
Noname manuscript No.
(will be inserted by the editor)

A cognitively-inspired clustering approach for critique-based
recommenders

David Contreras · Maria Salamó

Received: date / Accepted: date

Abstract

Background

The purpose of recommender systems is to support hu-

mans in the purchasing decision-making process. Decision-

making is a human activity based on cognitive informa-

tion. In the field of recommender systems, critiquing has

been widely applied as an effective approach for obtain-

ing users’ feedback on recommended products.

Introduction

In the last decade there have been a large number of

proposals in the field of Critique-based Recommenders.

These proposals mainly differ in two aspects: in the

source of data and in how it is mined to provide the

user with recommendations.

Methods

To date, no approach has mined data using an adap-

tive clustering algorithm to increase the recommender’s

performance. In this paper we describe how we added

a clustering process to a critique-based recommender,

thereby adapting the recommendation process and how

we defined a cognitive user preference model based on

the preferences (i.e., defined by critiques) received by

the user. We have developed several proposals based on

clustering, whose acronyms are MCP, CUM, CUM-I,

and HGR-CUM-I.

D. Contreras
Gran via de les Corts Catalanes, 585- 08007 Barcelona, Spain
Tel.: +34-93 4039372
E-mail: dcontrag@maia.ub.es
Conflict of interest: D. Contreras declares that he has no con-
flict of interest.

M. Salamó
Gran via de les Corts Catalanes, 585- 08007 Barcelona, Spain
Tel.: +34-93 4039372
E-mail: maria.salamo@ub.edu
Conflict of interest: M. Salamó declares that she has no con-
flict of interest.

Results

We compare our proposals with two well-known state-

of-the-art approaches: Incremental Critiquing (IC) and

History-Guided Recommendation (HGR). The results

of our experiments showed that using clustering in a

critique-based recommender leads to an improvement

in their recommendation efficiency, since all the propos-

als outperform the baseline IC algorithm. Moreover, the

performance of the best proposal, HGR-CUM-I, is sig-

nificantly superior to both the IC and HGR algorithms.

Conclusions Our results indicate that introducing clus-

tering into the critique-based recommender is an ap-

pealing option since it enhances overall efficiency, espe-

cially with a large data set.

Keywords Recommender Systems · Critiquing

feedback · User Model · Machine Learning

Introduction

Although researchers have not yet agreed upon a com-

mon definition for cognitive computing, we can say that

the term refers to a hardware or software solution that

mimics in some way human intelligence capabilities and

helps to improve human decision-making [18]. Rather

than being explicitly programmed, they learn and rea-

son from their interactions with humans and from their

experiences with their environment. The true added

value of cognitive computing is the attempt to help peo-

ple make the best possible decisions in a timely manner.

Recommender Systems (RS) are cognitive comput-

ing systems whose aim is to support humans in their

decision making processes through convincing, timely

product suggestions [37]. There are many and varied

2 D. Contreras and M. Salamó

applications of recommender systems. For example, rec-

ommending friends in location-based social networks [47].

Recommender systems use different recommendation

techniques, from collaborative filtering [20,11], which

compares other users1 with active user and recommends

items that were liked by users with similar profiles to

the active user’s profile, to content-based techniques [28]

that compare users’ descriptions of a desired product

with item descriptions and recommends the items that

match.

Recommender systems research has mostly focused

on collaborative filtering techniques. Collaborative fil-

tering suffers from the cold start problem. To overcome

the cold start problem, instead of interacting with a rec-

ommender system that operates in a single-shot fashion

(e.g., collaborative filtering), it is more appropriate to

engage the user in a recommendation dialogue so that

incremental user feedback can be used to refine recom-

mendations. The single-shot strategy is appropriate to

the recommendation of simple products, since users are

presented with a single set of recommendations based

on an initial query and the recommendation process

usually reaches a conclusion.

Critique-based recommenders2 [27,31,4] guide users

through a product space in pursuit of suitable prod-

ucts using a cyclical recommendation process (i.e., a

dialogue), alternatively making suggestions and elic-

iting user feedback, to refine their needs and prefer-

ences, based on recent recommendations. Users pro-

vide feedback by critiquing features of the currently

recommended product. Critiquing is based on the idea

that it is easier for a user to critique a product rec-

ommendation by saying “like this but cheaper” than

to construct formal queries [1]. A significant amount

of the research carried out on recommender systems

has widely recognized the benefits of critique-based re-

commenders [27,38], since they help customers with ill-

defined preferences to both navigate through complex3

product spaces and to better understand their own buy-

ing preferences.

Many different critique-based recommenders have

been proposed in the literature. Although previous stud-

ies of critique-based recommenders used mechanisms

for extracting knowledge from different data sources, to

the best of our knowledge, none of them used clustering.

1In this work, we use the term user to refer to both an
e-commerce customer/shopper (i.e., a human) and a recom-
mender system user.

2It is also referred to as critiquing-based recommendation
in the literature.

3In complex product spaces, users require a good knowl-
edge of the large number of characteristics of the products
and their relationship with the different available options to
make a decision.

Similarly, the majority of prior studies that have dealt

with the use of clustering in recommender systems have

used a collaborative filtering technique, such as [30,29,

14,21,12]. Instead of promoting an adaptive clustering

process, researches have focused mostly on combining

clustering with recommendations. However, in recent

years many clustering approaches have been proposed

that are able to adapt by taking into account changes

in the data. One approach to adaptive clustering was

a self-tuning p-spectral clustering algorithm based on

shared nearest neighbors[17]. Another approach [7] in

this vein was an adaptive density data stream clustering

algorithm based on an online-offline clustering frame-

work. Lee and Lin [22] developed a hybrid method for

data and knowledge-based clustering in gene clustering.

In the field of recommender systems, Thanh et al. [43]

proposed a novel clustering algorithm in a neutrosophic

recommender system for medical diagnosis.

In this work we are concerned with the use of adap-

tive clustering in critique-based recommenders. We ex-

plore the benefits of incorporating adaptive clustering

into the recommendation process and in the user pref-

erence model. Our objective is to identify clusters of

similar products based on their description, learn and

reason from the recommender interactions with the user

and adapt these clusters in order to use them as a mech-

anism for making smarter recommendations. We also

use clusters to define an adaptive cognitive user pref-

erence model. Note that the cognitive user preference

model learns from interactions with the user and adapts

its content to the user’s evolving requirements. Thanks

to the enrichment of the critique-based recommender

with the adaptive-cognitive user preference model, the

recommender is able to focus appropriately on the prod-

ucts the user is interested in and offer quality prod-

uct recommendations that might otherwise be ignored,

thereby, making smarter recommendations and reduc-

ing session lengths.

In this paper, our hypothesis is that clustering can

improve both the recommendation process and the def-

inition of the user model in critique-based recommen-

ders. With this hypothesis in mind, the contribution of

this paper is three-fold:

– First, we propose two new algorithms, called the

Maximal Clustering Process (MCP) and the Cogni-

tive User Preference Model (CUM), which are intro-

duced in both an adaptive clustering of the products

within the recommendation process and in the user

preference model.

– Second, we integrate a number of previous state-

of-the-art proposals that are based on a combina-

tion of compatibility and weighting scores into the

recommendation process of our proposed algorithm

A cognitively-inspired clustering approach for critique-based recommenders 3

(CUM). The new algorithm will be called CUM-

I. Additionally, we have integrated CUM-I in a re-

cent well-known history-based recommender called

History-Guided Recommendation (HGR) [42]. The

resulting algorithm will be called HGR-CUM-I.

– Third, we carried out an exhaustive evaluation of

the proposals to demonstrate our initial hypothe-

sis. Our evaluation focuses on a comparison of our

proposals (i.e., the MCP, CUM, CUM-I, and HGR-

CUM-I) against HGR and the traditional Incremen-

tal Critiquing (IC) recommender [33]. The experi-

ments were conducted through an off-line simula-

tor. With these experiments we demonstrated the

influence of both the data source (i.e., from the cri-

tiques used in IC to the use of history in HGR) and

the positive influence of a cognitive user preference

model. The results of our in-depth evaluation con-

firm our hypothesis and indicate that our proposals

improve on the efficiency4 of previous algorithms in

critique-based recommenders.

Related Work

Clustering methods partition a set of objects into clus-

ters in such a way that objects in the same cluster are

more similar to each other than to those objects in dif-

ferent clusters according to defined criteria. Clustering

methods have been applied in many applications. For

example, in Single Image Super-Resolution [35] or in

Cognitive Wireless Sensor Networks [19]. Researchers in

the field of Recommender Systems have shown great in-

terest in combining clustering with recommendations [30].

However, the majority of prior studies that have dealt

with the use of clustering in recommender systems have

used a collaborative filtering technique. Since collabo-

rative filtering suffers from the data sparsity problem,

a clustering approach based on employing users’ social

information to derive recommendations was presented

in [29]. Another proposal [21] used clustering methods

to detect similarities among the users and proposed

techniques to identify users’ profiles.

Many of the approaches to collaborative filtering

studied so far incorporate partition-based clustering al-

gorithms. One of these algorithms is k -means. In [14],

the data was taken from registering forms and k -means

was used to obtain clusters of users sharing similar in-

terests in a tourism mobile recommender. The k -means

clustering algorithm is well known for its efficiency in

clustering large data sets and for being a simple and

4Analyzed by means of the Average Session Length, which
measures the number of cycles that a user must work through
before being presented with their ideal target product.

fast clustering method. The K-Medoids clustering al-

gorithm has been used to segment the users based on

their degree of preference in diversity [12]. K-Medoids is

another partition-based clustering which, like k -means,

uses the pair-wise distance of data points but instead of

computing the mean centroids to minimize the within

cluster sum of distances it uses the data points them-

selves as centroids.

To the best of our knowledge, this paper is the first

attempt to introduce clustering in a critique-based rec-

ommender. Next, we review critique-based literature.

Critique-based recommenders have been broadly rec-

ognized as an effective preference-based search option

that employs a feedback mechanism called critiquing [27,

31,4]. The basic idea of critiquing can be traced back to

the seminal FindMe system [1]. In particular, a critique

is a directional preference over a feature of the current

recommended product. For example, “cheaper” is a cri-

tique over the price feature in a Mobile Recommender

and if the current recommended product has a price

of $300, it implies a critique [price < $300]. Note that

in a complex3 decision situation a critique is a form of

user feedback that strikes a useful balance between the

information content of the feedback and the required

level of user effort and domain expertise.

In critique-based recommenders, the most common

feedback mechanisms are unit and compound critiques.

In the former, users are allowed to critique a single fea-

ture of a product at a time [25,36], whereas in com-

pound critiques, each critique can be a combination of

multiple unit critiques [34,27,31]. In the literature there

are several studies of compound critique approaches,
such as dynamic critiquing [32], MAUT-based compound

critiques [46], preference-based organization [3], and Ex-

ample Critiquing [44]. Given that most of critique-based

approaches use unit critiques, we focused our work on

the evaluation of unit critique proposals.

Concretely, the FindMe system [1] was the first stan-

dard unit critiquing recommender (STD) described in

the literature. It only uses the current critique intro-

duced by the user to guide the user in the product

search space. Later, Incremental Critiquing (IC) [33]

increased recommendation efficiency by means of gath-

ering a list that contains the critiques made by the user

during the session.

Other studies focused on improving the IC approach.

Improvements to IC come from the different aspects

that influence the quality measure used to recommend

relevant products. One of these aspects is the compat-

ibility score, which was defined originally in [33] as the

percentage of critiques in the user model that a case

satisfies. Highest Compatibility Selection (HCS) [40,

4 D. Contreras and M. Salamó

39], and Exponential Hit-Loss (EHL) [38] focused on

improving the compatibility score by using Reinforce-

ment Learning reward functions to highlight relevant

products, taking into account both the critique and the

precise moment at which the critique was made. An-

other of the aspects that plays an important role in the

quality measure is the similarity function, which is used

to recommend the most similar product in each cycle.

Instead of treating all the features equally in terms of

their similarity, it has been demonstrated in [38] that

weighting features according to the evolving preferences

of the user during the session results in a shorter session

length. The two weighting approximations proposed,

called Global Users Preference Weighting (GW) and

Local User Preference Weighting (LW), were analyzed

in isolation and in combination with the Reinforcement

Learning compatibility proposals. Among all of these

proposals, in the evaluation conducted in [38], LW-EHL

and GW-EHL proved to perform significantly better

than IC.

More recently, there has been a growing interest in

employing user-generated content as another source of

data for recommending products [9,8]. Reviewer Assis-

tant (RA) [9] harnesses experiential cases automatically

mined from user-generated product reviews. Similarly,

Sentimental product recommendation [8] used experi-

mental cases and proposed a recommendation ranking

strategy that combined similarity and sentiment to sug-

gest products that are similar but superior to a query

product according to the opinion of reviewers. None of

these approaches is cognitive. That is, they do not take

into account user preferences in the recommendation

session. In contrast, other research has focused on us-

ing users’ opinions to enrich the product descriptions

(CB-per) and to define a weight (W-per) for each fea-

ture of the product in the recommendation process with

the aim of improving their efficiency [5].

In the last few years, novel approaches have mainly

focused on using collaboration among users or on us-

ing past critique sessions made by other users. In the

former, users may collaborate online in the search for

a desired product as they are immersed in a 3D vir-

tual environment that enhances their buying experi-

ence as well as increasing the interaction elements for

eliciting user feedback [6]. This recommender is called

Collaborative Conversational Recommender (CCR). In

the second approach, researches focused on reusing past

critiquing sessions from other users as a source of data

called history to improve recommendation efficiency.

Algorithms that use a history of critiques belong to

the family of history-based recommenders. The first al-

gorithm was Experience-Based Critiquing (EBC) [26].

Next, it was proposed Nearest Neighbor Compatibility

critiquing (NNC) [24] and History-Aware Critiquing-

based conversational recommendation (HAC) [41]. Later,

an improvement of HAC, called the History-Guided Rec-

ommendation (HGR) [42] technique was presented, which

uses the pair recommended product and critique for

obtaining similar sessions, from the history, to the cur-

rent recommendation session. Among all the proposed

history-based recommenders, HGR outperforms the afore-

mentioned recommenders, as denoted in [42].

As we have described above, many proposals have

been defined in the literature. By their very nature,

critique-based recommenders are cognitive systems since

they learn and reason from their interactions with the

user and from their experiences with the environment.

In particular, in our previous works, we improved IC

with weighting and compatibility measures based on

Reinforcement Learning [38]. We believe that these mea-

sures may improve current proposals and we will eval-

uate their integration in our analysis. Additionally, we

designed a Collaborative Conversational Recommender

(CCR) [6] system. It is out of the scope of this work to

analyze methods that enable online collaboration be-

tween users, since several feedback mechanisms can be

used and we are only evaluating our proposals with re-

gard to those that exclusively use critiquing. Nonethe-

less it would be interesting to do so in future work.

Finally, we proposed critique-based recommenders that

employed user-generated content as an additional source

of data. In particular we proposed CB-per and W-per [5].

We have not included CB-per and W-per in our analysis

here because they are only applicable to domains with

technical and perceptive5 features and this is unfeasi-

ble in many domains. A lesson we have learned from

previous works is the importance of understanding the

unique requirements of the user. In this paper, we pro-

pose to address this issue from a clustering point of

view, which to date has not been used and has not yet

been evaluated in the field of critique-based recommen-

ders.

Clustering in the Critique-based Recommender

We decided to concentrate on the evaluation of unit cri-

tique proposals. Formally, a critique ci, is represented as

a triple (fi, typei, vi), where fi refers to a feature of the

recommended product, ri, typei is type of the critique

ci (i.e., typically <, >, <>), and vi is the current value

5A perceptive feature is a feature that provides an imme-
diate and intuitive recognition or appreciation of the qualities
of a product. For example, in the SMARTPHONE domain,
performance is a perceptive feature that intuitively includes
more than one of the technical features of a product (e.g.,
storage, RAM, or CPU).

A cognitively-inspired clustering approach for critique-based recommenders 5

of fi. Critiques typically take the form of directional

or replacement preferences [27]. A directional critique

effects an increase or decrease in the value of a numer-

ical feature (i.e., greater or lower than current value).

For example, “a cheaper camera”, when the price of

the current recommendation is $300, implies a critique

(price,<, $300). On the other hand, a replacement cri-

tique substitutes any value (i.e., aside from the cri-

tiqued value) for a non-numeric feature. For example,

in a camera domain, (manufacturer,<>, Sony) repre-

sents the user critique “I do not like Sony cameras”.

It is important to note that all critique-based re-

commenders share a common basis, which is standard

or incremental critiquing, and they differ in the source

of data and how this data is mined to provide recom-

mendations. The proposals that we are presenting are

based on incremental critiquing. Later, we detail how

to include one of them in HGR.

Next, we describe the clustering process and we pre-

sent in depth the new critique-based recommenders that

use clustering.

Clustering the case base

We use the k -prototype [16] method for partitioning

the case base. We use the k -prototype method because

it allows us to deal with very large and complex data

sets and it integrates k -means [23] and k -modes [15] al-

gorithms for clustering objects described by mixed nu-

meric and categorical product features: concretely, the

k -prototype method searches for a partition of the data

set based on between-product dissimilarity measure. On

the one hand, the measure is an Euclidean distance for

numeric product features (i.e., the k -means method).

While on the other hand, for categorical product fea-

tures, the dissimilarity measure is the total mismatches

of the corresponding feature for the evaluated products

(i.e., the k -modes method).

In particular, we use k -prototype in the first cy-

cle of the recommendation process to obtain the initial

clusters of products with similar features. The input

for k -prototype is the complete case base and a prede-

fined k value, which was defined by applying the Elbow

method and NbClust mechanism [2].

The case base, CB, is a set of products for recom-

mendation, described as CB = {p1, ..., pn}, where pi is

the ith product. Each product is represented as a pair

(F, cl) that contains the set of features and the clus-

ter the product pi belongs to. The set of features that

describes each product is defined as F = {f1, ..., fm}.
Note that each product pi is assigned to only one clus-

ter, which is the range of 1 to k clusters, and it is de-

noted as picl (see Figure 1(a)). Additionally, we denote

a particular feature fs of a case pi as pfsi . For example,

pf1i and pf2i refer to the first and the second features in

case pi, respectively.

It is important to note that each product is assigned

to one cluster at first recommendation cycle based on

their similarity with other products. Next, we describe

in depth our proposals to adapt the clustering during

the session in the critique-based recommender.

Maximal Clustering Process

In this section we describe a new algorithm called Max-

imal Clustering Process (MCP), which is based on the

incremental critiquing algorithm [33].

The incremental critiquing-based recommendation

process consists of four phases: (1) a new product is

recommended to the user from the set of products; (2)

the user reviews the current recommendation and ap-

plies a directional feature critique; (3) the query prod-

uct is revised for the next cycle; (4) the user model is

updated (i.e. modeling phase) according to the feed-

back provided in the review phase. The recommenda-

tion process terminates either when the user retrieves

a suitable product or when she explicitly finishes it.

In particular, the goal of the MCP recommender is

to introduce the clustering information into the recom-

mendation process. To this end, we propose to modify

the quality measure that is used for ranking the candi-

dates products for a new recommendation in the rec-

ommendation phase. Our quality score combines the

compatibility measure, the similarity measure, and a

clValue as shown in Equation 1:

Q(pi, pq, UM) = β · Cpi
(UM) + α · S(pi, pq)+

(1 − β − α) · clV alue(picl) (1)

where pi is the ith candidate product, pq is the current

recommended product, and UM is the user model. The

user model UM is defined as UM = {c1, ..., cm}, where

ci describes a particular critique in the recommendation

cycle i. Initially, the user model is empty and it is filled

with the critiques during the current session of the user

to buy a product.

Additionally, in Equation 1, Cpi
is the compatibility

score, S is the similarity function, and clV alue(picl) is

the clustering measure. The parameters β, α are used

to prioritize the compatibility, the similarity and the

clustering measure.

In detail, the Cpi is the compatibility score, which

represents the percentage of critiques in the user model

that the candidate product pi satisfies. In particular,

the compatibility score is defined as:

6 D. Contreras and M. Salamó

(a) Case Base (CB) (b) Session Base (SB)

(c) Cognitive User Model (CogUM) (d) Clustering Model (CM)

Fig. 1 Data structures in the proposed Critique-based Recommenders.

Cpi
(UM) =

∑|UM |
j=1 δ(pi, cj)

|UM |
, (2)

where pi is the candidate product given an individual

user model (UM), δ(pi, cj) is the satisfaction function,

and |UM | is the number of elements (critique, recom-

mendation and cluster model) in UM . In particular,

the satisfaction measure δ(pi, cj) returns 1 if case pi
satisfies the critique cj or 0 otherwise.

The similarity function S represents the similarity

between the candidate product pi and the current rec-

ommended product pq and is defined as follows:

S(pi, pq) =

|F |∑
s=1

d(pfsi , p
fs
q) (3)

where pfsi is a particular feature of the candidate prod-

uct, pi, p
fs
q is a particular feature of the current recom-

mended product, pq (the product query), and d(pfsi , p
fs
q)

is the distance between the candidate product, pi, and

the current recommended product pq. In particular, the

distance measure, d(pfsi , p
fs
q) used depends on the type

of the feature, as detailed in Equation 4. When the at-

tribute is numeric we use Equation 5 and when it is

nominal we apply Equation 6.

d(pfsi , p
fs
q) =

{
num(pfsi , p

fs
q) if fs is numeric

nom(pfsi , p
fs
q) if fs is nominal

(4)

num(pfsi , p
fs
q) = 1−

|pfsi − pfsq |
max(pfsi , p

fs
q)

(5)

nom(pfsi , p
fs
q) =

{
1 if fs is nom. and pfsi = pfsq
0 if fs is nom. and pfsi 6= pfsq

(6)

Finally, the clV alue(picl) function computes the per-

centage of cases in the cluster cl that the product pi be-

longs to, with respect to the total of products in the case

base. It is important to remark that the clV alue(picl)

clustering measure is different in each cycle during the

recommendation session, as the case base is reduced

according to the critiques performed by the user. For

example, if the user makes a critique (price, <, $300),

all the products that do not satisfy this critique in the

current recommendation cycle will be temporarily re-

moved from the case base. Note that the number of
cases present at each cluster varies from cycle to cycle

in the recommendation session. Concretely, at each cy-

cle, we compute the number of cases in the temporal

case base that are present at each cluster. In the next

cycle, we again use the case base, but we remove tem-

porarily those cases that satisfy the new critique and

therefore the cluster size may increase or decrease with

respect to the previous cycle.

Cognitive User Model for recommendation

Here we describe a new algorithm called the Cogni-

tive User preference Model (CUM) for recommenda-

tion. The CUM algorithm incorporates product clus-

tering into the cognitive user preference model, called

CogUM .

The cognitive user model depicted in Figure 1(c)

is defined as CogUM = {u1, ..., um}. Each ui = (ri, ci,

CMi) describes a particular recommendation cycle with

A cognitively-inspired clustering approach for critique-based recommenders 7

ri representing the recommended product, and ci rep-

resenting the critique applied to ri, while CMi is a clus-

tering model that represents the number of cases in each

cluster when the user performs the critique.

Figure 1(d) also shows the clustering model CMi.

Each CMi represents the ith recommendation cycle,

which is defined as CMi = {cm1, ..., cmk}, where cmj

represents the number of cases in a particular cluster

j. Note that CMi stores the information relating to all

clusters in a particular cycle, with k being the num-

ber of clusters present in the case base. It is important

to note that the clustering model is updated during

each recommendation cycle. In the first cycle, the case

base contains the complete data set and during the rec-

ommendation cycles the products in each cluster are

maintained if they satisfy the latest critique.

Concretely, the goal of the CUM recommender is to

use the cognitive user model to make inferences during

the recommendation process. Our proposal is to evalu-

ate the behavior of the clustering model during the rec-

ommendation cycles and how user feedback (i.e., user’s

critiques) influences the number of products present at

each cluster in the clustering model CM .

Similarly to MCP, the CUM algorithm is based on

an incremental critiquing algorithm and we also mod-

ify their recommendation phase. Next, we describe the

CUM recommendation process, which is illustrated in

Figure 2.

Fig. 2 CUM conceptual recommendation

First, the recommendation phase uses both the cur-

rent recommended product ri, and the latest user cri-

tique ci, as input parameters. In particular, the recom-

mender identifies a set of relevant products, RP , that

are a subset of the case base, RP ⊆ CB. Note that rel-

evant products are those that satisfy the latest critique,

ci (see letter a in Figure 2).

Second, the recommender updates the cognitive user

preference model by including the current recommen-

dation, ri, the latest critique, ci and the new clustering

model, CMi, which contains the number of products for

each cluster only considering the set of relevant prod-

ucts, RP (see letter b in Figure 2). That is, the cogni-

tive user model only contains the number of products

in each cluster that satisfy the latest critique, ci so the

CogUM is fully compliant with the user preferences.

Third, we redefine the quality measure and rank the

relevant products, RP , according to it (see letter c in

Figure 2), as shown in Equation 7.

Q(pi, pq, CogUM) = β · Cpi(CogUM) + α · S(pi, pq)+

(1− β − α) · clV alue(pi, CogUM) (7)

Concretely, we use the compatibility measure, Cpi

(CogUM), where CogUM is the input parameter in

Equation 2, and the similarity measure S(pi, pq) de-

fined in Equation 3, where pi is the candidate product

(i.e., pi ∈ RP), and pq is the current recommendation,

ri. Additionally, we define a new clV alue(pi, CogUM)

that evaluates how the critiques made by the user pro-

duce an increase or decrease in the number of products

in each cluster. Note that this information is stored in

the cognitive user model. Equation 8 details the new

clustering measure.

clV alue(pi, CogUM) =
CM

cml
j−1−CM

cml
j

CM
cml
j−1

, if CM cml
j−1 > CM cml

j

1−
(

CM
cml
j −CM

cml
j−1

CM
cml
j

)
, if CM cml

j > CM cml
j−1

(8)

where pi is the candidate product in the recommen-

dation cycle j. From the CogUM we use CMj and

CMj−1, which correspond to the clustering model for

the current cycle j and the previous one j−1. In Equa-

tion 8, CM cml
j is the number of products in the cluster

cml that product pi belongs to, while CM cml
j−1 is the

number of products for the same cluster in a previous

cycle. When the current critique increases the number

of products in the cluster that product pi belongs to,

the clV alue enhances the quality score for the product

pi (see Equation 7). Otherwise, it decreases the quality

for this product pi.

Finally, the best ranked product, pr is recommended

to the user (see letter c in Figure 2).

Combining CUM with previous enhancements

In this section we propose combining the CUM algo-

rithm with previous state-of-the-art approaches. We be-

lieve that the CUM may improve recommendation pro-

cesses by adding previous enhancements made to critique-

based recommendations. The resulting new algorithm

will be called CUM-I.

8 D. Contreras and M. Salamó

Concretely, we focus on the ranked candidate phase

of the CUM recommender (see letter c in Figure 2).

Specifically, we modify the quality measure Q described

in Equation 7. To do so, we integrate into the recom-

mendation process a weighting scheme for the similarity

measure in Q, called Local User Preference Weighting

(LW), and a new compatibility measure in Q, named

Exponential Hit-Loss (EHL), based on a previous work

in the literature [38]. It has been demonstrated that

these two proposals significantly improve the recom-

mendation efficiency of the incremental critiquing algo-

rithm.

First, for the similarity measure, we propose inte-

grating the LW approach whose aim is to prioritize the

similarity of the features that have not yet been cri-

tiqued. The weight is defined over each feature fs of

candidate case pi as follows:

ω(pfsi) = 1− 1

2

∑|CogUMfs |
j=1 δ(pi, CogUM

fs
j)

|CogUMfs |

 (9)

where |CogUMfs | is the number of critiques in the cog-

nitive user model, CogUM , that refers to feature fs and

CogUMfs
j is a critique j over feature fs . This gener-

ates a feature weight vector for each case. In this way, a

feature that has not been critiqued will assume a weight

value of 1.0, and a decrease will be applied when a cri-

tique is satisfied by the product. As such, the feature

weight will be proportional to the number of times a

critique over this feature is satisfied by the candidate

case. However, as shown in eq. (9), weights never de-

crease to a zero value.

In particular, we compute the similarity as follows:

S(pi, pq) =

|F |∑
s=1

w(pfsi) · d(pfsi , p
fs
q) (10)

where w(pfsi) is the weight associated to the feature,

fs, of the candidate product, pi, and d(pfsi , p
fs
q) is the

distance between the candidate product, pi, and the

current recommended product pq (the product query).

The distance measure, d(pfsi , p
fs
q) used depends on the

type of the feature, as detailed in Equation 4.

Second, with reference to the compatibility measure,

it has been demonstrated in other studies [40,39,38]

that the use of Reinforcement Learning (RL) in com-

patibility enhances retrieval in IC. Specifically, we pro-

pose using Exponential Hit-Loss (EHL), which consid-

ers that users increase their knowledge over cycles and,

accordingly, it is more important to satisfy their lat-

est preferences than their initial ones. Concretely, EHL

compatibility is defined as:

Cpi

t =

{
Cpi

t−1 · (1 + α)(ht+t)k, if Rpi

t = 1

Cpi

t−1 · (1− α)(`t+t)k, if Rpi

t = 0
(11)

where ht and `t are the number of times that candidate

product pi has satisfied (hit) or not (loss) the critiques

to time t, respectively (for each product in the data set

these values are initialized to zero at time t=0), α is

a constant step-size parameter that fixes the learning

rate, and k is a regularization factor. The parameters

are fixed at α = 0.3 and k = 1
2 in our experiments, as

was described in [38]. The regularization parameter k is

utilized to change the influence of the exponent factor

depending on the objective of the application and the

size of the data set in terms of products and features.

Additionally, Rpi

t = 1 if case pi satisfies the current

critique and Rpi

t = 0 otherwise.

Finally, the best ranked product using the new qual-

ity score is recommended to the user, pr.

Combining CUM with history-based recommender

In this section we present a new algorithm called HGR-

CUM-I, which combines CUM-I with a well-known his-

tory-based recommender named HGR [42]. HGR uses

different sources of data to mine users’ preferences in

order to recommend products.

In particular, HGR-CUM-I stores a history of past

sessions in the session base (see SB in Figure 1(b)

and Figure 3), and maintains the current recommenda-

tion session of the user in the cognitive user preference

model, shown as CogUM in Figure 3. It is important

to remark that the user model stores the current rec-

ommendation, ri, the latest critique, ci (i.e., the user

feedback for each recommendation cycle), and the clus-

tering model, CMi.

The session base, SB (see Figure 1(b)), is a data set

of past critiquing sessions from other users defined as

SB = {s1, ..., sl}, where si is a sequence of recommen-

dation-critique pairs s
(ri,ci)
i and each session finishes in

a terminal product, noted by term(si).

Next, we describe the HGR-CUM-I recommenda-

tion process, which is illustrated in Figure 3.

First, the recommendation phase in the HGR-CUM-

I algorithm uses both the current recommended prod-

uct ri, and the latest user critique ci, as input parame-

ters. Specifically, the HGR-CUM-I recommender iden-

tifies a set of relevant products, RP , that are a subset

of the case base. Note that relevant products are those

that satisfy the last critique, ci (see letter a in Figure 3).

Second, the recommender updates the cognitive user

preference model by including the current recommen-

dation, ri, the last critique, ci and the new clustering

A cognitively-inspired clustering approach for critique-based recommenders 9

rF

yes

(c) Relevant Sessions based on
Overlapping Computation

(d) Ranked Candidates

pr

Are relevant

sessions?

no

(e) CUM-I

Session

Base

SB

(b) Update the Cognitive
preference User Model

(a) Relevant Products

Case Base

CB

User Model

CogUM

CogUM

CogUM

Fig. 3 HGR-CUM-I conceptual recommendation

model, CMi, which contains the number of products in

each cluster considering only the set of relevant prod-

ucts, RP (see letter b in Figure 3). That is, the cogni-

tive user model only contains the number of products

in each cluster that satisfy the last critique and so the

CogUM is fully compliant with user preferences.

Third, the recommender identifies a set of relevant

sessions (SREL) based on an overlapping computation

(see letter c in Figure 3), which are historical sessions

in the SB that overlap with the user’s current partial

critique session, CogUM . To do so, we first compute

the overlap score, OS(CogUM, si), for each past cri-

tiquing session. The relevant sessions in the history are

those that contain an overlap score greater than zero. In

particular, we use the overlap score defined in [42]. We

define the overlap score, OS(CogUM, si), by means of

Equations 12 and 14. In Equation 12, we compute the

number of recommendation pairs, rj , cj (recommended

product and critique) in the user model CogUM , that

are also present in each past session si. The matchPair

measure is computed as shown in Equation 13.

OverlapPair(CogUM, si) =∑
∀(rj ,cj)∈CogUM

∑
∀(ri,ci)∈si

matchPair((ri, ci), (rj , cj))

(12)

matchPair((ri, ci), (rj , cj)) ={
1 if (ri = rj) and (ci = cj),

0 otherwise
(13)

When there are no overlapped pairs using Equation 12

we compute the overlap score, OS(CogUM, si), using

Equation 14, the number of critiques (i.e., without con-

sidering recommended products) in the user model CogUM ,

which are also present in each past critiquing session,

si. This method has been used in previous studies with

satisfactory results, such as [26]. The matchCritique

measure is computed as shown in Equation 15.

OverlapCritique(CogUM, si) =∑
∀(cj)∈CogUM

∑
∀(ci)∈si

matchCritique(ci, cj) (14)

matchCritique(ci, cj) =

{
1 if ci = cj ,

0 otherwise
(15)

Fourth, we analyzed the set of relevant sessions ob-

tained in the initial step, depicted with the letter c in

Figure 3. If there are relevant sessions, we rank candi-

dates for the next recommendation (see letter d in Fig-

ure 3). Concretely, each relevant session terminates with

an accepted recommendation, a term(si) (i.e., a rec-

ommendation candidate product in HGR-CUM-I) that

may be associated with more than one relevant session.

We store candidates in a list and compute a score for

each of them. We compute the candidate score based

on the score of the relevant session in which it is an ac-

cepted recommendation (see Equation 16) and we select

the best score candidate in the list for the next recom-

mendation (rF).

RecScore(term(si), S
REL) =∑

∀(si)∈SREL:term(si)

OS(CogUM, si) (16)

10 D. Contreras and M. Salamó

where term(si) is an accepted recommendation in si,

SREL are the relevant sessions, and OS(CogUM, si) is

the overlap score of si obtained from Equation 12 or

14. On the other hand, if there are no relevant sessions,

we revert to the CUM-I recommender using the relevant

products (RP), as shown in letter e in Figure 3.

Finally, the best ranked product, pr, which is ob-

tained using rF or a critiquing algorithm, is recom-

mended to the user.

Evaluation

In this section we report experiments with simulated

users aimed at evaluating the efficiency of our propos-

als (MCP, CUM, CUM-I and HGR-CUM-I). We com-

pare them to two related baseline algorithms, IC and

HGR. Specifically, we concentrate on six different re-

commenders: (1) Incremental Critiquing (IC); (2) the

History-Guided Recommender (HGR); (3) MCP, which

uses clustering information in the recommendation pro-

cess; (4) CUM, which uses the clusters to create a cog-

nitive user preference model; (5) the CUM-I, which in-

tegrates in CUM previous enhancements on the recom-

mendation process; and (6) HGR-CUM-I, which also

integrates CUM-I in a HGR recommender.

Data sets and Methodology

In our experiments we used two data sets: smartphone6

and restaurant7. The details of the data sets are

shown in Table 1, the smallest being the smartphone
data set with 1721 products. All data sets contain nom-

inal and ordinal features. For example, in the smart-

phone data set, the manufacturer is a nominal feature

and the price is one of the ordinal features.

Table 1 Data Sets Characteristics

Data set Products Nominal Ordinal History
features features size

smartphone 1721 5 9 10000
restaurant 9945 25 14 10000

Like previous history-based works, we adopted the

methodology used in [26,41,42] to automatically gener-

ate past critiquing sessions based on the behavior of ra-

tional users. Specifically, we selected a random product

as our target. From this target we automatically created

6This data set is available on demand.
7This data set has been used in [42] and it was kindly

provided by the authors.

a query by selecting from 3 to 5 features from the target

at random, which acted as a starting point for each ses-

sion. Each session began by the recommender retrieving

the best-matching product for the query. From there

the artificial user had to select a feature to critique. To

elicit this artificial behavior we automatically selected

one of the features of the recommended product and

critiqued it in the direction of the target product. Each

session terminated once the target product had been

recommended. This process can be repeated for gener-

ating an arbitrary number of past critiquing sessions.

Concretely, we used a session base whose size is 10000

(see the column History size in Table 1).

In our evaluation, we also used the leave-one-out

methodology employed previously in [33,40,38], which

takes a set of randomly selected products from the case

base (original base) and uses each of them as a test case.

Each selected test case is temporarily removed from the

data set and used in two ways. First, the test case serves

as the basis for generating a set of (simulated) initial

user queries, hereafter initial queries set, by taking ran-

dom subsets of its features. Second, the test case is used

to select, from the original base, the case that is most

similar to it. This case represents the recommendation

target product for the experiments. That is, the product

that the simulator’s “artificial user” reaches through a

series of (random) critiques. A set of random critiques

is generated in each recommendation cycle and they are

all compatible with the known target case. The “artifi-

cial user” randomly selects one of the critiques from this

set. Thus, when the remaining set of cases are filtered

according to the last critique selected randomly by the

“artificial user”, it results in the target case being left

in the filtered set of cases.

In addition, we used three types of initial queries

(i.e., hard, moderate, and easy), by selecting one, three

or five features respectively from a random target prod-

uct, which act as a starting point for each evaluated

session [33,38].

For instance, an example of a hard query in a smart-

phone data set might be [Manufacturer = Samsung],

a moderate query might be [screensize = 7, RAM = 8,

SO = Android] and an easy query might be [price =

200,Manufacturer = Samsung, screensize = 7, SO =

Android, RAM = 8]. Finally, we set up the β param-

eter as β = 0.6 and the α parameter as α = 0.25 in

the Quality measure (see Equations 1 and 7), based on

the best results in our empirical experiments with sev-

eral α and β values. In addition, we applied the Elbow

method and the NbClust mechanism [2] to evaluate the

best k for the clustering of each data set. In particular,

based on our analysis of data sets, we defined a number

A cognitively-inspired clustering approach for critique-based recommenders 11

of clusters k = 7 and k = 9 for the smartphone and

restaurant data sets, respectively.

Experimental Results

In this section, we will begin by analyzing the recom-

mendation efficiency of all algorithms and the percent-

age of benefit. Recommendation efficiency is measured

through the number of recommendation cycles required

to reach a desired product and is also known as aver-

age session length (from now on ASL). Note that the

percentage of benefit is expressed as:

Benefit(x, y) = (1− y

x
) · 100 (17)

where y and x represent the ASL of the compared al-

gorithm and the baseline, respectively. The baseline

in this article corresponds to the IC algorithm. It is

important to remark that the ASL measure has been

widely used in evaluations of critique-based recommen-

ders, such as [33,38,41,45].

First, in Figure 4 we present three figures with the

results of analyzing the ASL needed to reach a tar-

get for all algorithms in both the smartphone and

the restaurant domains. In Figures 4(a) and 4(b),

each of the lines shows the average of ASL obtained in

the three different initial query lengths (hard, moder-

ate, and easy) for each particular algorithm described

above. Note that in Figure 4(a) the lines are steep. For

example, as shown in Figure 4(a), the IC algorithm

achieves an ASL of 17.53, 14.82, and 10.54 for hard,

moderate, and easy queries, respectively. In the same

figure, we can observe that MCP obtains an ASL of

16.34, 14.02, and 9.76 for the different query lengths.

In contrast in Figure 4(b) the lines are slightly steep,

nearly flattened. This is mainly due to the size of the

domain. The larger the domain (e.g., restaurant), the

more difficult it is to search for a product and larger ses-

sions are needed for recommending a product, even for

an easy query. For example, the IC algorithm achieves

an ASL of 20.09, 18.91, and 17.43 for hard, moder-

ate, and easy queries, respectively. Figure 4(c) shows

the average ASL of all queries (hard, moderate, and

easy). This figure shows that all the strategies proposed

consistently reduce average session length when com-

pared to the incremental critiquing approach, demon-

strating their potential to improve recommendation ef-

ficiency. For example, in the restaurant domain, the

incremental recommender results in an average session

length of 18.81 cycles while the MCP, CUM, CUM-I,

and HGR-CUM-I recommenders results in an average

of 17.64, 13.44, 12.88, 11.84 cycles, respectively.

0
2
4
6
8

10
12
14
16
18
20

hard moderate easy

Av
er

ag
e

Se
ss

io
n

Le
ng

th

IC HGR MCP CUM CUM-I HGR-CUM-I

(a) smartphone domain

0
2
4
6
8

10
12
14
16
18
20
22

hard moderate easy

Av
er

ag
e

Se
ss

io
n

Le
ng

th

IC HGR MCP CUM CUM-I HGR-CUM-I

(b) restaurant domain

18,81
17,64

16,18

13,44 12,88
11,84

14,3 13,37
11,91 11,65 11,07 10,32

0

5

10

15

20

IC MCP HGR CUM CUM-I HGR-CUM-I

Av
g.

 A
SL

RESTAURANT SMARTPHONE

(c) Average ASL

Fig. 4 The ASL of the proposed algorithms compared to
IC and HGR algorithms in a smartphone and restaurant
domains

Secondly, we will address attention to the benefits of

these proposals in comparison to the baseline IC algo-

rithm. Figure 5 shows the benefit of each recommender

(MCP, HGR, and CUM) separately and the combined

recommenders (CUM-I and HGR-CUM-I) when com-

pared to the incremental critiquing. We find that all re-

commenders separately result in a relative session length

reduction of between 6.2% and 28.6% (see Figure 5(c)),

with some variation in the relative benefit due to the

MCP, HGR, and CUM approaches. The lowest benefit

is for the MCP recommender, which ranges from 5.4%

to 7.4% in the smartphone domain (see Figure 5(a))

12 D. Contreras and M. Salamó

and between 4.4% and 9.4% in the restaurant do-

main (see Figure 5(b)). This may be because it per-

forms the same process as the incremental critiquing

approach with one minor modification. It consists of us-

ing a quality measure that incorporates the average for

products within the clusters in order to determine the

set of cases available for recommendation. In HGR the

benefit ranges from 10.8% to a 19.9%, see Figures 5(a)

and 5(b). Note that, on average (shown in Figure 5(c)),

the HGR benefit is lower for large domains. This is

largely due to the fact that HGR needs a large history to

recommend appropriately. The larger the domain, the

larger the history needed in HGR. When HGR does not

match a previous historical session, it reverts to IC. On

the other hand, the CUM recommender provides the

highest benefit ranging on average from 16% to 29.2%,

when applied alone (see Figures 5(a) and 5(b)). These

results show that introducing clustering in the user pref-

erence model and using it in the recommendation pro-

cess enables the recommender to discover and detect

differences between products that are highly compati-

ble with user critiques. Results are particularly excel-

lent in large domains (see Figure 5(b)) where we find a

benefit of between 28.3% and 29.2%.

On the other hand, we are also interested in the

integration of our proposals, based on using cluster-

ing, in existing critique-based recommenders. To this

end, we selected CUM because it provides the high-

est benefit and we combined it with existing improve-

ments to the IC algorithm and to the HGR recom-

mender. These two combined approaches are named

CUM-I and HGR-CUM-I. As shown in Figures 5(a)

and 5(b), the combined recommenders result in a reduc-

tion in session length that ranges from nearly 22% in

the smartphone domain to 37.2% in the restaurant

domain. Combining all of the recommendation tech-

niques further enhances recommendation performance,

resulting in the discovery of better recommendations

for all queries (hard, moderate and easy). It seems that

the recommenders ability to learn user preferences is

greater when incorporating information from the clus-

tering into the user preference model and into the previ-

ous approaches in critique-based recommendation. An

important point to note is that nearly all results show

a major benefit for easy queries. Easy queries naturally

result in shorter sessions and thus there are fewer op-

portunities to find proper historical sessions in HGR,

though with the introduction of our proposal, this draw-

back was largely alleviated. Analyzing the results in

both domains, we observe that the benefit provided

by the HGR-CUM-I is less dependent on the size of

history-session base than HGR. Note that in Figure 5(c),

the average benefit provided by HGR is lower for the

0%
5%

10%
15%
20%
25%
30%
35%

MCP HGR CUM CUM-I HGR-CUM-I

Be
ne

fit
 o

ve
r I

C

hard moderate easy

(a) smartphone domain

0%
5%

10%
15%
20%
25%
30%
35%
40%

MCP HGR CUM CUM-I HGR-CUM-I

Be
ne

fit
 o

ve
r I

C

hard moderate easy

(b) restaurant domain

6,2

13,9

28,6
31,6

37,1

6,5

16,1
18,8

22,8
27,6

0
5

10
15
20
25
30
35
40

MCP HGR CUM CUM-I HGR-CUM-I

Av
g.

 p
er

ce
nt

ag
e

of
 B

en
ef

it

RESTAURANT SMARTPHONE

(c) Average benefit over IC

Fig. 5 Benefits of our proposals in comparison to the IC
algorithm

largest domain and greater benefit for the smallest one.

This is because HGR needs a larger history session base

to provide better recommendations. Figure 5(c) shows

that the greatest benefit is obtained by HGR-CUM-I,

which in our experiments used the same history session

base used in HGR, with an averaged benefit of between

27.6% and 37.1%. We can therefore conclude that the

introduction of clustering in a user preference model

not only enables the recommender to locate more eas-

ily the products that are highly compatible with user

preferences, but also reduces the need for a large history

session base.

To sum up, these results highlight that the benefits

in recommendation efficiency of all our proposals (i.e.,

the MCP and CUM algorithms and the ones that in-

tegrate with previous recommenders —the CUM-I and

A cognitively-inspired clustering approach for critique-based recommenders 13

HGR-CUM-I algorithms) are greater than the IC, in

both the smartphone and restaurant domains. Ad-

ditionally, we have demonstrated that combining them

with previous recommenders, such as HGR, increases

their initial benefit. This suggests that our initial hy-

pothesis in this paper is true. Recall that the hypothesis

was that clustering may improve both the recommen-

dation process and the definition of the user model in

critique-based recommenders.

In order to demonstrate that the hypothesis con-

cerning the introduction of clustering in critique-based

recommenders significantly outperforming IC, we ap-

plied the Friedman [13] and Bonferroni-Dunn [10] tests

to analyze whether the difference between the tested al-

gorithms and the baseline is statistically significant in

both data sets.

First of all, we computed the mean rank (r) of each

algorithm considering all the experiments. In partic-

ular, the evaluation considers k = 6 algorithms (i.e.,

IC, HGR, MCP, CUM, CUM-I, and HGR.CUM-I) and

N = 6 different experiments for each test. The experi-

ments depend on two different case base sizes and three

different queries (i.e., hard, moderate, and easy). We

ranked alternative algorithms, for each experiment, fol-

lowing the practice of [13]. The one that attains the

best performance is ranked 1, the second best ranked 2,

and so on. Then, an algorithm’s mean rank is obtained

by averaging its rank across all experiments.

Secondly, we applied the Friedman and Bonferroni-

Dunn tests to analyze whether the difference between

algorithms is statistically significant. In particular, we

applied the Friedman test in which FF is distributed

according to the F distribution with (6 − 1) = 5 and

(6 − 1) · (6 − 1) = 25 degrees of freedom. The critical

value of F (5, 25) is equal to 2.603 at the 0.05 critical

value. For our efficiency comparison we obtained the

values of XF = 29.52 and FF = 17.60 for the efficiency

rankings. As the value of FF is higher than 2.603 we

rejected the null hypothesis. Once we had checked for

the non-randomness of our results, we computed the

Bonferroni-Dunn test to find out which algorithms were

significantly different. In our case, when comparing six

algorithms with a critical value α = 0.05, q0.05 = 2.576

in a two-tailed Bonferroni-Dun test. We obtained a crit-

ical difference value of CD = 1.26.

The Bonferroni-Dunn test results are illustrated in

Figure 6. In this graph, diamonds represent the mean

ranks of each algorithm and the vertical lines across

diamonds indicate the ‘critical difference’, CD. Basi-

cally, the efficiency of the two algorithms is significantly

different if their vertical lines are not overlapping. For

example, it can be seen that CUM, CUM-I and HGR-

CUM-I performed significantly better than the base-

-1

0

1

2

3

4

5

6

7

8

IC HGR MCP CUM CUM-I HGR-CUM-I

M
ea

n
Ra

nk
s

Algorithms

Fig. 6 Application of the Bonferroni-Dunn test to alterna-
tive algorithms’ mean rank of ASL

line (IC). Additionally, we can see that the well-known

HGR algorithm did not perform significantly better

than the baseline IC. Our proposals improved the effi-

ciency of the baseline IC, as their mean rank is shorter

than IC but only CUM is significant with regard to IC.

Among our proposals, CUM obtained the best mean

rank. The graph also shows that the combination of

CUM with previous existing critique-based recommen-

ders achieved the shortest mean rank. In fact, the best

algorithm (i.e., the one with the shortest mean rank) is

HGR-CUM-I. Note that we can see that the results for

HGR-CUM-I are also significantly better than HGR,

with a confidence of 95%.

In summary, from our significance analysis, we con-

clude that CUM, CUM-I and HGR-CUM-I algorithms

performed significantly better than IC, and that HGR-

CUM-I enhanced significantly the recommendation ef-

ficiency of well-known state-of-the-art algorithms (IC

and HGR), which confirms our initial hypothesis.

Conclusions and Future Work

In this paper we hypothesize that clustering may im-

prove both the recommendation process and the defi-

nition of the user model in critique-based recommen-

ders. To this end, we developed several proposals based

on adaptive clustering. First, we have presented a novel

critique-based recommender, called MCP, which adapts

the recommendation process to recommend on the basis

of the number of products in each cluster. Second, we

have proposed a new cognitive user preference model

that integrates the information from the clusters and

a new critique-based recommender, called CUM, which

modifies the recommendation process to recommend on

the basis of the new cognitive user preference model.

Next, we have integrated a weighting measure, called

LW, and a reinforcement learning compatibility mea-

sure, called EHL into the new proposal (CUM). The

resulting new algorithm has been named CUM-I. Ad-

14 D. Contreras and M. Salamó

ditionally, we have also integrated CUM-I into HGR.

This new algorithm is called HGR-CUM-I.

We have evaluated all these algorithms in two differ-

ent domains in order to confirm our initial hypothesis.

Our results not only support the hypothesis that the in-

tegration of clustering (i.e,. MCP and CUM) improves

the recommendation efficiency with respect to the tra-

ditional IC algorithm, but they also confirm with an

statistical analysis that integrating CUM-I significantly

improves the efficiency of IC. HGR-CUM-I performs

significantly better in terms of efficiency than HGR and

the traditional IC algorithms.

MCP and CUM focused on unit critique proposals.

Nonetheless, the two new critique-based recommenders

proposed, which perform an adaptive clustering, can

be easily applied to any of the recommenders that use

compound critiquing. Taking into account that com-

pound critiques are a combination of multiple unit cri-

tiques, instead of storing a unit critique, the cognitive

user model will store a list of unit critiques. Accord-

ingly, cases in the clustering model are maintained if

they satisfy one (for unit critique) or more critiques

(for compound critiquing). In this way, the remaining

new clustering proposals are the same as those defined

for the unit critiquing algorithms.

Although it has been out of the scope of this pa-

per to analyze clustering in compound critiquing algo-

rithms, it would be interesting to do so in future work.

Additionally, we will address the analysis of using clus-

tering in a Collaborative and Conversational Recom-

mender that integrates several feedback mechanisms.

Compliance with Ethical Standards

– Funding: This study was supported by Spanish Min-

istry of Science and Innovation (grant number TIN2015-

71147-C2-2) and by Agència de Gestió d’Ajuts Uni-

versitaris i de Recerca, Generalitat de Catalunya,

AGAUR (grant number SGR-2017-341).

– Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

1. Burke, R., Hammond, K., Yound, B.: The FindMe ap-
proach to assisted browsing. IEEE Expert (1997)

2. Charrad, M., Ghazzali, N., Boiteau, V., Niknafs, A.,
Charrad, M.M.: Package nbclust. Journal of Statistical
Software 61, 1–36 (2014)

3. Chen, L., Pu, P.: Preference-based organization inter-
faces: aiding user critiques in recommender systems. In:
User Modeling 2007, pp. 77–86. Springer (2007)

4. Chen, L., Pu, P.: Critiquing-based recommenders: survey
and emerging trends. User Modeling and User-Adapted
Interaction 22(1-2), 125–150 (2012)

5. Contreras, D., Salamó: On the Use of User-generated
Content in Critiquing Recommendation. In: Proceedings
of the XVIII International Conference of the Catalan As-
sociation for Articial Intelligence, pp. (195–204) (2015)

6. Contreras, D., Salamó, M., Rodŕıguez, I., Puig, A.: A 3d
visual interface for critiquing-based recommenders: Ar-
chitecture and interaction. International Journal of Arti-
ficial Intelligence and Interactive Multimedia 3(3), 7–15
(2015)

7. Ding, S., Zhang, J., Jia, H., Qian, J.: An adaptive density
data stream clustering algorithm. Cognitive Computa-
tion 8(1), 30–38 (2016). DOI 10.1007/s12559-015-9342-z

8. Dong, R., O’Mahony, M., Schaal, M., McCarthy, K.,
Smyth, B.: Sentimental product recommendation. In:
Proceedings of the 7th ACM Conference on Recom-
mender Systems, pp. 411–414. ACM (2013)

9. Dong, R., Schaal, M., O’Mahony, M., McCarthy, K.,
Smyth, B.: Opinionated Product Recommendation.
In: Case-Based Reasoning Research and Development,
LNCS, vol. 7969, pp. 44–58. Springer (2013)

10. Dunn, O.J.: Multiple comparisons among means. Journal
of the American Statistical Association 56(293), 52–64
(1961)

11. Elahi, M., Ricci, F., Rubens, N.: Active learning strate-
gies for rating elicitation in collaborative filtering: A
system-wide perspective. ACM Trans. Intell. Syst. Tech-
nol. 5(1), 13:1–13:33 (2014)

12. Eskandanian, F., Mobasher, B., Burke, R.: A clustering
approach for personalizing diversity in collaborative rec-
ommender systems. In: Proceedings of the 25th Confer-
ence on User Modeling, Adaptation and Personalization,
pp. 280–284. ACM (2017)

13. Friedman, M.: A comparison of alternative tests of sig-
nificance for the problem of m rankings. The Annals of
Mathematical Statistics 11(1), 86–92 (1940)

14. Gavalas, D., Kenteris, M.: A web-based pervasive rec-
ommendation system for mobile tourist guides. Personal
Ubiquitous Comput. 15(7), 759–770 (2011)

15. Huang, Z.: A fast clustering algorithm to cluster very
large categorical data sets in data mining. DMKD 3(8),
34–39 (1997)

16. Huang, Z.: Extensions to the k-means algorithm for clus-
tering large data sets with categorical values. Data Min.
Knowl. Discov. 2(3), 283–304 (1998)

17. Jia, H., Ding, S., Du, M.: Self-tuning p-spectral cluster-
ing based on shared nearest neighbors. Cognitive Com-
putation 7(5), 622–632 (2015). DOI 10.1007/s12559-015-
9331-2

18. Kelly III, J.: Computing, cognition and the future of
knowing, how humans and machines are forging a new
age of understanding. IBM Research: Cognitive Com-
puting. IBM Corporation (2015)

19. Kim, S., McLoone, S.F., Byeon, J., Lee, S., Liu, H.: Cog-
nitively inspired artificial bee colony clustering for cog-
nitive wireless sensor networks. Cognitive Computation
9(2), 207–224 (2017). DOI 10.1007/s12559-016-9447-z

20. Koren, Y., Bell, R.: Advances in collaborative filter-
ing. In: Recommender Systems Handbook, pp. 145–186.
Springer (2011)

21. Kuzelewska, U.: Clustering algorithms in hybrid recom-
mender system on movielens data. Studies in Logic,
Grammar and Rhetoric 37(1), 125–139 (2014)

A cognitively-inspired clustering approach for critique-based recommenders 15

22. Lee, W., Lin, C.: Combining expression data and knowl-
edge ontology for gene clustering and network reconstruc-
tion. Cognitive Computation 8(2), 217–227 (2016). DOI
10.1007/s12559-015-9349-5

23. MacQueen, J., et al.: Some methods for classification and
analysis of multivariate observations. In: Proceedings
of the fifth Berkeley symposium on mathematical statis-
tics and probability, 14, pp. 281–297. Oakland, CA, USA
(1967)

24. Mandl, M., Felfernig, A.: Improving the performance of
unit critiquing. In: User Modeling, Adaptation, and Per-
sonalization, vol. 7379, pp. 176–187. Springer (2012)

25. McCarthy, K., Salamó, M., Coyle, L., McGinty, L.,
Smyth, B., Nixon, P.: Group recommender systems: A
critiquing based approach. In: Proceedings of the 11th
International Conference on Intelligent User Interfaces,
IUI ’06, pp. 267–269. ACM Press (2006)

26. McCarthy, K., Salem, Y., Smyth, B.: Experience-based
critiquing: Reusing critiquing experiences to improve con-
versational recommendation. In: Proceedings of the In-
ternational Conference on Case Base Reasoning, pp. 480–
494. Springer (2010)

27. McGinty, L., Reilly, J.: On the evolution of critiquing
recommenders. In: Recommender Systems Handbook,
pp. 419–453. Springer (2011)

28. Pazzani, M., Billsus, D.: The Adaptive Web: Methods
and Strategies of Web Personalization, chap. Content-
Based Recommendation Systems, pp. 325–341. Springer
(2007)

29. Pham, M.C., Cao, Y., Klamma, R., Jarke, M.: A cluster-
ing approach for collaborative filtering recommendation
using social network analysis. Journal of Universal Com-
puter Science (j-jucs) 17(4), 583–604 (2011)

30. Pitsilis, G., Zhang, X., Wang, W.: Clustering recommen-
ders in collaborative filtering using explicit trust informa-
tion. In: I. Wakeman, E. Gudes, C.D. Jensen, J. Cramp-
ton (eds.) Trust Management V, pp. 82–97. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

31. Pu, P., Faltings, B., Chen, L., Zhang, J., Viappiani, P.:
Usability guidelines for product recommenders based on
example critiquing research. In: Recommender Systems
Handbook. Springer (2011)

32. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dy-
namic critiquing. In: Advances in Case-Based Reason-
ing, Lecture Notes in Computer Science, vol. 3155, pp.
763–777. Springer (2004)

33. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incre-
mental critiquing. Knowledge-Based Systems 18(4-5),
143–151 (2005)

34. Reilly, J., Zhang, J., McGinty, L., Pu, P., Smyth, B.:
A comparison of two compound critiquing systems. In:
Proceedings of the 12th Int. Conf. on Intelligent User
Interfaces, pp. 317–320. ACM, USA (2007)

35. Ren, P., Sun, W., Luo, C., Hussain, A.: Clustering-
oriented multiple convolutional neural networks for single
image super-resolution. Cognitive Computation 10(1),
165–178 (2018). DOI 10.1007/s12559-017-9512-2

36. Ricci, F., Nguyen, Q.: Acquiring and Revising Prefer-
ences in a Critique-Based Mobile Recommender System.
IEEE Intelligent Systems 22(3), 22–29 (2007)

37. Ricci, F., Rokach, L., Shapira, B., Kantor, P.B. (eds.):
Recommender Systems Handbook. Springer (2011)

38. Salamó, M., Escalera, S.: Increasing retrieval quality in
conversational recommenders. IEEE Transactions on
Knowledge and Data Engineering 24(10), 1–14 (2012)

39. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Improving
Incremental Critiquing. In: Proc. of the 16th Artificial
Intelligence and Cognitive Science, pp. 379–388 (2005)

40. Salamó, M., Reilly, J., McGinty, L., Smyth, B.: Knowl-
edge discovery from user preferences in conversational
recommendation. In: Proceedings of the 9th European
Conference on Principles and Practice of Knowledge Dis-
covery in Databases, pp. 228–239. Springer-Verlag (2005)

41. Salem, Y., Hong, J.: History-aware critiquing-based con-
versational recommendation. In: Proceedings of the 22Nd
International Conference on WWW Companion, pp. 63–
64. Switzerland (2013)

42. Salem, Y., Hong, J., Liu, W.: History-guided conversa-
tional recommendation. In: Proceedings of the 23rd In-
ternational Conference on WWW Companion, pp. 999–
1004 (2014)

43. Thanh, N.D., Ali, M., Son, L.H.: A novel clustering algo-
rithm in a neutrosophic recommender system for medical
diagnosis. Cognitive Computation 9(4), 526–544 (2017).
DOI 10.1007/s12559-017-9462-8

44. Viappiani, P., Faltings, B., Pu, P.: Preference-based
search using example-critiquing with suggestions. Jour-
nal Artificial Intelligence Research 27, 465–503 (2006)

45. Zhang, J., Jones, N., Pu, P.: A Visual Interface for
Critiquing-based Recommender Systems. Proceedings
of the 9th ACM conference on Electronic commerce pp.
230–239 (2008)

46. Zhang, J., Pu, P.: A comparative study of compound cri-
tique generation in conversational recommender systems.
In: Adaptive Hypermedia and Adaptive Web-Based Sys-
tems, Lecture Notes in Computer Science, vol. 4018, pp.
234–243. Springer (2006)

47. Zhang, Z., Zhao, X., Wang, G.: FE-ELM: A new friend
recommendation model with extreme learning machine.
Cognitive Computation 9(5), 659–670 (2017). DOI
10.1007/s12559-017-9484-2

