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Abstract: Content-based image retrieval (CBIR) has been an active research theme in the computer vision community for over two 

decades. While the field is relatively mature, significant research is still required in this area to develop solutions for practical 

applications. One reason that practical solutions have not yet been realized could be due to a limited understanding of the cognitive 

aspects of the human vision system. Inspired by three cognitive properties of human vision, namely, hierarchical structuring, color 

perception and embedded compressive sensing, a new CBIR approach is proposed. In the proposed approach, the Hue, Saturation and 

Value (HSV) color model and the Similar Gray Level Co-occurrence Matrix (SGLCM) texture descriptors are used to generate 

elementary features. These features then form a hierarchical representation of the data to which a two-dimensional compressive 

sensing (2D CS) feature mining algorithm is applied. Finally, a weighted feature matching method is used to perform image retrieval. 

We present a comprehensive set of results of applying our proposed Hierarchical Visual Perception Enabled 2D CS approach using 

publicly available datasets and demonstrate the efficacy of our techniques when compared with other recently published, 

state-of-the-art approaches. 

 

Structure Abstract: 

 

Background: Although content-based image retrieval (CBIR) has been an active research theme in the computer vision community 

for over two decades, there are still challenging problems in properly understanding the process in feature extraction and image 

matching. Consequently, significant research is still required to develop solutions for practical applications, especially in exploring 

and making the best using of the cognitive aspects of the human vision system.  

Methodology: Motivated by three cognitive properties of human vision, namely hierarchical structuring, color perception and 

embedded compressed sensing, we proposed a novel framework for CBIR. First, we use a hierarchical approach to perform discrete 

cubic partitioning of the image in the HSV space. Then, we propose a new hierarchical mapping of the image data through the use of 

hierarchical operators: SGLCM. These features are then integrated in a 2D CS model, which extracts refined features and suppresses 

noise. Finally, the resultant features are used for similarity based ranking to perform CBIR. 

Results and Conclusions: Experiments were performed using two Corel image datasets, i.e. the Corel-1000 dataset which contains 

1000 images in 10 image categories and the Corel-10000 dataset which contains 10000 images in 100 image categories where each 

category contains 100 images. In comparison to three other state-of-the-art approaches, the proposed method has demonstrated much 

improved retrieval accuracy, especially for images with rich color contents and detail, yet the computational complexity has been 

significantly reduced to meet the needs for real-time online applications. The implication of the study is that the exploitation of 

cognitive properties of our human vision systems in effective CBIR. Future research work can be further explored to address some 

limitations for optimised parameter setting, adaptive feature fusion and improved machine learning. 

Key words: hierarchical visual perception; two-dimensional compressive sensing (2D CS); content-based image retrieval (CBIR). 

 

1. Introduction 

Content Based Image Retrieval (CBIR) aims to 

retrieve images from a database which are similar to each 

other in terms of their visual contents [1-2]. Over the 

years, various feature descriptors based on color, texture, 

and shape information have been proposed to 

characterize visual elements of image and video data. 

These features have subsequently been employed to 

improve the automated search and retrieval of image and 

videos in CBIR applications. However, selecting and 

developing methods for correctly identifying and 

effectively integrating suitable visual features for a 

specific vision task remains a very challenging problem. 

In [3], a novel Sparse Multimodal Learning approach 

was proposed to combine heterogeneous features using 

joint structured sparsity regularizations. In order to 

address the correlation problem whilst preserving the 

benefits of a high recall rate, a Bayesian merging 

approach was used to down-weight the indexed features 

in the intersection set [4]. In [5], to overcome the 

problems of information loss during quantization, SIFT 

(Scale Invariant Feature Transform) features are 

combined with color features in a coupled Multi-Index 

(c-MI) framework. In this approach, weighted feature 

fusion is used to improve the retrieval accuracy. The joint 

application of SIFT and color features significantly 

reduces the impact of false matches and improves recall 

[6]. However, in the context of CBIR, research is still 

required to develop robust methods that are capable of 

accurately describing image contents in an objective 

way.  

In CBIR, color, texture and shape features are 

considered to be the three most important for identifying 

images which are similar to each other [1-3]. Shape 

information can be extracted directly from regions which 

are segmented based on the color and texture properties 

of an image. Therefore, both color and texture can be 

considered as fundamental visual features from which 

shape information can be obtained. It has been pointed 

out in [7] that image retrieval algorithms driven by 
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human visual perception can accurately represent the 

contents of image data and thus offer improved retrieval 

performance and efficiency. As a result, extracting 

low-level features by simulating the mechanisms of the 

primary visual cortex focus heavily in [8-9]. 

Since the HSV (Hue, Saturation and Value) color 

model is most consistent with our human perceptions, 

this color space is widely used when extracting color 

feature descriptors [10-11]. In [12], a histogram 

generation approach was proposed for application in the 

HSV color space. By extracting color features from the 

HSV space and texture features from the Gray-Level 

Co-occurrence Matrix (GLCM), a new image retrieval 

algorithm was developed in [13]. Recently, CBIR 

technology which exploits the HSV color space has 

become an area of interest and active research. However, 

one of the key challenges lies in developing techniques 

which make use of human visual perception mechanisms 

to accurately describe image features. 

In recent years, some researchers have begun to study 

frameworks for applying hierarchical approaches to 

extract image content features. In [14-15] a hierarchical 

method was used to analyze the fractal dimensions of the 

grayscale image layers in the data. The authors 

constructed a vector to represent the content features of 

the image and this was then used for image classification. 

The classification effectiveness of this approach depends 

on whether or not the texture is obvious. Furthermore, in 

situations where the image texture is fuzzy, this approach 

may fail. Thus, the techniques need further improvement. 

CS
 
theory has been applied extensively since it was 

proposed in last decade [16-17]. CS exploits the fact that 

when the measurement matrix satisfies the Restricted 

Isometry Property (RIP) [18], the original signal can be 

reconstructed accurately using only a few measurement 

features. In [19-20], image data was converted from 2D 

to 1D by a column priority method, and was analyzed 

using 1D CS theory. However, this method suffers from 

dimensionality issues and the positional information that 

exists among image pixels in the 2D spatial domain is 

lost. To address these issues, researchers extended 1D CS 

to 2D CS and constructed a 2D CS measurement model 

to analyze images. In [21], a 2D CS measurement model 

was proposed to compress and reconstruct images using 

an iterative gradient descent method. In low-field MRI 

systems, a 2D CS method was introduced in [22] which 

used cross-sampling and self-calibrated off-resonance 

correction. More recently, it has been found that 2D CS 

actually is embedded in several stages of our human 

vision system [23]. This has inspired us in our work to 

combine 2D CS with other visual features for improved 

CBIR. 

Deep learning has also attracted recent attention in 

image retrieval applications [25, 27]. However, it is 

unclear as to whether or not features extracted from deep 

learning offer any improvement over conventional ones 

or not. It is however anticipated that improved similarity 

learning may help to enhance the performance if 

combined with deep learning [25, 27]. While this is 

beyond the scope of the work presented here, it will be 

considered in our future research. 

Motivated by three cognitive properties of human 

vision, namely hierarchical structuring [8-9], color 

perception [10-11] and embedded compressed sensing 

[23], we proposed a novel framework for CBIR. First, 

we use a hierarchical approach to perform discrete cubic 

partitioning of the image in the HSV space. Then, we 

propose a new hierarchical mapping of the image data 

through the use of hierarchical operators: SGLCM. HSV 

features provide color based similarity measurements 

while SGLCM features represent texture based local 

structure. These features are then integrated in a 2D CS 

model which extracts refined features and suppresses 

noise. Finally, the resultant features are used for 

similarity based ranking to perform CBIR.  

The remainder of the paper is organized as follows: In 

Section 2, a 2D CS model and reconstruction procedure 

are presented. Section 3 discusses techniques for 

extracting hierarchical HSV features based on 2D CS. By 

fusing multiple features, the overall image similarity is 

computed and a hierarchical HSV image retrieval 

framework based on 2D CS is constructed and described 

in Section 4. In Section 5, we discuss and analyze the 

experimental results before drawing some conclusions in 

Section 6. 

2. 2D CS model Description 

Given a 1D signal Nx R , the traditional 1D CS 

measurement can be defined as follows: 

    y x a a         (1) 

where aax
N

i ii  1
,   is a matrix composed 

of orthogonal bases 1,2, ,( )i i N   . If there are 

exactly  K K N nonzero coefficients in the 

transform vector Na R , then the signal x  is known 

as a sparse signal. ( )M NR M N   is the CS 

measurement matrix, My R is the measurement vector 

and   denotes the sensing matrix. 

When the RIP coefficient 
k  of the sensing matrix 

  satisfies 122 
k

 , the 1D sparse signal x can 

be reconstructed from the measurement vector y  by 

solving the following optimization problem [18]: 

1||||min xT

x
    s.t.   y x    (2) 

The above equation is an 
1

-norm convex 

optimization problem. Many algorithms have been 

proposed for solving the problem in Eq.(2) such as: 

Orthogonal Matching Pursuit (OMP); and Sparsity 

Adaptive Matching Pursuit (SAMP) [25, 28]. In [28], a 

modified SAMP algorithm based on Regularized 

Backtracking was proposed. This performed more 

efficiently than the traditional SAMP algorithm and 

resulted in an improvement in the reconstruction quality 

too.  

The CS approach allows the original signal to be 

reconstructed precisely using just a few measurement 

features. This indicates that the measurement vector y 

can therefore be used as representive features of the 

original signal x . Unfortunately, when 1D CS is 

applied to 2D images by column priority conversion, 

there are usually has two problems. These are 



 

 

(1)The increasing dimensions of the measurement 

matrix will lead to significant computational complexity 

for sparse signal reconstruction and, 

(2) The positional relationship between image pixels 

in the 2D spatial domain is lost during the conversion. 

To overcome the problems stated above, a 2D CS 

model is proposed in [29]. Let 
1 2,  M NR     denote 

the row and column of a CS measurement matrix, 

respectively. Now, the 2D CS measurement model can be 

defined as: 

1 2 TY X          (3) 

where 
N NX R  is a 2D image and 

M MY R   
represents the 2D CS measurement vector. In general, 

any natural image can be converted to a sparse signal by 

applying e.g. the: Discrete Cosine Transform (DCT), 

Discrete Fourier Transform (DFT) or Discrete Wavelet 

Transform (DWT). This means that the coefficient matrix 
T N NS X R   will become sparse, where   is 

a matrix composed of DCT bases. In a similar fashion to 

1D CS, the original 2D signal X  can be reconstructed 

from the 2D measurement vector Y if the RIP is 

satisfied. In practice, the DCT and DWT are more widely 

used than the DFT, especially for block-based image 

coding. Once obtained by applying either transform, the 

sparse coefficients can be readily employed in the CS 

framework to allow reconstruction of the original signal. 

A stretching operator )(Vec  is introduced and 

arranged by column priority, i.e. )(XVecX  ,

)(YVecY  and 
2

, NRYX  . 

Reconstructing a 2D signal is equivalent to solving the 

following optimization problem
 
[18]: 

0||||min X
x

   s.t. XY  12  
     

(4) 

where   is the Kronecker matrix product. If 
1 2, 

are standard Gaussian random matrixes [29], it is 

possible for 
12   

 to satisfy the RIP condition with 

a high probability - close to 1. Provided that the 

measurement matrix is chosen correctly, the original 

signal X can be reconstructed precisely from the 2D CS 

measurement vector Y . Thus, in the context of CBIR, 

the CS measurement matrix Y can be considered as one 

class of features which accurately describe the original 

image. 

In our proposed approach, the image is first processed 

using hierarchical operators. Then, each resultant 

hierarchical mapping matrix is processed further to 

compute a corresponding 2D CS measurement. Let’s 

now assume that 
iY  is the resultant hierarchical CS 

measurement vector and iY  is the CS measurement 

vector of some query image that is already in the 

database. Given the previous statement, the difference 
'

iii YYY   can be readily used as a robust evaluation 

metric for determining image similarity in order to 

facilitate fast and accurate image retrieval. 

3. Extraction of hierarchical HSV features in 2D 

CS 

In general, image retrieval is performed by exploiting 

both color and texture features which can be extracted 

directly from the image data. In terms of robustness, 

color features are known to have the advantage that they 

are not affected by rotation, scaling or other similar 

transformations. The color feature of an image is usually 

represented by a color histogram which simply requires 

quantization of the data in the selected color space. In 

this paper, the HSV color space is used because it is 

perceptually more uniform than other color spaces. The 

image is therefore first processed using a hierarchical 

mapping in HSV space before SGLCM is applied in the 

cubic space. The procedure of feature extraction is 

described in the following steps.  

Step1: Color conversion from RGB to HSV space 

The color components of each pixel in a 2D image 
N NX R  in the RGB color space can be denoted by 

(R,G,B). Similarly, the color components of an image 

pixel in the HSV color space can be denoted by (H,S,V).  

Let ),,max( BGRmx  , ),,min( BGRmn   

and nxd mmm  . The conversion of an image from 

RGB space to HSV space can now be defined as follows:  
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Step2: Cube discretization in HSV color space 

Let’s now assume that the intervals of the three color 

components are ],0[ H , ],0[ S , ],0[ V  in the HSV space. 

This means that the three coordinates of HSV space  

can be segmented individually into point sets
1

0}{
L

iH ,

2

0}{
L

iS , 3

0}{
L

iV as follows: 
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When computing 72-layer HSV features, 81 L , 

332  LL , and the specific parameters are defined as  

 
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If computing 256-layer HSV features, we have 

161 L , 432  LL , and the specific parameters are 

given by: 
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With the parameters given above, the HSV color space 

can be divided into small cubic grids as shown in Fig. 1. 

For one cubic grid Vijk = {(H, S, V)
T
}, we have 

1  i iH H H   , 1j jS S S   , 1k kV V V   , where 

11,2, ,i L  , 21,2, ,j L   and 31,2, ,k L  . 

 

Figure 1. HSV space segment and hierarchical mapping 

Step3: Hierarchical HSV mapping matrix 

The Hierarchical HSV mapping matrix is computed in 

two steps. Firstly, the cubic sequence can be obtained by 

row priority arrangement 
321],,1[| LLLLLlVl  . 

For 
ijkl VV  , kji ,,  are determined as 

 1 2/ 1i l L L   ,   1 2 3% / 1j l L L L   and 

  1 2 3% %k l L L L  . Secondly, hierarchical mapping 

operators are defined in the cube 
lV : 

1 ( ( , ), ( , ), ( , ))
( , )

0 else

T

l

l

if H i j S i j V i j V
HIER i j

 
 


，

，
  (9) 

 1,2, , ; ,  1,2, ,l L i j N      

where  i, j denotes the pixel of the image under 

consideration. Finally, the hierarchical HSV mapping 

matrix     ,l l N N
HIER X HIER i j


  is obtained. 

Step4: Extraction of hierarchical HSV features 

The hierarchical HSV mapping matrix  lHIER X  

reflects the distribution of the locations of image pixels 

whose color components are contained within the same 

cube, lV  of the HSV color space.  lHIER X  is 

therefore a 2D sparse signal provided that an appropriate 

cube discretization is chosen in the HSV color space. As 

a result, using a 2D CS model and choosing standard 

Gaussian random matrices
1 2, M NR    , the CS 

measurement vector 
lY  can be calculated as: 

 1 2 , 1,2,...T M M

l lY HIER X R l L      . (10) 

In Eq.(10), 
lY reflects the hierarchical features of the 

original image in HSV color space and, as such, it is 

called a hierarchical HSV feature. This is used as one 

class of image content features for image retrieval. 

Step5: Extraction of hierarchical texture features by 

SGLCM 

With the direction parameter θ and the distance 

parameter d, the SGLCM  ,P d  can be computed 

in the HSV space as follows: 

LLll dPdP  )),((),(
21
                 (12) 

}),(),,{(#),( 221121
NNjijidP ll  .     (13) 

#(•) denotes the total number of set elements, and 

],1[, 21 Lll  , ],1[| 4Lii  , ],1[| 5Ljdd j  . 

The pixels    1 1 2 2, ,  ,i j i j satisfy the equations 

below: 

1
)),(),,(),,(( 111111 l
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12
22211

ii

jj
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If the parameters θ and d take on different directions 

and distances, the matrix  ,P d  can be viewed as 

an extension of traditional GLCM. This extension is 

called SGLCM and is considered to reflect hierarchical 

features related to image texture. Since SGLCM is a 2D 

sparse signal, the hierarchical texture features PYl , which 

we will refer to as“SGLCM texture features”, can be 

extracted using the following 2D CS measurement model  

 1 2, T M M

l ij i jPY PY P d R       (17)

 
where   41 ,l i L j    ],1[],,1[],,1[ 54 LlLjLi  . 

If 
4 5l L L  , then  0lPY  . 

Step6: Extraction of traditional texture features by 

GLCM 

The procedure for extracting traditional texture 

features may be described as follows. Firstly, a GLCM is 

constructed based on the direction and distance among 

image pixels. Secondly, statistical features including: 

energy, entropy, contrast, uniformity, etc. are extracted 

from the GLCM. Assuming the graylevel of a given 

image is gn , the traditional GLCM is defined as: 

gg nnll dPdP  )),((),(
21

~~

   (18) 
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In Eq.(19), the pixels    1 1 2 2, ,  ,i j i j satisfy the 

following constraint conditions: 

   1 1 1 2 2 2, , ,g i j l g i j l      (20)
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where
1 2, 0,1, , 1gl l n   , 1 2, ,   ;



 

 

1 2, ,d d d , and  1 1,g i j denotes the grey degree of 

pixel. 

Depending on the image characteristics and 

computational complexity, we select several texture 

features. These include: energy (ASM), contrast (CON), 

uniformity (IDM) and entropy (ENT) which can be used 

to synthesize the final texture features based on GLCM. 

ASM is used to measure the uniformity of texture and 

can be defined as: 
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CON is used to measure the expectation for graylevel 

difference: 
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IDM is used to measure the local change of image 

texture and to reflect the homogeneity of texture: 
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ENT is used to measure the disorder degree of image 

texture and to embody the intensity of texture: 
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If we choose eight directions such as θ=0
0
, 45

0
, 90

0
, 

135
0
, 180

0
, 225

0
, 270

0
, 315

0
, and let d=2, we obtain 

different results when extracting the aforementioned four 

features. Once computed, the average parity of these  

features can be used to create the final texture feature 

vector namely “GLCM texture features”. 

   1 2 3 4, , , , , ,G G G G G ASM CON IDM ENT   (26)
 

4. System architecture and image similarity 

calculation 

  The hierarchical HSV feature extraction and retrieval 

framework is shown in Figure 2. 
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Figure 2. Image retrieval framework based on hierarchical HSV feature 
 

The image retrieval framework shown in Figure 2 can 

be summarized as follows: 

Algorithm: Retrieval Algorithm Based on 

Two-dimensional Compressive Sensing 

Inputs: the standard Gaussian random matrix 

1 2, M NR    and the hierarchical number L. 

Output: A set of images contained within the 

database which are deemed similar to the query example 

image T' by our proposed approach. 

Initial conditions: A query example image T' and an 

image database which contains at least one image T . 

Hierarchical Procedure: 

Step1: Hierarchical HSV Feature Extraction. For the 

query example image T', we first convert the data from 

RGB format into the HSV color space using Eq. (5). 

Then, the hierarchical mapping matrix is computed using 

Eq. (9). The hierarchical HSV features ],1[|' LlYl   are 

then calculated according to the 2D CS measurement 

model using Eq. (10).   

Step2: Hierarchical Texture Feature Extraction. The 

next step is to calculate the SGLCM from the HSV color 

space. Then, we extract the hierarchical texture features 

1,2( ), ,iPY i L   according to Eq. (17). Once this is 

completed, we compute standard texture features Gi' 

(i=1,2,3,4) using the traditional GLCM following Eq. 

(22-26). 

Step3: Retrieval of candidate image T from database 

for comparison. Having computed the hierarchical 

measurement features for the query image T', the 

precomputed hierarchical features for candidate image T 

should be extracted from the database. ],1[|, LiPYY ii   

and traditional texture features ]4,1[| iGi
which 

describe image T are therefore retrieved in this step. 

Step4: Comparison of retrieved and query images. 

Having computed the hierarchical color and texture 

features from the query image T' in Step 1 and retrieved 

the corresponding features for a candidate image T in the 

database, an image comparison can be performed. The 

differences among the hierarchical measurement and 

traditional texture features which describe the images are 

computed as follows: 
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where
i i iY Y Y    , 

i i iPY PY PY    with 

],1[ Li  and ]4,1[|'  iGGG iii .

 
Step5: A normalized image similarity score 

The differences between images T and T' are 

quantified and normalized using: 

   

321

321 )()()(










GSimPSimYSim
H  .    (28) 

Here, the non-negative weighted coefficients 21,   



 

 

and 3  can be set to different values according to 

different combinations of retrieval models. In this paper, 

for different experiments, we have ]8.0,5.0[1 ,

]4.0,2.0[2   and ]3.0,1.0[3  where these 

parameters have been determined empirically. 

Step6: Image similarity ranking  

The database images which are compared with the query 

image T' are ranked based on their similarity to T' as 

computed in Step 5. The database image which is most 

similar is ranked 1
st
 down to the image deemed to be 

least similar which is ranked last. 

 

5. Results and analysis 

All algorithms were implemented and tested using 

Matlab2012 running on a PC with the following 

specifications: CPU: Intel(R) I5-4200U4*2.4GHz, RAM: 

4GB DDR3L, OS: Windows7 SP1 of 32 bits. 

Experiments were performed using two Corel image 

datasets [33]. One image database used was the 

Corel-1000 dataset which contains 10 image categories 

(landscapes, horses, elephants, human beings, bus, 

flowers, buildings, mountains, food and dragons) and 

each category contains 100 images. The other image 

database used was the Corel-10000 dataset. This is larger 

than Corel-1000 and consists of 100 image categories 

where each category contains 100 images. 

5.1 Measurement matrix construction 

The Gaussian Random Measurement Matrix (GRMM) 

is used widely in CS. The elements 
ij of the matrix 

should be independent of each other and must satisfy a 

normal distribution i.e. zero mean with variance equal to

M/1 .  

)
1

,0(~,
M

Nji            (29)

 
The advantage of using the GRMM is that it satisfies 

the RIP condition with a high probability using fewer 

measurement features [34]. For a given signal of length 

N  and sparsity K , only /( )M c K log N K    

measurement features are required to accurately 

reconstruct the signal, where c is a small constant. In this 

paper, when the number of discrete image layers is 256, 

N=256, M=64. When the number of discrete image 

layers is 72, then N=72, M=36. At the same time, the 

GRMM is normalized by columns. 

5.2 Image feature extraction 

In this section we observe the results of applying the 

methods discussed in Section 3 to extract hierarchical 

HSV features from two image categories (horses and 

flowers) of the Corel-1000 data set. Two randomly 

selected images from each category are shown in Fig. 3. 

 Since the background color in these examples is 

fairly uniform, and the background areas are large, the 

hierarchical features extracted from the image pairs are 

highly correlated with each other as shown in Fig. 4. 

Additionally, the similarity between the features from 

different groups of images is low. These results and 

observations verify the effectiveness of the proposed 

approach for identifying images which are similar to 

each other while retaining the ability to differentiate 

these from images which are quite different. 

 

  

  

Fig. 3. Two pairs of randomly selected horse (top) and rose (bottom) images.  

  

 

Fig. 4. Extracted hierarchical HSV features from the two horse images (top) 

and two rose images (bottom). 

5.3 Algorithm evaluation 

The effectiveness of image retrieval depends on 1) 

the performance of the feature extraction algorithms used 

to extract descriptive features from the data and 2) the 

accuracy and reliability of the similarity computation 

used to compare images based on the features extracted. 

We evaluate the retrieval performance of CBIR based on 

the proposed approach by analysing: precision and recall 

rates, and F-Scores as defined below. We also measure 

the image retrieval time and use this in our comparisons.  

Let: A denote the total number of relevant images in 

retrieval result; B denote the total number of images in 

retrieval result; and C represent the total number of 

relevant images in the database.  

 Precision - The retrieval precision is defined as  

BAprecision /             (30) 

 Recall - The retrieval recall is defined as 

CArecall /     (31) 

 F-Score - By combining the precision and recall, a 

quota called F-Score is obtained. The F-Score 

measures the image retrieval accuracy and is 

defined as: 



 

 

recallprecision

recallprecision




 2Score-F    (32) 

5.4 Retrieval performance analysis 

In the following experiments, all 10 categories of the 

Corel-1000 dataset are used. For each category, the 

average precision is computed for the top 20 images 

returned in retrieval result. Additionally, the average 

recall and the retrieval time are also computed from the 

top 100 images in retrieval result. 

 

Experiment 1: Retrieval performance comparison 

between different HSV features 

In this experiment, the average precision, recall and 

F-Score were computed and analyzed for both 72-layer 

and 256-layer HSV features. The image retrieval time of 

these approaches was also measured and the accuracy of 

both methods for all categories can be compared in 

Figure 5. Additionally, the analysis in Table 1 

demonstrates that the precision and recall rates are 

improved when 256-layer HSV features are used. 

However, the increase in the number of layers also 

results increases the associated retrieval time.  

 

 

 

 

Fig. 5. Comparison results between 72-layer and 256-layer HSV features in 

terms of precision (top), recall (middle) and F-score (bottom). 

 

Table 1. Comparison result for retrieval performance 

between layer-72 and layer-256 HSV features 

 Precision Recall F-Score Retrieval Time 

Layer-72 70.9% 50.4% 58.7% 0.089s 

Layer-256 73.0% 51.6% 60.1% 0.093s 

 

Experiment 2: Retrieval performance comparison 

between hierarchical HSV and texture features 

In this experiment, 72-layer and 256-layer HSV 

features were combined with SGLCM and GLCM 

texture features in different ways and used to perform 

image retrieval. The four retrieval models used were: 

 Model-1: 72-layer HSV+GLCM texture features 

 Model-2: 256-layer HSV+GLCM texture features 

 Model-3: 72-layer HSV+SGLCM texture features 

 Model-4:256-layer HSV+SGLCM texture features 

Again, average precision, recall and F-Score were 

calculated for each of the four retrieval models when 

applied to the Corel-1000 dataset. The retrieval time 

when applying each method was also measured and used 

along with the performance metrics to analyze the 

retrieval performance and compare the results. From the 

results in Table 2 it is evident that the 256-layer HSV 

feature method always performs best regardless of the 

type of texture features used. Furthermore, by comparing 

Model-1 with Model-3 and Model-2 with Model-4, the 

average precision, recall, and F-Scores indicate that 

SGLCM texture features perform better than traditional 

GLCM. This improved performance does however come 

at a small cost in terms of the associated retrieval time as 

shown in Table 2. 

 
Table 2. Comparison of retrieval results from different models 

  Model-1 Model-2 Model-3 Model-4 

Precision 75.6% 78.4% 76.2% 80.1% 

Recall 54.8% 56.5% 55.6% 58.8% 

F-Score 63.6% 65.6% 64.3% 67.8% 

Retrieval Time 0.113s 0.118s 0.156s 0.162s 

 

For each category of images in the Corel-1000 

database, the four retrieval models were applied and 

analyzed based on the average precision, recall, F-Score 

computed and the associated retrieval time. The results 

are shown in Figure 6, which demonstrates that, in 

general, Model-4 (as proposed in this paper) performs 

better than the others. In fact, this is true for every 

category of images except those containing buildings. 

The average precision for horse images reaches 98.6%, 

and the average precision for Africa, bus, flower and 

food image categories reaches 80%. The only drawbacks 

of Model 4 are that 1) the retrieval time for the 256-layer 

HSV feature extractor is longer than 72-layer, and 2) the 

retrieval time of SGLCM texture feature approach is 

longer than the traditional GLCM (see Table 2). However, 

the difference in retrieval time for Model-4 is negligible 

when compared to the others – especially for the 

proposed application domain and given the offered 

improvement in terms of accuracy and performance. 

By observing the results in Figure 6, it also appears 

that the proposed SGLCM features are better suited for 

application to images with rich color content and finer 

details which can be captured by the algorithm and used 

for retrieval. In contrast, GLCM is more applicable to 

greylevel images with little color content. As a result, 

GLCM perform better than SGLCM when applied to the 

category of images containing buildings which lack color 

content and appear more like greyscale images. 

 



 

 

 

 

 
Fig. 6. Comparison result among different models in terms of precision (top), 

recall (middle) and F-score (bottom). 

5.5 Retrieval result analysis 

Experiment 1: Retrieval results for Corel-1000 dataset 

In this experiment, four different models are used to 

perform image retrieval. These are:  

 Model-A: 72-layer HSV features only  

 Model-B: 256-layer HSV features only 

 Model-C: SGLCM texture+72-layer HSV features 

 Model-D: SGLCM texture+256-layer HSV features  

Here, bus and horse images are chosen as the query 

example images from the Corel-1000 dataset and the 

flower image is used as a query example image for the 

Corel-10000 database. 

 

   
        (a) Bus         (b) horse            (c) flower 

Fig. 7. Three query example images. 

(1) Retrieval result for bus image – Corel-1000 

The bus image used to query the database is shown in 

Figure 7(a), and the retrieval results are shown in Figure 

8. There are four pages of retrieval results and each page 

contains 32 images which are displayed to a user. From 

Figure 8, we can see that if Model-A is used, two 

irrelevant images will erroneously appear in the first 

page of retrieval result. However, if Model-B is used, all 

images in the first page of retrieval result are relevant. 
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  Fig.8. Retrieval results for the bus image from Model-A (top-left), Model-B (top-right), Model-C (bottom-left) and Model-D (bottom-right). 

 



 

 

 When Model-C is used, there is one irrelevant image 

in the first page of retrieval result. Finally, if Model-D is 

used, all images in the first page of retrieval result are 

relevant. These results demonstrate that the retrieval 

accuracy will improve with the increase of hierarchical 

layers and the infusion of multiple features. 

  

  
  Fig. 9. Retrieval results for the horse image from Model-A (top-left), Model-B (top-right), Model-C (bottom-left) and Model-D (bottom-right). 

 

  

  
  Fig. 10. Retrieval results for the flower image from Model-A (top-left), Model-B (top-right), Model-C (bottom-left) and Model-D (bottom-right). 

 



 

 

(2) Retrieval result for horse image – Corel-1000 

The horse image used to query the database is shown 

in Figure 7(b), and the retrieval results are shown in 

Figures 9. Figure 9 illustrates that the retrieval result for 

the category of images named horse is better than the 

category of bus. For the above four retrieval models, all 

images in the first page of retrieval results are relevant.  

Experiment 2: Retrieval result analysis for 

Corel-10000 dataset 

In this experiment, flowers were chosen as the query 

example image from database-2, and the query image 

used is shown in Figure 7(c). The above four retrieval 

models (Model-A-D) were used to perform image 

retrieval using this query image and the results are shown 

in Figure 10. From the figures, it is clear that if Model-A 

or Model-C is used, there will be one irrelevant image in 

the first page of the retrieval results. However, if 

Model-B or Model-D are used, all images on the first 

page of retrieval results are relevant. 

5.6 Retrieval result analysis 

Finally, in this experiment we compare our proposed 

approach with several leading techniques. This 

comparison is based on the precision of each technique 

and its associated retrieval time when applied to all 10 

categories of the Corel-1000 dataset. In the Core1-1000 

dataset, 20 images for each category were chosen 

randomly as query images to compute the average 

precision. By fixing the weights of all images, the 

retrieval Model-D which infuses 256-layer HSV features 

and SGLMC texture features was used to obtain the 

comparison result shown in Table 3. From the table, we 

can see that the proposed algorithm offers better 

performance where the average precision achieved 

reaches 80.1%. Furthermore, for six of the ten possible 

image categories, the performance of the proposed 

algorithm is better than all others. The average precision 

is 3.2% higher than the one proposed in [30], and 24.8% 

higher than that proposed in [32]. 

We have also compared the proposed algorithm with 

all other algorithms [30-32] in terms of retrieval time as 

shown in Table 3. In spite of the much improved retrieval 

performance offered, the proposed method also exhibits 

minimal computational complexity in comparison to 

those from [30-32] by a factor of up to 30 in some cases. 

   
Table.3. Comparison of retrieval results in terms of precision and running 

time among different algorithms 

Retrieval 

precision 

Our 

Method 

Nishant et 

al [30] 

Malay et 

al [31] 

Wang et al 

[32] 

African 85.5% 74.8% 74.2% 44.0% 

Beaches 53.4% 58.2% 59.8% 32.0% 

Buildings 72.8% 62.1% 61.8% 52.0% 

Buses 85.1% 80.2% 70.0% 60.0% 

Dinosaurs 100.0% 100.0% 99.3% 40.0% 

Elephants 68.7% 75.1% 81.6% 80.0% 

Flowers 94.2% 92.3% 87.3% 57.0% 

Horses 99.6% 89.6% 90.4% 75.0% 

Mountains 55.7% 56.1% 59.8% 57.0% 

Foods 86.5% 80.3% 75.0% 56.0% 

Average precision 80.1% 76.9% 75.9% 55.3% 

Running time (s) 0.13 1.22 0.47 3.98 

As shown in Table 3, the proposed approach provides 

significant improvements in terms of image retrieval 

performance for most image categories tested. However, 

its performance when applied to images in three 

categories, namely: Beaches, Elephants and Mountains is 

slightly worse than for the other state-of-the-art methods 

evaluated. As explained earlier, the main reason for this 

is that the proposed techniques perform particularly well 

when applied to images which are rich in colour and 

contain fine detail. Unfortunately, the large monochrome 

regions in images contained in these three categories has 

led to poor discrimination for image retrieval using the 

proposed approach. However, as expected, for categories 

which contain images with rich colour information and 

finer more complicated details, our approach performs 

the best.  

 

6 Conclusions 

In this paper, motivated by the cognitive properties of 

human vision systems, hierarchical visual structuring, 

color perception and compressed sensing are used to 

perform CBIR. Once the image has been converted from 

RGB to HSV color space, our algorithm performs 

discrete cubic partitioning. Then, by introducing 

hierarchical operators and defining SGLCM in the HSV 

space, the 2D CS measurement model is used to extract 

two classes of hierarchical features. One of them, known 

as “hierarchical HSV features” reflects the image’s color 

and the positional relationship among pixels. The other is 

known as “SGLMC texture features” and these 

accurately describe and facilitate the comparison of 

texture features between images. The similarity among 

images is computed by fusion of the two hierarchical 

features and the traditional GLMC and SGLCM texture 

features. Experimental results show that the proposed 

method offers better performance when compared to 

several other state-of-the-art techniques.  

The proposed approach does however have some 

limitations. For example, it requires the empirical setting 

of parameters in the feature fusion step. Furthermore, 

inconsistent performance was observed when comparing 

the proposed SGLMC feature extraction and traditional 

GLMC for different image categories. As a result, 

adaptive feature fusion and content-based optimized 

feature selection will be the focus of future investigations 

aiming to address these shortcomings. In addition, deep 

learning based feature extraction will also be explored 

and benchmarked with conventional hand-crafted 

features in the future. Finally, new approaches such as 

learning of common visual patterns [24] and granular 

computing of structured data [35] will also be 

investigated for improved performance going forward.  
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