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Abstract 

 

Background: Traditional KANSEI methodology is an important tool in the field of psychology to 

comprehend the concepts and meanings; it mainly focusses on semantic differential methods. 

Valence-Arousal is regarded as a reflection of the KANSEI adjectives, which is the core concept in the 

theory of effective dimensions for brain recognition. From previous studies, it has been found that 

brain fMRI datasets can contain significant information related to Valence and Arousal. Methods: In 

this current work, a Valence-Arousal based meta-KANSEI modeling method is proposed to improve 

the traditional KANSEI presentation. Functional Magnetic Resonance Imaging (fMRI) was used to 

acquire the response dataset of Valence-Arousal of the brain in the amygdala and orbital frontal cortex 

respectively. In order to validate the feasibility of the proposed modeling method, the dataset was 

processed under dimension reduction by using Kernel Density Estimation (KDE) based segmentation 

and Mean Shift (MS) clustering. Furthermore, Affective Norm English Words (ANEW) by IAPS 

(International Affective Picture System) were used for comparison and analysis. The data sets from 

fMRI and ANEW under four KANSEI adjectives of angry, happy, sad and pleasant were processed by 

the Fuzzy C-Means (FCM) algorithm. Finally, a defined distance based on similarity computing was 

adopted for these two data sets. Results: The results illustrate that the proposed model is feasible and 

has better stability per the normal distribution plotting of the distance. The effectiveness of the 

experimental methods proposed in the current work was higher than in the literature. Conclusions: 

mean shift can be used to cluster and central points based meta-KANSEI model combining with the 

advantages of a variety of existing intelligent processing methods are expected to shift the KANSEI 

Engineering (KE) research into the medical imaging field. 
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1. Introduction 

 

Emotional psychology studies, including the emotional expression, emotional signal acquisition and 

processing, and emotional understanding attract the researchers’ interest. In fact, it is an 

interdisciplinary research, involving cognitive science, biomedicine, information science and other 

fields. Harmonious natural human-computer interaction [1-3] and emotional computing technology [4] 

research is inseparable from emotional psychological theory and methods. Amongst the methods of 

emotional representation, the classical method aims to cluster the emotional vocabulary and obtain a 

qualitative representation of the emotion category. Based on the expression of emotional dimension, 

psychologists have considered emotional dimension labeling on Natural Language (NL). For example, 

the ANEW (English Vocabulary Emotional Library) of the National Institute of Mental Health (NIMH), 

have manually calibrated the emotional dimensions of more than 1,000 commonly used English words. 

Bradley and Cuthbert's image emotion library (IAPS), sound emotional library (IADS), and the text 

emotional library (ANET), were all obtained by manual calibration. The basic method of manual 

calibration is to give dimension to the values of words, pictures, sounds or texts directly by many 

people, and then estimate the statistical average of the dimension of each word, picture, sound or text 

[5-8]. This has an important practical significance for the tracking of the social dynamics reflected by 

the network emotion. It also illustrated the dimensionality emotion data acquired by the ANEW 

database, which is the cornerstone of emotional computing and high-level semantic modeling. 

 

KANSEI Engineering (KE) is an innovative engineering branch that has a wide range of applications 

in automotive, toys, and in product shape design [9-13]. Recently, psychology and brain science 

research shifted the traditional KE research into new directions and brain KE was addressed 

subsequently. The mapping between the product visual observation and the expression of the human 

sensibility cannot be accurately established. However, this can be achieved under some weakened 

conditions. Human physiological body signals can be used to further develop KE. Following this 

development, brain imaging technology, such as an electroencephalograph (EEG) allows researchers to 

measure and obtain individual physiological signals [14] [15], thus emphasizing the KANSEI semantic 

recognition technology development. Furthermore, functional magnetic resonance imaging (fMRI) has 

been used to measure individual dimensions of sensitivities in neuroscience and psychology, being a 

noninvasive, space-time, high-resolution brain imaging technique. Using fMRI technology to study 

conceptual formation will assist the depth expression mechanism of KANSEI semantics. In addition, 

obtaining corresponding basic datasets of the KANSEI dimension along with brain imaging leads to 

further research perspectives on the cross fusion of KE and brain cognitive science. By using the new 

methods, including statistical learning, meta-clustering, and local preserving learning, brain imaging 

data can be used not only for pretreatment of brain conditions, but also for KANSEI conceptual 

modeling, such as KANSEI boundary calculation, and KANSEI similarity calculation. The 

development of new and effective mathematical tools will greatly reduce the expression gaps between 



high-level semantic and low-level physiological signal. Externally calibrated psychometric quantities 

can guide the product design and engineering practice, but this coarse-grained, linear external 

calibration method has a large subjective bias [16]. Many medical experiments have shown the specific 

chemosensory domain of the two brains of the mygdala and the orbital frontal cortex and the pleasure 

of human emotion - positive or negative [17-19]. Kensinger and Corkin [20], and Kensinger and 

Schacter [21] also confirmed that the use of the different emotional vocabulary of short stimulation 

(about 2 seconds) from magnetic resonance imaging data analysis to the amygdala and orbital frontal 

cortex, two parts of the signal were significantly enhanced. However, different emotional vocabulary 

and different degrees of stimulation can determine the signal characteristics corresponding to those two 

brain chemical receptors. Lewis et al. [22] observed the effect of different emotional words (affective 

words) and different levels of stimulus on specific brain areas, including orbital frontal cortex, anterior 

cingulate gyrus, brain Island, amygdala, brain stem, pontine and striatum and other parts of the active 

peak, indicating that Valence – Arousal has a high degree of correlation with these parts. Furthermore, 

it can be determined that the orbital frontal cortex and amygdala are highly related to Valence and 

Arousal respectively. The multi-voxel pattern analysis method (MVPA) working on semantic features 

of brain signals was identified in different feature spaces of the brain signals [23].  

 

Janata et al. [24] conducted a brain fMRI study of auditory and emotional information by tracking the 

activation characteristics of the Rostromedial area neurons in the prefrontal cortex. It was found that 

neurons in this region showed selective activation of different emotional intensities, where the 

activation state of the sensory neurons was maintained in the cortex as a dynamic topological map. In 

fact, other fMRI studies of stimulating emotional information have shown the presence of specific 

chemical receptors in the human brain, such as the amygdala and the orbital frontal cortex responses is 

necessarily linked [25-27]. In addition, other brain imaging methods also play an active role. Sardouie 

et al. [28] used EEG for Time-Frequency Priors. Frantzidis et al. [29] revealed a relationship between 

neuro-physiological signals and emotional states from the EEG using wavelet transform and a Support 

Vector Machine (SVM). Similarly, Murugappan et al. [30] employed the wavelet transform method 

along with fuzzy clustering analysis of the EEG data to several typical significances of the evaluation 

index. Using brain imaging techniques, researchers have demonstrated that affective stimuli have 

multiple effects on human brain activity. Of note, Hui and Sherratt [31] also used IAPS to create a 

wearable device for emotion recognition from physiological signals being the physical manifestation of 

emotional states. Thus it was proven that the study of cognitive mechanisms of brain cognition have 

important applications in medical treatment. These works built up the relationship between the 

low-level physiological emotion signals and the high-level semantic concepts, but also provide a 

scientific basis to the study of emotional word modeling in the current work. 

 

Based on this trend and demand, the current work established a meta-KANSEI calculation model 

based on the Valence-Arousal dimensional brain imaging data sets. A de-noising and dimension 

reduction method has been developed for brain imaging on a data volume, and a meta-KANSEI 

presentation method has been conducted subsequently. Since product KANSEI mining plays a key role 

in the initial “idea generation” stages of the industrial design, more accurate formal model of 

dimensional expression of KANSEI semantics that can be further applied in intelligent design, 

intelligent interactive design, and the automatic reasoning system. Consequently, a meta-KANSEI 

computing model with high interpretability has been utilized in the present work for further revealing 



the formation mechanism of product-consumer interaction evaluation.  

 

In addition, Kernel Density Estimation (KDE) based image segmenting has been employed. KDE is 

typically used in probability theory to estimate the unknown density function. KDE has been widely 

used in many fields, for example, Haben and Giasemidis [32] combined the kernel density estimation 

and quintile regression techniques for probabilistic forecasts. Miao et al. [33] created a new analytical 

approach designated as the mixture kernel density model highly accurate estimation of wind speed 

probability distributions. Yuan et al. [34] developed an efficient unsupervised feature learning 

approach with density information and the proposed method was evaluated on the assembled 

congested scene dataset. Rodrigues et al. [35] created a hierarchically structured prior, defined over a 

set of univariate density functions using convenient transformations of Gaussian processes. The 

proposed KDE framework with segmentation and mean-shift clustering based meta-KANSEI modeling 

for brain Valence-Arousal fMRI dataset is illustrated in Fig. 1. 
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Figure 1. The frameworks of meta-KANSEI modeling employing mean-shift clustering and kernel 

density estimation segmenting of brain Valence-Arousal fMRI dataset 

 

As illustrated in Fig. 1, after segmentation, the proposed approach in the current work learns the 

central sets of the meta-KANSEI model. k-means clustering was widely used because of its simplicity. 



However, there are some problems, such as over-reliance on sample banks, prior knowledge, and lack 

of stability. Furthermore, fuzzy c-means (FCM) was used as an improvement to k-means to solve 

practical problems. In the current work, the mean shift-based clustering was developed and improved 

for fMRI dataset clustering [36].  

 

The mean shift algorithm is an effective statistical iterative algorithm which is a randomly selected 

region with center “ o ” and radius “ h ” in the sample and obtain the average of all the sample points 

in the region. The sample density at the center must be smaller or equal than the sample density at the 

mean. Afterwards, the same steps are repeated with the mean value as the new center until converging 

to the maximum density. The mean shift is an algorithmic process, which is simple and easy to 

understand, so the iterative efficiency is very high. However, to ensure more accurate and efficient 

algorithm, while also depending on the iterative bandwidth at the middle of the set, the bandwidth of 

the iterative results for different results have a very important impact. Recently, many methods have 

been proposed to solve this problem, but these methods make the calculation more complicated and the 

iterative efficiency is reduced [37]. Therefore, it is necessary to improve the kernel function bandwidth 

selection for the applied algorithm to the practical problems. The mean shift method is widely used in 

images clustering. Ghassabeh [38] introduced the mean shift algorithm with Gaussian kernel. Ibrahim 

et al. [39] proposed the Interdependence Adaptive Scale Mean Shift (IASMS) algorithm for eye 

tracking. Duong et al. [40] developed a nearest neighbor estimator of the order derivatives of the 

probability density function using mean shift clustering. Consequently, Chen et al. [41] improved a 

Mean Shift Tracking (MST) algorithm and an Expectation-Maximization (EM)-like (IEML) for the 

query Region of Interest (ROI) of image. For fMRI dataset processing, Ai et al. [42] examined the 

temporal characteristics of acquired fMRI data with Mean-Shift Clustering (MSC) for fMRI analysis to 

enhance activation detections. Ghassabeh and Rudzicz [43] investigated the connection between the 

asymptotic bias of the well-known Nadaraya-Watson kernel regression and the Mean Shift (MS) vector 

with the Gaussian kernel.  

 

2. Methods 

2.1 Meta-KANSEI mapping of fMRI data 

 

The obtained evaluation of the KANSEI state description corresponds to discrete points in emotional 

space. The Valence-Arousal space provides the basis for the quantitative representation of KANSEI 

semantics. However, people are more accustomed with emotional words to express emotional state. 

Coarse-grained emotional words have easy to understand features. Therefore, it is necessary to 

combine high-level semantic interpretation of KANSEI information with ANEW, which is a kind of 

emotional lexicon system of the National Institute of Mental Health (NIMH) to obtain fine-grained 

KANSEI semantic representation.  

 

The emotion recognition based on brain imaging was applied after the coarsening of KANSEI 

semantics. The brain imaging data was correlated with sensory vocabulary. Typically, the KANSEI 

semantic recognition based on brain imaging is considered as the main problem to establish the 

KANSEI semantic computing model. The brain imaging mode corresponding to the different sensory 

vocabulary was examined by clustering. Furthermore, the main pattern recognition methods, such as 

the Artificial Neural Network (ANN), SVM or Fuzzy Inference System (FIS), can solve the 



effectiveness of the recognition problem, especially to reduce the dimensionality of the brain imaging 

data to compare the effectiveness of the method. The main contribution of the current work is to 

validate the meta-KANSEI modeling method under the mapping with meta-KANSEI and fMRI dataset 

as show in Fig. 2. 
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Figure 2. Mapping between of meta-KANSEI and fMRI dataset 

 

 

The mapping relation can be the basic research for meta-KANSEI modeling, in fact, the mapping 

relation is based on the features of fMRI dataset and a certain KANSEI adjective such as 

1 2, ,... nK K K . 

 

2.2 Meta-KANSEI modeling 

2.2.1 The model presentation 

 

The meta-sensible semantic representation can be divided into hyper-plane, super (ellipsoidal) and 

mixed type by a central topological type. This section first constructs a new multi-dimensional sensory 

information representation and processing system. The KANSEI semantics in a multi-dimensional 

eigen-space is essentially an abstraction, which is a multi-dimensional dataset with spatial topological 

structure and uncertainty measure. This can be formalized as a four-tuple , , ,U P d   , where 

U is the universe of discourse, P is a node set with topological structure representing a typical set of 

entities, d  is a distance measure defined on U , 
 

is a Probability Density Function (PDF) 

defined on the measure space, which reflects the concept of concentration. This representation is 

particularly suitable for the organization and expression of multi-dimensional KANSEI semantics as 

well as the semantic reasoning of indeterminate information. In addition, this topic will study the 

KANSEI semantic information corresponding to the KANSEI body topology. In terms of topological 

structure, the information bodies of meta-nonsensibility have multi-dimensional nodes, hyper-planes, 

hyper-sphere or hyper-ellipsoid structures. Any KANSEI information semantic feature can be 

sufficiently close to the probability of the KANSEI body or can be described by a probability 



distribution defined in the distance space, which essentially measures the uncertainty of the 

meta-sensory body boundary, and its granularity which is represented by the topological structure of 

the KANSEI body and the concept density distribution function. 

 

2.2.1.1 Definitions on kernel of meta-KANSEI 

 

Definition 1: suppose that universe is  , P is a KANSEI evaluation, 

P  , 1 2{( , ,..., ) :n iE E E E P    , iE is the i -th dimensional of P . Hence, in 

Valence-Arousal space, let ( , )P Valence Arousal , which can be simplified as: 

( , )P v a , {( , ) | , }v a v a R  
                     

(1) 

where v , a  are the Valence and Arousal values of a given KANSEI adjective respectively. 

 

Definition 2: given a metric d    in Valence-Arousal space satisfying: 

2 2 2( ) ( )d P P v a d                                    (2) 

2 2 2( ) (( ) ( ) ( ) ), ,P Q P Q P Qd P Q P Q v v a a d d P Q          
 

(3) 

, , ,R P Q    , where: 

2 2 2( ) ( ) ( ) ( )P Q P Q P Qd P Q P Q v v a a d d                  (4) 

 

Obviously, from (4): 

( ) | | ( ) | | | ( )d P Q d P d Q                                  (5) 

 

Definition 3: for point set{ | 1,2, }l

kP l  , the kernel point is defined as: 

1 2[ , , ]l l l l

k k k k kn

l l l l

P P P P P        (6) 

where 
l

kiP presents the l th point of the k th meta-KANSEI’s i th dimension. 

 

Definition 4: kP  , there has a kP  centered neighborhood
kPN 

: 

{ | , }
kP kN X P X X                                    (7) 

 

Definition 5: Upper Approximation Boundary: 

{ | }
K

u

B l l PUP P P N 
                            

(8) 



 

Definition 6: Lower Approximation Boundary: 

{ | }
K

t

B l l PLP P P N 
                              

(9) 

 

The boundary is \ ( , )B B BP UP LP B u t  , and ( )B K B KP P P P   , [0,1] as shown 

in Fig. 3. 

Pk

ρk N
t
Pk

u
PkN

 

Figure 3. The structure of meta-KANSEI model 

 

Normally, there are three types of kernels in the model, being single, flat and sphere. In the present 

research, we used the sphere kernel for calculation due to its symmetrical characteristic, so that we can 

calculate all directions using the same algorithm. 

 

Definition 4: single point kernel 

 

For KANSEI K , if the distribution of a given KANSEI adjectives in Valence-Arousal is a single 

point, so the kernel of the meta-KANSEI can be defined as: 

1
{ }, ( ( ))

i

K K i i

P K

P P P P
K




 
                   

(10) 

where ( )iP  is the density of iP . 

 

Definition 5: Sphere kernel: 

{ | }
Kj j PP P N                                          (11) 

where 

'

1
( ( )), '

'
i

K i

P K

P P Pi K K
K




 
 

and ' { | ( ) }i j TK P P   . T  
is a constant 

used to limit the size of the kernel. Essentially, the kernel is a sphere with radius   and the center of 

the sphere KP  is considered the center of gravity (the center of gravity in the sense of probability 

density) of a sphere whose density is greater than a given value which is a threshold for controlling the 

population of the model. 

 



Definition 6: The planet set kernel is defined as the union of multiple sphere kernels as { }K
i

P , 

where KP  subjected to equ. (11), where a set of planes, or a set of discrete points and kernels, for the 

union of multiple sphere cores is belonging to the approximation plane. 

 

2.2.1.2 The definition of emotion cell element 

 

The shell of the meta-KANSEI model reflects the range of the model, which is a boundary of 

uncertainty. However, it is uncertain due to the soft membrane. An approximate boundary for the 

definition of a shell associated with a given conspiracy parameter is defined as follows: 

 

Definition 7: Define the upper approximation shell of the variable domain (Upper Shell) 

is { | }u

KB l l PUP P P N


 
 

and the lower approximation shell of the variable domain (Lower Shell) is 

{ | }l

KB l l PLP P P N


  . Then, the cell shell is variable neighborhood band, which is given by 

\B B BP UP LP
 

noted as ( , )g x y , parameters x , y  are related with density function which will 

be acquired from the density function, and KP is the corresponding single-point set, sphere set and 

plane set of the kernel. 

 

2.2.2 Kernel density estimation segmenting for fMRI dataset 

 

The proposed modeling method and definitions in Section 2.2.1.1 shows that the model is a probability 

model, and KDE also is calculated using probability. The computing method is introduced by Defs. 4-6 

A simple kernel density estimate produces an estimate of the probability distribution function ( )f x of 

the load x using past observations { }ix is given by: 

 

1

1ˆ ( ) ( )
n

i
h

i

x x
f x K

nh h


 

                     

(12) 

where ( )k  is the kernel and 0h  is a bandwidth (i.e. smooth parameter) Several types of kernel 

functions are commonly used, including uniform, triangular, cosine, triweight, Epanechnikov, and 

Gaussian as follows: 

(1) Uniform: 
1

( )
2

K u   

(2) Triangular: ( ) (1 | |)K u u   



(3) Cosine: ( ) Cos( )K u u  

(4) Epanechnikov: 
23

( ) (1 )
4

K u u   

(5) Triweight:
2 335

( ) (1 )
32

K u u   

(6) Gaussian: 

21

2
1

( )
2

u

K u e




  

Fig.4 illustrates the kernel histogram as examples for KDE (bandwidth distribution approximated is 

Gaussian distribution). 

 

 

-3 -2 -1 0 1 2 3

0.05

0.10

0.15

0.20

0.25

0.30

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

0.2

0.4

0.6

0.8

1.0

 

 

(1) Uniform kernel     (2) Triangular Kernel    (3) Cosine kernel 

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

0.5

0.6

-3 -2 -1 0 1 2 3

0.1

0.2

0.3

0.4

 

(4) Epanechnikov Kernel (5) Trweight Kernel  (6) Gaussian kernel 

 

Figure 4. Typical KDE kernels 

 

In the current work, the Gaussian kernel was adopted for bandwidth, where the basic KDE algorithm is 

as reported in Algorithm 1 [62]. 

 

 

Algorithm 1: Basic Kernel Density Estimation 

Start 

Input the dataset 1 2{ , ,..., }nX x x x  

Find m grid points subjected that to
max min

min

( )
i

x x
y x i

m


  , 1,2,...,i m  

Compute the bandwidth for KDE as { , } bIQR
Min n

c
 

 



Calculate the KDE using Eqn. (12)  

Find the first local minimum point of KDE as 
*

jy  

If pixel 
*

i jx y
 

then set the pixel in foreground  

Else set the pixel as background 

Endif 

End 

 

Where, is the standard deviation of X , IQR (interquartile range), which is the measure of statistical 

dispersion and equals to the difference between the upper and lower quartiles, and b is a given 

constant. Therefore, the proposed Gaussian based KDE algorithm in the current work is given in 

Algorithm 2. 

 

Algorithm 2: Proposed Gaussian based KDE algorithm 

___________________________________________________________________ 

Start 

Set the initial values as 0k   

Set the foreground of fMRI’s mean and standard deviation be 
f and

f and background of fMRI’s 

mean and standard deviation be b and b  , 
f  and b  are set to the first and third 

quartiles of pixel intensities in one spot.  Initial 
f  and b  are the standard deviations of 

the pixel intensities below the first quartile and above the third quartile, respectively. Initial 

1  and 2  values are set to 0.5. 

Define

2

2

( )

22

2

1
( , , )

2

i m

m

x

m i m m

m

f x e



 





  

Calculate

( ) ( ) 2( )
( )

( ) ( ) 2( ) ( ) ( ) 2( )

1 1 1 1 2 2 2 2

( , , )

( , , ) ( , , )

k k k
k m m i m m

im k k k k k k

i i

f x

f x f x

  


     



 

Calculate new estimates using:  

( 1) ( 1) ( 1) 2( 1)

( ) ( ) ( 1) 2

( ) 1 1

( ) ( )1

1 1

{ , , , 1,2,...}

( )
1

{ , , , 1,2,...}

k k k k

m m m

n n
k k k

im i im i mn
k i i

im n n
k ki

im im

i i

m

x x

m
n

   

  



 

   



 



 

 



 
 


 

 

If 
( 1) ( )log( ( ) log ( )k kL L t    (a given tolerance) then end 



Else 1k k  ,
( ) ( 1)k k    Goto calculating 
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Endif 
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Segment the pixel ix into foreground or background based on 
( 1)k

im 
(it is the maximum of posterior 

probabilities of final values) 

End 

 

Where,
f and b as the first and third quartiles of pixel intensities,

f be the standard deviation of 

pixel intensities below the first quartile and b be above the third quartile of the same. 1 2

1

2
    

The main goal of the work is to segment the fMRI images. Then, sub images will undergo clustering to 

find their central points and be compared with ANEW experiments. Consequently, to validate the 

meta-KANSEI modeling methods, the clustering algorithm was introduced in Section 3.2.3. 

 

2.2.3 Mean shift clustering for fMRI dataset 

 

Introduce the Gaussian mean shift and given n  sample points in d -dimensional Eula space-  as 

{ , 1,2,..., }ix i n . The kernel density estimation formula is expressed using the Gaussian kernel 

function 
2|| ||1

( )
(2 )

x

N
d

K x e




 

and the positive definite d d  bandwidth matrix iH
 

as: 
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|| ||

1

1 1ˆ ( )
2 | |

i Hi

n
x x

id
i i

f x w e
H





 
               

(13) 

where iw
 

represents the weights of sample points { , 1,2,..., }ix i n  subjected to 
1

1
n

i

i

w


 , and 

( ) ( )i i ix x H x x   indicates the covariance distance of the data. It is an effective method to 

calculate the similarity of two unknown sample sets, where ˆ ( )f x is the sum of the weighted Gaussian 

kernel at each point. The estimation on density gradient is given by: 
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where xH
 

is given by: 

2

2

1
|| ||

2

1

1
|| ||

2

1

1

| |

1 1

| |

i Hi

i Hi

n x x

i i

x n x x

i ii

e
H

H

e
HH

 



 








                      

(15) 

Replace ˆ( )f x :  
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Thus, 
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 is known as the mean shift vector denoted as ( )m x , given by: 
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From equation (17), let 
2H h I , thus: 
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Define ( ) ( )M x m x x  , thus the definition of the kernels type is: 

2( ) || ||K x k x                                       (19) 

where k  is non-negative, non-increasing and piecewise continuous and 
0

( )k r dr


  , where flat 

kernel is 
1

( )
0

x
k x
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
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 
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and 
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with standard deviation parameter   as the 

bandwidth parameter. Typically, the mean shift is a hill climbing algorithm shifting the kernel 

iteratively to higher density region. In addition, the mean shift vector will be toward the maximum 

direction of density. For image clustering, the pseudo-code of the mean shift algorithm is used as 

presented in Algorithm 3: 

 

 

Algorithm 3: MEAN_SHIFT (ser, p) 



Input:   p-X POINTS, ser 

Output: pre_w 

 [m n]size(ser) 

Tmpdouble(ser) 

pre_wtmp(p) 

   pointp 

While 1 

ser=tmp-pre_w; 

For i1 to m*n 

If i <> point 

ser(i)ser(i)/(i-point) 

Endif 

Endfor 

serser.^2 

//GAUSSIAN KERNEL 

K(1/sqrt (2*pi)) * exp(-0.5*ser)        

Wsum (tmp. * (K))/sum(K) 

//GIVEN A THRESHOLD 0.01 

If abs(w-pre_w) < 0.01 

Goto End 

Endif 

pre_ww;  

End While 

End 

 

Afterwards, the k -mean algorithm is used in the present work, which has been widely used in 

clustering in order to validate our model by employing the combined dataset from the fMRI calculation 

and the IAPS experiment. The k-mean algorithm goal is to find the centers of the group that have a 

significant role in the comparison process during the current work. The proposed algorithm works by 

dividing n  samples into k  groups, and randomly selecting one element in each group as the cluster 

center. Then, the distance from other sampling points to the center is obtained. The sampling points are 

classified into the class with the smallest Euclidean distance. The average of the sampling points in the 

newly formed cluster is calculated and a new cluster center is obtained. This procedure is repeated until 

each sample is categorized correctly. Generally, the k-means clustering algorithm is a non-parameter 

classification method, which is more suitable for the unknown/non-normal distribution data for image 

segmentation. The algorithm performs the clustering more accurate when handling these data. At the 

same time, the k-means clustering algorithm principle is simple and easy to understand. It can be easily 

realized efficiently. The pseudo-code of K-mean is presented in Algorithm 4, 

 

Algorithm 4: K-MEANS ALGORITHM 

INPUT the data objects N  

SELECT arbitrarily k objects as the initial cluster center 

CALCULATE the mean value of each cluster (center object) 

CALCULATE the distance between each object and the center object 



DIVIDE the corresponding object per the minimum distance 

RE-CALCULATE the mean (center object) of each cluster  

CALCULATE the standard measure function 

IF the function converges 

TERMINATES the algorithm 

ELSE 

RETURN TO the mean value calculation step 

ENDIF 

END 

 

In practice, the image object is not strictly distinguished from the category attribute. Therefore, 

membership was used to determine the membership of each target sample for better partitioning. The 

FCM clustering algorithm works by dividing n  samples into c  groups, obtaining the clustering 

center of each group, which finally minimizes the objective function of the non-similarity index. The 

algorithm assigns the membership degree between 0 and 1 to each sample point and judges the degree 

to which the samples belong to each classification by the membership value. At the same time, there is 

a membership of the provisions of a sample plus one value. The FCM clustering algorithm gives the 

membership degree of this method to determine the target sample attribution, making the target 

classification more reasonable. However, the choice of the initial value is very important for the 

algorithm. If the selected initial value is too far from the global cluster center then the iteration 

convergence rate will decrease and the number of iterations may increase, which will increase the 

computation time. At the same time, per the algorithm principle, the algorithm must be set before 

several clusters to allow the algorithm to continue. However, in practice, determining several classes is 

very difficult. Therefore, for FCM clustering, the choice of initial values and the number of classes 

determine how to make the global optimization of clustering become the key problem of clustering. 

 

The FCM’s objective is to find a finite set of 1 2{ , ,... }nX x x x
 

into c-fuzzy clusters under selected 

criterion. The outputs is c cluster centers as 1 2{ , ,... }cc c c , where m  is any real number greater 

than 1, and   is a termination criterion between 0 and 1. The pseudo-code of FCM is given in 

Algorithm 5. 

 

 

Algorithm 5: FUZZY C-MEANS ALGORITHM  

__________________________________________________________________________________

_ 

Input: 1 2{ , ,... }nX x x x , cluster numbers: c  

Output: 1 2{ , ,... }cc c c and ijw  

Initialize: { }ijW w matrix
(0)W  



At k -Step: calculate the centers vectors
( ) { }k

jC c with
( )kW  
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Update 
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If
( 1)|| ( ) ||kW W k    || Then  

Goto End 

Else 

Return to calculating the centers vectors 

Endif 

End 

 

3. Results and discussion 

 

3.1 fMRI data acquisition and processing 

 

In the current work, the aim was to obtain brain imaging data under KANSEI stimulation for the case 

of brain imaging studies of inductive information alone. For this experiment, it was necessary to 

determine the source of the sensory information (the standard stimulus media), the population to be 

tested, and the course of the operation. In the selection of standard stimulus media, the IAPS picture 

library was used. The gallery has been confirmed to have semantically highly correlated properties. In 

the current study, the IAPS subjective evaluation test program selected and edited 1000 picture data set 

as the stimulus source. The data set includes several attributes as emotion classification, style 

description, and subjective evaluation of Valence-Arousal scores and other contextual semantic 

information. The subjects were mainly college students, screening the basic criteria for the visual 

normal, no narrow space phobia and other personnel, the subjects were 50 people. The brain imaging 

equipment was GE Signa HDe1.5T. 

 

The basic process of the experiment was to fix the head of the subject with a fixed band to reduce the 

movement of the head. The subject receives sensory information stimulation (projection mirror replays 

mode). The fast spin echo (FSE) is used to acquire the anatomical image. For each group of five 

subjects, the same set of pictures was taken and the brain imaging data of the subjects were recorded 

simultaneously. Each participant completed 20 images of the brain imaging test, the total test duration 

of each subject was approximately 10 minutes, and the complete test period was 6 months. 

 



The brain imaging analysis process was divided into three stages, namely: alignment overlay, brain 

data extraction, data de-noising and dimension reduction and feature extraction. First, the alignment of 

superposition, where each image corresponding to the five brain imaging data sets is aligned 

superimposed to obtain the corresponding image of each brain image volume data set. The brain area 

data extraction is the location of the brain region that is responsible for emotional Valence response, 

emotional Arousal response area; respectively, extract the corresponding volume data. The obtained 

volume data is still high-dimensional image data, and meaningful sensibility indexes needed to be 

processed by de-noising and dimension reduction. After the data normalization processing, the 

expected dimension of the brain imaging data was still highly-dimensional and need a variety of 

dimensionality reduction methods to be applied, such as linear dimension reduction, down-sampling, 

preservation structure dimension reduction methods; respectively. After these steps, a regular brain 

imaging data set is obtained. Table 1 reported the device parameters as well as the values in the fMRI 

experiment. 

 

Table 1. The parameters and the values of dataset in the fMRI experiment 

Parameters Value Parameters Value 

Acquisition Time 105516.443844 GE medical systems Manufacturer 

SLICE Thickness 6.0000 Echo Time 113.792 

Echo Train Length 28 Imaging Frequency 63.873271 

Magnetic Field Strength 1.50000 Spacing Between Slice 6.80000 

Flip Angle 90.0 Patient Position HFS 

 

The original fMRI data by GE Signa HDe1.5T., from KANSEI stimuli experiment is listed in Fig.5. 

 

 

Figure 5. The typical fMRI data from KANSEI stimuli experiments 

 

The KDE segmentation is acquired using smoothed with kernel density estimation images as illustrated 

in Fig. 5. The fMRI dataset segmentation with Gaussian based kernel density estimation is shown in 

Fig.6. 

 

 



Figure 6. fMRI dataset segmentation with Gaussian based kernel density estimation  

 

As segmentation with Gaussian based KDE operating, the ROI was separated from the dataset. Thus, 

the zone of mygdala and orbitofrontal cortex is located, which is relative to the Valence-Arousal as 

shown in Fig.7. 

 

 

       (1)                  (2)                  (3)                  (4) 

Figure 7. The region of interest of fMRI dataset relative to Valence as (1) mygdala (2) clustering 

on mygdala and Arousal as (3) orbitofrontal cortex (4) clustering on orbitofrontal cortex 

 

To obtain 20 images from the brain imaging test, 20 Valence related fMRI images and 20 Arousal 

related fMRI images were acquired. Afterwards, the fuzzy c-means algorithm was applied to find the 

cluster center of each related fMRI dataset of Valence-Arousal zone under 4 KANSEI adjectives being 

angry, happy, sad, pleasant, so that we could compare the results with the IAPS experiment in 

Section 4.2. to show the feasibility of the modeling method proposed work. The data of the FCM 

operating with fMRI dataset was listed in Section 4.3. 

 

3.2 ANEW systems by IAPS experiments 

 

For comparative study, the experiment was performed on an emotional set of pictures, that is, the 

subjects were asked to complete the same 20 pictures Valence-Arousal labeling. In addition, 50 

subjects were still labeled with the same picture set by averaging or median method to get 

Valence-Arousal value of each picture. 

 

ANEW, created by Bradley and Cuthbert, is a set of normative emotional ratings for many words in the 

English language under the IAPS (International Affective Picture System) project [9]. The KANSEI 

adjectives were coordinated by Valence-Arousal as shown in Appendix I: ANEW system. 

 

The obtained results in Appendix I. established that a total of 1033 KANSEI adjectives were valued by 

Valence-Arousal through the Self-Assessment Manikin (SAM) experimental method by Bradley and 

Cuthbert; and Valence_SD and Arousal_SD present the standard deviation of Valence and Arousal. 

 

The ANEW system assumes that emotions can be measured using a dimensional scale based on 

Osgood's semantic differential theory (SDT). The basic method for processing those values relatives to 

a certain semantic was clustered in the previous study; normally scatter plot is illustrated in Fig. 8 and 

then defined the distance between the semantics for clustering. Appendix II reported 80 pairs from the 

IAPS experiment with the Valence-Arousal calculations. 



 

 

Figure 8. 1033 semantic words in Valence-Arousal space 

 

 

All Valence -Arousal experiments followed the ANEW method and are listed in Appendix II. It 

established that 80 pair values of Valence-Arousal for the 4 KANSEI adjectives of angry, happy, sad 

and pleasant. Afterwards, the fuzzy c-means was started with 2 exponent and maximum 100 iterations, 

achieving minimum improvement of 
510

. The cluster number is 4 and relative to the 4 adjectives of 

angry, happy, sad, and pleasant. Figure 9 demonstrates the 4 clusters of fuzzy c-means algorithm using 

combined dataset from IAPS experiment. 

 

 

(1)                      (2)                        (3) 

 

(4)                        (5) 

Figure 9. 4 clusters of fuzzy c-means algorithm using combined dataset from IAPS experiment and 



calculation of Valence-Arousal related fMRI images and (1) is clustering, (2) -(5) are membership 

function of each clusters. 

 

The iteration values were visualized in Fig. 10, after 30 iterations, the objective function of the FCM is 

stable referring to the given threshold  . 

 

 

Figure 10. The iterations of objective function by FCM with the combined dataset. 

 

Figure 10 establishes that the objective function, which denotes the distance between the pixels and 

center of each clusters, is minimized with the increased number of iterations. As from Fig. 10, we 

know that the objective function is stable and kept within 1.5 after 10 iterations. 

 

3.3 Comparing with ANEW system and fMRI dataset 

 

20 brain images with KDE segmentation and mean shift clustering were compared with ANEW under 

the IPAS experiment. Thus, data two parts were listed in Table 2 and all values were also normalized. 

To validate the feasible of meta-KANSEI modeling method proposed in the current work, the distance 

of these two datasets was calculated. Since the meta-KANSEI model is a cellular based model with 

kernel center and radius for the shell, the distance of these two datasets is definite under the 4 

adjectives (angry, happy, sad, and pleasant) of Valence-Arousal with radius (the fuzzy membership 

ijw by FCM calculation in Section 4.2). Similarity computing was introduced in previous studies 

[64-67]. The distance is redefined using the following expression: 

2 2( ) ( )f f a a f f a ad x r x r y r y r                         (20) 

where, ,f fx y is center of fMRI dataset, 
fr is radius of cluster of fMRI dataset while , ,a a ax y r are 

for ANEW dataset. 

 

 



Table 2. The dataset of fMRI and ANEW under FCM operating 

fMRI 

Center      r            

 

Center     r 

ANEW 

Center      r 

 

Center    r 

0.83  0.60  0.24  0.44  0.48  0.34  0.44  0.48  0.48  0.37  0.67  0.67  

0.39  0.64  0.23  0.81  0.61  0.28  0.81  0.61  0.61  0.81  0.46  0.46  

0.91  0.81  0.25  0.34  0.52  0.59  0.34  0.52  0.52  0.62  0.43  0.43  

0.68  0.46  0.31  0.50  0.55  0.48  0.50  0.55  0.55  0.74  0.48  0.48  

0.82  0.51  0.28  0.27  0.54  0.47  0.27  0.54  0.54  0.89  0.61  0.61  

0.39  0.52  0.22  0.54  0.48  0.68  0.54  0.48  0.48  0.47  0.62  0.62  

0.69  0.48  0.30  0.78  0.62  0.49  0.78  0.62  0.62  0.84  0.69  0.69  

0.78  0.59  0.34  0.27  0.81  0.39  0.27  0.81  0.81  0.55  0.55  0.55  

0.40  0.63  0.30  0.84  0.54  0.42  0.84  0.54  0.54  0.40  0.40  0.40  

0.19  0.53  0.27  0.26  0.85  0.43  0.26  0.85  0.85  0.47  0.72  0.72  

0.37  0.44  0.17  0.32  0.80  0.53  0.32  0.80  0.80  0.80  0.55  0.55  

0.82  0.59  0.27  0.24  0.59  0.40  0.24  0.59  0.59  0.58  0.40  0.40  

0.35  0.56  0.33  0.59  0.46  0.52  0.59  0.46  0.46  0.35  0.75  0.75  

0.28  0.73  0.28  0.30  0.72  0.38  0.30  0.72  0.72  0.74  0.54  0.54  

0.29  0.67  0.26  0.74  0.60  0.71  0.74  0.60  0.60  0.51  0.62  0.62  

0.39  0.78  0.27  0.53  0.77  0.39  0.53  0.77  0.77  0.67  0.35  0.35  

0.71  0.56  0.32  0.83  0.64  0.45  0.83  0.64  0.64  0.37  0.74  0.74  

0.46  0.44  0.30  0.57  0.45  0.37  0.57  0.45  0.45  0.44  0.51  0.51  

0.54  0.41  0.14  0.59  0.40  0.77  0.59  0.40  0.40  0.55  0.67  0.67  

0.58  0.36  0.33  0.52  0.56  0.60  0.52  0.56  0.56  0.46  0.37  0.37  

0.70  0.51  0.35  0.89  0.74  0.31  0.89  0.74  0.74  0.54  0.44  0.44  

0.54  0.51  0.22  0.41  0.63  0.60  0.41  0.63  0.63  0.42  0.55  0.55  

0.66  0.49  0.28  0.74  0.54  0.36  0.74  0.54  0.54  0.80  0.45  0.45  

0.37  0.42  0.20  0.34  0.70  0.50  0.34  0.70  0.70  0.34  0.49  0.49  

0.88  0.66  0.16  0.23  0.83  0.79  0.23  0.83  0.83  0.77  0.49  0.49  

0.45  0.45  0.27  0.73  0.73  0.63  0.73  0.73  0.73  0.32  0.46  0.46  

0.91  0.72  0.16  0.74  0.59  1.06  0.74  0.59  0.59  0.71  0.56  0.56  

0.58  0.57  0.30  0.73  0.68  0.46  0.73  0.68  0.68  0.32  0.71  0.71  

0.27  0.53  0.29  0.71  0.50  0.49  0.70  0.50  0.50  0.81  0.56  0.56  

0.61  0.46  0.75  0.37  0.62  0.93  0.37  0.62  0.62  0.39  0.51  0.51  

0.81  0.66  0.27  0.61  0.46  0.65  0.61  0.46  0.46  0.75  0.48  0.48  

0.38  0.46  0.29  0.74  0.64  0.41  0.74  0.64  0.64  0.54  0.37  0.37  

0.39  0.55  0.25  0.91  0.61  0.52  0.91  0.61  0.61  0.62  0.61  0.61  

0.35  0.45  0.33  0.69  0.57  0.56  0.69  0.57  0.57  0.76  0.62  0.62  

0.31  0.51  0.25  0.50  0.43  0.61  0.50  0.43  0.43  0.23  0.79  0.79  

0.81  0.60  0.24  0.22  0.69  0.15  0.22  0.69  0.69  0.64  0.46  0.46  

0.85  0.63  0.31  0.60  0.43  0.13  0.60  0.43  0.43  0.33  0.31  0.31  

0.78  0.63  0.25  0.71  0.56  0.29  0.71  0.56  0.56  0.68  0.53  0.53  

0.82  0.70  0.25  0.56  0.37  0.22  0.56  0.37  0.37  0.78  0.61  0.61  

0.81  0.62  0.29  0.61  0.40  0.81  0.61  0.40  0.40  0.59  0.39  0.39  

 



The results reported in Table 2 establish that 80 pairs  , ,f f fx y r  on the left of the table comes 

from fMRI dataset while the other 80 pairs  , ,a a ax y r  from ANEWS. To separate the four KANSEI 

adjectives and compared the difference between two datasets, the normal probability for the 80 

distances in 4 groups is plotted in Fig. 11. 

 

 

Figure 11. Normal probability for the 80 distances in 4 groups based on the similarity computing on 

distance between two datasets 

 

Figure 11 shows the feasibility of the proposed modeling method where all adjectives are stable. From 

the process of the dataset, and for feature extraction of fMRI dataset, the results illustrate that 

meta-KANSEI modeling using KDE segmentation and mean shift clustering shows a close 

performance fit with the IAPS experiment dataset by using probability plot. The result provides all the 

necessary information to reflect the difference between the IAPS system and the proposed methods for 

fMRI experimental dataset. The proposed modeling method is thus feasible evidenced by the IAPS 

experiments. Consequently, the proposed system has been established as effective, thus this novel 

method that applied in the medical imaging dataset can be used for future research as follows: i) the 

de-dimensionality operation of fMRI dataset needs to be considered using other algorithms such as 

structure preserve projection, or to be combined with local preserving for fMRI dataset reduction for 

potential improvement; ii) calculate more features from the fMRI dataset and compare those features in 

the experiment, iii) more slices need to be extracted for calculating to promote the result in future 

research, and iv) various datasets that used previously in medical studies can be used to test the 

proposed system. 

 



4. Conclusion 

 

In this study, a meta-KANSEI modeling method was introduced. In addition, the fMRI experimental 

dataset was acquired and processed using kernel density estimation-based segmentation and mean shift 

clustering. The distance between two datasets was calculated for comparison with ANEW dataset 

under fuzzy c-means, and under normal distribution view for typical KANSEI adjectives. The results 

showed the model feasibility and the performed effectiveness for the experimental methods. By 

comparing with our previous studies [44-46], it can be concluded that: 

 An innovative processing method for using kernel density segmentation has been 

presented, 

 The mean shift can be used to cluster the acquired segments to remove dimensionality in 

the dataset, 

 An innovative modeling method using central points based meta-KANSEI model combined 

the advantages of a variety of existing intelligent processing methods has been presented. 
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Appendix 

 

I. ANEW system- KANSEI adjectives and their Valence-Arousal scores in SAM rating experiments 

 

Index Adjectives Valence Valence_SD Arousal Arousal_SD 

1 abduction 2.76 -2.06 5.53 -2.43 

2 abortion 3.5 -2.3 5.39 -2.8 

3 absurd 4.26 -1.82 4.36 -2.2 

4 abundance 6.59 -2.01 5.51 -2.63 

5 abuse 1.8 -1.23 6.83 -2.7 

6 acceptance 7.98 -1.42 5.4 -2.7 

7 accident 2.05 -1.19 6.26 -2.87 

… … … … … … 

1028 reverent 5.35 -1.21 4 -1.6 

1029 revolt 4.13 -1.78 6.56 -2.34 

1030 revolver 4.02 -2.44 5.55 -2.39 

1031 reward 7.53 -1.67 4.95 -2.62 

1032 riches 7.7 -1.95 6.17 -2.7 

1033 ridicule 3.13 -2.24 5.83 -2.73 

 

II. ANEW System-80 pairs from IAPS experiment and calculation of Valence-Arousal 

Angry Happy Sad Pleasant 

V A V A V A V A 

0.439  0.478  0.886  0.737  0.373  0.674  0.543  0.438  

0.806  0.611  0.410  0.628  0.814  0.462  0.417  0.548  

0.341  0.516  0.742  0.540  0.617  0.431  0.799  0.450  

0.498  0.546  0.343  0.698  0.743  0.484  0.339  0.488  

0.268  0.537  0.226  0.834  0.892  0.614  0.772  0.490  

0.544  0.476  0.729  0.731  0.470  0.619  0.320  0.456  

0.782  0.623  0.740  0.587  0.844  0.686  0.714  0.563  

0.274  0.814  0.734  0.678  0.546  0.550  0.322  0.712  

0.837  0.537  0.700  0.501  0.399  0.401  0.807  0.559  

0.260  0.848  0.366  0.616  0.467  0.723  0.391  0.508  



0.317  0.797  0.611  0.458  0.804  0.546  0.751  0.479  

0.236  0.592  0.744  0.638  0.579  0.399  0.536  0.373  

0.586  0.462  0.913  0.614  0.352  0.751  0.617  0.613  

0.304  0.721  0.686  0.567  0.742  0.536  0.756  0.622  

0.737  0.601  0.504  0.433  0.512  0.617  0.233  0.794  

0.534  0.769  0.222  0.690  0.670  0.352  0.636  0.463  

0.833  0.644  0.600  0.426  0.366  0.742  0.328  0.314  

0.567  0.450  0.713  0.556  0.438  0.512  0.683  0.532  

0.593  0.399  0.561  0.373  0.548  0.670  0.780  0.607  

0.524  0.559  0.606  0.403  0.456  0.366  0.592  0.386  

*All data are normalized  


