0, 0, . . . , 0) in absolute encoding and a folding
sequence equal to (F i)i∈N, is defined by the following dynamical system over
X̌ : {

X0 = ((0, 0, . . . , 0), F )
Xn+1 = G(Xn),∀n ∈ N.

In other words, at each step n, if Xn = (C,F ), we take the first folding
operation to realize, that is i(F ) = F 0 ∈ J−N;NK, we update the current con-
formation C by rotating all of the residues coming after the |i(F )|−th one, which
means that we replace the conformation C with fi(F )(C). Lastly, we remove
this rotation (the first term F 0) from the folding sequence F : F becomes σ(F ).

Example 2 Let us reconsider Example 1. The unique iteration of this folding
process transforms a point of X̌ having the form

(
(0, 0, 0, 1, 1, 1), (+3, F 1, F 2, . . .)

)
inG

(
((0, 0, 0, 1, 1, 1), (+3, F 1, F 2, . . .))

)
, which is equal to

(
(0, 0, 1, 2, 2, 2), (F 1, F 2, . . .)

)
.

Remark 1 Such a formalization allows the study of proteins that never stop
to fold, for instance due to never-ending interactions with the environment.

Remark 2 A protein P that has finished to fold, if such a protein exists, has
the form (C, (0, 0, 0, . . .)), where C is the final 2D structure of P . In this case,
we can assimilate a folding sequence that is convergent to 0, i.e., of the form
(F 0, . . . , Fn, 0 . . .), with the finite sequence (F 0, . . . , Fn).

We will now introduce the SAW requirement in our formulation of the folding
process in the 2D model.

3.3 The SAW Requirement

3.3.1 Towards a Basic SAW Requirement Definition

Let P denotes the 2D plane and

p : Z/4ZN → PN+1

(C1, . . . , CN) 7→ (X0, . . . , XN)

where X0 = (0, 0) and

Xi+1 =


Xi + (1, 0) if ci = 0,
Xi + (0,−1) if ci = 1,
Xi + (−1, 0) if ci = 2,
Xi + (0, 1) if ci = 3.

The map p transforms an absolute encoding in its 2D representation. For in-
stance, p((0, 0, 0, 1, 1, 1)) is
((0,0);(1,0);(2,0);(3,0);(3,-1);(3,-2);(3,-3)), that is, the first figure of Example
1.
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Now, for each (P0, . . . , PN) of PN+1, we denote by

support((P0, . . . , PN))

the set (with no repetition): {P0, . . . , PN}. For instance,

support (((0, 0); (0, 1); (0, 0); (0, 1))) = {(0, 0); (0, 1)} .

Then,

Definition 7 A conformation (C1, . . . , CN) ∈ Z/4ZN satisfies the self-avoiding
walk (SAW) requirement iff the cardinality of support(p((C1, . . . , CN))) is N+1.

We can remark that Definition 7 concerns only one conformation, and not a
sequence of conformations that occurs in a folding process.

3.3.2 Understanding the so-called SAW Requirement for a Folding
Process

The next stage in the formalization of the protein folding process in the 2D
model as a dynamical system is to take into account the self-avoiding walk
(SAW) requirement, by restricting the set Z/4ZN of all possible conformations
to one of its subsets. That is, to define precisely the set C(P ) of acceptable
conformations of a protein P having N + 1 residues. This stage needs a clear
definition of the SAW requirement. However, as stated above, Definition 7 only
focus on the SAW requirement of a given conformation, but not on a complete
folding process. In our opinion, this requirement applied to the whole folding
process can be understood at least in four ways.

In the first and least restrictive approach, we call it “SAW1”, we only require
that the studied conformation satisfy the SAW requirement of Definition 7. It
is not regarded whether this conformation is the result of a folding process that
has started from (0, 0, . . . , 0). Such a SAW requirement has been chosen by
authors of [2] when they have proven the NP-completeness of the PSP problem.

The second approach called SAW2 requires that, starting from the initial
condition (0, 0, . . . , 0), we obtain by a succession of folds a final conformation
that is a self-avoiding walk. In other words, we want that the final tree cor-
responding to the true 2D conformation has 2 vertices with 1 edge and N − 2
vertices with 2 edges. For instance, the folding process of Figure 2 is acceptable
in SAW2, even if it presents residues that overlap in an intermediate confor-
mation. Such an approach corresponds to programs that start from the initial
conformation (0, 0, . . . , 0), fold it several times according to their embedding
functions, and then obtain a final conformation on which the SAW property is
checked: only the last conformation has to satisfy the Definition 7.

In the next approach, namely the SAW3 requirement, it is demanded that
each intermediate conformation, between the initial one and the returned (final)
one, satisfy the Definition 7. It restricts the set of all conformations Z/4ZN, for
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Figure 2: Folding process acceptable in SAW2 but not in SAW3

a given N, to the subset CN of conformations (C1, . . . , CN) such that ∃n ∈ N∗,
∃k1, . . . , kn ∈ J−N;NK,

(C1, . . . , CN) = Gn (((0, 0, . . . , 0), (k1, . . . , kn)))

∀i 6 n, the conformation Gi (((0, . . . , 0), (k1, . . . , kn))) satisfies the Definition
7. This SAW3 folding process requirement, which is perhaps the most usual
meaning of “SAW requirement” in the literature (it is used, for instance, in
[3, 15, 18, 19, 20]), has been chosen in this research work. In this approach, the
acceptable conformations are obtained starting from the initial conformation
(0, 0, . . . , 0) and are such that all the intermediate conformations satisfy the
Definition 7.

Finally, the SAW4 approach is a SAW3 requirement in which there is no
intersection of vertex or edge during the transformation of one conformation to
another. For instance, the transformation of Figure 3 is authorized in the SAW3

approach but refused in the SAW4 one: during the rotation around the residue
identified by a cross, the structure after this residue will intersect the remainder
of the “protein”. In this last approach it is impossible, for a protein folding
from one plane conformation to another plane one, to use the whole space to
achieve this folding.

Obviously, SAW4 ( SAW3 ⊆ SAW2 ⊆ SAW1. Indeed, it is easy to prove
that SAW3 ( SAW2 too, but we do not know whether SAW2 ( SAW1 or
not. The study of these four sets, their cardinality, characterization, and the
consequence of the fact that the NP-completeness of the PSP problem has been
established in SAW1, will be investigated in a future work.

In the present document we cannot decide what is the most reasonable ap-
proach between SAWi,
i ∈ {1, . . . , 4}, that is, the most close to a true natural protein folding. However,
due to its complexity, the SAW4 requirement is never used by tools that embed
a 2D HP square lattice model for protein structure prediction. That is why we
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Figure 3: Folding process acceptable in SAW3 but not in SAW4

will consider, in this research work, that the so-called “SAW requirement” for
a 2D folding process corresponds to the SAW3 approach detailed previously.
Indeed, it is the most used one, and we only want to study the ability of PSP
software to find the most probable 2D conformation. Thus, in what follows,
the set of acceptable conformations with N + 1 residues will be the set CN (i.e.,
C(P ) = CN).

3.4 A Metric for the Folding Process

We define a metric d over X = SN × J−N;NKN by:

d(X, X̌) = dC(C, Č) + dF (F, F̌ ).

where 

δ(a, b) = 0 if a = b, otherwise δ(a, b) = 1,

dC(C, Č) =

N∑
k=1

δ(Ck, Čk)2N−k,

dF (F, F̌ ) =
9

2N

∞∑
k=0

|F k − F̌ k|
10k+1

.

This new distance for the dynamical description of the protein folding process
in the 2D HP square lattice model can be justified as follows. The integral
part of the distance between two points X = (C,F ) and X̌ = (Č, F̌ ) of X
measures the differences between the current 2D conformations of X and X̌.
More precisely, if dC(C, Č) is in J2N−(k+1); 2N−kK, then the first k terms in
the acceptable conformations C and Č (their absolute encodings) are equal,
whereas the k + 1th terms differ: their 2D conformations will differ after the
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k+ 1−th residue. If the decimal part of d(X, X̌) is between 10−(k+1) and 10−k,
then the next k foldings of C and Č will occur in the same place (residue), same
order, and same angle. The decimal part of d(X, X̌) will then decrease as the
duration where the folding process is similar increases.

More precisely, F k = F̌ k (same residue and same angle of rotation at the
k−th stage of the 2D folding process) if and only if the k + 1th digit of this
decimal part is 0. Lastly, 9

2N is just a normalization factor.
For instance, if we know where are now the N+1 residues of our protein P in

the lattice (knowledge of the correct conformation), and if we have discovered
what will be its k next foldings, then we know that the point X = (C,F )
describing the folding process of the considered protein in the 2D model, will
be “somewhere” into the ball B(C, 10−k), that is, very close to the point (C,F )
if k is large.

Example 3 Let us consider two points

• X = ((0, 0, 0, 1, 1, 1), (3,−4, 2)),

• and X ′ = ((0, 0, 0, 1, 1, 1), (3,−4,−6))

of X . We note X = (C,F ) and X ′ = (C ′, F ). dC(C,C ′) = 0, then these two

points have the same current (first) conformation. As dF (F, F ′) = 9
2×6

|2−(−6)|
103 =

0.006 is in
[
10−3; 10−2

[
, we can deduce that the two next foldings of X and of

X ′ will lead to identical conformations, whereas the third folding operation will
lead to different conformations. A possible way to represent these two points of
the phase space is to draw the successive conformations induced by these points,
as illustrated in Figure 4.

Example 4 Figure 5 contains the representation of the two “points” X =
((0, 0, 0, 1, 1, 1), (3,−4, 2)) and
X ′ = ((0, 0, 1, 2, 2, 2), (−4,−5)). Let X = (C,F ) and X ′ = (C ′, F ′). We have

dC(C,C ′) = 26−3 + 26−4 + 26−5 + 26−6 = 15

and dF = 9
12

(
|3−(−4)|

10 + |−4−(−5)|
100 + |2−0|

1000

)
= 0.534, then d(X,X ′) = 15.534.

As 15 is in
[
23; 24

[
, we can conclude that the absolute encodings of the two

initial conformations are similar for the first k = N − 4 = 2 terms.

4 Folding Process in 2D Model is Chaotic

4.1 Motivations

In our topological description of the protein folding process in the 2D model,
all the information is embedded into the folding sequence F . Indeed, roughly
speaking, it is as if nature has a function N that translates a protein P having a
linear conformation (0, ..., 0) into an environment E, in a folding sequence F , i.e.,

14



Figure 4: Representation of X = ((0, 0, 0, 1, 1, 1), (3,−4, 2)) and X ′ =
((0, 0, 0, 1, 1, 1), (3,−4,−6)) of the phase space X (X is in left part of the figure,
X ′ is its right part).
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F = N (P,E). Having this “natural” folding sequence F , we are able to obtain
its true conformation in the 2D model, by computing Gn (((0, . . . , 0), F )), where
n is the size of F . On our side, we have only a partial knowledge of the en-
vironment E and of the protein P (exact interactions between atoms). We
thus consider P̌ and Ě, as close as we can to P and E respectively. Moreover,
we have only a model Ň of N as, for instance, we use various approxima-
tions: models for free energy, approximations of hydrophobic/hydrophilic areas
and electro-polarity, etc. This is why we can only deduce an approximation
F̌ = Ň (P̌ , Ě) of the natural folding sequence F = N (P,E). One important
motivation of this work is to determine whether, having an approximation F̌
of F , we obtain a final conformation Č = Gň

(
((0, . . . , 0), F̌ )

)
0

close to the
natural conformation C = Gn (((0, . . . , 0), F ))0 or not. In this last sentence, n
and ň are the sizes of F and F̌ respectively, and the terms “approximation”
and “close” can be understood by using dF and dC , respectively. To sum up,
even if we cannot have access with an infinite precision to all of the forces that
participate to the folding process, i.e., even if we only know an approximation
X ′

0
=
(
(0, . . . , 0), F̌

)
of X0 = ((0, . . . , 0), F ), can we claim that the predicted

conformation X ′
n1 = Gn1

(
((0, . . . , 0), F̌ )

)
still remains close to the true confor-

mation Xn2 = Gn2 (((0, . . . , 0), F ))? Or, on the contrary, do we have a chaotic
behavior, a kind of butterfly effect that magnifies any error on the evaluation
of the forces in presence?

Raising such a question leads to the study of the dynamical behavior of the
folding process.

4.2 Continuity of the Folding Process

We will now give a first proof of the chaotic behavior of the protein folding
dynamics in the 2D model. To do so, we must establish first that G is a con-
tinuous map on (X , d). Indeed, the mathematical theory of chaos only studies
dynamical systems defined by a recurrence relation of the form Xn+1 = G(Xn),
with G continuous.

Proposition 1 G is a continuous map on (X , d).

Proof We will use the sequential characterization of the continuity. Let (Xn)n∈N =
((Cn, Fn))n∈N ∈ XN, such that Xn → X = (Č, F̌ ). We will then show that
G (Xn) → G(X). Let us remark that ∀n ∈ N, Fn is a sequence: F is thus a
sequence of sequences.

On the one hand, as Xn = (Cn, Fn) → (Č, F̌ ), we have dC
(
Cn, Č

)
→ 0,

thus ∃n0 ∈ N, n > n0 ⇒ dC(Cn, Č) = 0. That is, ∀n > n0 and ∀k ∈ J1;NK,
δ(Cnk , Čk) = 0, and so Cn = Č,∀n > n0. Additionally, since dF (Fn, F̌ ) → 0,
∃n1 ∈ N such that we have dF (Fn1 , F̌ ) 6 1

10 . As a consequence, ∃n1 ∈ N,
∀n > n1, the first term of the sequence Fn is F̌ 0: i(Fn) = i(F̌ ). So, ∀n >
max(n0, n1), fi(Fn) (Cn) = fi(F̌)

(
Č
)
, and then fi(Fn) (Cn) → fi(F̌)

(
Č
)
.

On the other hand, σ(Fn)→ σ(F̌ ). Indeed, Fn → F̌ implies
∑∞
k=0

|(Fn)k−F̌k|
10k+1 →

16



Figure 5: Representation of X = ((0, 0, 0, 1, 1, 1), (3,−4, 2)) and X ′ =
((0, 0, 1, 2, 2, 2), (−4,−5)) of the phase space X (X is in left part of the figure,
X ′ is its right part).
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0, from which we obtain 1
10

∑∞
k=0

|(Fn)k+1−F̌k+1|
10k+1 → 0, so

∑∞
k=0

|σ(Fn)k−σ(F̌ )k|
10k+1

converges towards 0. Finally, σ(Fn)→ σ(F̌ ).
Since we have shown that fi(Fn) (Cn) → fi(F̌)

(
Č
)

and σ(Fn) → σ(F̌ ), we

conclude that G (Xn)→ G(X).

It is now possible to study the chaotic behavior of the folding process.

4.3 A First Fundamental Lemma

Let us start by introducing the following fundamental lemma, meaning that
we can transform any acceptable conformation to any other one in SAW3, by
finding a relevant folding sequence.

Lemma 1 ∀C,C ′ in CN, ∃n ∈ N∗ and k1, . . . , kn in J−N;NK s.t.

Gn ((C, (k1, . . . , kn, 0, . . .))) = (C ′, (0, . . . , 0)) .

Proof As we consider conformations of CN, we take place in the SAW3 require-
ment, and thus there exist
n1, n2 ∈ N∗ and l1, . . . , ln1

,m1, . . . ,mn2
in J−N;NK such that C = Gn1 (((0, ..., 0), (l1, . . . , ln1

)))
and
C ′ = Gn2 (((0, ..., 0), (m1, . . . ,mn2

))). The result of the lemma is then obtained
with

(k1, . . . , kn) = (−ln1 ,−ln1−1, . . . ,−l1,m1, . . . ,mn2).

4.4 Regularity and Transitivity

Let us recall that the first component X0 of X = (C,F ) is the current con-
formation C of the protein and the second component X1 is its future folding
process F . We will now prove that,

Proposition 2 Folding process in 2D model is regular.

Proof Let X = (C,F ) ∈ X and ε > 0. Then we define k0 = −blog10(ε)c and
X̃ such that:

1. X̃0 = C,

2. ∀k 6 k0, G
k(X̃)1 = Gk(X)1,

3. ∀i ∈ J1;nK, Gk0+i(X̃)1 = ki,

4. ∀i ∈ N, Gk0+n+i+1(X̃)1 = Gi(X̃)1,

where k1, . . . , kn are integers given by Lemma 1 with C = Gk0(X)0 and C ′ = X0.
Such an X̃ is a periodic point for G into the ball B(X, ε). (1) and (2) are to
make X̃ ε−close to X, (3) is for mapping the conformation Gk0(X̃)0 into C in
at most n foldings. Lastly, (4) is for the periodicity of the folding process.
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Let us now consider the second property required in the Devaney’s definition.
Instead of proving the transitivity of G, we will establish its strong transitivity:

Definition 8 A dynamical system (X , f) is strongly transitive if ∀x, y ∈ X ,
∀r > 0, ∃z ∈ X , d(z, x) 6 r ⇒ ∃n ∈ N∗, fn(z) = y.

In other words, for all x, y ∈ X , it is possible to find a point z in the
neighborhood of x such that an iterate fn(z) is y. Obviously, strong transitivity
implies transitivity. Let us now prove that,

Proposition 3 Folding process in 2D model is strongly transitive.

Proof Let XA = (CA, FA), XB = (CB , FB), and ε > 0. We will show that X ∈
B (XA, ε) and n ∈ N can be found such that Gn(X) = XB . Let k0 = −blog10(ε)c
and X̌ = Gk0(CA, FA) denoted by X̌ = (Č, F̌ ). According to Lemma 1 applied
to Č and CB , ∃k1, . . . , kn in J−N,NK such that

Gn
(
(Č, (k1, . . . , kn, 0, . . .))

)
= (CB , (0, . . .)) .

Let us define X = (C,F ) in the following way:

1. C = CA,

2. ∀k 6 k0, F
k = F kA,

3. ∀i ∈ J1;nK, F k0+i = ki,

4. ∀i ∈ N, F k0+n+i+1 = F iB .

This point X is thus an element of B(XA, ε) (due to 1, 2) being such that
Gk0+n+1(X) = XB (by using 3, 4). As a consequence, G is strongly transitive.

Strong transitivity states that being as close as possible of the true folding
process (2D model) is not a guarantee of success. Indeed, let P be a protein
under interest and F its natural folding process in the 2D model. Then, for all
possible conformation C of the square lattice, there exists a folding sequence
F̌ very close to F leading to C. More precisely, for any ε > 0 (as small as
possible), an infinite number of folding sequences are in BdF (F, ε) and lead
to C. The strong transitivity property implies that without the knowledge of
the exact initial condition (the natural folding process, and thus the exact free
energy), all the conformations are possible. Additionally, no conformation of the
square lattice can be discarded when studying a protein folding in the 2D HP
square lattice model: the dynamical system obtained by such a formalization is
intrinsically complicated and cannot be decomposed or simplified. Furthermore,
this trend to visit the whole space of acceptable conformations is counteracted
by elements of regularity stated before: it is even impossible to dress a kind of
qualitative description of the dynamics in the 2D square lattice model, as two
points close to each other can have fundamentally different behaviors.
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4.5 Chaotic behavior of the folding process

As G is regular and (strongly) transitive, we have:

Theorem 1 The folding process G in the 2D model is chaotic according to
Devaney.

Consequently this process is highly sensitive to its initial conditions. If the
2D model can accurately describe the natural process, then Theorem 1 implies
that even a minute difference on an intermediate conformation of the protein,
in forces that act in the folding process, or in the position of an atom, can
lead to enormous differences in its final conformation, even over fairly small
timescales. This is the so-called butterfly effect. In particular, it seems very
difficult to predict, in this 2D model, the structure of a given protein by using
the knowledge of the structure of similar proteins. Let us remark that the whole
3D folding process with real torsion angles is obviously more complex than this
2D HP model. And finally, that chaos refers to our incapacity to make good
prediction, it does not mean that the biological process is a random one.

Before studying some practical aspects of this unpredictability in Section 7,
we will initiate a second proof of the chaotic behavior of this process and deepen
its chaotic properties.

5 Outlines of a second proof

In this section a second proof of the chaotic behavior of the protein folding
process is given. It is proven that the folding dynamics can be modeled as
chaotic iterations (CIs). CIs are a tool used in distributed computing and in
the computer science security field [28] that has been established to be chaotic
according to Devaney [29].

This second proof is the occasion to introduce these CIs, which will be used
at the end of this paper to study whether a chaotic behavior is really more
difficult to learn with a neural network than a “normal” behavior.

5.1 Chaotic Iterations: Recalls of Basis

Let us consider a system with a finite number N ∈ N∗ of elements (or cells),
so that each cell has a Boolean state. A sequence of length N of Boolean states
of the cells corresponds to a particular state of the system. A sequence, which
elements are subsets of J1;NK, is called a strategy. The set of all strategies is
denoted by S and the set B is for the Booleans {0, 1}.

Definition 9 Let f : BN −→ BN be a function and S ∈ S be a strategy. The so-
called chaotic iterations (CIs) are defined by x0 ∈ BN and ∀n ∈ N∗,∀i ∈ J1;NK,

xni =

{
xn−1
i if i /∈ Sn(
f(xn−1)

)
i

if i ∈ Sn.
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In other words, at the nth iteration, only the Sn−th cells are “iterated”. Let
us notice that the term “chaotic”, in the name of these iterations, has a priori
no link with the mathematical theory of chaos recalled previously. We will now
recall that CIs can be written as a dynamical system, and characterize functions
f such that their CIs are chaotic according to Devaney [23].

5.2 CIs and Devaney’s chaos

Let f : BN −→ BN. We define Ff : J1;NK×BN −→ BN by:

Ff (k,E) =
(
Ej · δ(k, j) + f(E)k · δ(k, j)

)
j∈J1;NK

,

where + and · are the Boolean addition and product operations, and x is for
the negation of x.

We have proven in [23] that chaotic iterations can be described by the fol-
lowing dynamical system: {

X0 ∈ X̃
Xk+1 = G̃f (Xk),

where G̃f ((S,E)) = (σ(S), Ff (i(S), E)), and X̃ is a metric space for an ad hoc

distance such that G̃ is continuous on X [23].
Let us now consider the following oriented graph, called graph of itera-

tions. Its vertices are the elements of BN, and there is an arc from x =
(x1, . . . , xi, . . . , xN) ∈ BN to x = (x1, . . . , xi, . . . , xN) if and only if Ff (i, x) =
(x1, . . . , xi, . . . , xN). If so, the label of the arc is i. In the following, this graph
of iterations will be denoted by Γ(f).

We have proven in [30] that:

Theorem 2 Functions f : Bn → Bn such that G̃f is chaotic according to
Devaney, are functions such that the graph Γ(f) is strongly connected.

We will now show that the protein folding process can be modeled as chaotic
iterations, and conclude the proof by using the theorem recalled above.

5.3 Protein Folding as Chaotic Iterations

The attempt to use chaotic iterations in order to model protein folding can be
justified as follows. At each iteration, the same process is applied to the system
(i.e., to the conformation), that is the folding operation. Additionally, it is not
a necessity that all of the residues fold at each iteration: indeed it is possible
that, at a given iteration, only some of these residues folds. Such iterations,
where not all the cells of the considered system are to be updated, are exactly
the iterations modeled by CIs.

Indeed, the protein folding process with folding sequence (Fn)n∈N consists
in the following chaotic iterations: C0 = (0, 0, . . . , 0) and,

Cn+1
|i| =

{
Cn|i| if i /∈ Sn

fsign(i)(Cn)i else
,
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where the chaotic strategy is defined by ∀n ∈ N,
Sn = J−N;NK \ J−Fn;FnK.

Thus, to prove that the protein folding process is chaotic as defined by
Devaney, is equivalent to prove that the graph of iterations of the CIs defined
above is strongly connected. This last fact is obvious, as it is always possible to
find a folding process that map any conformation (C1, . . . , CN) ∈ CN to any other
(C ′1, . . . , C

′
N) ∈ CN (this is Lemma 1).

Let us finally remark that it is easy to study processes s.t. more than one
fold occur per time unit, by using CIs. This point will be deepened in a future
work. We will now investigate some consequences resulting from the chaotic
behavior of the folding process.

6 Qualitative and quantitative evaluations

Behaviors qualified as “chaos” are too complicated to be encompassed by only
one rigorous definition, as perfect as it could be. Indeed, the mathematical
theory of chaos brings several nonequivalent definitions for a complex, unpre-
dictable dynamical system, each of them highlighting this complexity in a well-
defined but restricted understanding. This is why, in this section, we continue
the evaluation of the chaotic behavior of the 2D folding dynamical system ini-
tiated by the proof of the Devaney’s chaos.

6.1 Qualitative study

First of all, the transitivity property implies the indecomposability of the system:

Definition 10 A dynamical system (X , f) is indecomposable if it is not the
union of two closed sets A,B ⊂ X such that f(A) ⊂ A, f(B) ⊂ B.

Thus it is impossible to reduce, in the 2D model, the set of protein foldings
in order to simplify its complexity. Furthermore, the folding process has the
instability property:

Definition 11 A dynamical system (X , f) is unstable if for all x ∈ X , the orbit
γx : n ∈ N 7−→ fn(x) is unstable, that is: ∃ε > 0, ∀δ > 0, ∃y ∈ X , ∃n ∈ N,
d(x, y) < δ and d (γx(n), γy(n)) > ε.

This property, which is implied by the sensitive dependence to the initial
conditions, leads to the fact that in all of the neighborhoods of any x, there are
points that are separated from x under iterations of f . We thus can claim that
the behavior of the folding process is unstable.

6.2 Quantitative measures

One of the most famous measures in the theory of chaos is the constant of
sensitivity given in Definition 5. Intuitively, a function f having a constant of
sensitivity equal to δ implies that there exists points arbitrarily close to any point
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x that eventually separate from x by at least δ under some iterations of f . This
induces that an arbitrarily small error on an initial condition may be magnified
upon iterations of f . The sensitive dependence on the initial conditions is a
consequence of regularity and transitivity in a metrical space [27]. However, the
constant of sensitivity δ can be obtained by proving the property without using
Banks’ theorem.

Proposition 4 Folding process in the 2D model has sensitive dependence on
initial conditions on (X , d) and its constant of sensitivity is at least equal to
2N−1.

Proof Let X = (C,F ) ∈ X , r > 0, B = B (X, r) an open ball centered in X,
and k0 ∈ Z such that 10−k0−1 6 r < 10−k0 . We define X̃ by:

• C̃ = C,

• F̃ k = F k, ∀k ∈ N such that k 6 k0,

• F̃ k0+1 = 1 if
∣∣F k0+1

∣∣ 6= 1, and F̃ k0+1 = −F k0+1 else.

• ∀k > k0 + 2, F̃ k = −F k.

Only two cases can occur:

1. If
∣∣F k0+1

∣∣ 6= 1, then

d
(
Gk0+1 (X) , Gk0+1

(
X̃
))

= 2N−1 + 2N−F
k0+1

+
9

2N

∞∑
k=k0+1

∣∣∣F k − F̃ k∣∣∣
10k+1

= 2N−1 + 2N−F
k0+1

+
9

2N

∞∑
k=k0+1

2N

10k+1

= 2N−1 + 2N−F
k0+1

+ 9
1

10k0+2

1

1− 1

10

= 2N−1 + 2N−F
k0+1

+
1

10k0+1
.

2. Else, d
(
Gk0+1 (X) , Gk0+1

(
X̃
))

= 2N−1 +
1

10k0+1
.

In all of these cases, the sensibility to the initial condition is greater than
2N−1.

Let us now recall another common quantitative measure of disorder of a
dynamical system.
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Definition 12 A function f is said to have the property of expansivity if

∃ε > 0,∀x 6= y,∃n ∈ N, d(fn(x), fn(y)) > ε.

Then ε is the constant of expansivity of f : an arbitrarily small error on any
initial condition is always amplified until ε.

Proposition 5 The folding process in the 2D model is an expansive chaotic
system on (X , d). Its constant of expansivity is at least equal to 1.

Proof Let X = (C,F ) and X ′ = (C ′, F ′) such that X 6= X ′.

• If C 6= C ′, then ∃k0 ∈ J1;NK, Ck0 6= C ′k0 . So,

d
(
G0(X), G0(X ′)

)
> 2N−k0 > 1.

• Else F ′ 6= F . Let k0 = min
{
k ∈ N, F k 6= F ′k

}
. Then ∀k < k0, G

k(X) =

Gk(X ′). Let X̌ = (Č, F̌ ) = Gk0−1(X) = Gk0−1(X ′).

Then d
(
Gk0 (X) , Gk0 (X ′)

)
> dC

(
fFk0

(
Č1, . . . , ČN

)
, fF ′k0

(
Č1, . . . , ČN

))
> dC

((
Č1, . . . , Č|Fk0 |−1, f

sign(Fk0 )
(
Č|Fk0 |

)
, . . . ,

fsign(Fk0 )
(
ČN

))
,
(
Č1, . . . , Č|F ′k0 |−1,

fsign(F ′k0 )
(
Č|F ′k0 |

)
, . . . , fsign(F ′k0 )

(
ČN

)))
> 2N−max(|F

k0 |,|F ′k0 |)
> 1.

So the result is established.

7 Consequences

7.1 Is Chaotic Behavior Incompatible with Approximately
one Thousand Folds?

Results established previously only concern the folding process in the 2D HP
square lattice model. At this point, it is natural to wonder if such a model,
being a reasonable approximation of the true natural process, is chaotic because
this natural process is chaotic too. Indeed, claiming that the natural protein
folding process is chaotic seems to be contradictory with the fact that only
approximately one thousand folds have been discovered this last decade [31].
The number of proteins that have an understood 3D structure increases largely
year after year. However the number of new categories of folds seems to be
limited by a fixed value approximately equal to one thousand. Indeed, there is
no contradiction as a chaotic behavior does not forbid a certain form of order.
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As stated before, chaos only refers to limitations in prediction. For example,
seasons are not forbidden even if weather forecast has a non-intense chaotic
behavior. A similar regularity appears in brains: even if hazard and chaos play
an important role on a microscopic scale, a statistical order appears in the neural
network.

That is, a certain order can emerge from a chaotic behavior, even if it is
not a rule of thumb. More precisely, in our opinion these thousand folds can be
related to basins of attractions or strange attractors of the dynamical system,
objects that are well described by the mathematical theory of chaos. Thus, it
should be possible to determine all of the folds that can occur, by refining our
model and looking for its basins of attractions with topological tools. However,
this assumption still remains to be investigated.

7.2 Is Artificial Intelligence able to Predict Chaotic Dy-
namic?

We will now focus on the impact of using a chaotic model for prediction. We give
some results on two kinds of experiments, both using neural networks. Firstly,
we will study whether a (mathematical) chaotic behavior can be learned by a
neural network or not. Therefore, we design a global recurrent network that
models the function Ff introduced in the previous section and we show that it
is more difficult to train the network when f is chaotic. These considerations
have been formerly proposed in [32] and are extended here. Secondly, we will
try to learn the future conformation of proteins that consist of a small number
of residues. Our objective is to assess if a neural network can learn the future
conformation given the current one and a sequence of a few folds.

In this work, we choose to train a classical neural network architecture: the
MultiLayer Perceptron, a model of network widely used and well-known for its
universal approximation property [33]. Let us notice that for the first kind of
experiments global feedback connections are added, in order to have a proper
modeling of chaotical iterations, while for the latter kind of experiments the
MLPs used are feed-forward ones. In both cases we consider networks having
sigmoidal hidden neurons and output neurons with a linear activation function.
They are trained using the Limited-memory Broyden-Fletcher-Glodfarb-Shanno
quasi-Newton algorithm with Wolfe linear search. The training process can
either be controlled by the number of network parameters (weights and biases)
updates, also called epochs, or by a mean square error criterion.

7.2.1 Can a Neural Network Learn Chaotic Functions?

Experimental Protocol

We consider f : BN −→ NN, strategies of singletons (∀n ∈ N, Sn ∈ J1;NK),
and a MLP that recognize Ff . That means, for all (k, x) ∈ J1;NK × BN, the
response of the output layer to the input (k, x) is Ff (k, x). We thus connect
the output layer to the input one as it is depicted in Fig. 6, leading to a global
recurrent artificial neural network working as follows [32].
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At the initialization stage, the network receives a Boolean vector x0 ∈ BN

as input state, and S0 ∈ J1;NK in its input integer channel i(). Thus, x1 =
Ff (S0, x0) ∈ BN is computed by the neural network. This state x1 is published
as an output. Additionally, x1 is sent back to the input layer, to act as Boolean
state in the next iteration. Finally, at iteration number n, the recurrent neural
network receives the state xn ∈ BN from its output layer and i (Sn) ∈ J1;NK from
its input integer channel i(). It can thus calculate xn+1 = Ff (i (Sn) , xn) ∈ BN,
which will be the new output of the network. Obviously, this particular MLP
produces exactly the same values as CIs with update function f . That is, such
MLPs are equivalent, when working with i(s), to CIs with f as update function
and strategy S [32].

Let us now introduce the two following functions:

• f1(x1, x2, x3) = (x1, x2, x3),

• f2(x1, x2, x3) = (x1, x1, x2).

It can easily be checked that these functions satisfy the hypothesis of Theorem
2, thus their CIs are chaotic according to Devaney. Then, when the MLP defined
previously learns to recognize Ff1 or Ff2 , it tries to learn these CIs, that is, a
chaotic behavior as defined by Devaney [32]. On the contrary, the function

g(x1, x2, x3) = (x1, x2, x3)

is such that Γ(g) is not strongly connected. In this case, due to Theorem 2,
the MLP does not learn a chaotic process. We will now recall the study of the
training process of functions Ff1 , Ff2 , and Fg [32], that is to say, the ability to
learn one iteration of CIs.

Experimental Results

For each neural network we have considered MLP architectures with one
and two hidden layers, with in the first case different numbers of hidden neu-
rons. Thus we will have different versions of a neural network modeling the
same iteration function [32]. Only the size and number of hidden layers may
change, since the numbers of inputs and output neurons are fully specified by
the function. The training is performed until the learning error is lower than a
chosen threshold value (10−2).

Table 1 gives for each considered neural network the mean number of epochs
needed to learn one iteration in their ICs, and a success rate that reflects a suc-
cessful training in less than 1000 epochs. Both values are computed considering
25 trainings with random weights and biases initialization. These results high-
light several points [32]. First, the two hidden layer structure seems to be quite
inadequate to learn chaotic behaviors. Second, training networks so that they
behave chaotically seems to be difficult for these simplistic functions only iter-
ated one time, since they need in average more epochs to be correctly trained.
In the case of the two hidden layer network topology, a comparison of the mean
number of epochs needed for a successful learning of 10 chaotic functions with
that obtained for 10 non chaotic functions reinforces the previous observation.
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Table 1: Results of some iteration functions learning, using different recurrent
MLP architectures

One hidden layer

8 neurons 10 neurons

Function Mean Success Mean Success

epoch rate epoch rate

f1 82.21 100% 73.44 100%

f2 76.88 100% 59.84 100%

g 36.24 100% 37.04 100%

Two hidden layers: 8 and 4 neurons

Mean epoch number Success rate

f1 203.68 76%

f2 135.54 96%

g 72.56 100%

Indeed, the learning of chaotic functions needs in average 284.57 epochs, whereas
non chaotic functions require 232.87 epochs. In the future, we also plan to con-
sider larger values for N.

7.2.2 Can a Neural Network Predict a Future Protein Conforma-
tion?

Experimental Protocol

In this second set of experiments, multilayer perceptrons are used to learn
the conformation of very simple proteins (peptides, indeed). In fact, we consider
proteins composed of five residues, of which only 4 can change since the first
one is always 0, and folding dynamics of two or three folds. For example, if
the current protein conformation is (0)1222, and folds 4 and −1 are successively
applied, then the new conformation will be (0)0112. Obviously, these choices,
that lead respectively to 20736 and 186624 potential conformations, do not
correspond to realistic folding processes. However, they allow to evaluate the
ability of neural networks to learn very simple conformations.

The networks consist of MLP with 3 or 4 inputs, the current conformation
without the first residue, and a sequence of 2 or 3 successive folds. It produces
a single output: the resulting conformation. Additionally, we slightly change
the classical MLP structure in order to improve the capacity of such neural
networks to model nonlinear relationships and to be trained faster. Therefore,
we retain the HPU (Higher-order Processing Unit) structure [34]. This latter
artificially increases the number of inputs by adding polynomial combinations
of the initial inputs up to a given degree, called the order of the network. To
prevent overfitting and to assess the generalization performance we use holdout
validation, which means that the data set is split into learning, validation, and
test subsets. These subsets are obtained through a random sampling strategy.

To estimate the prediction accuracy we use the coefficient of variation of
the root mean square error (CVRMSE), usually presented as a percentage, the
average relative variance (AVR), and the coefficient of efficiency denoted by (E).
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These measures give a good estimation of the capacity of a neural network to
explain the total variance of the data. The CVRMSE of the prediction is defined
as:

CVRMSE =
100

ek
·

√∑N
k=1 (ek − pk)

2

N
,

where ek is the expected output for the k−th input-output pair, pk is the pre-
dicted output, N is the number of pairs in the test set, and ek is the mean
value of the expected output. The average relative variance and coefficient of
efficiency are respectively expressed by:

ARV =

∑N
k=1 (ek − pk)

2∑N
k=1 (ek − ek)

2
and E = 1−ARV.

These values reflect the accuracy of the prediction as follows: the nearer CVRMSE
and AVR to 0, and consequently E close to 1.0, the better the prediction.

Experimental Results

The considered neural networks differ in the size of a single hidden layer
and are trained until a maximum number of epochs is reached. As we set the
order of the HPU structure to 3, instead of 3 and 4 initial inputs we have
19 and 34 inputs. We train neural networks of 15 and 25 hidden neurons,
using as maximum number of epochs a value in {500, 1000, 2500}, whatever
the number of initial inputs (see Table 2). The learning, validation, and test
subsets are built in such a way that they respectively represent 65%, 10%, and
25% of the whole data set. In the case of 3 initial inputs data sets of 5184,
10368, and 15552 samples are used, they represent 25%, 50%, and 75% of the
20736 potential conformations. For the 4 initial outputs case we restrict our
experiments to a data set of 46656 samples, that corresponds to 25% of the
186624 potential conformations.

In Table 2 we give, for the different learning setups and data set sizes, the
mean values of CVMSE, AVR, and E for the output. To compute these val-
ues, 10 trainings with random subsets construction and network parameters
initialization were performed. It can be seen that in all cases the better perfor-
mances are obtained for the larger networks (25 hidden neurons) that are the
most trained (2500 epochs). Furthermore, a larger data set allows only a slight
increase of the prediction quality. We observe for a three time increase of the
data set: from 5184 to 15552 samples, a very small improvement of 1.66% for
the coefficient E.

At a first glance, the prediction accuracy seems not too bad for the 3 initial
inputs topology, with coefficients of efficiency above 0.9. However, remember
that we try to predict very simple conformations far away from the realistic
ones. Furthermore, a look at the results obtained for the second topology, the
one with 4 initial outputs, shows that predicting a conformation that undergoes
only one more folding transition is intractable with the considered learning
setups: the efficiency coefficient is always below 0.5. Clearly, the different neural
networks have failed at predicting the protein folding dynamics. A larger neural
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network with a longer training process may be able to improve these results.
But finding a learning setup well suited for the prediction of relevant proteins
structures that are far more complex seems very hypothetical.

Finally, let us notice that the HPU structure has a major impact on the learn-
ing quality. Indeed, let us consider the coefficient of efficiency obtained for the
data set of 5184 samples and a network composed of 25 hidden neurons trained
during 2500 epochs. As shown in Table 2 the coefficient E is about 0.9285 if
the neural network has an HPU structure of order 3, whereas experiments made
without increasing the number of initial inputs give 0.6930 as mean value for
E. Similar experiments in case of the second topology result in E = 0.2154 for
the classical structure that has no HPU structure. That represents a respective
decrease of more than 25 and 50%, from which we can say that MLP networks
with a classical structure would have given worse predictions.

At this point we can only claim that it is not completely evident that compu-

Table 2: Results of the validation of networks with an HPU structure of order 3
for several numbers of hidden neurons

Topology 3 initial / 19 HPU inputs and 1 output

Hidden neurons Epochs % CVRMSE ARV E

Data set of 5184 samples

15 neurons

500 24.97 0.3824 0.6176

1000 20.67 0.2628 0.7372

2500 16.69 0.1731 0.8269

25 neurons

500 23.33 0.3373 0.6627

1000 15.94 0.1565 0.8435

2500 10.75 0.0715 0.9285

Data set of 10368 samples

15 neurons

500 26.27 0.4223 0.5777

1000 22.08 0.3000 0.7000

2500 18.81 0.2225 0.7775

25 neurons

500 24.54 0.3685 0.6315

1000 16.11 0.1591 0.8409

2500 9.43 0.0560 0.9440

Data set of 15552 samples

15 neurons

500 24.74 0.3751 0.6249

1000 19.92 0.2444 0.7556

2500 16.35 0.1659 0.8341

25 neurons

500 22.90 0.3247 0.6753

1000 15.42 0.1467 0.8533

2500 8.89 0.0501 0.9499

Topology 4 initial / 34 HPU inputs and 1 output

Data set of 46656 samples

15 neurons

500 35.27 0.7606 0.2394

1000 33.50 0.6864 0.3136

2500 31.94 0.6259 0.3741

25 neurons

500 35.05 0.7535 0.2465

1000 32.25 0.6385 0.3615

2500 28.61 0.5044 0.4956
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tational intelligence tools like neural networks are able to predict, with a good
accuracy, protein folding. To reinforce this belief, tools optimized to chaotic
behaviors must be found – if such tools exist. Similarly, there should be a link
between the training difficulty and the “quality” of the disorder induced by a
chaotic iteration function (their constants of sensitivity, expansivity, etc.), and
this second relation must be found.

8 Conclusion

In this paper the topological dynamics of protein folding has been evaluated.
More precisely, we have studied whether this folding process is predictable in
the 2D model or not. It is achieved to determine if it is reasonable to think that
computational intelligence tools like neural networks are able to predict the 3D
shape of an amino acids sequence. It is mathematically proven, by using two
different ways, that protein folding in 2D hydrophobic-hydrophilic (HP) square
lattice model is chaotic according to Devaney.

Consequences for both structure prediction and biology are then outlined. In
particular, the first comparison of the learning by neural networks of a chaotic
behavior on the one hand, and of a more natural dynamics on the other hand,
are outlined. The results tend to show that such chaotic behaviors are more
difficult to learn than non-chaotic ones. It is not our pretension to claim that
it is impossible to predict chaotic behaviors such as protein folding with com-
putational intelligence. Our opinion is just that this important point must now
be regarded with attention.

In future work the dynamical behavior of the protein folding process will be
more deeply studied, by using topological tools as topological mixing, Knud-
sen and Li-Yorke notions of chaos, topological entropy, etc. The quality and
intensity of this chaotic behavior will then be evaluated. Consequences both on
folding prediction and on biology will then be regarded in detail. This study
may also allow us to determine, at least to a certain extent, what kind of errors
on the initial condition lead to acceptable results, depending on the intended
number of iterations (i.e., the number of folds). Such a dependence may permit
to define strategies depending on the type and the size of the proteins, their
proportion of hydrophobic residues, and so on.

Other molecular or genetic dynamics will be investigate by using mathemat-
ical topology, and other chaotic behaviors will be looked for (as neurons in the
brain). More specifically, various tools taken from the field of computational
intelligence will be studied to determine if some of these tools are capable to
predict behaviors that are chaotic with a good accuracy. It is highly possible
that prediction depends both on the tool and on the chaos quality. Moreover,
the study presented in this paper will be extended to high resolution 3D mod-
els. Impacts of the chaotic behavior of the protein folding process in biology
will be regarded. Finally, the links between this established chaotic behavior
and stochastic models in gene expression, mutation, or in Evolution, will be
investigated.
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Figure 6: Recurrent neural network modeling Ff
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