Real-Time Activity Detection in a Multi-Talker Reverberated

Environment

Emanuele Principi - Rudy Rotili - Martin Woéllmer -
Florian Eyben - Stefano Squartini - Bjorn Schuller

Abstract This paper proposes a real-time person activity
detection framework operating in presence of multiple
sources in reverberated environments. Such a framework is
composed by two main parts: The speech enhancement
front-end and the activity detector. The aim of the former is
to automatically reduce the distortions introduced by room
reverberation in the available distant speech signals and
thus to achieve a significant improvement of speech quality
for each speaker. The overall front-end is composed by
three cooperating blocks, each one fulfilling a specific task:
Speaker diarization, room impulse responses identification,
and speech dereverberation. In particular, the speaker
diarization algorithm is essential to pilot the operations
performed in the other two stages in accordance with
speakers’ activity in the room. The activity estimation
algorithm is based on bidirectional Long Short-Term
Memory networks which allow for context-sensitive
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activity classification from audio feature functionals
extracted via the real-time speech feature extraction toolkit
openSMILE. Extensive computer simulations have been
performed by using a subset of the AMI database for
activity evaluation in meetings: Obtained results confirm
the effectiveness of the approach.
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Introduction

Recently, a certain attention has been paid by the scientific
community to the design of machines with “cognitive”
skills similar to those of humans. Taylor [36] suggests that
cognitive machines should be able to “discern and empa-
thize with the mental state of others with which it is in
interaction, both machines and humans”. In such a context,
systems for the automatic analysis of social interaction in
small groups have been recently developed [8]. Approa-
ches have been proposed to manage group conversational
interaction (e.g., addressing [22] and turn-taking [30]),
persons’ internal states (e.g., interest [9]), social relations
(e.g., roles [46]), and personality (e.g., extroversion [28]
and dominance [20]).

Participants’ activity level often plays a central role in
such analysis. Persons with higher vocal and visual activity
(e.g., body movement and gestures correlated with speak-
ing activity) are often perceived as more dominant [20].
This has been widely exploited in the dominance detection
literature: For example in [2, 19, 20], dominance is esti-
mated calculating the speaking lengths of each participant,



which are directly related to the speaking activities. In
particular, the method in [19] uses audio cues only and
obtains the speaking lengths through the ICSI speaker
diarization system. The works in [2, 20] calculate the
speaking lengths using the speech signal energy and aug-
ment the feature set with visual cues. Visual activity is
measured by the motion vector magnitude and the residual
coding bitrate.

Interest and turn-taking detection also benefit from the
estimation of participants’ activity level. For example in
[23], the automatic detection of interest segments is per-
formed using HMMs with features comprising both the
speech activity measured with SRP-PHAT (steered power
response phase transform), and the visual activity measured
estimating head and hands motion paths. The same
approach is undertaken in [47] for turn-taking detection,
where a partially unsupervised framework made of a two-
layer HMM discovers group activity patterns.

In this contribution, participant activity detection is
addressed using nonverbal vocalic cues in a reverberated
acoustic scenario. The meeting participants’ voices are
recorded by means of multiple distant microphones, suitably
located in the room where the meeting takes place. This
results in a multi-talker reverberated acoustic scenario which,
up to the authors’ knowledge, has never been addressed so
far. The employed architecture is composed by two main
algorithmic stages, both operating in real-time: The speech
enhancement front-end and the activity detector (Fig. 1).

The former has been thought to suitably act in the
addressed acoustic scenario where multiple speakers are
active in a reverberated enclosure. The presence of the
reverberation effect due to convolution with room impulse
responses (RIRs) strongly degrades the speech quality and
a signal processing intervention is required [26]. Moreover,
another important issue in this type of systems is repre-
sented by the real-time constraints: The speech information
often needs to be processed while the audio stream
becomes available, making the complete task even more
challenging.
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In order to perform a suitable dereverberation processing,
the main issue to solve consists in coordinating the blind
estimation of RIRs with the speech activity of different
speakers. In addition, blind multiple-input multiple-output
(MIMO) identification is a difficult task even if a short
channel impulse responses are considered. To overcome this
obstacle, in [18] is proposed to decompose the problem into
several subproblems in which single-input multiple-output
(SIMO) systems are blindly identified and the estimated
RIRs used for source separation and speech deconvolution
during double or multiple talk periods. In [32, 33], a real-
time implementation of previous mentioned framework and
its application as front-end for an automatic speech recog-
nition engine have been proposed by some of the authors.

In this work, a real-time speaker diarization algorithm
has been implemented to inform the blind channel identi-
fication (BCI) and the dereverberation stages when they
have to operate. Only when speech segments of the same
speaker occur at the same channel, the BCI stage provides
the RIRs estimation to the dereverberation stage in order to
accomplish the inversion of such an estimate and apply the
inverse filters to the microphone signals.

The second main stage of the proposed architecture is
the activity detector. As in [16], the detector operates on
low-level features: First, a set of speech feature functionals
is extracted from 10 s segments of speech data that has
been enhanced by the proposed speech enhancement front-
end. Then, the feature vector is used as input for a bidi-
rectional long short-term memory (BLSTM) network that
has been trained to map from speech features to four levels
of activity. BLSTM networks have advantages over other
classification frameworks such as support vector machines
(SVM), hidden Markov models (HMM), or conventional
(recurrent) neural networks since they efficiently incorpo-
rate long-range contextual information into the decoding
process. As a result, classifiers based on the long short-term
memory technique [10, 15] have shown excellent perfor-
mance for various human behavior recognition tasks
[38, 42].

Fig. 1 Block diagram of the Front-end
roposed framework
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In order to evaluate the feasibility and the performance
of the proposed approach, experiments have been con-
ducted on a subset of the AMI corpus suitably annotated
with activity levels [16]. First, the BCI, dereverberation,
and speaker diarization stages have been separately eval-
uated by means of appropriate quality indexes. Then, the
activity detection capabilities of the entire framework have
been assessed. Obtained results showed that introducing
the proposed front-end gives an average detection
improvement of 24.17 %.

The paper outline is the following. In sect. “Speech
Enhancement Front-End”, the speech enhancement front-
end aimed at dereverberating the speech sources is
described, whereas section “Activity Detector” details the
algorithm developed for activity estimation. Section
“Experiments” 1is targeted to discuss the experimental
setup and performed experiments. Conclusions are drawn
in section “Conclusion”.

Speech Enhancement Front-End

Let M be the number of independent speech sources and
N the number of microphones. The relationship between
them is described by an M x N MIMO FIR (Finite Impulse
Response) system. According to such a model, the n-th
microphone signal at k-th sample time is:

M
xu(k) = > bl sn(k, L),
m=1

k=1,2,...K,

(1)
n=1,2,...,N

where ()T denotes the transpose operator and
Sk, L) = [sp(k) sp(k — 1) ... s(k — Ly + 1)]". (2)
is the m-th source. The term

hnm = [hnmA,O hnmAl . e -hnm.Ll,—l]T7 n= 1aza .- -7N7 (3)
m=12,...M

is the L,-taps RIR between the n-th microphone and the
m-th source. Applying the z transform, Eq. (1) can be
rewritten as:

Xﬂ(z) = ZHnm(Z)Sm(Z), n= 1,2, .. .,N (4)
m=1

where

Ly,—1

Hnm(z) - Z hnm,lzil- (5)
=0

The objective is recovering the original clean speech
sources §,, by means of a “context-aware” speech dere-
verberation approach: Indeed, it is necessary to automatically

identify who is speaking, accordingly estimating the unknown
RIRs and then apply a dereverberation process to restore the
original speech quality. To achieve such a goal, the proposed
front-end consists of three main stages (Fig. 1): speaker
diarization, blind channel identification, and speech
dereverberation. The speaker diarization stage takes as input
one microphone signal and for each sample, the output P, is
“1” if the m-th source is the only active, and “0” otherwise.
In such a way, the framework is able to detect when to perform
or not to perform the required operation. Both the BCI and the
dereverberation stages take advantage of this information,
activating the estimation and the dereverberation process,
respectively, only when the right speaker is present in the right
channel. It is important to point out that the usage of the
speaker diarization algorithm allows to consider the system as
composed by the only active source and the N microphones as
a SIMO which can be blindly identified in order to perform the
dereverberation process.

Speaker Diarization

The speaker diarization stage drives the BCI and derever-
beration blocks so that they can operate into speaker-
homogeneous regions. Current state-of-the-art speaker
diarization systems are based on clustering approaches,
usually combining HMMs and the Bayesian Information
Criterion metric [7, 43]. Despite their state-of-the-art per-
formance, such systems have the drawback of operating on
the entire signals, making them unsuitable to work online
as required by the proposed framework.

The approach taken here as reference has been proposed
in [37], and its block scheme is shown in Fig. 2. The
algorithm operation is divided in two phases, training and
recognition. In the first, the acquired signals are divided
into frames 25 ms long and overlapped by 60 %. These
are then transformed in feature vectors composed of 19
Mel-frequency cepstral coefficients (MFCC) plus their first
and second derivatives, and cepstral mean normalization is
finally applied to deal with stationary channel effects.
Speaker models are represented by mixture of Gaussians
trained by means of the expectation maximization algo-
rithm. The number of Gaussians and the end accuracy at
convergence have been empirically determined and set to
100 and 10™*, respectively.

In the recognition phase, the input signal is divided into
non-overlapping chunks, and the same feature extraction
pipeline of the training phase extracts feature vectors. The
decision is then taken using majority vote on the likeli-
hoods: Every feature vector in the current segment is
assigned to one of the known speaker’s model based on the
maximum likelihood criterion. The model which has the
majority of vectors assigned determines the speaker



389

Fig. 2 The speaker diarization Training
block scheme.:. SPK,,” are the x, (k) Feature R B
speaker identities labels —— > traction »| GMM Training
assigned to each chunk
Recognition
PK PK SPK,, —
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— Extraction "] (Majority Vote) »| Demultiplexer | >
PM

identity on the current segment. The “Demultiplexer”
block associates each speaker label to a distinct output and
sets it to “1” if the speaker is the only active, and “0”
otherwise.

It is worth pointing out that the speaker diarization
algorithm is not able to detect overlapped speech, that is,
segments in which more than one speaker talks. Section
“Speech Enhancement Front-End Operation™ will describe
how these errors affect the front-end operation.

Blind Channel Identification

Considering a SIMO system for a specific source s,
a BCI algorithm aims to find the RIRs vector h,, =
LU A h;,m*]T by using only the microphone signals
x,(k). In order to ensure this, two identifiability conditions
are assumed satisfied [44]:

1. The polynomial formed from h,,, are co-prime, that
is, the room transfer functions (RTFs) H,,,-(z) do not
share any common zeros (channel diversity);

2. C{s(k)} >2L, + 1, where C{s(k)} denotes the linear
complexity of the sequence s(k).

This stage performs the BCI through the unconstrained
normalized multi-channel frequency-domain least mean
square (UNMCFLMS) algorithm [17]. It is an adaptive
technique well suited to satisfy the real-time constraints
imposed by the case study since it offers a good compro-
mise among fast convergence, adaptivity, and low compu-
tational complexity.

Here, a brief review of the UNMCFLMS is reported in
order to understand the motivation of its choice in the
proposed front-end. Refer to [17] for details. The deriva-
tion of UNMCFLMS is based on cross relation criteria [44]
using the overlap and save technique [27].

The frequency-domain cost function for the g-th frame
is defined as

N-1 N
=3 &ila)eq) (6)

where e, ;(q) is the frequency-domain block error signal
between the n-th and i-th channels and (-)” denotes the

Hermitian transpose operator. The update equation of the
UNMCFLMS is expressed as

~10 ~10

hnm* (q + 1) = hnm* (q)

N
x> "D (g)ex (q),
n=1

- P[an* (l]) + 512Lh ><Lh]_1

, (7)
i=1,..,N

where 0 < p <2 is the step-size, 0 is a small positive
number and

b, (q) = Fap, o, M () 011, ] (8)
en(q) = Fap, o1, (015, {F 1, ei(@)} ] 9)
N
Pu(g)= > DZ(q)Dy(q) (10)
n=1,n#i

The term F denotes the discrete fourier transform (DFT)
matrix. The frequency-domain error function e,(g) is
given by

€,(q) = Dy, (9)h,, (@) — Dy (@)D, (9) (11)
(11) where the diagonal matrix

Dx,l (Q) = diag(F{[xn(th - Lh)xn (th - Lh
+1)xa(gLy + Ly — D]} (12)

is the DFT of the g-th frame input signal block for the n-th
channel.

From a computational point of view, the UNMCFLMS
algorithm ensures an efficient execution of the circular con-
volution by means of the fast fourier transform (FFT). In
addition, it can be easily implemented for a real-time appli-
cation since the normalization matrix P, (g) + 0oy, <z, 18
diagonal, and it is straightforward to compute its inverse.

Though UNMCFLMS allows the estimation of long RIRs, it
requires a high input signal-to-noise ratio. In this paper, the
presence of noise has not been taken into account, and therefore,
the UNMCFLMS still remain an appropriate choice. Different
solutions have been proposed in literature in order to alleviate
the misconvergence problem of the UNMCFLMS in presence
of noise. Among them, the algorithms presented in [12, 13, 45]
guarantee a significant robustness against noise and they could
be used to improve the proposed front-end.
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Speech Dereverberation

Given the SIMO system H,,:(z) corresponding to the
specific source s,,:, a set of inverse filters G- (z) can be
found by using the multiple-input/output inverse theorem
(MINT) [24] such that
N

ZHnm* (2)Gum(z) = 1, (13)
n=1

assuming that the RTFs do not have any common zeros. In

the time-domain, the inverse filter vector denoted as g,,. is
calculated by minimizing the following cost function:

C= ”Hm*gm* - V“Zv (14)

where || - || denote the l,-norm operator and

g = [glm*(1)> e aglm*(Li)» e agNm*(l)a o 7gNm*(Li)]T»
(15)

v:[O,--~,0,1,---,O]T. (16)

d

The vector v is the target vector, that is, the Kronecker
delta shifted by an appropriate modeling delay
(0 < d < NL;) while H,» = [Hy,+, - -, Hyy] where H,,
is the convolution matrix of the RIR between the source s,
and n-th microphone. When the matrix H,,- is given, the
inverse filter set can be calculated as

g,.=H v (17)

where ()T denotes the Moore-Penrose pseudoinverse. By
setting the L; so that matrix H,, is square a filter set with
the minimum length is obtained.

Considering the presence of disturbances, that is, addi-
tive noise or RTFs fluctuations, the cost function Eq. (14)
is modified as follows [14]:

C= ”Hm*gm* - V||2 + V”gm* 27 (18)

where the parameter y(> 0), called regularization param-
eter, is a scalar coefficient representing the weight assigned
to the disturbance term. It should be noticed that Eq. (18)
has the same form to that of Tikhonov regularization for ill-
posed problems [5].

Let the RTF for the fluctuation case be given by the sum

of two terms, the mean RTF (H,,+) and the fluctuation from

the mean RTF (ﬁm) and let £ (ﬁVTn ﬁmﬁ = 71 In this case,

a general cost function, embedding noise and fluctuation

case, can be derived:

C=g H Hg, —g H'v-Vv Hg, +v'v+ygl. g,
(19)

where

Mo {E’” (noise case) 20)

H,. (fluctuation case).

The filter that minimizes the cost function in Eq. (19) is
obtained by taking derivatives with respect to g,. and
setting them equal to zero. The required solution is

g, = (H'H+70)""H'v. (21)

The usage of Eq. (21) to calculate the inverse filters
requires a matrix inversion that, in the case of long RIRs,
can result in a high computational burden. Instead, an
adaptive algorithm [31] has been here adopted to satisty the
real-time constraints. It is based on the well-known
steepest-descent technique, whose recursive estimator has
the form

Hig
glg+ 1) =g, (0) - “Lvc 22)
Moving from Eq. (19) through simple algebraic
calculations, the following expression is obtained:
VC = _2[HT(V - Hgm* (q)) — V8w (q)] (23)

Substituting Eq. (23) into Eq. (22) is

8 (q+1) =8 (q) + u(@)[H' (v — Hg\ (9) — 18 (q)]-
(24)

where u(q) is the step-size.

The convergence of the algorithm to the optimal solu-
tion is guaranteed if the usual conditions for the step-size in
terms of autocorrelation matrix H’H eigenvalues hold.
However, the achievement of the optimum can be slow if a
fixed step-size value is chosen. The algorithm convergence
speed can be increased following the approach in [11],
where the step-size is chosen in order to minimize the cost
function at the next iteration. The analytical expression
obtained for the step-size is the following:

e’ (9)e(q)
e’ (q)(H"H + 7D)e(q)

u(q) = (25)

where

e(q) = H'[v — Hg,-(9)] — 78, (q).

In using the previously illustrated algorithm, different
advantages are obtained: The regularization parameter
which takes into account the presence of disturbances
makes the dereverberation process more robust to
estimation errors due to the BCI algorithm [14]; the real-
time constraint can be met also in the case of long RIRs
since no matrix inversion is required. Finally, the
complexity of the algorithm has been decreased
computing the required operation in the frequency-
domain by using FFTs.



Speech Enhancement Front-End Operation

The proposed front-end operates in two distinct modalities:
Training and testing. In the training phase, each speaker is
asked to talk for 60 s. During this period, the speaker diar-
ization stage trains the speakers’ models, whereas the BCI
and the dereverberation stages perform, respectively, the
estimation of the RIRs and the computation of the inverse
filters. This strategy avoids a mismatch between training and
testing conditions, since speakers’ models are always trained
under the same acoustic condition of the testing phase.

In the testing phase, the input signal is divided into non-
overlapping chunks of 2 s, the speaker diarization stage
provides as output the speakers’ activity, while in the BCI
and dereverberation stages, no adaptation is performed.
However, the dereverberation stage still uses the information
coming from the speaker diarizer by applying the inverse
filter calculated in the training phase if for the m-th speaker
the corresponding P,, is “1”. If this is not the case, it sets the
output sample to zero. This choice has been made since it is
assumed that the speakers do not change their position
throughout the meeting. The front-end could handle the
situation where the speakers change their position if the
adaptation process in the BCI and dereverberation stages
were not blocked. However, preliminary simulations showed
that the front-end is not able to work properly due to the
speaker diarization errors. In particular, the BCI stage is
sensitive to false alarms (speaker in hypothesis but not in
reference) and speaker errors (mapped reference is not the
same as hypothesis speaker). If one of these occurs, the BCI
performs the adaptation of the RIRs using an inappropriate
input frame providing as output an incorrect estimation. An
additional error which produces the previously highlighted
behavior is the miss speaker overlap detection.

The sensitivity to false alarms and speaker errors could
be reduced imposing a constraint in the estimation proce-
dure and updating the RIR only when a decrease in the cost
function occurs. A solution to miss overlap error would be
to add an overlap detector and not to perform the estima-
tion if multiple speakers are simultaneously active. On the
other hand, missed speaker errors (speaker in reference but
not in hypothesis) do not negatively affect the RIRs esti-
mation procedure, since the BCI stage does not perform the
adaptation in such frames. Only a reduced convergence rate
can be noticed in this case.

Activity Detector

Speech Feature Extraction

For speech feature extraction, the online audio analysis
toolkit openSMILE [6] is employed. The audio feature set

391

consists of 1 941 features, composed of 25 energy and
spectral related low-level descriptors (LLD) x 42 func-
tionals, 6 voicing related LLD x 32 functionals, 25 delta
coefficients of the energy/spectral LLD x 23 functionals, 6
delta coefficients of the voicing related LLD x 19 func-
tionals, and 10 voiced/unvoiced durational features. Details
for the LLD and functionals are given in Tables 1 and 2,
respectively. The set of LLD covers a standard range of
commonly used features in audio signal analysis and
emotion recognition. The functional set has been based on
similar sets, such as the one used for the Interspeech 2011
Speaker State Challenge [35], but has been carefully
reduced to avoid LLD/functional combinations that pro-
duce values which are constant, contain very little infor-
mation and/or a high amount of noise.

Long Short-Term Memory

Building on recent studies in the field of context-sensitive
affective computing and human behavior analysis [38, 41,
42], an activity classification framework that is based on
bidirectional Long Short-Term Memory has been designed.
The basic concept of Long Short-Term Memory (LSTM)
networks was introduced in [15] and can be seen as an
extension of conventional recurrent neural networks that
enables the modeling of long-range temporal context for
improved sequence labeling. LSTM networks are able to
store information in linear memory cells over a longer
period of time and can learn the optimal amount of con-
textual information relevant for the classification task. An
LSTM hidden layer is composed of multiple recurrently
connected subnets (so-called memory blocks). Every
memory block consists of self-connected memory cells and

Table 1 31 low-level descriptors

Energy and Spectral (25)
Loudness (auditory model based)
Zero crossing rate
Energy in bands 250-650 Hz, 1-4 kHz
25, 50, 75, and 90 % Spectral roll-off points
Spectral flux, entropy
Spectral variance, skewness, kurtosis
Psychoacoustic sharpness, harmonicity
MFCC 1-10

Voicing related (6)

Fy (Sub-harmonic summation (SHS) followed by Viterbi
smoothing)

Probability of voicing

Jitter, shimmer (local)

Jitter (delta: “jitter of jitter”)

Logarithmic harmonics-to-noise ratio (logHNR)
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Table 2 Set of all 42 functionals

Statistical functionals (23)
(Positiveb) arithmetic mean, root quadratic mean
Standard deviation, flatness
Skewness, kurtosis
Quartiles, and inter-quartile ranges
1, 99 % percentile
Percentile range 1-99 %

Percentage of frames contour is above: min + 25, 50, and 90 %
of the range

Percentage of frames contour is rising

Max, mean, min segment length®

Standard deviation of segment length®
Regression functionals® (4)

Linear regression slope, and corresponding approximation error
(linear)

Quadratic regression coefficient a, and approximation error
(linear)

Local minima/maxima related functionals® (9)

Mean and standard deviation of rising and falling slopes
(minimum to maximum)

Mean and standard deviation of inter maxima distances
Amplitude mean of maxima

Amplitude mean of minima

Amplitude range of maxima

Other™* (6)

LP gain, LPC 1-5

# Not applied to delta coefficient contours

® For delta coefficients the mean of only positive values is applied,
otherwise the arithmetic mean is applied

¢ Not applied to voicing related LLD

three multiplicative gate units (input, output, and forget
gates). Since these gates allow for write, read, and reset
operations within a memory block, an LSTM block can be
interpreted as (differentiable) memory chip in a digital
computer (see Fig. 3). Further details on the LSTM prin-
ciple can be found in [10].

Experiments
Corpus Description

Experiments have been conducted on a subset of the AMI
corpus [3, 16]. The subset has a total duration of 180 min
and is separated into 36 parts each having a duration of
5 min. Parts are extracted from the scenario-based data
recorded with headset microphones at the IDIAP meeting
room. Activity annotations are performed every 10 s
ranking each participant from O to 5, with O representing

net input

input
gate

output
gate

net output

Fig. 3 LSTM memory block consisting of one memory cell: The
input, output, and forget gates collect activations from inside and
outside the block which control the cell through multiplicative units
(depicted as small circles); input, output, and forget gate scale input,
output, and internal state, respectively; a; and a, denote activation
functions; the recurrent connection of fixed weight 1.0 maintains the
internal state

the lowest activity level and 5 the highest [16]. Table 3
lists the labels with their respective description: As pointed
out in the table, here participant activity is annotated
considering the amount of speaking time, body move-
ments, gestures and verbal cues. Note, finally, that unlike
the experiments described in [16], here the focus is on four
levels of activity, since activity level O does not occur and
level 5 almost never occurs. Thus, the activity level 0 is not
considered and levels 4 and 5 were simply clustered
together.

The acoustic scenario under study is composed of an
array of microphones placed at the center of the meeting
table with four speakers sitting around it (Fig. 4). The
number of microphones is five, since it must be greater
than the number of speakers [17] and the inter-microphone
distance is 10 cm. This choice represents a good comprise
between impulse response diversification, which increases
with the inter-microphone distance, and the need for a
reasonably sized array. It is worth highlighting that the
UNMCFLMS and MINT algorithms do not suffer from the
spatial aliasing problem as delay and sum beamformer
[21]. Microphone signals have been created by manually
removing cross-talk from the headset sources and con-
volving them with impulse responses 1,024 taps long. RIRs
have been generated by means of the image method [1]
using Habets’ RIR Generator tool', and they represent
three different reverberation conditions (Tgg): 120, 240 and
360 ms. Cross-talk free headset sources will be denoted as
“Clean” in the following sections.

! http://home.tiscali.nl/ehabets/rir_generator.html.



Table 3 Participant activity labels with their respective descriptions
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Label Description

0—Absent

1—Not active

The participant does not move and does not speak

The participant does not speak and movement or gestures are not associated with any information for activity (e.g., scratching,

changing the position in the seat, using the computer, moving the arms, playing with a pen, moving the notepad)

2—Little The person is listening, the vocal activity is low (e.g., he said “yes”). He takes note, stands up, sits down, goes to the
active presentation screen or white board
3—Active The participant is talking, makes important gestures (e.g., he shakes the head or nodding), he is pointing. He uses additional
devices (e.g., “the new remote-control”, a prototype), stands in front of the white board or the presentation screen
4—High The participant gives a presentation, and/or is the person who talks more then the others, he writes onto the white board, gives
active some ideas about features, design or architecture of the remote control
5—Most The participant makes a decision, defines what the group is doing next, defines what the product should look like
active
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Fig. 4 Room setup
Speech Enhancement Front-End Evaluation

As stated in section “Speech Enhancement Front-End”, the
proposed speech enhancement front-end consists in three
different stages. In order to evaluate the performance of
each stage, three different quality indexes have been used.

For the BCI stage, a channel-based measure called

normalized projection misalignment (NPM) [25] is
employed:
€q
NPM(g) = 20108, (10 ) (26)
where
h’h q) -~
6(6]) =h-— /\T#h(q) (27)
h' (g)h(q)

is the projection misalignment vector, h is the real RIR

~

vector, whereas h(g) is the estimated one at the g-th iter-
ation, that is, the frame index. Figure 5 shows the NPM
curve for the identification of each SIMO system relative to
each source at Tgy = 120 ms. The curves are obtained
considering the signal used in the front-end training phase.

Fig. 5 NPM for all the RIRs relative to each source

It is worth pointing out that different convergence values
are achieved since four different SIMO systems are iden-
tified but also since the speech quality is different among
all the sources.

The performances of the dereverberation stage have
been assessed using Normalized Segmental Signal-
to-Reverberation Ratio (NSegSRR) that is a signal-based
measure defined as follows [26]:

Sl

NSCgSRR =10 logl() <m
m m ||

)o m=tm
(28)

where, s,, and §,, are the desired direct-path signal and
recovered speech signals, respectively, and o is a scalar
assumed stationary over the duration of the measurement.
In calculating the NSegSRR value, the involved signals are
assumed to be time-aligned. In Table 4 are reported the
NSegSRR values for processed audio files of meeting
IS1009b, for each source and all different reverberation
time. In order to provide a comparison, the NSegSRR for
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Table 4 NSegSRR values for processed audio files of meeting
1S1009b

Table 6 Speaker diarization performance on the “Clean” and
reverberated acoustic scenarios

NSegSRR (dB) Clean Tgo= 120ms T =240 ms Tg = 360 ms
Too (ms) 51 52 53 Sa DER (%) 13.02 12.26 11.89 12.03

120 6.89 12.16 9.54 3.78

240 5.40 8.36 6.84 2.30

360 4.77 8.26 574 212 Table 6 shows the results obtained testing the speaker

Table 5 NSegSRR values for non-processed audio files of meeting
1S1009b

NSegSRR (dB)

TGO (ms) S1 852 53 S4

120 —4.98 —4.77 —6.78 —4.18
240 —6.11 —6.45 —20.06 -9.59
360 —6.61 —7.56 —27.55 —11.76

non-processed audio files has been evaluated as well. The
obtained values are shown in Table 5.

The increase in terms of NSegSRR confirms the effec-
tiveness of the dereverberation process. However, it is
important to remark that the performance of the derever-
beration stage are strictly related to the quality of the RIRs
estimation obtained through the BCI block.

The performance of speaker diarization algorithms is
measured by the diarization error rate’ (DER). DER is
defined by the following expression:

DER — Zf:l dur(s) (max (Nref (s), Nhyp(5)) — Noorrect (5))
Zf:l dur(s) Nyer ()

(29)

where S is the total number of segments in which no
speaker change occurs, dur(s) is the duration of segment s,
Nrer(s) and Nyyp(s) indicate, respectively, the number of
speakers in the reference and in the hypothesis, and N,
rect(s) indicates the number of speakers that speak in the
segment s and have been correctly matched between the
reference and the hypothesis. As an example, consider one
segment (S = 1) where for the first half talks SPK,, and for
the second SPK, (thus N,.(s) = 2). If the diarization out-
put is SPK for the first half and SPKj; for the second, then
Nhyp(s) = 2, but Negrreei(s) = 1. The diarization error rate
is therefore 50 %. As recommended by the National
Institute for Standards and Technology (NIST), evaluation
has been performed by means of the “md-eval” tool with a
collar of 0.25 s around each segment to take into account
timing errors in the reference.

% http://www.itl.nist.gov/iad/mig/tests/rt/2004-fall/.

diarization algorithm on the reverberation-free signals, as
well as on the three reverberated scenarios. The perfor-
mance across the four scenarios are similar due to the
matching of the training and testing conditions, and are
consistent with [37].

The real-time capabilities of the proposed front-end
have been evaluated calculating the real-time factor on a

Intel® Core™ i7 machine running at 3 GHz with 4 GB of
RAM. The obtained value for the speaker diarization stage
is 0.03, meaning that a new result is output every 2.06 s.
The real-time factor for the RIRs estimation and derever-
beration procedure is 0.04 resulting in a total value of 0.07
for the entire front-end.

Activity Detector Training and Evaluation Procedure

The networks used for the experiments consist of 1,941
input nodes (one for each speech feature extracted from
10 s of speech), 128 memory blocks containing one
memory cell each, and four output nodes that represent the
likelihoods of the four activity classes.

The 36 meetings contained in the database were split
into three distinct sets: A training, a validation, and a test
set. As a 9-fold cross-validation is used, the test set con-
sisted of four meetings for every fold. Four further meet-
ings were used as validation set for each fold, so that the
training set was composed of 28 meetings.

All features were mean and variance normalized prior to
processing via BLSTM networks. For each fold, means and
variances were calculated from the training set only. Dur-
ing training, a learning rate of 10~ and a momentum of 0.9
are used. Zero mean Gaussian noise with standard devia-
tion 0.6 was added to the inputs in the training phase in
order to improve generalization. Prior to training, all
weights were randomly initialised in the range from —0.1
to 0.1. Input and output gates used tanh activation func-
tions, while the forget gates had logistic activation func-
tions. Training was aborted as soon as no improvement on
the validation set could be observed for 25 epochs. Finally,
the network that achieved the best classification perfor-
mance on the validation set is used.

The real-time factor of the activity detector stage is 0.1,
which combined with the speech enhancement front-end
value confirms the real-time capabilities of the overall
framework.



395

s1 (3 ﬁ) 53

—
H H

Activity
Detector

i;.;;

2B G

YYVYY

Room Room

g g= -
> Speech > .,

L B R > Enhancement > Activity
> Detector
»  Front-end

(a) No front-end configuration.

(b) Full-system configuration.

Fig. 6 System configurations under study. In a, the central microphone is not used and the dashed arrows denote a logical link between speakers
and microphones. a No front-end configuration. b Full-system configuration

Full-System Evaluation

Activity detection performance has been evaluated in terms
of F|-Measure. Note that due to the unbalanced class dis-
tribution, accuracy is a rather inappropriate performance
measure. Thus, the F;-Measure, calculated as the harmonic
mean between unweighted recall and unweighted preci-
sion, has been used for performance comparison. F;-
Measure is defined as:

T,
Precision = —2— (30)
T, +F,
T,
Recall = —2— (31)
T,+F,

Precision - Recall
F-M =2- 32
1-vieasure Precision + Recall (32)

The terms T, and F), and F,, are, respectively, the number
of true positives, false positives and false negatives.

The system evaluation has been conducted considering
three configurations:

— No front-end: The speech enhancement front-end is not
present and the activity recognizer operates on four
microphone signals (Fig. 6a). Each microphone is
logically associated to a single speaker, meaning that
the activity detector expects each signal to contain only
one voice. The purpose of this experiment is to
highlight the need for a front-end able to divide and
dereverberate the inputs.

— Full-system (oracle): In this configuration, the full-
system as depicted in Figs. 1 and 6b is present, but the
speaker diarization stage operates as an oracle. Here,
the purpose is to assess the performance of the system
without speaker diarization errors.

—  Full-system: Here, the system is configured as shown in
Fig. 6b with the speaker diarization stage operating as
described in section “Speaker Diarization”.

The baseline F-Measure obtained without speech
enhancement front-end on “Clean” data is 64.29 %.

Table 7 Activity detection results in terms of F;-Measure (%). The
baseline value obtained on “Clean” data without speech enhancement
front-end is 64.29 %

Configuration Teo = 120 ms T = 240 ms  Tgo = 360 ms
No front-end 27.45 26.89 26.07
Full-system 55.71 55.61 55.66

(oracle)
Full-system 50.76 50.95 51.19

Table 7 shows the results obtained in the three reverberated
conditions.

The performance of the “No front-end” configuration is
close to chance level (i.e., 25 %): This is due to the
reverberation effect and the inability to isolate the speak-
ers’ voices. In fact, the four microphone signals on input of
the activity detector contain the mixed voices of all
speakers. The introduction of the speech enhancement
front-end with oracle speaker diarization improves the
system performance, with values close to 56 % across the
three reverberated conditions and an average absolute
improvement of 28.86 % over the “No front-end” config-
uration. The introduction of the real speaker diarization
stage decrease the performance by 4.69 % on average,
while maintaining an absolute increment of 23.31 % with
Tso = 120 ms, 24.06 % with Ty = 240 ms and 25.12 %
with Tgy = 360 ms over the “No front-end” configuration.
Note also that the full-system F;-Measures are less sensi-
tive to the Ty, variations compared to the “No front-end”
configuration. This is consistent with the NSegSRR values
shown in section “Speech Enhancement Front-End Eval-
uation” in which the same behavior can be observed in the
non-processed (Table 4) and processed (Table 5) results.

Conclusion

In this paper, an advanced multi-channel algorithmic
framework to detect the participant activity levels in multi-
talker acoustic reverberated scenarios has been developed.
The overall architecture is composed by two main
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elements: The speech enhancement front-end and the
activity detector. The front-end is able to blindly identify
the impulse responses and use them to dereverberate the
distorted speech signals acquired by multiple distant
microphones. A speaker diarization algorithm is also part
of the framework and is needed to detect the speakers’
activity and provide the related information to steer the
blind channel estimation and speech dereverberation
stages. The developed activity detection algorithm is based
on the speech feature extraction toolkit openSMILE. To
exploit contextual information, a bidirectional Long Short-
Term Memory network which produces the final estimate
of the activity level for each speaker is employed.

The entire system is able to work in real-time, and the
performed experiments, based on a subset of the AMI
corpus, have shown the effectiveness of the developed
system, making it appealing for applications in real-life
human-computer interaction (HCI) scenarios.

As future works, distinct improvements are foreseen for
both the activity estimator and the speech enhancement front-
end. Starting from the former, the fusion with video features
will be primarily addressed. Moreover, the evaluation of the
so-called bottleneck network architectures for enhanced
BLSTM modeling of a participant’s activity in meetings is
planned. A deeper integration of the speaker diarization stage
and activity detector algorithm is also foreseen, for example,
augmenting the activity detector feature set with the speaking
lengths of each participant. With regard to the speech
enhancement front-end, the presence of additive noise will be
considered and suitable procedures will be taken into account
to reduce its impact and maximize the output audio quality.
Moreover, the speaker diarization stage will be featured with
an overlap-detector algorithm, which also allows to include a
source separation stage within the front-end and therefore use
also the overlapped speech segments as useful information
for meeting activity estimation. Finally, the proposed front-
end will be applied in other relevant HCI tasks, for example,
keyword spotting [29 39, 40] and emotion recognition [4, 34].
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