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Abstract Background/Introduction - Classical data mining algorithms are con-
sidered inadequate to manage the volume, variety, velocity, and veracity aspects of
Big Data. The advent of a number of open source cluster computing frameworks
has opened new interesting perspectives for handling the volume and velocity fea-
tures. In this context, thanks to their capability of coping with vague and imprecise
information, distributed fuzzy models appear to be particularly suitable for han-
dling the variety and veracity features of big data. Moreover, the interpretability of
fuzzy models may assume a particular relevance in the context of big data mining.

Methods - In this work, we propose a novel approach for generating, out
of big data, a set of fuzzy rule-based classifiers characterized by different opti-
mal trade-offs between accuracy and interpretability. We extend a state-of-the-
art distributed multi-objective evolutionary learning scheme, implemented under
the Apache Spark environment. In particular, we exploit a recently proposed dis-
tributed fuzzy decision tree learning approach for generating an initial rule base
that serves as input to the evolutionary process. Furthermore, we integrate the
evolutionary learning scheme with an ad-hoc strategy for the granularity learning
of the fuzzy partitions, along with the optimization of both the rule base and the
fuzzy set parameters.

Results and Conclusions - Experimental investigations show that the proposed
approach is able to generate fuzzy rule-based classifiers that are significantly less
complex than the ones generated by the original multi-objective evolutionary learn-
ing scheme, while keeping the same accuracy levels.
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1 Introduction

Data mining allows extracting useful knowledge from data. In the last decades,
data mining has been considerably investigated and a huge number of different
techniques have been proposed for generating, for instance, descriptive models in
clustering and frequent pattern analysis, and predictive models in classification
and regression tasks [35]. Data mining is closely related to cognitive computation.
Indeed, as discussed in [20], cognitive computation helps improve human decision-
making: data mining models are often adopted for decision making issues, such
as image recognition [16], disease identification [3], and managing the energy con-
sumption in wireless sensor networks [38].

We are currently experiencing the Big Data Era [45] and classical data mining
algorithms appear to be inadequate to manage Big Data. Indeed, Big Data are
characterized by the four “V”s, namely volume, variety, velocity and veracity:
large volumes of data, which are often produced at very high speed and need
to be elaborated in almost real time (velocity), are generated by different sources
and may have different formats (variety) [11] and trustworthiness (veracity). These
data represent a very important source of added-values in several contexts, such as
in marketing strategies [23], industrial applications [55], and Internet of Things [2].

Big Data are of prominent importance also for their relationship with cogni-
tive computing systems [1]: they naturally learn from people and from the huge
amount of data they are involved with, typically by exploiting computational in-
telligence and machine learning algorithms. In the last years several researchers
have introduced data mining approaches purposely designed and implemented for
Big Data [48, 58]. Most of these approaches have employed specific distributed
frameworks, such as Apache Hadoop [57] and Apache Spark [59], which have been
recently proposed with the aim of dealing with data storage and elaboration of Big
Data. Further, most of the recent contributions in the field exploit the MapReduce
paradigm [22] for implementing both descriptive and predictive models, with the
additional benefit of the possibility to exploit computing resources on the Cloud
[31].

As an example, in [39] and in [42], authors have proposed a distributed version
of two famous clustering algorithms, i.e. DB-SCAN and Fuzzy C-Means, respec-
tively, developed using the Apache Hadoop framework. A fuzzy version of Random
Forests has been implemented over the same framework as well [15].

Recently, in [14] and [43], Apache Spark implementations of associative classi-
fication models and of the KNN classifier, respectively, have been discussed. Also
big social data analysis has taken advantage of the use of such distributed comput-
ing frameworks [47]. A recent work highlights the main advances, challenges and
objectives in designing, developing and using data mining and machine learning
algorithms for Big Data [60].

In the context of predictive models, in the last years, a number of contributions
employing Fuzzy Models (FMs) for handling Big Data have been proposed [25, 28,
32, 41, 44, 51, 52, 53]. As stated in [29], FMs are particularly suitable for handling
the variety and veracity of Big Data. This is mainly due to their good capability
of coping with vague, imprecise, and uncertain concepts. It is worth underlining
that fuzzy logic has been recognized also as an important tool to keep the fidelity
of psychological interpretation of emotion [12], opening up new ways to analyze
the sentiment contents of huge amounts of data available from web sources. From
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a more technical point of view, the use of overlapped fuzzy labels ensures a good
coverage of the problem space. This issue is especially relevant when dealing with
very large datasets that may be divided into a number of heterogeneous chunks,
such as in the MapReduce programming paradigm. Actually, the different chunks
may influence in a different way the parameter learning process of the classification
model.

To the best of our knowledge, the first proposal regarding FM for Big Data clas-
sification is the Chi-FRBCS-BigData [51] model. It is a fuzzy rule-based classifier
(FRBC), developed according to the MapReduce paradigm and based on the ap-
proach described by Chi et al. [17]. In the work discussed in [41], the Chi-FRBCS-
BigData algorithm has been adapted for handling imbalanced big datasets, and
the effects of the granularity of fuzzy partitions, when using the same algorithm,
have been studied in [30]. Recently, in the work published in [25], the CHI-BD
algorithm has been introduced: it is novel distributed version of the Chi et al’s
approach [17], with improved results with respect to Chi-FRBCS-BigData. Basi-
cally, CHI-BD is the exact distributed implementation of the Chi et al’s approach,
whereas Chi-FRBCS-BigData is an approximated implementation. More details
can be found in [25] and [51], respectively. Notably, efficient MapReduce solu-
tions based on the CHI-BD algorithm have been proposed also for the Prototype
Reduction problem [26]

Similarly to the aforementioned approaches, most of the contributions proposed
so far focus on the design and development of FMs in a distributed environment,
especially considering the accuracy of the models. Also two recent works discuss
the good results obtained by two novel fuzzy classification models for Big Data.
The two models are respectively based on Fuzzy Associative Classifiers [52] and
Distributed Multi-Way Fuzzy Decision Trees (DMFDTs) [53]. Even if the accuracy
of the obtained classifiers is good, the complexity of the relative models, in terms
of both number of rules and number of decision nodes, is very high. The greater the
complexity, the lower the interpretability of the FMs. However, the interpretability
is a very important feature that characterizes FMs, and is particularly relevant in
the context of Big Data as well [29, 56]. New methods to generate both accurate
and interpretable FMs are currently investigated in the research community on
fuzzy models [24].

Interpretability is a subjective concept: it is hard to find a worldwide agreed
definition and consequently a universal measure of interpretability. A taxonomy
of interpretability measures for fuzzy rule-based models has been proposed [33]
by considering the two distinct dimensions of semantics and complexity, at the
rule base (RB) and data base (DB) levels. As regards the DB, the semantic in-
terpretability is usually evaluated in terms of integrity of the fuzzy partitions,
whereas the complexity is evaluated in terms of number of fuzzy sets. As regards
the RB, the interpretability is mostly analyzed in terms of complexity and one of
the most used metrics is the Total Rule Length (TRL) [18, 36, 37], that is, the
total number of conditions used in the RB. In the learning of interpretable FMs,
the importance of other factors like rule relevance has been experimentally studied
as well [49].

In the framework of “classical” FMs, multi-objective evolutionary algorithms
(MOEAs) have been widely used with the aim of generating models characterized
by good trade-offs between accuracy and interpretability [7, 27]. Independently
of the approach used to generate the DB and the RB of the fuzzy rule-based
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systems, the computation of the accuracy of each individual generated in the
evolutionary process requires the scan of the overall training set. When the size
of the dataset is very large, such as in the context of Big Data, the application of
MOEA-based approaches to the FMs generation is very critical. Thus, the natural
way for managing very large datasets would be to adopt a solution to speed up
the computation: this can be done by exploiting a distributed implementation on
a computer cluster.

Although some evolutionary-based methods for learning FMs for Big Data have
been recently proposed [28, 44], in 2017, we have introduced the first distributed
implementation of an MOEA to learn concurrently the RB and DB of FRBCs,
by maximizing accuracy and minimizing complexity [32]. We have named our
algorithm as DPAES-RCS: it is an Apache Spark distributed implementation of
the PAES-RCS approach discussed in [9, 10]. PAES-RCS learns the RB through
a rule and condition selection strategy, which selects a reduced number of rules
from a heuristically generated set of candidate rules and a reduced number of
conditions, for each selected rule, during the evolutionary process. Moreover, the
parameters of the fuzzy sets are learnt concurrently with the RB. PAES-RCS has
proven to be very efficient in obtaining satisfactory approximations of the Pareto
front using a limited number of iterations [9].

In this paper, we propose an extension of DPAES-RCS that includes two main
novel aspects. First, we generate the initial set of rules using the distributed FDT
learning approach introduced in [53] rather than the distributed version of the
C4.5 algorithm [21]. We highlight that we adopt the same learning algorithm pro-
posed in [53], but we do not employ fuzzy partitions generated by the distributed
fuzzy discretizer (proposed in [53] as well) and leaves labelled with different classes.
Similar to [32], once the FDT has been generated, we extract the rules by surfing
the tree from the root to each leaf. Second, we introduce a strategy for learning
the most suitable number of fuzzy sets (granularity learning), for each linguistic
variable, concurrently to the learning of the RB and the parameters of the fuzzy
sets. To this aim, we adopt the virtual partition method introduced in [5] and
recently used in [7] in the context of MOEA-based fuzzy models. We experiment
the proposed extension of DPAES-RCS, named DPAES-FDT-GL, on 8 benchmark
datasets for Big Data classification. We compare DPAES-FDT-GL with DPAES-
RCS and with a simplified version of DPAES-FDT-GL, named DPAES-FDT,
which exploits the FDT for generating the initial rule set, but does not employ
the granularity learning during the evolutionary process. This last comparison is
performed to evaluate whether both the extensions of DPAES-RCS included in
DPAES-FDT-GL produce valuable effects.

We present that the accuracies achieved by the three approaches are statisti-
cally equivalent, while the complexity of the FRBCs generated by DPAES-FDT-
GL and DPAES-FDT are much lower than the one of the FRBCs generated by
DPAES-RCS. Thus, we conclude that DPAES-FDT-GL and DPAES-FDT are def-
initely able to generate more interpretable models than DPAES-RCS. However,
even though DPAES-FDT-GL and DPAES-FDT are statistically equivalent in
terms of complexity, results show that in most of the cases DPAES-FDT-GL gen-
erates the most compact solutions, characterized by the lowest number of rules,
conditions, and fuzzy sets.
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The paper is organized as follows. In Section 2 some background concepts are
introduced. Section 3 describes the overall approach. We report the results of our
experimental analysis in Section 4 and draw some final conclusion in Section 5.

2 Preliminaries

The term “classification” refers to the action of assigning a class Cm, out of a given
set C = {C1, . . . , CK} of K classes, to an unlabeled instance. A generic instance
is described by a set X = {X1, . . . , XF } of attributes with cardinality F . Each
attribute can be either categorical or numerical. In case of categorical attributes,
Xf takes values out of a set Lf = {Lf,1, . . . , Lf,Tf

} of Tf distinct values.
For numerical attributes, the universe Uf of Xf can always be considered as

a bounded interval in R. With the aim of defining fuzzy rules, a fuzzy partition
is defined on each of these intervals. Referring to a generic numeric attribute Xf ,
let Pf = {Af,1, . . . , Af,Tf

} be a partition over the relative universe Uf , where Tf

is the number of fuzzy sets in the partition. A label Lf,j is then assigned to each
fuzzy set Af,j , thus letting us work with linguistic variables and deal with both
categorical and numerical attributes in a homogeneous way.

In this paper, we adopt triangular fuzzy sets and, therefore, each fuzzy set
Af,j is identified by the tuples (af,j , bf,j , cf,j), where af,j and cf,j correspond
to the left and right extremes of the support, respectively, and bf,j to the core.
Since we use strong partitions, af,1 = bf,1, bf,Tf

= cf,Tf and, for j = 2, ..., Tf − 1,
bf,j = cf,j−1 and bf,j = af,j+1.

The number Tf of fuzzy sets to be used in the partition for the attribute
Xf can be regarded as a measure of the granularity used for the definition of
linguistic variables over Uf . We can use the notation Pf (Tf ) to emphasize the
granularity level for Pf , because clearly Tf has a direct impact on the accuracy
and interpretability of the derived classification models.

2.1 Classification by Means of Fuzzy Rules

In FRBCs, the output value for an unlabelled instance is inferred from the fuzzy
rules that compose the RB. In the present work, we assume the following structure
for the generic m-th rule Rm in RB:

Rm : if X1 is L1,jm,1
and . . . and XF is LF,jm,F

then Y is Ckm

(1)

where Y is the FRBC output, whose value in the consequent of rule Rm is Ckm
, and

jm,f ∈ [1, Tf ] identifies the index of the label that has been selected for Xf in rule
Rm, i.e. Lf,jm,f

. Depending on the nature of Xf (either numerical or categorical),
such a label may refer to either a fuzzy set in partition Pf or a categorical value. In
general, it may happen that in one rule the value assumed by an attribute provides
no indications in choosing the outcome. This situation can be plainly dealt with by
introducing an additional fictitious label Lf,0 for each attribute Xf , and using it to
express that Xf does not contribute to the classification. Formally, this “dummy”
label corresponds to a set with unitary membership across the whole attribute
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universe: thus, Lf,0 lets us keep the generic structure of (1) also for rules where
the outcome actually depends only on a subset of the attributes.

Let TR = {(x1, y1), (x2, y2), ..., (xN , yN )} be the training set that contains N

instances. In this notation, (xn, yn) indicates the n-th input-output pair, where
xn is the input vector with F values (each, either numerical or categorical, for the
relative attribute), and yn is the classification label.

The matching degree of the rule Rm with the input xn represents the strength
of activation of the rule. It is calculated according to the following equation:

wm(xn) =
∏F

f=1
µLf,jm,f

(xn,f ) (2)

where µLf,jm,f
(xn,f ) is, in case of numerical attributes, the membership value of

xn,f to the fuzzy set Af,jm,f
represented by label Lf,jm,f

and, in case of categorical
attributes, is either 0 or 1.

As discussed in [33], the complexity of a rule base can be measured in different
ways, but a simple yet effective index is TRL. In the approach proposed in this
paper, TRL is used to quantify the model complexity (and, indirectly, its inter-
pretability) and it is taken as one of the objectives for the evolutionary algorithm
that shapes the final solutions.

Finally, we adopt the “maximum matching method” as reasoning method : the
class of an unlabelled instance is determined by the consequent of the rule with
the maximum matching degree for such an instance. In case of tie, among the
equally-matching rules, the first one is chosen. If no rule is fired, the instance is
classified with the most frequent class.

3 The Proposed Approach

The overall proposed approach, named DPAES-FDT-GL, is structured according
to the scheme reported in Fig. 1. In the first place, it is necessary to obtain a
very good candidate rule base as the starting point for the successive optimiza-
tion process, aimed at producing a set of final FRBCs with different trade-offs
between accuracy and interpretability. We denote the first phase as Candidate RB
Generation, and the second one as Multi-Objective Evolutionary Learning. It is
important to underline that dealing with Big Data asks for particularly efficient
algorithms, and that consistent speed-ups can be achieved by adopting distributed
computing solutions. For this reason, along all the successive steps in the proposed
approach, distributed algorithms have been employed whenever possible using the
Apache Spark framework [59], which is able to implicitly deal with data distribu-
tion by means of a predefined container type (known as RDD, Resilient Distributed
Dataset).

For the Candidate RB Generation, differently from the previous solution dis-
cussed in [32], we adopt a distributed FDT learning approach. Thus, the candidate
RB is directly obtained from the learned FDT. The rationale for using an FDT
learning algorithm instead of C4.5 is based on the intuition that learning an initial
candidate fuzzy RB by means of a procedure, which is completely managed by
using fuzzy sets, can produce a fuzzy model more appropriate to undergo the sub-
sequent fuzzy manipulations; moreover, in practical contexts the RBs generated by
traversing all the paths from the root down to each leaf of an FDT have proven to
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Fig. 1 General scheme of the proposed approach. Upon the construction of an initial candi-
date RB by means of a distributed FDT learning algorithm applied to uniformly partitioned
attributes, a multi-objective evolutionary algorithm finds optimal FRBCs with different trade-
offs between accuracy and complexity.

be compact and interpretable [50]. As a preliminary step, a uniform discretization
is performed. The FDT learning is carried out by means of a distributed algorithm
[53].

The algorithm chosen for the Multi-Objective Evolutionary Learning (MOEL)
is designed according to the well-known Pareto Archive Evolutionary Strategy
(PAES) [19], and in particular it is based on DPAES-RCS [32], which is a dis-
tributed version over Apache Spark of the PAES-RCS algorithm [9]. Such a choice
is motivated by its fast convergence rate, which lets us reduce the number of iter-
ations to get to a set of satisfying solutions. This is a crucial point with Big Data,
because fitness evaluations over very extensive datasets represent the most time-
consuming task. An important characteristic of this phase is that the granularity
of the attribute partitions is directly taken into account, and learned throughout
the evolutionary process.

The following subsections give a description of the algorithms used in the two
phases of the proposed approach; further details can be found in [32] and [53].

3.1 The Distributed Candidate RB Generation

The Candidate RB Generation phase used in this work exploits a distributed
FDT learning approach suitable for dealing with Big Data, recently proposed by
Segatori et al. [53]. The multi-way version of the FDT has been chosen (instead of
the binary one) because it makes particularly simple and efficient the subsequent
rule extraction to build the candidate RB: rules are obtained in the form described
in (1) through a tree traversal, deriving one rule for each possible path from the
root down to a leaf.

Differently from [53], which employs fuzzy partitions generated by a distributed
fuzzy discretizer (proposed in [53] as well), and leaves labelled with different
classes, the tree learning used in this paper relies on a preliminary uniform dis-
cretization for all the numerical features, with Tmax evenly-spaced triangular fuzzy
sets that make up strong partitions. This operation requires nothing more than
knowing the lowest and highest values in TR for each numerical feature (that
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is, the endpoints for each universe Uf ), and this can be easily accomplished in a
distributed fashion.

Each FDT node corresponds to a subset of TR, and the root corresponds to
the whole TR. The FDT construction starts from the root and follows a top-down
approach; unless a termination condition is not satisfied, a newly-generated node
gives rise to Tmax child nodes according to the fuzzy partition of the attribute
chosen for that specific splitting. In this procedure, an attribute can be considered
only once in the same path from the root to a leaf. The attribute that drives the
splitting is selected as the one that yields the best fuzzy information gain, which
will be defined below. The termination conditions are the following:

1. all the instances in the node belong to the same class;
2. the number of instances in the node is lower than a fixed threshold λ;
3. the tree has reached a maximum fixed depth β;
4. the value of the fuzzy information gain is lower than a fixed threshold ε. In our

experiments, we set ε = 10−6.

More formally, given a parent node PN , let CN j indicate the generic j-th
child node, j = 1, . . . , Tmax . The subset of TR in CN j contains only the instances
belonging to the support of the fuzzy set Af,j . Let Sf be the set of instances in
the parent node, and Sf,j be the set of instances for CN j , i.e. the support of Af,j .
Each node CN j is characterized by a fuzzy set Gj , whose cardinality is defined as

|Gj | =
∑Nj

i=1 µGj
(xi) =

∑Nj

i=1 TN(µAf,j
(xf,i), µG(xi)) (3)

where Nj is the number of instances in set Sf,j , µG(xi) is the membership degree
of instance xi to parent node PN (for the root node, µG(xi) = 1), and the operator
TN is a T-norm.

The fuzzy information gain FGain used for selecting the splitting attribute is
computed, for a generic attribute Xf with partition Pf , as

FGain(Pf ; IG) = FEnt(G)−WFEnt(Pf ; IG) (4)

where IG is the support of fuzzy set G. The Fuzzy Entropy FEnt(G) is defined as

FEnt(Bf,j) =
∑M

m=1
−
|Bf,j,Cm |
|Bf,j|

log2(
|Bf,j,Cm |
|Bf,j|

) (5)

where fuzzy cardinality |Bf,j,Cm
| is computed on the set of instances in Sf,j with

class label Cm. The weighted fuzzy entropy WFEnt(PIf , If ) of partition PIf is
defined as

WFEnt(PIf ; If ) =
∑KPIf

j=1

|Bf,j|
|Sf |

FEnt(Bf,j) (6)

where |Bf,j | is the fuzzy cardinality of fuzzy set Bf,j , |Sf | is the cardinality of set
Sf and FEnt(Bf,j) is the fuzzy entropy of Bf,j .

In case of categorical attributes, we split the parent node into a number of
child nodes CN j equal to the number of possible values for the attribute. Each
node CN j is characterized by a fuzzy set Gj , whose cardinality is

|Gj | =
∑Nj

i=1 µGj
(xi) =

∑Nj

i=1 TN(1, µG(xi)) (7)

Fig. 2 summarizes the distributed implementation of the candidate rule gen-
eration phase. We have highlighted the distribution of the operations across the
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Fig. 2 Outline of the distributed candidate rule generation phase.

cluster of Computing Units (CUs). The adopted distribution strategy is aimed at
reducing as much as possible the scans over TR, which is the very bottleneck in
the overall computation. To this aim, the computation of the best split for each
node is spread across the CUs. The FDT learning consists in the iterative execu-
tion of a MapReduce step: the mapping phase takes care of computing the figures
(over V chunks for TR) to decide how to split, and the reduce phase is in charge
of completing (if it is the case) the node splitting. The nodes to be possibly split
are kept in a list, where in each iteration at most MaxY elements at a time are
extracted to be processed in a MapReduce step.

It is worth underlining that the chosen distributed FDT has a very good CU
utilization, with extremely satisfactory values for the speed-up, thus yielding good
scalability figures with respect to the number of CUs [53]. The most critical aspect
relates to the system requirements for the used cluster of computers. In particular,
the maximum number of nodes MaxY that can be processed in parallel depends
on the amount of RAM available on the cluster. Of course, more memory resources
can be provided so to achieve the required parallelism [53].

3.2 The Distributed Multi-Objective Evolutionary Learning

3.2.1 The Evolutionary Process

The multi-objective evolutionary learning phase aims to produce solutions that
maximize accuracy and minimize TRL, the index chosen to express the complex-
ity of the learned FRBCs. This is obtained through a distributed multi-objective
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evolutionary algorithm that takes in input the candidate RB produced in the pre-
vious phase. The overall structure of the learning stage is based on PAES-RCS
for classification models, introduced in [9] and then extended to the distribued
framework in [32]. As multi-objective evolutionary algorithm, we use (2+2)M-
PAES, introduced in [18] and also successfully employed in our previous works
[4, 6, 7]. (2+2)M-PAES is a modified version of the well-known (2+2)PAES [40]
and is a steady-state evolutionary algorithm that uses two current solutions and
stores the non-dominated solutions in an archive. Unlike the classical (2+2)PAES,
which maintains the current solutions until they are not replaced by solutions with
particular characteristics, we randomly extract, at each iteration, the current so-
lutions. Unlike the PAES-RCS adopted in [9, 32], which considers uniform fuzzy
partitions with a pre-fixed number of fuzzy sets, the granularity of each partition
here is learned as well. Thus, the chromosome coding has to accommodate this
additional requirement.

The evolutionary process operates over three different aspects:

1. selection of a subset of rules out of the initial set of candidate rules, and
contextual activation/deactivation of the relative conditions,

2. modification of the fuzzy partitions by properly moving the cores of the com-
posing triangular fuzzy sets, and

3. selection of the granularity level, i.e. the number Tf of partitions (or fuzzy
sets), in the range [Tmin , Tmax ].

We recall that the initial set of candidate rules is obtained by considering
uniform strong fuzzy partitions for each numeric variable Xf , each containing
Tmax fuzzy sets. Also the learning of the RBs, using the evolutionary rule and
condition selection procedure, and the optimization of the parameters of the fuzzy
sets are performed considering such partitions, computed at the very beginning of
the first phase. Indeed, we deal with virtual RBs [4] and virtual partitions [5]. The
actual granularity is used only in the computation of the objectives. In practice,
although during the evolutionary process we generate RBs, denoted as virtual RBs,
and tune the fuzzy set parameters by using such virtual partitions, each time we
need to evaluate the fitness, the evaluation is performed on the actual number of
fuzzy sets used to partition the single variables. This process requires the definition
of proper mapping strategies, both for the RB and for the fuzzy set parameters.
Thus, the execution of crossover and mutation operators is not affected by the
actual number of fuzzy sets.

3.2.2 RB Mapping Strategy

To map the virtual RB defined on partitions with Tmax fuzzy sets onto a concrete
RB defined on variables partitioned with Tf fuzzy sets, we adopt the simple proce-
dure proposed in [4, 5]. Let us consider the following general proposition in a rule

of the virtual RB: Xf is Âf,h, h ∈ [1, Tmax ]. It will be mapped to Xf is Ãf,s, with

s ∈ [1, Tf ], where Ãf,s is the fuzzy set most similar to Âf,h out of the Tf fuzzy

sets Âf,h defined on Xf . In dealing with triangular fuzzy sets, defined as discussed
in Section 2, a trivial yet effective similarity measure is the distance between the
centers of the cores of the two fuzzy sets. If two fuzzy sets exist in the partition
with centers of the cores at the same distance from the center of the core of Âf,h,
we operate a random choice between them.
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It can be noted that, at a certain granularity level, it is possible that distinct
fuzzy sets defined on the partitions of the virtual RB do map onto the same fuzzy
set on the partitions used in the concrete RB. Thus, different rules of the virtual
RB may correspond to the same rule in the concrete RB. For this reason, duplicates
in the concrete RB are searched and possibly removed. Of course, operating at a
different granularity level with the same virtual RB, a different situation may arise
also with respect to the presence of duplicates for concrete rules. Thus, the concept
of virtual RB allows us to explore the search space and, at the same time, exploit
the (sub)optimal solutions found during the evolutionary process.

3.2.3 Fuzzy Set Parameter Mapping Strategy

As regards the fuzzy set parameter tuning, we approach the problem by using a
piecewise, non-decreasing linear transformation [5]. We start from an initial parti-
tion of the input variables, and tune the parameters of the fuzzy sets that compose

the partition by applying such a transformation. Let P̃f =
{
Ãf,1, . . . , Ãf,Tf

}
and

Pf =
{
Af,1, . . . , Af,Tf

}
be the initial and the transformed partitions, respectively.

In the following, we assume that the two partitions have the same universe (i.e.

Ũf ≡ Uf ), considering also each variable normalized in the interval [0, 1].

Let t(xf ) : Uf → Ũf be the piecewise linear transformation. We have that

Af,j(xf ) = Ãf,j (t (xf )) = Ãf,j (x̃f ), where Ãf,j and Af,j are two generic fuzzy
sets from the initial and transformed partitions, respectively. We define the piece-
wise linear transformation by considering as “representative” for each fuzzy set
the corresponding center of the core. The sequence of representatives indicates the
change of slopes of the piecewise linear transformation t(xf ) for each variable Xf .

Let b̃f,1, . . . , b̃f,Tf
and bf,1, . . . , bf,Tf

be the representatives of Ãf,1, . . . , Ãf,Tf
and

Af,1, . . . , Af,Tf
, respectively. In each interval bf,j−1 ≤ xf ≤ bf,j , j = 1 . . . Tf , the

transformation t(xf ) is defined as:

t(xf ) =
b̃f,j − b̃f,j−1

bf,j − bf,j−1

· (xf − bf,j−1) + b̃f,j−1 (8)

Given t(xf ), it can be used for the transformation of all the parameters that
define the fuzzy sets.

Fig. 3 shows an example of the case where t(xf ), as per Eq.(8), is defined as-
suming a uniform initial partition and a maximum granularity Tmax = 7. Clearly,
bf,1 and bf,Tf

coincide with the extremes of the universe Uf of Xf , thus t(xf )
depends on Tf − 2 parameters, that is t(xf ) = t

(
(xf ; bf,2, . . . , bf,Tf−1)

)
[5]. Once

the values bf,2, . . . , bf,Tf−1 are given, the partition Pf can be obtained by trans-

forming the three points (ãf,j , b̃f,j , c̃f,j) that describe the generic triangular fuzzy

set Ãf,j into (af,j , bf,j , cf,j) by applying t−1(x̃f ).

It is worth noticing that, during the learning of the granularity, the transfor-
mation is applied only to the parameters that describe a fuzzy set, thus obtaining
again triangular fuzzy sets. Fig. 4 shows an example of this transformation for
granularity Tf = 5 by using the piecewise linear transformation in Fig. 3, which
is defined for Tmax = 7.
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Fig. 3 An example of piecewise linear transformation.

Fig. 4 Use of the transformation t(xf ) of Fig. 3 on partitions with granularity Tf = 5 different
from Tmax = 7.

3.2.4 Objective Functions, Chromosome Coding, and Mating Operators

In the designed MOEL scheme, each chromosome is associated with a bi-dimensional
objective vector. The first element accounts for the model complexity in terms of
TRL for the relative actual RB. The second element assesses the model accuracy
through its classification rate, as computed over the training set.
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Within the evolutionary procedure, the chromosome C is composed of three
different portions (CR, CG, CT ): CR defines the virtual RB, CG the number of
fuzzy sets, and CT the virtual partitions.

Let JFDT be the initial virtual RB obtained in the first phase, and MFDT the
corresponding number of rules. We underline that the initial RBs are generated
considering Tmax fuzzy sets for each partition. As we are interested in getting
compact RBs, we constrain the virtual RB to contain no more than Mmax rules.

The CR part is a vector of Mmax pairs pm = (km,vm), where km ∈ [0,MFDT ]
identifies the index of the selected rule in JFDT , and vm = [vm,1, . . . , vm,F ] is a
“mask” boolean vector whose generic element vm,f indicates, for attribute Xf ,
whether to consider or not the relative condition in the rule (if not, it becomes a
“don’t care” condition). As we want to be able to generate RBs with a number of
rules lower than Mmax , km is set to 0 if the m-th rule must be excluded from the
RB.

CG is a vector that specifies the number of fuzzy sets to be used for each
attribute. Thus, its f -th element contains the number Tf ∈ [2, Tmax ] of fuzzy sets
to be used in the actual partition Pf (Tf ). Tmax is an input parameter for the
algorithm, and such a value applies to all the variables. As discussed in Section
3.2.2, the values contained in CG are used to generate the concrete RB from the
virtual RB coded in CR.

CT is aimed at describing the placement of the Tmax distinct fuzzy sets within
each strong fuzzy partition for all the F attributes; thus, it is a vector of F vec-
tors, each containing Tmax − 2 real numbers. The f -th vector [bf,2, . . . , bf,Tmax−1]
indicates the positions of the cores of the triangular fuzzy sets: it also contains the
information to define the shape of the piecewise linear transformation t(xf ) (and
consequently t−1) used to determine the position of Tf fuzzy sets, if Tf < Tmax

holds. To make sure that bf,i < bf,i+1, ∀i ∈ [2, Tmax − 1], and to avoid an exces-
sive departure of the cores with respect to the uniform partition, the value for the
generic bf,j is restricted to vary in the interval

[
b̃f,j −

b̃f,j − b̃f,j−1

2
, b̃f,j +

b̃f,j+1 − b̃f,j

2

]
, ∀j ∈ [2, Tmax − 1] . (9)

For the generation of the offspring populations, the MOEL makes use of both
crossover and mutation operations. We apply independently the two-point crossover
to CR, the one-point crossover to CG and the BLX-α-crossover, with α = 0.5, to
CT . As regards CR, the crossover points are always placed between two rules. In
the case of CG, the crossover point is a random position in [1, F ].

The algorithm includes two mutation operators for CR, one for CG, and another
for CT . As regards CR, both operators start by randomly choosing a rule (actually,
a pair pm) in the chromosome. The first operator replaces the rule in pm with
another rule randomly chosen out of the candidate rule base. The second operator
modifies the rule in pm by going through each position vm,f of the condition mask,
and performing its complement with a probability equal to Pcond (Pcond = 2

F
in

the experiments).
The mutation for CG attempts to modify the granularity for one single variable

Xf : it consists of randomly choosing a gene f ∈ [1, F ] and randomly either incre-
menting or decrementing it by one. If the new value is out of the range [2, Tmax ],
no modification is actually performed.
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The mutation for CT operates on bf,j , by first randomly choosing f in [1, F ]
and j in [2, Tmax − 1]: the new value for it is randomly selected in the allowed
interval (Eq. 9). The described mating operators have experimentally shown a
good balance between exploration and exploitation, thus being suitable for driving
the evolutionary algorithm towards good approximations of the Pareto fronts.

3.2.5 MOEL Distributed Implementation

The characteristics of the possible strategies for parallel/distributed MOEAs have
been extensively studied before the widespread use of cloud computing facilities
[54]. Anyway, recently the opportunity to exploit cloud resources in a simple way
by means of efficient frameworks like Apache Spark has made more attractive
some solutions than others. Thus, the “master-slave” paradigm [54] inherent in
typical Spark programs has been chosen in particular for its ability to deal with
big datasets, providing good scalability with respect to the size of the training set.
Other paradigms, like the “islands” and “diffusion” ones, are much more suited
with other distributed computing frameworks [19, 54], and in these cases the ob-
tained accuracy may be affected by the number of used CUs, while we would make
the results independent of the underlying platform.

The distributed implementation of the MOEL phase for the proposed approach
is described in the schematic view of Fig. 5: here, it is explicitly shown the workload
distribution across a cluster of CUs. It can be noted that distributed computations
can be used both in the initialization of the archive required by the genetic algo-
rithm (upper part of the figure), and in the evolutionary procedure itself (lower
part).

The overall MOEL algorithm is driven by the master task: it is in charge of
the main control flow and, at each single iteration, of the TRL part of the fitness
computation (which, given the limited size of the rule base, is really effortless).
Instead, the evaluation of the accuracy asks for a scan of the whole TR, which
is typically very large. Thus, it is advantageous to split TR in V chunks to be
separately scanned by slave tasks on the cluster CUs.

This way to exploit the CUs in the cluster is clearly indicated in Fig. 5.

This scheme can be easily accommodated by developing a single procedure to
be executed just for this purpose by all the slave CUs, taking as input the two
solutions to be evaluated and returning, for each of them, the number of successful
classifications over the target chunk of TR. It is up to the driver task to sum up
all the contributions to the overall accuracy value.

Notably, it has been shown that the scalability of the adopted MOEL, with
respect to the used CUs, is almost linear [32]. This means that, whenever needed,
additional CUs can be used so to effectively deliver reduced runtimes. Finally, we
can underline that the effort required by the accuracy evaluation depends on the
complexity of the rule base. As such a complexity typically becomes smaller and
smaller as the population evolves, the execution time for each iteration significantly
decreases as the algorithm proceeds towards its completion.
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Fig. 5 Outline of the distributed computation approach adopted in the evolutionary proce-
dure.
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4 Experimental Results

In this section we show the results of an experimental study for the evaluation of
DPAES-FDT-GL. In the following we take two main aspects into consideration:
(1) evaluation of the solutions provided by the algorithm in terms of classification
accuracy, complexity, and interpretability; (2) comparison of the algorithm with
the original DPAES-RCS. Moreover, in order to disentangle the contribution of
the FDT from that of the granularity learning, we performed a comparison with
DPAES-FDT, which adopts the FDT for generating the initial rule set, but no
granularity learning during the evolutionary process.

The eight datasets used in the experiments are listed in Table 1, along with
their number of instances, attributes (both numerical and categorical), classes,
and their size. The datasets have been collected from the UCI1 and the LIBSVM2

repositories.

Table 1 Datasets used in the experiments: n and c denote numerical and categorical, respec-
tively.

Name # Instances # Attributes # Classes Size

Covertype 2 (COV 2) 581 012 54 (n:10, c:44) 2 75.2 MB
Covertype 7 (COV 7) 581 012 54 (n:10, c:44) 7 75.2 MB
eCO (ECO) 4 178 504 16 (n:16) 10 534 MB
eME (EME) 4 178 504 16 (n:16) 10 535.2 MB
Higgs (HIG) 11 000 000 28 (n:28) 2 8.04 GB
Kddcup 2 (KDD 2) 4 856 151 41 (n:26, c:15) 2 476 MB
PokerHand (POK) 1 025 010 10 (c:10) 10 24.5 MB
Susy (SUS) 5 000 000 18 (n:18) 2 2.40 GB

For each dataset, we performed a five-fold cross validation. The experiments
have been carried out using Apache Spark 2.2.0 over a small computer cluster; we
used up to 7 machines, one master node and up to 6 workers. Both the master
and the workers are supplied with 4 vCPU, 8GB of RAM, and 160 GB Hard
Drive. All the machines run Ubuntu 14.04. The datasets are stored on the Hadoop
Distributed File System. In all the experiments we used the standalone cluster
manager provided by Apache Spark.

The parametrization used for DPAES-FDT-GL and DPAES-FDT is reported
in Table 2, and the values have been devised starting from the experience with
DPAES-RCS [32]. Regarding the number of evaluations, for most of the datasets,
we experimentally verified that the evolutionary optimization process has a similar
behavior as the one discussed in [9], where we showed that 50,000 fitness evalu-
ations allow obtaining Pareto fronts statistically equivalent to the ones achieved
after 1 million evaluations. For the sake of brevity, we do not report this analysis
in the paper. Since each iteration of the (2+2)M-PAES requires two fitness eval-
uations, it follows that 50,000 fitness evaluations correspond to 25,000 iterations.
Regarding granularity learning, we let the number of fuzzy sets per partition vary
between Tmin = 3 and Tmax = 7. In fact, considering the employed strong triangu-

1 Available at https://archive.ics.uci.edu/ml/datasets.html
2 Available at www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

https://archive.ics.uci.edu/ml/datasets.html
www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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lar fuzzy partitioning scheme, the first and last fuzzy sets are tied to the ends of the
universe, thus a meaningful learned partitioning requires at least three fuzzy sets.
Furthermore, according to psychologists, to preserve interpretability, the number
of linguistic terms per variable should be in the range 7±2. This is due to a limit of
the human information processing capability [46]. Thus, for the sake of simplicity,
we set Tmax = 7. Moreover, in our first work on granularity learning, discussed in
[4], we showed that using 7 or 9 as Tmax yields similar results.

Table 2 Values of the parameters used in the experiments for DPAES-FDT-GL and DPAES-
FDT.

Parameter Description Value

Nval Total number of fitness evaluations 50000
AS (2+2)M-PAES archive size 64
Mmax Maximum number of rules in a virtual RB 100
Tf Number of fuzzy sets for each continous attribute Xf 7
PCR

Probability of applying crossover operator to CR 0.6
PCT

Probability of applying crossover operator to CT 0.5
PCG

Probability of applying crossover operator to CG 0.5
PMRB1

Probability of applying first mutation operator to CR 0.1
PMRB2

Probability of applying second mutation operator to CR 0.7
PMT

Probability of applying mutation operator to CT 0.6
PMG

Probability of applying mutation operator to CG 0.2
Tmax Maximum number of fuzzy sets for each linguistic variable 7
Tmin Minimum number of fuzzy sets for each linguistic variable 3

As previously described, for each dataset the initial RB has been obtained
exploiting the multi-way version of the distributed FDT algorithm [52], along
with a uniform discretization with Tmax = 7 linguistic values for each numeric
attribute. As suggested in [52], we limited the minimum number of instances per
leaf to 0.1% of the total number of instances. Moreover, we set the maximum tree
depth β to 10 so to generate sufficiently complex rules, yet limiting their total
number. The average number of generated rules, as well as the average number of
selected features, are reported in Table 3.

Table 3 Values of the parameters used for the distributed FDT algorithm, and average num-
bers of rules and attributes in the RBs extracted from the generated FDTs.

Dataset min # inst. per leaf Rules Attributes

COV 2 1 13 392.8 12.0
COV 7 1 18 176.2 53.0
ECO 334 6 683.0 13.0
EME 334 9 226.6 16.0
HIG 880 4 138.0 21.0
KDD 2 391 451.6 22.2
POK 80 28 561.0 5.0
SUS 400 10 770.0 18.0
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4.1 Experimental Evaluation of DPAES-FDT-GL

In this section, we discuss the results of an experimental evaluation of DPAES-
FDT-GL. In order to provide a thorough evaluation of the proposed algorithm,
we analyzed the Pareto front approximations generated during the optimization
process by means of previously proposed methods [32]. First, for each fold, we
extracted and sorted the Pareto front by decreasing accuracy; then, we selected
three solutions: FIRST, MEDIAN and LAST, as the most accurate, the median
solution in the set and the least accurate, respectively, with respect to accuracy.

Table 4 shows, for each dataset and for each representative solution, the average
values and the standard deviations of the accuracy achieved on both the training
(AccTra) and test (AccTst) sets, of the average values and the standard deviations
of the complexity (TRL) and of the number (NNDS ) of non-dominated solutions
contained in the archive at the end of the evolutionary process.

First, in Table 4, we observe highly competitive results (a comparison with
the state-of-the-art is provided in Section 4.2), while the TRL is still reasonable.
Thus, we can conclude that DPAES-FDT-GL is able to generate both accurate
and interpretable systems. Furthermore, by comparing the accuracies obtained on
the training and test sets, we observed that little or no overtraining occurs.

In order to better characterize the interpretability of the provided solutions,
in Table 5 we report M , F̂ , and #Fset for the FIRST, MEDIAN and LAST
solutions generated by DPAES-FDT-GL. Here, M is the average number of rules,
F̂ is the average number of selected features, and #Fset represents the average
number of fuzzy sets obtained via granularity learning for each selected numerical
feature. Interestingly, both the number of selected rules and the number of features
are quite low, suggesting that the learned RB is highly interpretable. Moreover,
the mean number of fuzzy sets per feature is lower than 5, suggesting that the
granularity learning does indeed help in producing more intepretable systems.

Finally, comparing the number of rules M with TRL we observe that the
average rule length (not shown here) is typically very low, suggesting that the
RBs are mostly composed by generic rules.

Table 6 shows, for each dataset, the average execution time for DPAES-FDT-
RCS (in seconds) as well as its standard deviation. Execution times have been
measured on a cluster with 6 slaves, equipped with 4 cores each, for a total of 24
cores. Both the total execution time and the runtime for the distributed evolu-
tionary optimization phase (DEO) are reported. We observe that the DEO phase
is the most time consuming one. The runtime is primarily affected by two factors:
the number of instances in the dataset, and the TRL of the evaluated solutions.

To give an example of the results provided by DPAES-FDT-GL, we show the
MEDIAN solution obtained on the first fold of SUSY3 dataset. As reported in
Table 4, the MEDIAN solution performs well both in terms of accuracy and TRL.
SUSY is a binary classification problem to distinguish between a signal process
that produces supersymmetric particles and a background process that does not.
The data have been produced using Monte Carlo simulations, and are character-
ized by 18 attributes. The first 8 features are kinematic properties measured by
the particle detectors in the accelerator. The last ten features are functions of the
first 8 features; these are high-level features derived by physicists to help discrim-

3 The SUSY dataset is available at https://archive.ics.uci.edu/ml/datasets/SUSY

https://archive.ics.uci.edu/ml/datasets/SUSY
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Table 4 Average values and standard deviations of the accuracy on the training and test sets and of TRL of the FIRST, MEDIAN and LAST solutions
and average values and standard deviations of the number of non-dominated solutions generated by DPAES-FDT-GL.

FIRST MEDIAN LAST

Dataset AccTra AccTst TRL AccTra AccTst TRL AccTra AccTst TRL NNDS

COV 2 75.843± 0.002 75.767± 0.003 107.4± 23.6 75.378± 0.002 75.320± 0.003 43.4± 11.8 66.153± 0.097 66.203± 0.096 12.2± 7.5 37.0± 7.5
COV 7 67.649± 0.012 67.618± 0.012 11.4± 3.0 67.611± 0.011 67.582± 0.012 8.8± 1.8 67.172± 0.007 67.157± 0.007 5.8± 0.8 7.0± 2.8
ECO 76.261± 0.005 76.266± 0.005 101.2± 24.9 74.069± 0.007 74.074± 0.007 34.6± 10.3 56.816± 0.089 56.801± 0.089 5.0± 0.0 37.8± 8.6
EME 81.225± 0.005 81.193± 0.005 136.8± 23.0 78.997± 0.007 78.981± 0.007 50.2± 26.4 62.793± 0.039 62.793± 0.039 5.8± 1.8 44.8± 6.6
HIG 65.040± 0.003 65.035± 0.004 48.4± 23.2 63.625± 0.007 63.610± 0.007 22.0± 1.7 58.718± 0.003 58.697± 0.003 6.2± 1.5 24.2± 7.0
KDD 2 99.886± 0.008 99.886± 0.010 24.6± 6.5 99.883± 0.008 99.882± 0.009 13.6± 2.5 94.423± 0.094 94.415± 0.094 5.4± 0.5 15.0± 4.8
POK 61.778± 0.011 61.806± 0.001 90.2± 7.1 56.061± 0.008 55.989± 0.008 37.6± 5.7 49.870± 0.009 49.822± 0.009 9.2± 3.3 55.2± 4.3
SUS 78.628± 0.004 78.608± 0.004 63.0± 17.1 78.362± 0.006 78.361± 0.006 28.2± 8.3 72.525± 0.052 72.521± 0.052 7.4± 3.8 28.0± 5.3
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Table 5 Average values and standard deviations of the number of rules (M), the number of

attributes (F̂ ), and the average number of fuzzy sets in the partition (#Fset ) for the FIRST,
MEDIAN and LAST solutions generated by DPAES-FDT-GL. Please note that the dataset
POK has no numerical feature.

FIRST MEDIAN LAST

Dataset M F̂ #Fset M F̂ #Fset M F̂ #Fset

COV 2 20.8± 3.3 11.4± 0.5 4.4± 0.2 12.4± 2.4 9.4± 0.5 4.5± 0.3 7.6± 3.1 6.4± 2.7 4.0± 0.3
COV 7 7.0± 1.2 9.2± 2.4 3.7± 0.2 6.8± 1.1 7.2± 1.9 3.9± 0.3 5.8± 0.8 4.6± 0.9 3.8± 0.3
ECO 21.2± 3.3 11.6± 0.5 4.6± 0.2 10.2± 2.3 10.2± 0.9 4.5± 0.2 5.0± 0.0 3.6± 0.5 4.7± 0.3
EME 28.6± 4.7 14.2± 0.8 4.8± 0.3 14.4± 5.1 11.0± 2.3 4.7± 0.2 5.4± 0.9 2.8± 1.9 4.7± 0.3
HIG 14.0± 1.7 12.2± 2.1 3.7± 0.2 9.0± 1.7 9.4± 0.6 3.7± 0.1 6.4± 1.5 5.4± 0.6 3.7± 0.2
KDD 2 10.8± 1.8 9.8± 2.2 3.9± 0.3 7.2± 1.1 7.6± 1.7 3.9± 0.3 5.4± 0.5 4.2± 0.4 3.9± 0.3
POK 41.6± 3.1 5.0± 0.0 - 19.4± 3.0 5.0± 0.0 - 6.6± 1.3 4.2± 0.4 -
SUS 14.6± 2.7 12.4± 0.9 4.3± 0.2 9.0± 1.6 10.2± 1.3 4.2± 0.2 6.6± 2.5 4.8± 1.5 4.2± 0.2

Table 6 Average computation times (in seconds) and standard deviations for the distributed
evolutionary optimization (DEO) phase and the overall algorithm (Tot).

Execution Time (s)

Datasets DEO Tot

COV 2 6 245± 1 115 7 165± 1 191
COV 7 4 965± 718 5 147± 671
ECO 23 895± 6 449 24 836± 6 416
EME 27 189± 3 060 28 088± 3 047
HIG 53 749± 9 780 54 821± 9 805
KDD 2 13 470± 1 033 14 310± 1 033
POK 3935± 422 3 964± 421
SUS 32 010± 6 697 32 611± 6 690

inate between the two classes. In the following the features will be labelled as:
lepton 1 pT , lepton 1 η, lepton 1 φ, lepton 2 pT , lepton 2 η, lepton 2 φ, missing en-
ergy magnitude, missing energy φ, MET rel, Axial MET, MR, M TR 2, R, MT2,√

ŜR, M∆R
, ∆ΦRβ and cos(θR+1). More information about the attributes can be

retrieved in the original manuscript [13].
Fig. 6 shows, for each continuous attribute, both the original uniform fuzzy

partition (dashed line), and the learned fuzzy partition (solid line) of the MEDIAN
solution. The corresponding RB is shown in Fig. 7. Here, the labelling of the
fuzzy sets depends on the granularity of the partitioning: for 3 fuzzy sets we used
low, medium and high, while for 7 fuzzy sets we used very low, low, medium-low,
medium, medium-high, high and very high. The labelling for 4, 5 and 6 fuzzy sets
has been obtained by interpolating in between. It is worth noticing that the RB
is composed of only 7 rules, with a maximum of 3 antecedents each.

4.2 Comparison of DPAES-FDT-GL with DPAES-FDT and DPAES-RCS

In this section, we experimentally compare the performances of DPAES-FDT-
GL with DPAES-FDT and DPAES-RCS, the baseline MOEL scheme from which
DPAES-FDT-GL and DPAES-FDT have been derived. We underline that in [32]
it has been shown that DPAES-RCS is highly effective when compared to other
state-of-the-art algorithms, such as distribute decision trees and the Chi-FRBCS-
BigData.
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Fig. 6 Uniform fuzzy partitions (dashed line) and learned fuzzy partitions (solid line) of the
attributes of the MEDIAN solution obtained at the end of the evolutionary process on the
SUSY dataset.

IF missing energy magnitude IS ’very low’ AND MR IS ’very high’ AND

cos(θR+1) IS ’low’ THEN Y IS TYPE 1

IF lepton 1 pT IS ’very low’ AND missing energy magnitude IS ’very low’

AND M∆R
IS ’very high’ THEN Y IS TYPE 1

IF lepton 1 pT IS ’low’ AND lepton 1 η IS ’low’ AND lepton 2 η IS ’low’

THEN Y IS TYPE 2

IF Axial MET IS ’high’ AND

√
ŜR IS ’very high’ AND cos(θR+1) IS ’low’

THEN Y IS TYPE 2

IF lepton 1 pT IS ’very low’ AND missing energy magnitude IS ’very low’

AND cos(θR+1) IS ’medium’ THEN Y IS TYPE 1

IF R IS ’high’ AND cos(θR+1) IS ’high’ THEN Y IS TYPE 2

IF missing energy magnitude IS ’medium-low’ THEN Y IS TYPE 2

Fig. 7 RB of the MEDIAN solution obtained on the first fold of SUSY. The RB, composed
of 7 rules, and characterized by a TRL of 18, achieved a classification accuracy of ∼ 78.776%
on the test set.

Hereafter, the reported results achieved by DPAES-RCS are taken from the
tables in [32]. In Table 7 we list the average values with standard deviations of the
accuracy on the training (AccTra) and test (AccTst) sets for the FIRST, MEDIAN,
and LAST solutions generated by DPAES-FDT-GL, DPAES-FDT, and DPAES-
RCS. We also report M and TRL in Table 8.

We observe that the accuracy values obtained by the three algorithms are
generally comparable across all the three solutions analyzed here. Moreover, the
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Table 7 Average accuracies ± standard deviations achieved by the FIRST, MEDIAN and
LAST solutions generated by DPAES-FDT-GL, DPAES-FDT, and by DPAES-RCS.

DPAES-FDT-GL (FIRST) DPAES-FDT (FIRST) DPAES-RCS (FIRST)

Datasets AccTra AccTst AccTra AccTst AccTra AccTst

COV 2 75.843± 0.002 75.767± 0.003 75.999± 0.002 75.988± 0.001 75.753± 0.004 75.732± 0.003
COV 7 67.649± 0.012 67.618± 0.012 68.156± 0.006 68.232± 0.007 72.383± 0.003 72.374± 0.003
ECO 76.261± 0.005 76.266± 0.005 78.498± 0.005 78.493± 0.005 77.133± 0.004 77.115± 0.004
EME 81.225± 0.005 81.193± 0.005 82.882± 0.004 82.855± 0.004 80.600± 0.008 80.570± 0.008
HIG 65.040± 0.003 65.035± 0.004 65.013± 0.003 65.010± 0.003 65.008± 0.012 64.998± 0.012

KDD99 2 99.886± 0.008 99.886± 0.010 99.866± 0.000 99.865± 0.000 99.948± 0.012 99.947± 0.012
POK 61.778± 0.011 61.806± 0.001 60.535± 0.010 60.504± 0.011 60.233± 0.006 60.221± 0.006
SUS 78.628± 0.004 78.608± 0.004 77.968± 0.003 77.954± 0.003 78.123± 0.001 78.110± 0.001

AVERAGE 75.789± 0.006 75.772± 0.005 76.115± 0.004 76.113± 0.004 76.148± 0.006 76.133± 0.006

DPAES-FDT-GL (MEDIAN) DPAES-FDT (MEDIAN) DPAES-RCS (MEDIAN)

Datasets AccTra AccTst AccTra AccTst AccTra AccTst

COV 2 75.378± 0.002 75.320± 0.003 75.375± 0.003 75.335± 0.004 74.968± 0.005 74.909± 0.005
COV 7 67.611± 0.011 67.582± 0.012 67.925± 0.006 67.988± 0.006 71.940± 0.004 71.924± 0.004
ECO 74.069± 0.007 74.074± 0.007 76.634± 0.008 76.635± 0.007 74.995± 0.011 74.984± 0.011
EME 78.997± 0.007 78.981± 0.007 80.982± 0.010 80.957± 0.010 78.221± 0.010 78.201± 0.010
HIG 63.625± 0.007 63.610± 0.007 63.711± 0.005 63.710± 0.005 64.389± 0.008 64.370± 0.008

KDD 2 99.883± 0.008 99.882± 0.009 99.865± 0.000 99.864± 0.000 99.933± 0.008 99.934± 0.008
POK 56.061± 0.008 55.989± 0.008 55.428± 0.010 55.360± 0.010 58.423± 0.008 58.430± 0.009
SUS 78.362± 0.006 78.361± 0.006 77.729± 0.003 77.707± 0.003 77.658± 0.003 77.659± 0.003

AVERAGE 74.248± 0.007 74.225± 0.007 74.706± 0.006 74.694± 0.006 75.066± 0.007 75.051± 0.007

DPAES-FDT-GL (LAST) DPAES-FDT (LAST) DPAES-RCS (LAST)

Datasets AccTra AccTst AccTra AccTst AccTra AccTst

COV 2 66.153± 0.097 66.203± 0.096 70.907± 0.035 70.955± 0.035 72.708± 0.007 72.681± 0.006
COV 7 67.172± 0.007 67.157± 0.007 67.243± 0.005 67.299± 0.006 57.921± 0.106 57.907± 0.106
ECO 56.816± 0.089 56.801± 0.089 59.864± 0.032 59.851± 0.032 56.228± 0.078 56.244± 0.078
EME 62.793± 0.039 62.793± 0.039 62.233± 0.043 62.230± 0.043 61.407± 0.061 61.391± 0.061
HIG 58.718± 0.003 58.697± 0.003 58.524± 0.016 58.530± 0.015 59.825± 0.017 59.849± 0.017

KDD 2 94.423± 0.094 94.415± 0.094 94.351± 0.094 94.347± 0.094 98.508± 0.017 98.514± 0.017
POK 49.870± 0.009 49.822± 0.009 48.313± 0.012 48.331± 0.012 48.772± 0.031 48.749± 0.032
SUS 72.525± 0.052 72.521± 0.052 71.377± 0.051 71.414± 0.051 68.131± 0.083 68.128± 0.082

AVERAGE 66.059± 0.049 66.051± 0.049 66.601± 0.036 66.620± 0.036 65.438± 0.050 65.433± 0.050

solutions generated by DPAES-FDT-GL and DPAES-FDT are always, except for
the FIRST solution of COV 2 dataset, more compact than those produced by
DPAES-RCS. However, it is worth noting that DPAES-FDT-GL solutions are
characterized, in most cases, by a lower TRL and fewer rules than DPAES-FDT
solutions.

To statistically assess the differences among the achieved accuracies and com-
plexities, we generate, for each comparison algorithm and on all datasets, a dis-
tribution consisting of the average accuracy values obtained on the test set, and
a distribution consisting of the average complexity values. Then, we apply non-
parametric statistical tests. In particular, we perform the Friedman test to compute
a ranking among the distributions, and the Iman and Davenport test to evaluate
whether there exists a statistical difference among the distributions. If the Iman
and Davenport p-value is lower than the level of significance α (it is assumed the
standard threshold value α = 0.05), we can reject the null hypothesis and affirm
that there exist statistical differences among the multiple distributions. Otherwise,
no statistical difference exists. In case of statistical difference, we apply a post-hoc
procedure, namely the Holm test. This test allows detecting effective statistical
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Table 8 Average M and TRL ± standard deviations achieved by the FIRST, MEDIAN and
LAST solutions generated by DPAES-FDT-GL, DPAES-FDT, and by DPAES-RCS.

DPAES-FDT-GL (FIRST) DPAES-FDT (FIRST) DPAES-RCS (FIRST)

Datasets M TRL M TRL M TRL

COV 2 20.8± 3.3 107.4± 23.6 22.4± 3.8 113.8± 36.5 33.6± 8.4 74.4± 23.0
COV 7 7.0± 1.2 11.4± 3.0 6.6± 1.9 11.4± 4.4 36.2± 7.3 145.0± 37.0
ECO 21.2± 3.3 101.2± 24.9 28.0± 3.5 136.6± 21.4 54.0± 16.5 168.4± 79.6
EME 28.6± 4.7 136.8± 23.0 34.2± 4.0 165.2± 35.3 58.6± 5.7 187.4± 39.8
HIG 14.0± 1.7 48.4± 23.2 18.6± 3.4 77.2± 22.3 30.2± 8.2 125.2± 40.2

KDD99 2 10.8± 1.8 24.6± 6.5 11.4± 0.5 21.8± 1.3 21.8± 4.1 35.4± 8.0
POK 41.6± 3.1 90.2± 7.1 39.0± 3.0 83.8± 6.5 50.0± 4.6 113.2± 13.3
SUS 14.6± 2.7 63.0± 17.1 18.0± 6.0 73.0± 35.6 28.0± 8.6 80.4± 33.4

AVERAGE 19.825± 2.725 72.875± 16.050 22.275± 3.262 85.350± 20.412 39.050± 7.925 116.175± 34.287

DPAES-FDT-GL (MEDIAN) DPAES-FDT (MEDIAN) DPAES-RCS (MEDIAN)

Datasets M TRL M TRL M TRL

COV 2 12.4± 2.4 43.4± 11.8 11.2± 0.8 37.2± 6.0 21.7± 7.3 38.7± 17.3
COV 7 6.8± 1.0 8.8± 1.8 6.2± 1.6 7.8± 2.5 29.4± 6.8 84.2± 25.1
ECO 10.2± 2.3 34.6± 10.3 15.0± 2.3 51.0± 11.2 45.4± 17.3 117.7± 73.4
EME 14.4± 5.1 50.2± 26.4 15.4± 1.5 56.8± 13.2 48.1± 5.9 112.0± 27.2
HIG 9.0± 1.7 22.0± 1.7 10.6± 0.9 26.8± 6.0 25.8± 6.8 78.7± 28.6

KDD 2 7.2± 1.1 13.6± 2.5 7.4± 0.9 13.4± 0.5 13.2± 2.5 19.5± 4.3
POK 19.4± 3.0 37.6± 5.7 17.2± 2.9 33.8± 6.3 35.2± 6.3 68.1± 11.8
SUS 9.0± 1.6 28.2± 8.3 9.6± 2.8 26.6± 12.3 19.9± 7.7 45.6± 25.5

AVERAGE 11.050± 2.275 29.800± 8.562 11.575± 1.712 31.675± 7.250 29.838± 7.575 70.562± 26.650

DPAES-FDT-GL (LAST) DPAES-FDT (LAST) DPAES-RCS (LAST)

Datasets M TRL M TRL M TRL

COV 2 7.6± 3.1 12.2± 7.5 5.2± 0.4 6.4± 1.7 9.2± 2.6 10.0± 3.2
COV 7 5.8± 0.8 5.8± 0.8 5.8± 1.8 5.8± 1.8 28.0± 6.4 58.2± 19.9
ECO 5.0± 0.0 5.0± 0.0 6.4± 2.1 7.6± 4.2 35.2± 10.9 54.4± 24.2
EME 5.4± 0.9 5.8± 1.8 5.4± 0.9 6.2± 2.7 44.6± 4.6 75.2± 17.3
HIG 6.4± 1.5 6.2± 1.5 5.6± 1.3 5.8± 1.3 23.2± 7.2 48.6± 21.4

KDD 2 5.4± 0.5 5.4± 0.5 5.4± 0.9 5.6± 1.3 8.0± 1.4 8.2± 1.3
POK 6.6± 1.3 9.2± 3.3 5.6± 1.3 6.0± 2.2 25.4± 3.1 34.2± 8.4
SUS 6.6± 2.5 7.4± 3.8 7.0± 1.2 7.6± 1.9 15.0± 6.9 22.0± 14.0

AVERAGE 6.100± 1.325 7.125± 2.400 5.800± 1.238 6.375± 2.138 23.575± 5.388 38.850± 13.713

differences between the control approach, i.e. the one with the lowest Friedman
rank, and the remaining approaches. Details on the aforementioned tests may be
found in [34].

Table 9 shows the results of the application of the Friedman and of the Iman
and Davenport tests on the accuracy values obtained over the test set. The null
hypothesis for the Iman and Davenport test can never be rejected (the p-values
are always greater than 0.05). Thus, we can conclude that the three algorithms
are statistically equivalent in terms of accuracy. On the other hand, it is worth
noticing that DPAES-FDT-GL and DPAES-FDT achieve the hightest ranks for
the FIRST solutions.

Table 10 shows the results of the application of the Friedman and of the Iman
and Davenport tests on the compexities. In this case, the null hypothesis associated
with the Iman and Davenport test is always rejected (the p-values are always
lower than 0.05). Thus, we performed the Holm post-hoc procedure by considering
DPAES-FDT-GL, DPAES-FDT and PDAES-FDT-GL as control approaches for
the FIRST, MEDIAN and LAST solutions, respectively. By analyzing Table 11 we
can conclude that the DPAES-RCS solutions are always statistically more complex
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Table 9 Results of the Friedman and of the Iman and Davenport tests on the accuracy
computed on the test set.

Algorithm Friedman rank Iman and
Davenport
p-value

Hypothesis

DPAES-FDT-GL 1.875
FIRST DPAES-FDT 1.875 0.7145 Not Rejected

DPAES-RCS 2.25

DPAES-FDT 1.875
MEDIAN DPAES-RCS 2 0.714 Not Rejected

DPAES-FDT-GL 2.25

DPAES-FDT-GL 1.75
LAST DPAES-FDT 2.125 0.7145 Not Rejected

DPAES-RCS 2.125

Table 10 Results of the Friedman and of the Iman and Davenport tests on the complexity.

Algorithm Friedman rank Iman and
Davenport
p-value

Hypothesis

DPAES-FDT-GL 1.437
FIRST DPAES-FDT 1.812 0.0139 Rejected

DPAES-RCS 2.75

DPAES-FDT 1.375
MEDIAN DPAES-FDT-GL 1.75 0.0013 Rejected

DPAES-RCS 2.875

DPAES-FDT-GL 1.562
LAST DPAES-FDT 1.562 0.0025 Rejected

DPAES-RCS 2.875

than those of the control algorithms. On the other hand, the complexity of the
solutions generated by DPAES-FDT-GL and DPAES-FDT are always statistically
equivalent. In conclusion, both DPAES-FDT-GL and DPAES-FDT outperform
DPAES-RCS in terms of complexity. It is worth noticing that, for the FIRST and
the LAST solutions, DPAES-FDT-GL achieves the best Friedman rank. Indeed,
as discussed above, in most of the cases, the complexities of the DPAES-FDT-GL
solutions are lower than those generated by DPAES-FDT.

Table 11 Results of the Holm post hoc procedures on the complexity for α = 0.05

i algorithm z-value p-value alpha/i Hypothesis

FIRST 2 DPAES-RCS 2.625 0.0086 0.025 Rejected
1 DPAES-FDT 0.75 0.4532 0.05 Not Rejected

MEDIAN 2 DPAES-RCS 3 0.0027 0.025 Rejected
1 DPAES-FDT-GL 0.75 0.4532 0.05 Not Rejected

LAST 2 DPAES-RCS 2.62 0.0086 0.025 Rejected
1 DPAES-FDT 0 1 0.05 Not Rejected

For an easier visual comparison of the widths of the Pareto front approxima-
tions obtained by DPAES-FDT-GL, DPAES-FDT and DPAES-RCS, in Fig. 8 we
plot, on the classification rate/TRL plane, the average values achieved by the three
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representative solutions, for all the datasets, on both the training and test sets.
Here the solutions generated by DPAES-FDT-GL, DPAES-FDT and DPAES-RCS
are reported as blue diamond, empty black circle and red plus markers, respec-
tively. The results provided in Table 7 and 8 can thus be visually evaluated, and
the trends of the results previously discussed can be easily identified.

In conclusion, we can state that employing the distributed FDT, rather than a
distributed version of the C4.5, allows the MOEL process to generate more com-
pact FRBCs. Moreover, even though we cannot find statistical differences between
the complexities of the FRBCs generated by DPAES-FDT-GL and DPAES-FDT,
the activation of the granularity learning allows us to reduce, in most of the cases,
the number of rules and the TRL of the generated classifiers. The good behaviour of
DPAES-FDT-GL can be mainly attributed to the following considerations. First of
all, the FDT learning algorithm generates fuzzy decision trees directly from fuzzy
partitions. Thus, the tree is tuned to the fuzzy partitions. On the other hand, the
C4.5 learning algorithm used in DPAES-RCS generates decision trees from crisp
partitions. Indeed, the fuzzy partitions are actually considered crisp for the execu-
tion of the learning algorithm: each fuzzy set is approximated by using a crisp set
that corresponds to the α-cut with α = 0.5, preserving the same label as in the
corresponding fuzzy set. Once the tree is learned, then the rules are extracted from
the tree and the labels re-assigned to the original fuzzy sets. Thus, the decision
tree (differently from FDT) is not tuned to the final fuzzy partitions. Second, the
granularity learning process allows reducing the number of fuzzy sets for each lin-
guistic variable. The lower the number of fuzzy sets that describe each partition,
the lower the number of combinations that can be obtained for generating classifi-
cation rules. These two aspects mainly contribute to the good behaviour exhibited
by DPAES-FDT-GL, which achieves more compact solutions than DPAES-RCS.
This result is achieved thanks to the synergy among the initial set of fuzzy rules
extracted from the FDT, granularity learning, rule and condition selection, and
fuzzy set parameter learning. Indeed, the membership function parameter learning
allows adapting the fuzzy partitions to the dataset, also when using a low number
of fuzzy sets for each linguistic attribute. Thus, the number of rules can decrease
and the accuracy increase during the evolutionary process.

As a final remark, we briefly compare the results achieved by DPAES-FDT-
GL with those obtained by a distributed multi-way fuzzy decision tree (DMFDT)
learning algorithm [53], and a distributed fuzzy associative classifier for big data
(DFAC-FFP) [52]. We highlight that DMFDT exploits the same FDT learning
algorithm used to generate the initial set of fuzzy rules in DPAES-FDT-GL, but
employs fuzzy partitions generated by a distributed fuzzy discretizer, leaves la-
belled with different classes and a weighted voting inference strategy. To this aim,
we selected HIGGS, KDD 2 and SUSY datasets. We chose only these three datasets
since the relative results are the unique ones available in both [53] and [52], where
DMFDT and DFAC-FFP were proposed. Furthermore, HIGGS and SUSY are the
largest datasets in terms of memory occupancy.

On HIGGS, DMFDT achieves the highest accuracy; the lower complexity of
both DPAES-FDT-GL and DFAC-FFP is balanced by a lower classification accu-
racy. Furthermore, while the accuracies of DPAES-FDT-GL and DFAC-FFP are
comparable, the model complexities are different by about 2 order of magnitudes.
On KDD 2, the three algorithms achieve more or less the same accuracy, but the
complexity of DPAES-FDT-GL is one order of magnitude smaller than the one
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Fig. 8 Plots of the average accuracy on the training and test sets and average TRL of the
FIRST, MEDIAN and LAST solutions generated by DPAES-FDT-GL (blue diamond markers),
DPAES-FDT (empty black circle markers) and DPAES-RCS (red plus symbol markers).

Table 12 Comparison of the average accuracies on the test set and average complexities
for DPAES-FDT-GL, DMFDT and DFAC-FFP. Complexity is measured as average number
(M) of rules and average TRL for DPAES-FDT-GL, average number of nodes and leaves for
DMFDT, and average number (M) of rules for DFAC-FFP.

DPAES-FDT-GL DMFDT DFAC-FFP

Dataset AccTst M TRL AccTst #Leaves #Nodes AccTst M

HIG 65.035± 0.004 14.0 48.4 71.253± 0.029 920,942 972,779 66.005± 0.078 9,365
KDD 2 99.886± 0.010 10.8 24.6 99.986± 0.005 703 630 99.998± 0.001 890
SUS 78.608± 0.004 14.6 63.0 79.639± 0.016 758,064 805,076 78.267± 0.050 10,970

of the two comparison algorithms. More interestingly, DMFDT achieves a classi-
fication accuracy of ∼ 79.6% on the SUSY dataset; it is ∼ 1.1% higher of that
achieved by DPAES-FDT-GL, yet it has been obtained with 805, 076 nodes and
758, 064 leaves, thus with a system of 4 orders of magnitude more complex than
the one generated by DPAES-FDT-GL. Finally, it is worth noticing that DPAES-
FDT-GL achieves better results than DFAC-FFP, with a complexity smaller by
two orders of magnitude.
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5 Conclusions and Future Work

In this paper, we have presented a novel approach, denoted as DPAES-FDT-
GL, for generating sets of fuzzy rule-based classifiers with different optimal trade-
offs between accuracy and interpretability from big data. The approach extends
DPAES-RCS, a distributed multi-objective evolutionary algorithm recently pro-
posed on the Apache Spark framework. The extensions regard two main aspects.
First, the initial set of candidate rules used in the multi-objective evolutionary
learning is extracted from a fuzzy decision tree (FDT) rather than a crisp decision
tree. The FDT is generated by a distributed learning algorithm recently proposed
by one of the authors. Second, the granularity of each numerical attribute is de-
termined during the evolutionary process. We have executed DPAES-FDT-GL on
8 big datasets and have compared the results to the ones obtained by DPAES-
RCS. Although the accuracy achieved by the fuzzy rule-based classifiers generated
by DPAES-FDT-GL is statistically comparable to the one obtained by the clas-
sifiers generated by DPAES-RCS, the models generated by DPAES-FDT-GL are
characterized by the lowest number of rules, conditions, and fuzzy sets. We can
conclude that DPAES-FDT-GL represents an important step forward in getting
interpretable fuzzy classifiers in the context of big data. Since there exists a num-
ber of real applications that require not only high accuracy, but also high inter-
pretability, we strongly believe that DPAES-FDT-GL can be a very interesting
and promising approach for such applications.

In order to disentangle the contribution of the FDT from that of the granu-
larity learning, we also performed a comparison with DPAES-FDT, a version of
DPAES-FDT-GL, which adopts the FDT for generating the initial rule set, but
no granularity learning during the evolutionary process. We observed that, when
extracting the initial set of rules from an FDT, we obtain models that are always
statistically less complex. Moreover, even though we cannot find statistical differ-
ences between the complexities of the FRBCs generated by DPAES-FDT-GL and
DPAES-FDT, we observed that the activation of the granularity learning allows
reducing, in most of the cases, the number of rules and the TRL of the generated
classifiers.

Future works will address the problem, in the specific setting of the described
approach, of bounding the size of the training set without experiencing losses
in the achieved accuracy. This aspect is crucial in dealing with Big Data, and
effective solutions can extend the practical applicability of DPAES-FDT-GL to
extremely big dataset, with no significant additional penalties in the runtimes for
the learning phase. Indeed, the main problem we have to cope with when using
EFS with Big Data is the computation of the accuracy on the overall training set.
This computation depends on the number of instances in the training set and on
the dimensionality of each instance. In Big Data generally both these numbers are
high and then require long runs before achieving satisfactory solutions. Thus, tech-
niques for reducing the number of attributes and the numerosity of the datasets,
preserving the accuracy achieved by the models, are very appealing. As regards
attribute reduction, our approach already performs a selection of attributes when
we apply the FDT algorithm for generation the initial set of rules: As regards
attribute reduction, our approach already performs a selection of attributes when
we apply the FDT algorithm for generating the initial set of rules: indeed, the at-
tributes that are considered in no decision node are removed. Furthermore, during
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the evolutionary process of RCS, attributes that are included in no rule can be
eliminated. Nevertheless, we would like to investigate an appropriate chromosome
coding for performing explicitly attribute selection during the evolutionary opti-
mization. The reduction of the instance numerosity can be performed with the
amount of approaches that have been proposed in the literature, but that need to
be adequately tuned to the specific setting of the proposed algorithm. Further, in
the past we proposed a co-evolutionary approach for instance selection [8], which
should be adapted to manage big data.
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