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Abstract: Alzheimer's disease is the most prevalent form of progressive degenerative dementia; it has a high socio-

economic impact in Western countries. Therefore it is one of the most active research areas today. 

Alzheimer's is sometimes diagnosed by excluding other dementias, and definitive confirmation is only 

obtained through a post-mortem study of the brain tissue of the patient. The work presented here is part of a 

larger study that aims to identify novel technologies and biomarkers for early Alzheimer's disease detection, 

and it focuses on evaluating the suitability of a new approach for early diagnosis of Alzheimer’s disease by 

non-invasive methods. The purpose is to examine, in a pilot study, the potential of applying Machine 

Learning algorithms to speech features obtained from suspected Alzheimer sufferers in order help diagnose 

this disease and determine its degree of severity. Two human capabilities relevant in communication have 

been analyzed for feature selection: Spontaneous Speech and Emotional Response. The experimental results 

obtained were very satisfactory and promising for the early diagnosis and classification of Alzheimer’s 

disease patients. 

1. INTRODUCTION 

Alzheimer's Disease (AD) is the most common type of dementia among the elderly. It is 

characterized by progressive and irreversible cognitive deterioration with memory loss and 

impairments in judgment and language, together with other cognitive deficits and behavioral 

symptoms. The cognitive deficits and behavioral symptoms are severe enough to limit the 

ability of an individual to perform everyday professional, social or family activities. As the 

disease progresses, patients develop severe disability and full dependence. An early and 

accurate diagnosis of AD helps patients and their families plan for the future and offers the 

best opportunity to treat the symptoms of the disease. According to current criteria, diagnosis 

is expressed with different degrees of certainty as possible or probable AD when dementia is 

present and other possible causes have been ruled out. The diagnosis of definite AD requires 

the demonstration of typical AD pathological changes at autopsy [1-3]. This paper presents a 

new approach for early AD diagnosis based on two non-invasive and low-cost automatic 

methods: Automatic Spontaneous Speech Analysis (ASSA) and Emotional Temperature 

(ET). 
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The clinical hallmark and earliest manifestation of AD is episodic memory impairment. At 

the time of clinical presentation, other cognitive deficits are present in areas like language, 

executive functions, orientation, perceptual abilities and constructional skills. Associated 

behavioral and psychological symptoms include apathy, irritability, depression, anxiety, 

delusions, hallucinations, disinhibition, aggression, aberrant motor behavior, as well as 

eating or sleep behavior changes [4,5]. All these symptoms lead to impaired performance in 

everyday family, social, and professional activities as the disease progresses from mild to 

moderate to severe dementia.  

 

The diagnosis of AD is made on clinical grounds and requires the confirmation of a 

progressive dementia syndrome as well as the exclusion of other potential causes on the 

basis of clinical history and examination, complete blood workup and a brain-imaging test 

such as computer tomography (CT) or magnetic resonance imaging (MRI). This diagnosis of 

“exclusion” has changed in the past few years, as the interpretation of neuroimaging tests, 

including functional imaging with Single Photon Emission Computed Tomography (SPECT) 

and Photon Emission computed Tomography (PET), has focused on the “positive” findings 

of typical AD changes (medial temporal atrophy on CT or MRI, temporoparietal 

hypometabolism in PET) [6-9]. Nonetheless, the diagnosis of the early stages of not only 

mild cognitive impairment but also mild dementia remains problematic. On one hand, 

patients and relatives tend to ignore the first clinical manifestations, or ascribe them to the 

expectable cognitive changes related to age. Patients usually seek medical advice only 2 to 3 

years after the onset of symptoms. On the other hand, physicians may feel uncertain about 

and uncomfortable with establishing a diagnosis until the whole picture of dementia is fully 

present, as they might need to apply long neuropsychological batteries, expensive 

neuroimaging techniques or invasive tests such as a lumbar puncture to reach a diagnosis. It 

is, then, not surprising that most patients are diagnosed only once they have reached the 

moderate stage of the disease and become substantially dependent. At that stage, 

unfortunately, no treatment strategy is very likely to be significantly efficacious in stopping 

or even in delaying the disease process [4,5]. Approaches to the early diagnosis of AD have 

in the past few years made significant advances in the development of reliable clinical 

biomarkers [10]. However, the cost and technology requirements make it impossible to apply 

such biomarkers to all patients with memory complaints; rather, patients must be clinically 

selected, so that an invasive lumbar puncture or an expensive PET is performed only on 

those patients for whom there is a strong suspicion of an underlying AD pathology. Given 

these problems, non-invasive Intelligent Techniques of diagnosis may become valuable tools 

for early detection of dementia. Non-technical staff in the habitual environments of the 

patient could use these methodologies, which include e.g. Automatic Spontaneous Speech 

Analysis and Emotional Temperature, without altering or blocking the patients' abilities, as 

the spontaneous speech involved in these techniques is not perceived as a stressful test by the 

patient. Moreover, these techniques are very low-cost and do not require extensive 

infrastructure or the availability of medical equipment. They are thus capable of yielding 

information easily, quickly, and inexpensively [11-15].  



 

 
 

Figure 1. Signal and spectrogram of a control subject (top) and a subject with AD (bottom) 

during Spontaneous Speech

 

In addition to the loss of memory, one of the major problems caused by AD is the loss of 

language skills, which is reflected in difficulty with both speaking and comprehension and 

complicates natural communication with the environment (Figure 1). This inability to 

communicate is already present in the early phases of the diseases. There are various 

communication deficits in the area of language, including [16-18] aphasia (difficulty in 

speaking and understanding) and anomia (difficulty in recognizing and naming things). The 

specific communication problems the patient encounters depend on the stage of the disease 

[3,4]:  

1. First Stage or early stage (ES): difficulty in finding the right word in spontaneous 

speech. Often remains undetected.  

2. Second Stage or intermediate stage (IS): impoverishment of language and vocabulary 

in everyday use.  

3. Third Stage or advanced stage (AS): answers sometimes very limited and restricted to 

very few words. 

Besides language ability, the emotional response in Alzheimer's patients becomes 

impaired; this, too, seems to go through different stages. In the early stages, social and even 

sexual disinhibition appears, along with other behavioral changes (for example, being angry 

or being unable to remember, perform common tasks, or express oneself) [19-22]. However, 

patients retain their emotional memory, often crying easily and gratefully acknowledging 

caresses, smiles and hugs. The Alzheimer's patient reacts aggressively to things that for 

healthy persons are harmless and perceives threats or dangers where they do not exist. In 

more advanced stages of Alzheimer's disease, patients may often seem shy and apathetic, 

symptoms often attributed to memory problems or difficulty in finding the right words.  

 



 

Some responses are likely to be magnified due to an alteration in perception. Research also 

suggests that patients in advanced stages of AD may display a reduced ability to feel 

emotions due to loss of memory; this may in turn induce apathy and depression [22,23].  

 

The final objective of the full project is the identification of AD in the pre-clinical (before 

first symptoms) and prodromic (some very early symptoms but no dementia) stages. The 

research presented here is a complementary pilot experiment to define thresholds for a 

number of biomarkers related to spontaneous speech and emotional response. The data 

obtained will complement the biomarkers of each person. Other biomarkers can be extracted 

from multiple invasive tests (marrow extraction) as well as from neuroimaging and 

analytical or neuropsychological tests and from non-invasive automatic analysis of 

handwritten materials and drawings. 

 

We have evaluated non-invasive tests in order to identify the correct features to 

characterize the four groups (control group (CR) and the three Alzheimer levels (ES, IS and 

AS)). Two such tests are Automatic Spontaneous Speech Analysis and Emotional Response 

Analysis (ERA) [15].  

 

Spoken language is one of the most important elements defining an individual’s intellect, 

social life, and personality: it allows us to communicate with each other, share knowledge, 

and express our cultural and personal identity. Spoken language is the most spontaneous, 

natural, intuitive, and efficient method of communication among people. Therefore, the 

analysis by automated methods of Spontaneous Speech (SS), which is the freest and more 

natural expression of communication, possibly combined with other methodologies, has the 

potential to become a useful non-invasive method for early AD diagnosis [11-15].   

 

Emotional Response Analysis on speech also has that potential: emotions are cognitive 

processes related to the architecture of the human mind, such as decision-making, memory, 

or attention. These processes, in turn, are closely linked to the learning and understanding 

that arise in intelligent natural or artificial systems in response to the necessity of surviving 

in a changing and partially unpredictable world [24-26]. Human interaction includes 

emotional information about communication partners that is transmitted through language 

explicitly and implicitly through nonverbal communication. Human emotions are affected by 

the environment and by direct interaction with the outside world, but also by the emotional 

memory emerging from the experience of the individual and cultural environment, the so-

called socialized emotion [24]. Emotions use the same components – subjective, cultural, 

physiological and behavioral – that the individual's perception registers with regard to the 

individual’s mental and physical state and the body’s interaction with the environment [25]. 

In this work ERA has been performed with regard to classical features and to Emotional 

Temperature, described in section 3. This feature is based on the analysis of a number of 

prosodic and paralinguistic feature sets obtained from a temporal segmentation of the speech 

signal. 

 

 

 



 

2. MATERIALS 

 

2.1 Main Database of individuals 

Trying to develop a new methodology applicable to a wide range of individuals of different 

sex, age, language and cultural and social background, we have constructed a multicultural 

and multilingual (English, French, Spanish, Catalan, Basque, Chinese, Arabian and 

Portuguese) database with video recordings of 50 healthy and 20 AD patients (with a prior 

diagnosis of Alzheimer) recorded for 12 hours and 8 hours respectively. The age span of the 

individuals in the database was 20-98 years and there were 20 males and 20 females. This 

database is called AZTIAHO. All the work was performed in strict accordance with the 

ethical guidelines of the organizations involved in the project. The recordings consisted of 

videos of Spontaneous Speech – people telling pleasant stories or recounting pleasant 

feelings as well as interacting with each other in friendly conversation. The recording 

atmosphere was relaxed and non-invasive. The shorter recording times for the AD group are 

due to the fact that AD patients find speech more of an effort than healthy individuals: they 

speak more slowly, with longer pauses, and with more time spent on efforts to find the 

correct word and uttering speech disfluencies or break messages. In the advanced stage of 

the disease, they find this effort tiring and often want to stop the recording. We complied 

with their requests. 

 

2.2 Pre-processing  

   The video was processed and the audio extracted in wav format (16 bits and 16 Khz). The 

first step was to remove non-analyzable events: laughter, coughing, short hard noises and 

segments where speakers overlapped. Next, background noise was removed manually using 

denoiser adaptive filtering. After the pre-processing, about 80% of the material from the 

control group and 50% of the material from the AD group remained suitable for further 

analysis. The complete speech database consists of about 60 minutes of material for the AD 

group and about 9 hours for the control.  The speech was next divided into consecutive 

segments of 60 seconds in order to obtain appropriate segments for all speakers, resulting 

finally in a database of about 600 segments of Spontaneous Speech. 

 

2.3 Individuals selected for the study 

   From the original database, a subset of 20 AD patients was selected (68-96 years of age, 

12 women, 8 men, with a distribution in the three stages of AD (ES=4, IS=10, AS=6). The 

patients speak English, Spanish, Basque, and Portuguese. The control group (CR) was made 

up of 20 subjects (10 male and 10 female, aged 20-98 years) representing a wide range of 

speech responses. Selected languages are: English, French, Spanish, Catalan, Basque, 

Chinese and Arabian. This subset of the database is called AZTIAHORE. The preliminary 

experiment whose results are reported here was carried out on a subset of AZTIAHORE 

called AZTITXIKI and consisting of 5 members of the control group and 5 AD-diagnosed 

patients at different stages of the disease (ES=1, SS=2, AS=2). The control-group members 

(2 females and 3 males) were of middle age (M) or elderly (E); the AD-diagnosed persons (2 

females and 3 males) were all elderly. 



Figure 2. Plots of Speech Signal, Short Time Energy and Spectral Centroid, filtered by a 

median filter, for a control subject and a subject with AD 

 

 3 METHODS 

 

3.1 Feature extraction 

 

Feature extraction was performed using the Praat [27] software package and software 

developed by us in MATLAB. 
 
3.1.1 Automatic Spontaneous Speech Analysis (ASSA) 
 

The analysis of Spontaneous Speech fluency is based on three families of features (SSF 

set), obtained using Praat software. For that purpose, an automatic Voice Activity Detector 

(VAD) [28,29] has extracted voiced/voiceless segments as parts of an acoustic signal. These 

three families of features include:  

 

1. Duration: this includes the histogram calculated over the most relevant voiced and 

voiceless segments, the average of the most relevant voiced/voiceless, 

voiced/voiceless percentage and spontaneous speech evolution along the time 

dimension, and the voiced and voiceless segments’ mean, max and min. 

2. Time domain: short time energy.  

3. Frequency domain, quality: spectral centroid.  

 

The energy of a signal is typically calculated on a short-time basis, by windowing the 

signal at a particular time, squaring the samples and taking the average. The spectral centroid 

is commonly associated with the measure of the brightness of a sound. This measure is 

obtained by evaluating the “center of gravity” using the Fourier transform’s frequency and 

magnitude information (see Figure 2). These features form an SSF set. 
 



 

 

Figure 3. Example of a model of a pitch curve with a polynomial function of first order 

 
3.1.2 Emotional Speech Analysis 

 

In this study, we aim to accomplish the automatic selection of emotional speech by 

analyzing three families of features in speech:  

 

1. Acoustic features: pitch, standard deviation of pitch, max and min pitch, intensity, 

standard deviation of intensity, max and min intensity, period mean, period standard 

deviation, and Root Mean Square amplitude (RMS);  

2. Voice quality features: shimmer, local jitter, Noise-to-Harmonics Ratio (NHR), 

Harmonics-to-Noise Ratio (HNR) and autocorrelation;  

3. Duration features: fraction of locally voiceless frames, degree of voice breaks.  

 

Short-term energy is the principal and most natural feature that we analyzed. Physically, 

energy is a measure of how strong a signal is present at any one time. Energy is measured in 

continuous speech to discover voiced sounds, which have a higher energy than silence or un-

voiced sounds, as shown in Figure 2. These features form an EF set. The energy of the signal 

is calculated as in section 3.1.1 on a short- time basis, by windowing the signal at a particular 

time, squaring the samples and taking the average [30]. The square root of this result is the 

engineering quantity known as the root-mean square (RMS) value.  

 

3.1.3 Emotional Temperature 

 

This method proposes a new strategy based on a few prosodic and paralinguistic feature 

sets obtained from a temporal segmentation of the speech signal. The speech signal {s(n)} is 

windowed by a hamming window of 0.5 seconds overlapped 50% [31]. In each frame {x(n)} 

the DC component is removed and a z-normalization of the frame is made. From each frame 

2 prosodic features and 4 paralinguistic features related to pitch and energy, respectively, are 

estimated. These features were chosen for several reasons: first, they are quickly and easily 

calculated; second, their robustness in emotion recognition has been proven; and, finally, 

they are independent of linguistic segmentation, which means that problems in real-time 

applications in real environments can be avoided (see Figure 3).  



 

 

 

Figure 4. Example of the spectral distribution in different frequency bands 

For prosodic features, a voiced/voiceless decision is made for each frame and two linear 

regression coefficients of the pitch contour p(n) [32-34] are obtained: 

                          
 

 

   

 
 

(3.1) 

where the coefficients a and b are computed using the method of least squares. In our 

implementation we use the pitch estimation algorithm called YIN [35]. 

 

For paralinguistic features, voice spectral energy balances [32] are calculated from each 

frame, quantified using 4 percentages of energy concentration in 4 frequency bands Bi. For a 

sampling frequency greater than 16KHz, the frequency bands are divided into the following 

ranges: B0=[0Hz, 400Hz], B1=[400Hz, 2KHz], B2=[2KHz, 5KHz], B3=[5KHz, 8KHz], 

estimated in our previous research related to the phonatory system [36] (see Figure 4).  

 

The percentage of energy in each frequency band is obtained using the following 

expression: 

   
 

            

            
   

      
 

(3.2) 

 

Where        is a periodogram of the temporal frame       . 



 

 
Figure 5. Emotional Temperature for healthy persons and persons with AD 

 

Then Emotional Temperature is calculated as follows:  

1. A Support Vector Machine (SVM) is trained with a balanced segment set extracted 

from the database (AZTIAHORE). 

2. For each speech segment, each temporal frame is classified by the SVM as 

“pathological or “non- pathological”. 

3. The percentage of temporal frames classified as "non-pathological" is calculated. This 

value, i.e., the number of non-pathological frames, is the "emotional temperature".  

4. The "Emotional Temperature" is finally normalized in order to have ET=50 as the 

threshold obtained from the training database; that threshold indicates the limit 

between pathological and non-pathological frames. This normalization will make it 

substantially easier for medical specialists to interpret the data.  

Figure 5 shows an example of ET values for a healthy subject (ET=94.9) and for an AD 

subject (ET=44.7). We have used a freely available implementation called LIBSVM [37] 

with a radial basis kernel function. 



 

 

 
Figure 6. Voiced and voiceless (%) for AZTITXIKI set. There is an increment of 

voiceless (%) and a decrement of voiced (%) as the disease progresses from ES to 

AS.  

3.1.4 Feature sets 

Based on these presented characteristics, four feature sets have been created for 

experimentation:  

1. SSF, set described in 3.1.1  

2. EF, set described in 3.1.2 

3. EF+ET: EF and Emotional Temperature (ET) for characterization of Emotional 

Response  

4. SSF+EF: speech features set for integral characterization, including SS features and 

Emotional Response on Speech features 

5. SSF+EF+ET: previous feature set combination for analyzing Integral Response on 

speech (speech fluency and emotional response). 

 

3.2 Automatic Classification 

 

The goal of these experiments was to examine the potential of the selected features to help 

in the automatic measurement of the degradation of Spontaneous Speech, Emotional 

Response and their manifestation in persons with AD as compared to the control group. The 

experiments have analyzed the automatic measurement and definition of appropriate features 

in Spontaneous Speech, Emotional Response Analysis and Integral Response in the speech 

of persons with AD over AZTIAHORE subset (200 segments). Four groups/classes (CR, ES, 

IS, AS) and four different feature sets were evaluated (section 3.1.4). Three tests were 

designed for the experimentation: 1) Spontaneous Speech Fluency; 2) Analysis of Emotional 

Response; 3) INTEGRAL, which analyzes the integral degradation on speech (speech fluency 

and emotional response). WEKA [38] software was used in carrying out the experiments. 



 

 

 
Figure 7. Example of the preliminary experimentation. Voiced and voiceless segment 

(%) analysis with regard to voiceless segment length. 

 

The automatic classification of speech is based on several classifiers. We used five 

different classifiers: (1) a SVM with polynomial kernel, (2) a Multi Layer Perceptron (MLP) 

with one hidden layer of 100 neurons with 1000 training steps, (3) a K-Nearest Neighbor 

Algorithm (K-NN), (4) Decision Trees (DT) and (5) a Naive Bayes net. The WEKA 

software toolkit was used in carrying out the experiments.  

The results were evaluated using Accuracy (Acc) and Classification Error Rate (CER) 

measurements with regard to segments. For the training and validation steps, we used k-fold 

cross-validation with k=10. Cross validation is a robust validation for variable selection [39]. 

These features will define the CR group and the three AD levels. 

4 RESULTS AND DISCUSSION 

4.1 Preliminary Experimentation 

 

In the first stage, we carried out preliminary experimentation on the AZTITXIKI subset, 

analyzing the direct characteristics of Spontaneous Speech involved in AD symptoms.  The 

experiment was designed to detect changes and features in SS characterizing the control 

group, on the one hand, and each of the different groups of AD levels, on the other. The first 

set of tests consisted of ASSA experiments. Persons suffering from AD manifested a lower 

voiced percentage and a higher voiceless percentage (see Figure 6) in their spontaneous 

speech than healthy subjects. This indicates a significant loss of fluency in the speech of AD-

suffering subjects. The analysis shows that persons with AD tend to decrease the number and 

fluency of voiced segments by increasing the voiceless segment length and decreasing the 

length of voiced segments (see Figure 7).  



 

 

 

 

Figure 8. Spontaneous Speech Evolution with regard to the Speech Percentage along the 

time axis, for the consecutive segments (S1:SN).  

 

Persons with AD also displayed a decreasing slope in the evolution of their Spontaneous 

Speech, and a decreasing slope is evident in the analysis of their voiced and voiceless 

segments with regard to length segments. Figure 7 displays the tendency to use an increased 

number of short voiced segments and long voiceless segments. The speech of AD sufferers 

is fluent only for short periods of time, and segments longer than 20 seconds seldom appear 

in their spontaneous speech. Figure 8 shows spontaneous speech evolution with regard to the 

speech percentage along the time axis for consecutive segments (S1:SN): it can be observed 

that persons with AD decrease the voiced percentage along the time axis. The results also 

show a higher Short Time Energy for members of the control group than for AD sufferers 

and a higher Spectral Centroid for the AD group (see Figure 2).  

 

4.2 Automatic Classification 

 

In a preliminary step, we calculated the Emotional Temperature for each segment, using the 

method described in section 3.2. Automatic classification was then performed over the 

speech features sets described in section 3.1.4 using the Machine Learning paradigms 

described in 4.2. The aim was to use the pilot study to analyze the efficacy of the following 

tests: Automatic Spontaneous Speech fluency, Emotional Response in speech, and a 

combination of both in Integral Speech.  

 

In the first test, Spontaneous Speech Fluency, only the SSF set was used. The performance 

of SSP is fairly good for most of the paradigms, but it could be improved for MLP and Naive 

Bayes (see Figure 9), which tend to confuse ES group members with CR members and also 

confuse the three stages of AD.  KNN, one of the paradigms with good performance, also 

has the lowest computational cost.  



 

 

 

Figure 9 Classification Error Rate in % for the three defined tests in the pilot study and for 

each corresponding feature set. 

In the second test, Emotional Response, EF and EF+T were used. The best results were 

obtained when the ET feature was included, with Acc near to the optimum value (see Figure 

9). All the paradigms obtained very good results, the best one being MLP – though KNN 

also came near the optimum, and with less computational cost. The main mistakes the 

system makes is confusing the ES and IS groups and confusing ES group members with CR 

members when the ES patients are in the pre-disease stage. The presence of ET in the sets 

points towards the optimum for all paradigms without adding computational cost.  

 

With regard to the INTEGRAL test, this includes information on both Spontaneous Speech 

and Emotional Response, the results also show an improvement for all paradigms when ET 

is included. The best results are obtained for MLP and SVM, but KNN also achieves a fairly 

good result without increase in computational cost. 

 

A detailed analysis of the INTEGRAL test with regard to Accuracy (%) for all classes is 

shown in Figure 10, while Table 1 summarizes the Accuracy (%) global results with regard 

to the INTEGRAL test for all paradigms. Figure 10 shows the results obtained for the control 

group (CR) and for the three levels of AD (ES, IS and AS) for classes with MLP and SVM 

paradigms. In the results for these classes, the inclusion of ET obtains the best results for all 

classes. This set also improves the classification with regard to early detection (ES class). IS 

is also better at identifying mid-level AD. The model is able also to discriminate between 

pathological and non-pathological segments in each patient for the three tests of the pilot 

study. 



 

Table 1. Accuracy (%), global results with regard to test and feature sets for INTEGRAL test. 

Feature set MLP SVM DT KNN Naive Bayes 

SSF+EF 92,24 86,04 83,72 84,49 87,59 

SSF+EF+ET 93,02 93,79 91,47 87,59 87,59 

 

We analyzed the results with regard to the three tests (Emotional response, Spontaneous 

Speech fluency and INTEGRAL analysis). The analysis has taken into account the global 

system results, the results for each patient, and also AD level results. 

1. Global system results The results are satisfactory for this preliminary pilot study. 

The objectives of the project have been achieved. The obtained results will be used 

to adjust the tool so that new and more accurate analyses can be carried out with a 

new set of volunteers in the early detection stage.  

2. Specific test results. The system helps analyze a group’s condition not only with 

regard to global features but also with regard to the specific test. This opens a 

promising research avenue in mixing biomarkers from different sources.  

3. Results for the groups. The system obtains good results for the most advanced 

disease stages, IS and AS, and an encouraging rate – 60% – for the ES stage. The 

rate should be adjusted for the ES stage by analyzing a larger set of currently 

available data.  

4. AD level results: Regarding the IS and AS classification errors, these are detected 

for segments belonging to patients at the border between two stages. The segments 

of ES patients mainly appear mixed with the CR group and sometimes with the IS 

group. This also points to the existence of disease progression. 

 

On the whole, then, these non-invasive tests could form a very useful tool in the future for 

medical specialists working to define early diagnosis grounds for clinical AD. 

 

 
 

Figure 10 Accuracy (%) of classes for INTEGRAL test and each corresponding feature 

set. 



 

7 CONCLUSIONS 

The main goal of the present pilot study was to analyze features in Spontaneous Speech and 

Emotional Response in the pre-clinical stage of AD in order to design appropriate tests for 

the early diagnosis of the disease. These features significantly aid health specialists in 

distinguishing AD sufferers from healthy subjects as well as in discriminating between the 

three AD levels. We have analyzed features relating to speech duration, time domain, 

spectral domain, as well as a newly defined feature called Emotional Temperature. The 

performance of the approach is very satisfactory, and the results are promising for the early 

diagnosis and classification of AD patient groups. In future work, we will evaluate this 

approach with an early diagnosis database and new tests oriented toward semantic and 

memory tasks. We will also introduce new features related to a non-linear dynamic. Further, 

we will integrate the methodologies described here with methods of to automatically analyze 

drawing and handwriting, as well as with automatic analysis of facial features. We will also 

extend the study by examining a larger number of test subjects and a greater variety of 

pathologies.The first step will be developed with new recording material from the CITA 

Alzheimer Foundation and local hospitals. 
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