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Abstract –  

In this paper we present a new database acquired with three different sensors (visible, near infrared and 

thermal) under different illumination conditions. This database consists of 41 people acquired in four 

different acquisition sessions, five images per session and three different illumination conditions. The total 

amount of pictures is 7.380 pictures. 

Experimental results are obtained through single sensor experiments as well as the combination of two 

and three sensors under different illumination conditions (natural, infrared and artificial illumination). We 

have found that the three spectral bands studied contribute in a nearly equal proportion to a combined 

system. Experimental results show a significant improvement combining the three spectrums, even when 

using a simple classifier and feature extractor. In six of the nine scenarios studied we obtained identification 

rates higher or equal to 98%, when using a trained combination rule, and two cases of nine when using a 

fixed rule. 

 

Keywords: thermal image, visible image, near infrared image, face recognition data fusion. 

 

1. INTRODUCTION 

Face is one of the most challenging traits for biometric recognition [1]. Real-world tests of automated face 

recognition systems have not yielded encouraging results. For instance, face recognition software at the 

Palm Beach International Airport, when tested on fifteen volunteers and a database of 250 pictures, had a 

success rate of less than fifty percent and nearly fifty false alarms per five thousand passengers, which 

means two to three false alarms per hour per checkpoint [2]. Even when the face recognition task is 

performed by a human operator it is far from being perfect and errors exist. Humans can recognize faces 

from different views. However, they accurately do it only when the faces are well known to them. 

The limits of human performance do not necessarily define upper bounds on what is achievable. 

Specialized identification systems, such as those based on novel sensors, may exceed human performance in 

particular settings [2]. For this reason, it is interesting to perform automatic experiments with images 

acquired with different sensors. To this aim we studied in our previous work [3-4] if there is complementary 

information when capturing an image with sensors that acquire the face in different frequency ranges.  

A long standing focus of research in human perception and memory centers on the importance of the 

“average” or “prototype” in guiding recognition and categorization of visual stimuli. The theory is that 

categories of objects, including faces, are organized around a prototype or average. The idea is that the 

closer an item is to the category prototype, the easier it is to be recognized as an exemplar of the category. 

However, in biometric applications, the goal is not to detect a face in an image. We must determine if the 

face is known to us and whose face it is [2]. The authors of [5] found that faces rated as “typical” were 

recognized less accurately than faces rated as “unusual”. In general, artists draw caricatures emphasizing 

facial features that are “unusual” in average population and are present in the caricaturized person. Despite 

the fact that caricatures are grotesque distortions of a face, they are often recognized more accurately and 

efficiently than actual images of the faces [5]. Computer generated caricatures likewise operate by 

comparing a face to the “average face” and then by exaggerating facial dimensions that deviate from the 

average [6]. The enhanced recognizability of caricatures by comparison to veridical faces may be due to the 

fact that the exaggeration of unusual features in these faces makes the person less confusable with other 

faces, and somehow or other “more like themselves” [2]. 

We would expect that the recognizability of individual faces should be predicted by the density of faces in 

the neighboring “face space”. We might also expect that the face space should be most dense in the center 

near the average. The space should become progressively less dense as we move away from the average. If a 

computationally-based face space approximates the similarity space humans employ for face processing, we 

might expect that “typical” faces would be near the center of the space and that unusual or distinctive faces 

be far from the center. It follows, therefore, that computational models of face recognition will not perform 

equally well for all faces. These systems should, like humans, make more errors on typical faces than on 

unusual faces. 

mailto:espinosa@eupmt.es
mailto:faundez@eupmt.es
mailto:j.mekyska@phd.feec.vutbr.cz


2 
 

On the other hand, computer based systems can go beyond human limitations because they can “see” 

beyond cognitive limits. For this purpose, we created a new database. Although several databases exist that 

simultaneously acquire visible and near infrared [7] or visible and thermal images [8], we are not aware of 

an existing database containing visible, near infrared and thermal information simultaneously. 

In this paper, we present a new database and we extract quantitative measurements in three spectral bands: 

visible, near infrared and thermal. 

The paper is organized as follows: section two describes the new database. Section three presents the face 

segmentation and normalization procedure, feature extraction, classifier and experimental results. Section 

four summarizes the main conclusions. 

 

2. FACE DATABASE 

We have acquired a database of 41 people using three sensors simultaneously. Next sections describe the 

details of this new database acquired in visible, near infrared and thermal spectrum. 

 

2.1 Acquisition scenario 

Visible and thermal images have been acquired using a thermographic camera TESTO 880-3, equipped 

with an uncooled detector with a spectral sensitivity range from 8 to 14 μm and provided with a 

germanium optical lens, and an approximate cost of 8.000 EUR. For the NIR a customized Logitech 

Quickcam messenger E2500 has been used, provided with a Silicon based CMOS image sensor with a 

sensibility to the overall visible spectrum and the half part of the NIR (until 1.000 nm approximately) with 

a cost of approx. 30 EUR. We have replaced the default optical filter of this camera by a couple of Kodak 

daylight filters for IR interspersed between optical and sensor. They both have similar spectrum responses 

as showed in Figure 1 and are coded as wratten filter 87 and 87C, respectively. In addition, we have used 

a special purpose printed circuit board (PCB) with a set of 16 infrared leds (IRED) with a range of 

emission from 820 to 1.000 nm in order to provide the required illumination. 

 

 
Figure 1.  Spectral sensibility of the two visibly opaque infrared filters, specifically matched to our 

application. 

 

The thermographic camera provides a resolution of 160x120 pixels for thermal images and 640x480 for 

visible images, whereas the webcam provides a still picture maximum resolution of 640x480 for near-

infrared images and this has been the final resolution selected for our experiments. 

The acquisition scenario is shown in figure 2. Figures 3a and 3b show a user in front of the acquisition 

system. 
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Figure 2. Overall multispectral face acquisition scenario.  

 

A couple of halogen focus are placed 30away from the frontal direction and about 3m away from the 

user match the artificial light of the room. Note that all the tripods and structures have fixed markings on the 

ground.  

Additionally, the distance between the face of the user and the tripod that holds the sensors is 135cm. This 

is in order to minimize the inherent parallax error in short distances between visible and thermal images of 

thermal imager and also to obtain a similar field of view between these images and the near infrared images 

acquired with the customized webcam. 

We have designed a background screen using a special stand kit which supports a roll of matt black paper. 

It is important to point out that this matt black background is mandatory behind the user in order to avoid 

undesirable thermal reflections from the operator, due to its well-known extra low albedo. This smooth 

background also facilitates the segmentation of the visible and NIR images. 

 

 
 

Figure 3. Acquisition scenario: the thermal camera (on the left) simultaneously acquires thermal and 

visible images in dual mode, while the printed circuit board with infrared leds and webcam must be 

connected to a laptop (on the right) to acquire the NIR image. 
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2.2 Lighting conditions. 

 

In each recording session the images have been acquired under three different illumination conditions: 

a) Natural illumination (NA): windows are open and sunlight enters the room. Obviously this 

illumination is not constant along days (due to weather conditions) and it also varies regarding the 

different hours of the day. 

b) Infrared Illumination (IR): printed circuit board around the webcam is turned on and the remaining 

sources of light are disconnected. A graphic user interface has been developed in order to properly 

set the IRED’s intensity level and to set the image involved parameters (exposure, gamma and 

brightness). Additionally, it is also possible to manually fully optimize them. 

c) Artificial Illumination (AR): The equipment used for illumination is the following: A set of 9 cool 

white fluorescents uniformly distributed in order to produce the base illumination of the. A second 

pair of IANIRO Lilliput lights fitting 650W-3,400K tungsten halogen lamps in order to fill and 

smooth the well-known discontinuous fluorescent spectral emission and to provide and additional 

IR portion of ligth. Figure 4 shows the related portion of spectral emission in this band emitted by a 

set of different colour temperature halogen bulbs. 

 

 
 

Figure 4. Relatively spectral energy distribution of different tungsten-halogen ligth sources. Zeiss 

courtesy. 

 

At the beginning, high pair of power focus produced important dark shadows over the users’ face. In order 

to solve this drawback, we had finally used a LEE 3ND 209 Filter to minimize the referred effect. This 

neutral density gel reduces light without affecting colour balance. 

 

2.3 Acquisition protocol 

Each user has been recorded in four different acquisition sessions performed between November of 2009 

and January 2010. In this sense, distinctive changes in the haircut and/or facial hair of some subjects may be 

appreciated. The acquisitions have been done in the whole day from 9 AM to 5 PM, because it was getting 

dark after 5 PM. The average time required for the full acquisition process of a skilled user has been 10 

minutes, being 15 minutes for a non skilled one. The whole set of users were acquired in two days per 

session. 

 The time slot between each session is shown in figure 5. 

 

Session1 

(Two days) 

1 week Session 2 

(Two days) 

1 week Session3 

(Two days) 

4 weeks Session 4 

(Two days) 

Figure 5. Acquisition plan 

 

In each illumination condition five different frontal snapshots are acquired. During the acquisition process, 

the user is required to look straight at the same spot. No neutral facial expression is required. Thus, different 

facial expressions have been collected (smiling/non smiling, open-closed and blinking eyes…etc).  As 

glasses exhibit a fully different behavior as function of the spectrum, being transparent from the VIS to the 

NIR spectrum and fully opaque beyond 3m approximately as showed in Figure 6, people wearing glasses 

were asked to remove them before acquisition. No other physical restriction has been taken into account in 

order to acquire a face image. 
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  Figure 6.  A set of different images in VIS, NIR and THIR of a same subject wearing glasses. 

 

In order to reduce the correlation between consecutive acquisitions of the same session, between a couple of 

snapshots the user is asked to stand up, make a loop in the room, including one step which corresponds to 

the portion of the room close to the blackboard, and sit down again. It is worth mentioning that the thermal 

camera can detect a temperature increase due to this additional physical exercise.  

 

2.4 Database features 

Final database consists of 41 people (32 males, 9 females). Each individual contributed in four acquisition 

sessions (see figure 5) and provided five different snapshots in three different illumination conditions and 

under three image sensors. This implies a total of: 41x4x5x3x3= 7.380 images, grouped in folders shown in 

figure 7. 

In order to normalize all the images to the same size and remove the background we have used a Viola 

and Jones face detector [9]. However, it was unable to segment correctly the thermal images and a new face 

segmentation algorithm for thermal images has been developed [10]. All the faces have been segmented and 

consequently resized to 100x145 pixels using bicubic interpolation. 

The images in NIR spectrum are stored in lossless *.bmp files. The images from thermal camera were 

firstly stored to *.bmt format provided by TESTO company. This file includes VIS image, temperature 

matrix and metadata describing for example the outside humidity, temperature range etc. This file was 

processed and the image in VIS spectrum was extracted. The temperature matrix was stored to MATLAB 

*.mat file and also transformed to grayscale image and stored to *.bmp format. 

 

Each file in database has an 8-letter code name. The meaning of each letter is described in Table 1. 

Letter position 1–2 3–4 5 6–7 8 

Meaning Personal ID Session number Sensor Illumination Sample 

Possible values 01–41 S1–S4 C – visible 

I – near infrared 

T – thermal 

NA – natural 

IR – infrared 

AR – artificial 

1–5 

Table 1. Meaning of the file code name 
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Figure 7. Database structure. For each user there are four sessions and each session contains three kinds of 

sensors and three different types of illumination per sensor. 

 

3. EXPERIMENTAL RESULTS 

In order to compare the identification rates using different sensors and illumination conditions we have 

used a simple feature extraction method based on Discrete Cosine Transform (DCT). According to our 

previous experiments [11], this method outperforms the well known eigenfaces [12] algorithm with lesser 

computation burden.  

 

3.1 Feature extraction algorithm 

Given a face image, the first step is to perform a two dimensional DCT, which provides an image of the 

same size but with most of the energy compacted in the low frequency bands (upper left corner). 

The Discrete Cosine Transform (DCT) is an invertible linear transform and is similar to the Discrete Fourier 

Transform (DFT). The original signal is converted to the frequency domain by applying the cosine function 

for different frequencies. After the original signal has been transformed, its DCT coefficients reflect the 

importance of the frequencies that are present in it. The very first coefficient refers to the signal’s lowest 

frequency, and usually carries the majority of the relevant (the most representative) information from the 

original signal. The last coefficients represent the component of the signal with the higher frequencies. 

These coefficients generally represent greater image detail or fine image information, and are usually 

noisier. DCT has an advantage when compared with DFT: the coefficients are real values while DFT 

produces complex values. We used DCT2 (two dimensional DCT) defined by the following equations: 
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where, in Equation (1) : 
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Figure 8 summarizes the process to obtain a feature vector from a DCT transformed image. 

 
Figure 8. The process to obtain a feature vector from a face image consists of a two dimensional DCT 

plus a feature selection. 

 

Feature extraction using DCT consists of selecting the coefficients around the X[0,0] coefficient (DC 

coefficient), where the highest discrimination capability between different people is. 

We can define a zonal mask as the matrix 
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 , and multiply the transformed 

image by the zonal mask, which takes the unity value in the zone to be retained and zero on the zone to be 

discarded. In image coding it is usual to define the zonal mask taking into account the transformed 

coefficients with largest variances. In image coding the goal is to reduce the amount of bits without 

appreciably sacrificing the quality of the reconstructed image, and in image recognition the number of bits is 

not so important. The goal is to reduce the dimensionality of the vectors in order to simplify the complexity 

of the classifier and to improve recognition accuracy. In this paper, we will follow a frequency selection 

mechanism by means of discriminability criteria. The goal is to pick up those frequencies that yield a low 

intra-class variation and high inter-class variation. On the other hand, those frequencies that provide a high 

variance for inter and intra-class distributions should be discarded. The notation is the following one: 

 P is the number of people inside the database. 

 F is the number of images per person in the training subset. 

  , ,p fi x y is the luminance of a face image f that belongs to person p, where 
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We will use the following measure, which is the Fisher discriminant: 

 
   

   

intra 1 2 inter 1 2

1 1 2
2 2

intra 1 2 inter 1 2
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,
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m f f m f f
M f f

f f f f 





 (3) 

It is interesting to point out that this procedure is similar to the threshold coding used in transform image 

coding [13]. Nevertheless, we are using a discriminability criterion, instead of a representability criterion, 

which is only based on energy (the higher the frequency coefficient value, the higher its importance). 

Figure 9 shows an example of the M1 ratio obtained from visible images of session 1. 

It is important to point out that feature selection has been done using only training samples. Thus, we have 

not selected frequencies using testing samples, which would provide better results, but unrealistic because 

feature selection must be done a priori, before classifying samples. 

 
Figure 9. 15x15 first coefficients M1 ratio for visible images of session 1. It is evident that the highest 

discrimability power is around the low frequency portion (upper left corner). 

 

3.2 Classification algorithm 

We have used a simple distance calculation between training and testing feature vectors of dimension N 

using a fractional distance. We have also successfully applied this classifier in [14] for signature 

recognition and in [15] for speaker recognition. It is represented in equation (4): 

𝑑(�⃗�, �⃗�) = (∑ (|𝑥𝑖 − 𝑦𝑖|)𝑝𝑁
𝑖=1 )

1
𝑝⁄       (4) 

Where i is the feature vector component. 

For p=2 the equation corresponds to the Euclidean distance. When data are high dimensional, however, the 

euclidean distances and other Minkowsky norms (p-norm with p being an integer number, i.e, p = 1; 2; ...) 

seem to concentrate and, so, all the distances between pairs of data elements seem to be very similar [16] 

Therefore, the relevance of those distances have been questioned in the past, and fractional p-norms 

(Minkowski-like norms with an exponent p less than one) were introduced to fight the concentration 

phenomenon. In our case, we have used p=0.5. 

We have experimentally selected the number of coefficients (vector dimension) by trial and error, 

selecting a window of 1x1, 2x2, 3x3, …,NxN,  where the frequency coefficients have been previously 

ordered using the strategy defined in section 3.1. 

We have used a simple method because the experiments are quite time consuming. For each feature vector 

dimension we have executed the algorithm, we have studied hundreds of feature vector dimensions for each 

condition, and this implies thousands of executions. If a more sophisticated method were used, this would 

imply, probably, to train a complex algorithm for each studied feature vector dimension. This would be 

impractical from the computational burden point of view. In fact, in its current version, we required several 

weeks to work out the whole experimental section. 

In addition, we were looking for a method with few parameters because a more complex algorithm can 

require fine tuning, and this fine tuning could be different for each spectral band. Thus, in this case, it would 

be difficult to know if one spectral band provides better results due to different tuning or to the frequency 

itself. Our suggested method is so simple and effective that we did not require any fine tuning. 

 

3.3 Experimental results with different illumination conditions 
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In this section we compare the identification rates for the visible (VIS), Near infrared (NIR) and thermal 

(TH) sensors for natural (NA, figure 10), artificial (AR, figure 11) and infrared (IR, figure 12) light. These 

experimental results have been obtained by training with session 1 & 2 and testing with session 3 as function 

of N (see figure 8). Thus, the number of selected coefficients for each point in these plots is N2. 

These figures reveal several general interesting facts: 

 Feature selection is indeed important, because a number of coefficients that is too large 

decreases the identification rate. 

 Different sensors provide a different number of optimal feature dimension N2. 

Figure 10 shows that: 

 The NIR sensor provides lower identification rates than visible and thermal ones, which 

provide similar rates. In addition, the optimal feature vector size is more critical, because 

identification rates drop quickly when moving away from the optimal point. 

 The TH sensor requires a lesser amount of coefficients to reach the highest identification rate, 

and the identification rate drops slower than for visible sensor. 

 
Figure 10. Identification rate as function of the square size (N) of selected coefficients for visible (VIS), 

near infrared (NIR) and thermal (TH) sensors for natural (NA) illumination. 

 

Figure 11 shows that: 

 All the sensors provide nearly similar results, although visible sensor outperforms the other ones. 

 Optimal feature vector size selection is less critical for the VIS sensor than for the other ones 

because a large range of N2 values produce the highest achievable identification rate. 
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Figure 11. Identification rate as function of the square size (N) of selected coefficients for visible (VIS), 

near infrared (NIR) and thermal (TH) sensors for artificial (AR) illumination. 

 

Figure 12 shows that: 

 NIR sensor provides the best behavior and the VIS sensor fails to provide a reasonable identification 

rate. This makes sense considering that infrared illumination in the proposed scenario for a visible 

sensor is equivalent to a near-dark scene. 

 TH and NIR provide similar behavior, although TH sensor results drop faster beyond the optimal value. 

 
Figure 12. Identification rate as function of the square size (N) of selected coefficients for visible, near 

infrared and thermal sensors for near infrared (IR) illumination. 

 

3.4 Experimental results for a specific sensor 

In this section we compare the identification rates for a specific sensor regarding of the different 

illumination conditions. We have studied the VIS sensor (figure 13), the NIR (figure 14) and the TH (figure 

15) for natural (NA), artificial (AR) and infrared (IR) illumination. 

Figure 13 reveals that: 

 VIS sensor performs better with artificial illumination. This makes sense because the variation along 

acquisition sessions is smaller than when using natural light, which varies from day to day. 
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 Optimal feature selection value is more critical when using natural light when compared to artificial 

light. 

 VIS sensor fails when using NIR illumination. This is due to the acquisition conditions for this 

scenario, which is almost dark for a visible sensor. 

 
Figure 13. Identification rate as function of the square size (N) of selected coefficients for Visible sensor 

and natural (NA), artificial (AR) and near infrared (NIR) illumination. 

 

Figure 14 reveals that: 

 IR sensor performs similarly well with AR and IR illumination, and around 10% worse when 

evaluated with natural light. This can be due to the larger variability when analyzing faces with 

natural light. 

 Feature selection is less critical when using IR illumination. This is reasonable considering that NIR 

sensors should perform optimally with IR illumination. 

 
Figure 14. Identification rate as function of the square size (N) of selected coefficients for Infrared 

sensor and natural (NA), artificial (AR) and near infrared (NIR) illumination. 

 

Figure 15 shows an expected conclusion: 
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 TH sensor performs almost the same with all the illuminations studied. This is reasonable considering 

that thermal cameras do not measure the light reflection on the face. They measure the heat emission of 

the body. In fact, they could perfectly work in fully darkness because the illumination is irrelevant. 

It is important to point out that although there are small variations between the three illumination conditions, 

they are not due to illumination. The motivation is the inherent variability of the acquired subject from day 

to day and acquisition to acquisition. If the subject were an inanimate object with a fix temperature along the 

different acquisitions, the behaviour shown in figure 12 would be the same under the three illuminations. 

However, a human being cannot fulfil this property. 

 
Figure 15. Identification rate as function of the square size (N) of selected coefficients for Thermal 

sensor and natural (NA), artificial (AR) and near infrared (NIR) illumination. 

 

Table 2 summarizes the optimal results and the optimal feature vector dimension (when evaluated from 

1x1, 2x2,… NxN) for different sensors and illumination conditions. This table reveals similar identification 

rates for all the sensors, although the thermal one requires a lower number of coefficients. In addition the 

visible sensor provides low identification rates when using IR illumination for the reasons previously 

commented. 

 

 Illumination 

 NA IR AR 

Sensor Identification Coefficients Identification Coefficients Identification Coefficients 

VIS 89.76 20x20 46.83 19x19 92.20 18x18 

NIR 80.49 16x16 90.73 15x15 91.22 11x11 

TH 88.29 16x16 90.73 14x14 88.29 11x11 

Table 2. Optimal results for visible (VIS), near infrared (NIR) and thermal (TH) sensor under natural 

(NA), infrared (IR) and artificial (AR) illumination conditions. Experimental conditions are the same of 

previous figures 10 to 15. The selected number of coefficients is also represented. 

 

3.5 Experimental results in mismatch conditions 

Using the setup of previous sections we have studied the identification rates regarding the different 

illumination conditions for training and testing. Table 3 shows the experimental results when using 20x20 

coefficients for VIS, NIR and TH respectively. The models have been computed using session 1 and 2 and 
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Although it is possible to trade-off an optimal feature vector dimension for each scenario we decided to 

select a fix window size of 20x20 coefficients. According to previous plots (figures 10 to 15) this tends to 

benefit the identification rates of the VIS sensor. Nevertheless, the goal of this table is to study the mismatch 

illumination effect between training and testing conditions, rather than to find the highest identification rate 

for each scenario. 

Due to the bad results obtained specially when using IR illumination we have decided to use some 

normalization procedure. The image has been normalized prior to DCT2. The normalization maps the values 
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in intensity image into new values such that 1% of data is saturated at low and high intensities of the image. 

This increases the contrast of the normalized image. Thus, table 3 includes experimental results with and 

without normalization. 

Face recognition in new spectral bands imply new problems that must be addressed. Nevertheless, the 

solution should be specific for each spectral band. For instance, while general temperature can rise in 

thermal images, the relative difference between different portions of the face can remain similar, because the 

hottest point will always be related to the vein positions, and this remains the same. On the other hand, we 

trained with sessions 1 and 2 and tested with sessions 3 and 4. Thus, the experimental results are affected by 

the time evolution. Nevertheless we have applied a feature selection algorithm that looks for low intra-class 

variation and high inter-class variation. Thus, stability along time is achieved by means of feature selection 

(see section 3.1), which is different for each spectral band. 

 

 Test 

NA IR AR 

Sensor Normalization Train 3 4 3 4 3 4 

VIS NO NA 1&2 89.8 84.4 51.2 60 85.9 82.9 

VIS YES NA 1&2 90.2 83.9 80.5 79 86.8 83.9 

VIS NO IR 1&2 85.9 82.4 46.8 61 92.2 85.9 

VIS YES IR 1&2 86.8 83.9 90.2 91.7 90.7 86.3 

VIS NO AR 1&2 90.2 82 57.6 60 91.2 87.3 

VIS YES AR 1&2 89.8 81.5 85.4 84.9 91.7 89.8 

NIR NO NA 1&2 77.6 89.8 19 21 79 85.4 

NIR YES NA 1&2 82 93.7 44.4 38 85.4 87.8 

NIR NO IR 1&2 70.7 54.1 89.3 89.3 63 61.5 

NIR YES IR 1&2 74.1 57.1 94.1 95.1 62 54.6 

NIR NO AR 1&2 78.5 81 25 26.3 86.8 88.8 

NIR YES AR 1&2 85.4 86.3 49.3 49.3 89.8 88.3 

TH NO NA 1&2 82.4 80.5 82 78 83.4 77.1 

TH YES NA 1&2 82.4 80 82.9 79.5 84.4 78.5 

TH NO IR 1&2 82.4 78 88.8 78 84.9 75.1 

TH YES IR 1&2 82.4 76.6 88.3 78.5 84.9 75.1 

TH NO AR 1&2 81.5 76.1 82.4 80 83.9 81 

TH NO AR 1&2 82 78.5 82 79.5 84.9 81 

Table 3. Identification rates (%) under different illuminations, sensors and normalization conditions 

 

Table 3 reveals the following aspects: 

 IR sensor provides the best result, which is 94.1% identification rate. This experimental result is in 

agreement with the conclusion of our previous paper [3], because NIR images have higher entropy than 

the other ones. 

 Looking at the standard deviation (std) and mean value (m) of the experimental results of table 3 for a 

specific sensor we obtain: m=81.6 and std= 12.4 for visible sensor, m=69.6 and std=22.8 for near 

infrared sensor and m=80.9 and std=3.2 for Thermal sensor. Thus, thermal image recognition rates are 

more stable than the other sensors. 

 Image normalization is important for the case of illumination mismatch when using the visible and near 

infrared sensor, and less important for the thermal one. 

 

3.6 Experimental results using multi-sensor score fusion 

In this section we combine the scores provided by different sensors in order to improve recognition 

accuracies. The existing fusion levels [17] are sensor, feature, score and decision. Some papers use image 

fusion and then they perform the recognition over this fused image [18-22]. This is known as “sensor 

fusion”. Another possibility is decision fusion [23]. In our paper, we will use a score combination. Some 

papers have also studied this possibility [24-27]. In fact [25] studies the sensor, feature and score level and 

founds that data fusion at score level outperforms the other ones when combining visible and thermal 

images. However [26] studies the fusion of visible and near infrared images and founds slightly better 

accuracies when fusing images than applying other fusion levels. To the best of our knowledge there is no 

paper devoted to visible, near infrared and thermal images simultaneously. The fusion scheme is presented 

in figure 16. 
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This kind of fusion is also known as confidence or opinion level. It consists of the combination of the 

scores provided by each matcher. The matcher just provides a distance measure or a similarity measure 

between the input features and the models stored on the database. 

Before opinion fusion, normalization must be done when the scores provided by different classifiers do 

not lie in the same range. In our case, we experimentally found that this normalization is not necessary 

because the three classifiers studied gave similar range. 

After the normalization procedure, several combination schemes can be applied [17]. The combination 

strategies can be classified into three main groups: 

a) Fixed rules: All the classifiers have the same relevance. An example is the sum of the outputs of the 

classifiers. That is: let o1 and o2 be the outputs of classifiers number 1 and 2 respectively. For 

example, a fixed combination rule yields the combined output 
  221 ooO 

 

b) Trained rules: Some classifiers should have more relevance on the final result. This is achieved by 

means of some weighting factors that are computed using a training sequence. For instance: 

 1 1 2 2 1 1 1 21O o o o o       
 

c) Adaptive rules: The relevance of each classifier depends on the instant time. This is interesting for 

variable environments. That is: 
     2111 1 ototO  

.For instance, a system that detects a 

low illumination scene and then weighs more the thermal score. 

 

The most popular combination scheme is the weighted sum: 1

N

j i ij

i

O o



 

Where the weights can be fixed, trained or adaptive. 

In this paper we will use a fixed rule scheme as well as a trained rule, although in our case the purpose of 

the trained rule is to evaluate the weights assigned to each classifier, rather than to maximize the 

identification rate. In fact, trained rules should be done with a development set different than the test set. 

Otherwise the experimental results are unrealistic. 
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Figure 16. Multi-sensor fusion scheme at score level. 

 

Table 4 shows the identification rates under different training and testing conditions for a fixed rule using 

the same weight for all the classifiers. 
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 Test 

NA IR AR 

Sensors Normalization Train 3 4 3 4 3 4 

VIS&NIR NO NA 1&2 91.7 96.1 51.2 58 91.7 92.7 

VIS&NIR YES NA 1&2 94.1 96.6 82 81.5 94.6 94.6 

VIS&NIR NO IR 1&2 93.7 90.7 91.7 92.7 91.7 91.7 

VIS&NIR YES IR 1&2 93.7 89.8 97.6 98 96.1 91.2 

VIS&NIR NO AR 1&2 92.7 91.7 49.3 52.2 95.1 94.6 

VIS&NIR YES AR 1&2 96.1 93.7 86.8 82.4 97.07 96.1 

VIS&TH NO NA 1&2 91.7 87.3 85.9 82.9 95.1 88.8 

VIS&TH YES NA 1&2 94.1 88.3 91.7 87.8 95.1 88.3 

VIS&TH NO IR 1&2 96.1 89.3 90.2 84.4 96.6 90.2 

VIS&TH YES IR 1&2 96.6 86.8 97.1 94.1 98 90.7 

VIS&TH NO AR 1&2 95.6 89.3 83.4 82.9 98 93.7 

VIS&TH YES AR 1&2 95.6 89.3 93.2 91.2 98 93.7 

NIR&TH NO NA 1&2 91.7 96.1 85.9 74.1 95.1 96.6 

NIR&TH YES NA 1&2 94.1 97.6 91.7 82 97.1 97.1 

NIR&TH NO IR 1&2 96.6 89.3 96.1 96.6 92.2 87.8 

NIR&TH YES IR 1&2 94.6 84.4 98.5 99 90.2 85.4 

NIR&TH NO AR 1&2 93.7 94.6 77.1 67.8 97.1 93.7 

NIR&TH YES AR 1&2 96.1 96.1 84.4 80.5 98.5 93.7 

VIS&NIR&TH NO NA 1&2 94.6 97.1 82.9 76.6 97.1 96.1 

VIS&NIR&TH YES NA 1&2 94.6 97.6 94.1 91.7 97.6 97.1 

VIS&NIR&TH NO IR 1&2 98.5 95.1 98 97.6 98.5 97.1 

VIS&NIR&TH YES IR 1&2 98 94.6 98.5 100 99.5 96.6 

VIS&NIR&TH NO AR 1&2 97.1 95.1 80.5 74.6 99.5 97.1 

VIS&NIR&TH YES AR 1&2 98.5 98.5 93.7 91.7 99.5 98 

Table 4. Identification rate for the combination of two and three sensors under different illumination 

conditions (NA=Natural, IR=Infrared, AR=Artificial). 

 

When combining two classifiers using a trained rule, a trial and error procedure must be done to set up the 

optimal value of the weighting factor. Figure 17 shows the identification rates as function of the weighting 

factor alpha, where the combination function is: 

𝑑 = 𝑎𝑙𝑝ℎ𝑎 × 𝑑𝑉𝐼𝑆 + (1 − 𝑎𝑙𝑝ℎ𝑎) × 𝑑𝑁𝐼𝑅 

It is interesting to point out that for alpha=1 the combination consists of the visible classifier distance alone 

dVIS, while alpha=0 fully removes the effect of the visible classifier, the classification being based on near 

infrared sensor distance alone dNIR. Thus, for alpha=0 we obtain 89.8% identification rate and for alpha=1 

84.4%. In the middle, there is an area that provides higher recognition rates (up to 95.6%) due to the 

combination of distances. 



16 
 

 
Figure 17. Trained rule combining VIS and NIR classifiers for NA illumination for training and testing, 

session 4. 

 

When combining three classifiers we can generalize the previous procedure using the following combination 

function: 

𝑑 = 𝑎𝑙𝑝ℎ𝑎 × 𝑑𝑉𝐼𝑆 + 𝑏𝑒𝑡𝑎 × 𝑑𝑁𝐼𝑅 + (1 − 𝑎𝑙𝑝ℎ𝑎 − 𝑏𝑒𝑡𝑎) × 𝑑𝑇𝐻 

In this case we should trade-off two parameters and the graphical representation is a three dimensional plot, 

such as the one shown in figure 18. This three dimensional plot is not very informative due to the limitations 

of three dimensional representations and an alternative is to represent its contour plot. A contour plot are the 

level curves of the bidimensional matrix formed by giving values to the two parameters alpha and beta. For 

the sake of simplicity only a few level curves are plot, as well as a black dot that indicates the highest value. 

Some interesting remarks about this kind of plot are the following: 

 In fact, the addition of the three weighting factors should be one. However, in order to avoid 

discontinuities and sudden gradients, we have filled up a whole matrix with 𝑎𝑙𝑝ℎ𝑎, 𝑏𝑒𝑡𝑎 ∈  [0,1] using 

increments of 0.01. Thus, 100 values have been worked out for each variable. 

 Alpha=100 implies beta=0. Thus, the combined system consists of the visible sensor alone. 

 Beta=100 implies alpha=0. Thus, the combined system consists of the near infrared sensor alone. 

 Alpha=beta=0 implies that the combined system consists of the thermal sensor alone. 

 Alpha=beta=33 implies that the three systems are equally weighted in the averaged distance 

computation. 

 Alpha and beta adjustments on the diagonal line depicted in each of the figures 19 and 20 imply that the 

thermal sensor is not used. The closest the optimal point is to this line, the lesser the weight of the 

thermal system. Adjustment points far from this diagonal imply a strong weight on the thermal system. 

Observing the 18 plots of figures 19 and 20 it is clearly seen that the three systems are almost equally 

important in the weighting process. There is only one exception, which is the second plot of figure 19. In 

this case alpha=33, beta=0. Thus, near infrared images are ignored and thermal images are weighted two 

times more than visible ones. This is reasonable considering the identification rates of each sensor alone (see 

table 3: VIS=60%, NIR=21%, TH=78%). Using these optimal combination values the identification rate 

reaches 84.9%. 
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Figure 18. Example of trained rule identification rates combining three classifiers. 

 

Figure 19 shows the contour plots as well as the maximum identification rate for the VIS, NIR and TH 

combination from top down and left to right for the following training and testing illumination conditions: 

NA-NA, NA-IR, NA-AR, IR-NA, IR-IR, IR-AR and AR-NA, AR-IR, AR-AR for session 4 and 

unnormalized feature vectors. Figure 20 represents the experimental results under the same illumination 

conditions for the normalized feature vectors case. 

 

 
Figure 19. Contour plots when combining VIS, NIR and TH sensors under the following training and testing 

illumination conditions: NA-NA, NA-IR, NA-AR, IR-NA, IR-IR, IR-AR and AR-NA, AR-IR, AR-AR for 

session 4 and unnormalized feature vectors. 
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Figure 20. Contour plots when combining VIS, NIR and TH sensors under the following training and testing 

illumination conditions: NA-NA, NA-IR, NA-AR, IR-NA, IR-IR, IR-AR and AR-NA, AR-IR, AR-AR for 

session 4 and normalized feature vectors. 

 

4. CONCLUSIONS 

In this paper a new face database has been presented. To the best of our knowledge, this is the first 

database that consists of visible, near infrared and thermal images acquired simultaneously and under 

different illumination conditions (natural, near infrared and artificial). 

The main conclusions about face recognition using a single sensor are: 

 The three sensors studied can provide good identification rates. 

 The highest identification rate has been obtained for NIR sensor under NIR illumination 

conditions. 

 Thermal sensor is more stable along different illumination mismatch, as expected, and it also 

provides good enough identification rates, and requires smaller number of coefficients. In 

addition, optimal feature selection is less critical than for the other sensors. 

 In average, visible sensor provides higher identification rates. 

The main conclusions when fusing two or three sensors are: 

 The combination improves the identification rates. The best system alone provides 95.1% 

identification rate, and the combined system reaches 100% in a particular scenario. 

 In general the three sensors are almost equally important, because a quite balanced weighting 

factor is obtained by exhaustive trial and error of the whole set of weighting combinations. 

 Normalized feature vectors always outperform the un-normalized system for the trained 

combination rule, and it is slightly worse in 3 of 18 cases for the fixed combination rule. 

 When studying the three sensors simultaneously we have not found any couple of redundant 

sensors. The combined system takes advantage of the three spectral bands. In addition, the 

combined system is more robust in front of illumination mismatch. 
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