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Abstract

Introduction. Working memory is the ability to maintain and manipulate information. We

introduce a method based on conceptors that allows us to manipulate information stored in the

dynamics (latent space) of a gated working memory model. Methods. �is la�er model is based

on a reservoir: a random recurrent network with trainable readouts. It is trained to hold a value in

memory given an input stream when a gate signal is on and to maintain this information when the

gate is o�. �e memorized information results in complex dynamics inside the reservoir that can be

faithfully captured by a conceptor. Results. Such conceptors allow us to explicitly manipulate this

information in order to perform various, but not arbitrary, operations. In this work, we show (1) how

working memory can be stabilized or discretized using such conceptors, (2) how such conceptors

can be linearly combined to form new memories, and (3) how these conceptors can be extended to

a functional role. Conclusion. �ese preliminary results suggest that conceptors can be used to

manipulate the latent space of the working memory even though several results we introduce are

not as intuitive as one would expect.
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1 Introduction

A recent and major enhancement of the Reservoir Computing (RC) paradigm has been proposed by

Jaeger (2014) and Jaeger (2017) under the form of conceptors which are able to capture the subspace

of internal states of a Recurrent Neural Network (RNN). In the case of Echo State Networks (ESN),

conceptors can be used to capture the trajectory of reservoir states when the reservoir is fed with a

particular input pa�ern (see �gure 1). �ese conceptors allow to extend the capacity of the original

ESNs by taking advantage of these new representations. For example, (Jaeger, 2014; Bao et al.,

2016; Bartle� et al., 2019; Gast et al., 2017) showed how to use them for the recognition of temporal

sequences while using them for the storage and retrieval of multiple temporal sequences. More

recently, Mossakowski, Diaconescu, and Glauer (2019) proposed an implementation of fuzzy logic

based on conceptors, while Liu, Ungar, and Sedoc (2019) used conceptors for online learning of

sentence representations, and He and Jaeger (2018) proposed a general way to use conceptors during

the learning of multiple tasks.

Conceptors yield several advantages when compared to classical reservoirs since Jaeger (2014)

demonstrated that conceptors can be used for performing symbolic operations in the latent space of

the di�erent input pa�erns. Such symbolic operations have been already exploited in the framework of

deep learning community and they provide impressive results. For instance, in natural language pro-

cessing (NLP), Mikolov et al. (2013) showed that arithmetic operations such as “king−men+woman”

give a vector similar to “queen”. More recently, Brock et al. (2016) proposed a method to edit global

image features based on operations performed on the latent space of generative adversarial networks

(GANs). Conceptors provide similar logical operations in the framework of the reservoir computing

paradigm. For instance, Jaeger (2014) proposes an operator that quanti�es if a stimulus is similar to an

already known conceptor. By associating one conceptor per class, it is possible to measure if a stimulus

belongs to a class (positive evidence) or none (negative evidence). Beyond logical operations, linear

combinations of conceptors allow to implement continuous morphing between set of states: they were

used to create morphing between two time series corresponding to the extended interpolation of the

time series (e.g. a morphing between two sine-waves with di�erent frequencies is a sine-wave with an

intermediate frequency).

�is capacity of performing operations in the latent space resonates strongly with the notion of

working memory (WM) as found in neuroscience. It is generally de�ned as the capacity to hold

information for a short period of time as well as the capacity to manipulate this information in order

to achieve some task or to reach a speci�c goal. In this context, we have introduced in (Strock,

Hinaut, and Rougier, 2020) a reservoir with feedback connections that implements a gated working

memory, i.e. a generic mechanism to maintain information at a given time (corresponding to when

the gate is on, see �gure 3). In this model, the memory is encoded in the dynamics of the reservoir and

information can be maintained without any sustained activity. �is absence of sustained activity is

precisely what makes it di�cult to manipulate the underlying information and this is also the reason

why some authors (Mongillo, Barak, and Tsodyks, 2008; Stokes, 2015; Masse et al., 2019; Manohar

et al., 2019) have suggested the existence of a mechanism to temporarily store information in synaptic

weights. In this context, conceptors provide a plausible explanation for such a transfer as well as an

explicit method for manipulating information; even if the conceptor mechanisms are for the moment

not as biologically plausible as the reservoirs themselves.

In this article, we explore the nature of operations carried on by such conceptors and explore the dif-

ferent ways to combine them such as to explicitly manipulate memories. Even though the results we

2



introduce in this article are preliminary and to some extents, counter-intuitive, this leads us to consider

the notion of functional conceptors that would allow to arbitrarily manipulate working memory in the

latent space.

2 Methods

2.1 Conceptors overview

Considering an ESN R that has been trained
1

to produce the sequence O1 when presented with input

sequence I1, Jaeger (2014) demonstrated that it is possible to build an ESN R∗ that will spontaneously

produce the sequence O1, in the absence of any input (see Figure 1). �e activity of this new R∗ can

be decoded using the read-out weights of R. �is is actually similar to the principle of the full-FORCE

method introduced in (DePasquale et al., 2018) where internal weights are trained to match the internal

activity of a teacher network receiving the desired output as input. However, Jaeger (2014) principle is

applicable to multiple input pa�erns with the assumption that each input pa�ern makes the reservoir

evolve in a separable region of the internal high dimensional space. In order to build R∗, he proposed

to approximate the activity of R when it receives any of these input pa�erns. �en he equips R∗ with

a set of recurrent connections (i.e. the conceptors) that are speci�c to each couple of input/output

and that will project the internal state into the relevant sub-space. Jaeger (2017) shows in particular

how these conceptors can be considered as long-term memories for temporal pa�erns. Conceptors

can store temporal pa�erns and reactivate them later with negligible loss of recall/precision. More

generally, conceptors can be considered as long-term memories of internal states subspaces.

2.2 Models

2.2.1 Echo State Networks (ESN)

In this work we consider Echo State Networks (ESN) with feedback from readout units to the reservoir

(Jaeger, 2001). �e system is described by the following update equations:

x[n] = tanh (Winu[n] +Wx[n− 1] +Wfby[n− 1]) + ξ

y[n] =Woutx[n]

where u[n], x[n] and y[n] are respectively the input, the reservoir and the output at time n. W , Win,

Wfb and Wout are respectively the recurrent, the input, the feedback, the output weight matrices and

ξ is a uniform white noise term added to reservoir units.

2.2.2 Controlling ESN dynamics using a conceptor

Following (Jaeger, 2014) notations, the equation for a conceptor C enforcing some particular dynamics

can be wri�en as:

x[n] = C tanh (Wx[n− 1] + b)

where C is the conceptor (possibly changing over time), x[n] is the state of the model at time n, W is

the recurrent matrix and b is a constant bias. �is can be extended to the general case where we also

have an input u[n] (with input matrix Win) (or similarly a feedback), and writes:

x[n] = C tanh (Wx[n− 1] +Winu[n] +Wfby[n− 1])

y[n] =Woutx[n]

1

o�ine with ridge regression
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Figure 1. Conceptors general idea A Considering an ESN R that outputs the sequence O1 when an input I1
is presented, it is possible to build an ESN R∗ that spontaneously outputs the sequence O1 in the absence of
any input. B Considering an ESN R that respectively outputs the sequences O1 and O2 when input I1 and I2
are presented, it is not possible to define R∗ as in A since we cannot define the expected output in the absence
of input. C Considering an ESN R that respectively outputs the sequences O1 and O2 when input I1 and I2 are
presented – with the supplementary conditions that the inner representation corresponding to inputs I1 and I2
are separable – it is possible to build an ESN R∗ equipped with a set of feedback weights C1 or C2 such that
using C1, R∗ spontaneously outputs O1 and using C2, R∗ spontaneously outputs O2.
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Using a conceptor C is similar to a change ofW in W̃ =WC (andWout inWoutC if there is feedback).

In our implementation, we thus consider:

x[n] = tanh ((W +WfbWout) C x[n− 1] +Winu[n])

y[n] =Woutx[n]

2.2.3 Computing conceptors

In order to compute a conceptor for some given dynamics, it is necessary to collect all the states of the

reservoir and to concatenate them in a matrix X . �e conceptor C is then de�ned as:

C = XXT
(
XXT + α−2I

)−1
= R

(
R+ α−2I

)−1
where R = XXT

is similar to a covariance matrix, and α (a.k.a the aperture) controls how close from

the identity matrix C is.

2.2.4 Aperture adaptation

Intuitively, the aperture of a conceptor controls the precision of the internal states representation. How-

ever, no information on internal states is lost, because it is possible to change the aperture of a conceptor

C without the need to recompute the conceptor from scratch. To change the aperture, one only need

to adapt the conceptor C as follows:

φ(C, γ) = C
(
C + γ−2(I − C)

)−1
where φ(C, γ) represents the same states than C with a di�erent aperture, and γ is controlling how

the aperture is modi�ed. Intuitively, φ(C, γ) modi�es the aperture of C by a factor of γ.

2.2.5 Linear combination

Given two conceptors C and B and λ ∈ R, the linear combination of conceptor C and B is de�ned as:

C = λC + (1− λ)B

In the following when λ ∈ [0, 1]we will talk about interpolation, whenλ > 1 about right-extrapolation,

and when λ < 0 about le�-extrapolation.

2.2.6 Boolean operations

Boolean operations can be wri�en as:

C ∨B =
(
I +

(
C(I − C)−1 +B(I −B)−1

)−1)−1
C ∧B =

(
C−1 +B−1 − I

)−1
¬C = I − C

However, as highlighted in (Mossakowski, Diaconescu, and Glauer, 2019), ∨ and ∧ are not idempotent

(i.e. C ∨C 6= C and C ∧C 6= C). More precisely if C (resp. B) is a conceptor built with the covariance

matrixR (resp. Q), Jaeger proposes to build C ∨B using the covariance matrixR+Q that is by design

not idempotent. What we propose here is to consider instead the matrix βR+(1−β)Qwith β ∈ [0, 1]
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instead of R+Q, or if we want it to be symmetric (R+Q)/2. Similar calculation gives the following

new ∨β and ∧β .

C ∨β B =
(
I +

(
βC(I − C)−1 + (1− β)B(I −B)−1

)−1)−1
C ∧β B =

(
βC−1 + (1− β)B−1

)−1
�is way of building the OR operation also has a data driven intuition. If we note β = n

n+p where n
(resp. p) is the number of data points used to build R (resp. Q) then bR + (1− b)Q is the ”correlation

matrix” obtained by taking the union of all the data points. Moreover, if we choose β = 0.5 then there

is a direct link between the two ways of de�ning the OR operator: C ∨ B = φ(C ∨0.5 B, 2). In this

study, the aperture was mostly not in�uencing the results, thus we show only the results for ∨.

2.3 Gating task

We consider the gating task described in (Strock, Hinaut, and Rougier, 2020). In this task the model

receives an input V that is continuously varying over time and another input being either 0 or 1 (trigger

or gate T ). To complete the task, the output has to be updated to the value of the input when the trigger

is active and to remain constant otherwise (similarly to a line a�ractor). In other words, the trigger acts

as a gate that controls the entry of the value in the memory (the output). Figure 2 describes this task.

Value (V)
Trigger (T)
Output (M)

Figure 2. Gating task. Each column represents a time step (time increases from le� to right), colored discs
represent inputs (V and T ) and the output (M ).

2.3.1 Gated Working Memory Reservoir

We consider a reservoir with feedback from readout units to the reservoir (see Figure 3). In (Strock,

Hinaut, and Rougier, 2020) we showed that this gated working memory reservoir is able to learn to

robustly gate information in presence of noise and of a distracting input. �e model behaves as a

line a�ractor even if few values are used for training (about 10 values is enough). We also provided a

minimal model version and showed an equivalence with GRU (Gated Recurrent Unit) cells (Cho et al.,

2014), which are a simpli�ed version of Long-Short Term Memory (LSTM) cells.

V

T

M

Trigger

Value

Output

W
in

W
out

W
fb

W

ξ

Figure 3. �eGatedWorkingMemoryReservoirmodel The reservoir receives a random signal V in [−1,+1]
and a trigger signal T in {0, 1}. The output M is fed back to the reservoir.
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2.4 Implementation details

We consider a reservoir of 1000 neurons that has been trained to solve a gating task described in Figure

2 A. �e overall dynamics of the network we consider are described by the following equations:

x[n] = tanh ((W +WfbWout) C x[n− 1] +Winu[n]) + ξ

y[n] =Woutx[n]

where u[n], x[n] and y[n] are respectively the input, the reservoir and the output at time n. W , Win,

Wfb, Wout and C are respectively the recurrent, the input, the feedback, the output and the conceptor

weight matrices and ξ is a uniform white noise term added to reservoir units. W , Win, Wfb are uni-

formly sampled between −1 and 1, and le� untrained. Only W is scaled to have sparsity level equal to

0.5 and a spectral radius of 0.1. If not stated otherwise, the noise is selected uniformly between -10−4

and 10−4.

�e major di�erence with Jaeger’s proposal in the way the pa�erns are stored is that in our case pat-

terns are stored implicitly when solving the gating task. In other words, the pa�erns are stored by

training Wout and not by explicitly recomputing an internal weight matrix. However as mentioned

in (DePasquale et al., 2018), training Wout when there is a feedback is equivalent to recomputing the

internal weight matrix W as W ∗ =W +WfbWout.

When Wout is computed to solve the gating task, the conceptor C is considered to be �xed and equal

to the identity matrix (C = I). Wout is trained for 25,000 time steps. At each time step there is a 0.01

probability of having a trigger and the input value (V) is uniformly randomly sampled between -1 and

1. During training, the average holding time of the value in memory is therefore about 100 time steps.

A�er training, in normal mode, the conceptor C is equal to a conceptor Cm that is generated and

associated to a constant value m. In order to compute this conceptor Cm, we impose a trigger (T = 1)

as well as an input value (V = m) at the �rst time step, such that the reservoir has to maintain this value

for 100 time steps. During these 100 time steps, we use the identity matrix in place of the conceptor.

�e conceptor Cm is then computed according to Cm = XXT
(
XXT + I

a

)−1
, where X corresponds

to the concatenation of all the 100 reservoir states following the trigger, each row corresponding to a

time step, I the identity matrix and a the aperture. In all the experiments the aperture has been �xed

to a = 10. For the conceptors pre-computed in Figure 4 and 6, the reservoir have been initialised with

its last training state.

3 Results

3.1 Constant-memory conceptors

�e idea behind what we named constant-memory conceptors is to capture explicitly the dynamics of a

reservoir maintaining a value and to use this conceptor to later constrain the dynamics of any reservoir,

inducing an alternative memory in the output as represented on �gure 4. In order to build a constant-

memory conceptor Cm, we consider the gated reservoir working memory model that receives a trigger

and an input value m at time t = 0. We collect the states of the reservoir for 100 iterations from

which we build the conceptor Cm and apply it immediately to the model. Results of this procedure

is shown on �gure 4B where �ve conceptors are built (gray bands) and applied immediately (white

bands) without noticeable modi�cation on the output of the reservoir since the actual dynamics and

the dynamics stored in the conceptor are congruent. On �gure 4A, we used the same procedure to build

a set of 11 conceptors whose captured dynamics correspond to 11 values uniformly spread between -

1 and +1. On �gure 4C, a�er 100 iterations following the presentation of a new value, we apply the

closest conceptor (Frobenius norm, inducing a distance between conceptors) from the previous set of

7



11 constant-memory conceptors. One can see that on �gure 4C that the input value is �rst maintained

(grey band) and jumps rapidly to the closest discretized value when the conceptor is actually applied

and constrained the dynamics.
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Figure 4. Approximation with conceptors and discrete conceptors. In A, B and C the model receives the same
inputs across time. Black lines: Evolution of the reservoir readout y. Each black line in A. represents a di�erent
trial where a di�erent conceptor is applied. Gray lines: the discrete value considered for each conceptor. Light
gray areas: time period when conceptors are computed for the current value. A. Di�erent trials showing various
discrete conceptors applied. B-C. Conceptors Cm are computed using the 100 time steps following a trigger
while C = I (light gray areas). B. The conceptor Cm is directly applied during the 400 following time steps. C.
The closest conceptor among the discretized conceptor is applied during the 400 following time steps. Dashed
lines represents the memory that should have been kept if not discretized.

�ese constant-memory conceptors also exhibit a nice property regarding the long term maintenance

of a memory. �e initial gated working memory model is already quite robust regarding the long term

maintenance of memory in the absence of internal noise (i.e. inside the reservoir). When it is trained

for a few hundreds of time steps, it is able to maintain a memory for several thousands of time steps

(see �gure 5A) before the memory starts to slowly degrade. When conceptors are applied, this slow

degradation vanishes (�gure 5B): the RMSE without conceptor is of 4.21e-02 ± 1.84e-02 (mean ± std)

whereas with conceptors it is 1.02e-03 ± 6.95e-04. In the presence of internal noise (inside the reservoir),

the initial gated working memory model is much less robust and memory starts to degrade a�er only

a few thousand time steps (see �gure 5C). More precisely, a 10−4 noise (std(ξ) = 10−4) prevents the

model to maintain a value for a much longer time than the time that has been used to train it (�gure 5C).

However, when conceptors are applied, their bene�t is even more obvious: a�er one hundred thousand

time steps, without conceptor the memory converge towards a few values, whereas with conceptors

the memory remains(�gure 5D). �e RMSE without conceptor becomes 1.39e-01 ± 7.66e-02 (3.3 times

greater than without noise), whereas the RMSE with conceptors becomes 2.85e-03 ± 1.98e-03 (2.8 times

greater than without noise).
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Figure 5. Stability comparison with or without conceptor, with or without noise. Black: Evolution of the readout
y. lines: the discrete value considered. Light areas: time when conceptors are computed for the current value.
A-B No noise. C-D 0.0001 noise. A and C No conceptor used. B and D Discrete conceptor are applied.
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3.2 Linear interpolation of constant-memory conceptors

In Figure 6, we show two main ideas: (1) how a linear interpolation between two conceptors can allow to

generalize the gating of other values, and (2) a representation of the space in which lies the conceptors

and their link to the memory they encode. (1) Interpolation and extrapolation C of conceptor C0.1

and conceptor C1.0 has been computed as C = λC1.0 + (1 − λ)C0.1 with 31 λ values uniformly

spread between -1 and 2. Even though the interpolated (λ ∈ [0, 1]) conceptors obtained are not exactly

equivalent to Cm conceptors obtained in Figure 4, they seem to also correspond to a retrieved memory

value that is maintained. �e mapping between λ and the value is non-linearly encoded. For right-

extrapolation (λ ∈ [1, 2]) the conceptor seems to be linked to a noisy version of a Cm conceptor: the

output activity is not constant, but its moving average is constant. For le�-extrapolation (λ ∈ [−1, 0]),
the conceptor obtained does not seem to encode any information anymore: all the output activities

collapse to zero. (2) Principal Component Analysis (PCA) have been performed using 201 pre-computed

conceptors associated to values uniformly spread between -1 and 1. �e �rst three components already

explain approximately 85% of the variance. �e �rst component seems to non-linearly encode the

absolute value of the memory (Figure 6B) whereas the second component seems to non-linearly encode

the memory itself (Figure 6C). �e curved line composed of conceptorsCm (Figure 6E-G) shows visually

why the extrapolation does not work as we expected.
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Figure 6. Generalisation of constant-memory conceptorsCm. Red: two constant-memory conceptors: C0.1 and
C1.0. Black: Inferred conceptors, i.e. linear interpolation and extrapolation between C0.1 and C1.0. A Temporal
evolution of the readout for di�erent conceptors. B-G : constant-memory conceptors Cm for 201 values of m
uniformly spread between−1 and 1. B-D Link between principal components of the conceptors and thememory
they are encoding. For the interpolated conceptors, the memory is considered as the mean in the last 1000 time
steps. E-G Representation of the conceptors in the three principal components of the Cm conceptors.

3.3 Functional conceptors

In this section, we show three examples where conceptors have a functional role: (1) constant-

memory conceptors when triggers are received, (2) a conceptor enforcing triggers, and (3) the con-
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junction/disjunction of constant-memory conceptors. By functional we mean that conceptors do not

only store and reactivate a dynamical pa�ern. Conceptors can do much more than constrain the dy-

namics in an a�ractor. Conceptors can also constrain the dynamics in a space where the behavior is

input-dependent, i.e. the outputs are some function of the inputs.

Constant-memory conceptors when triggers are received. When a constant-memory conceptor

Cm is applied to the gated working memory model, it seems to quickly force the output y to match the

value m, making it insensitive to the input value. However, the actual behavior is a bit di�erent as

illustrated on �gure 7. On this �gure, we can observe that the readout value of the resevoir under the

in�uence of a conceptorC0.5 is destabilized when a trigger occurs. More precisely, the trigger induce an

instanteneous readout equal to the input until quickly relaxing to the constant value of the conceptor

(0.5). �is con�rms that the combination of a reservoir and a constant-memory conceptor remains

sensitive to the input. Said di�erently, a constant-memory conceptor Cm is not the mere storage of the

valuem but rather a function that constrains the dynamics of the reservoir such that when applied, the

readout will eventually read m a�er some time.
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Figure 7. Influence of trigger with constant-memory conceptors. A constant-memory conceptor C0.5 is
applied while receiving several triggers. Gray: the input value (V). Black: Evolution of the readout y. When a
trigger occurs (indicated by dots on the Ticks line) the readout transitorily goes to the current input value before
going back to the value memorized by the conceptor.

Conceptor enforcing triggers. �is functional aspect of conceptor can be further illustrated by

building the following conceptor CT : during 100 time steps, the reservoir receives constant triggers

(T = 1) and has therefore to follow the value (V) it receives as input. Conceptor CT is constructed

from the states taken by the reservoir during these 100 time steps. Figure 8 shows what happens when

this conceptor is subsequently applied: independently of the trigger signal, the output of the reservoir

follows the input. Everything happens as if the reservoir was receiving a continuous trigger signal and

the conceptor acts as a pass-through �lter that modi�es the behavior of the gated working memory as a

whole (instead of modifying each individual value). �is result suggests that conceptors may probably

be extended to store arbitrary functions that act in the latent space of the reservoir. We do not know yet

how to specify such arbitrary functions inside a conceptor, but the preliminary results we introduced

are encouraging even though more theoretical work is needed.

Conjunction/disjunction of constant-memory conceptors. �e last example where we show

this functional aspect of conceptors is the disjunction of conceptors. If the conceptors Cm and Cm′

represent the subspaces when the value stored are respectively m and m′, the disjunction of Cm and

Cm′ , i.e. Cm ∨ Cm′ would represent the union (or the sum) of such subspaces. Applying Cm ∨ Cm′

might therefore constrain the dynamics in one of these two subspaces, enforcing the memory (i.e. the

output y) to become either m or m′. Cm ∨ Cm′ could thus store a choice function between m and m′,
or in other words, a sort of conditional assignment that would store m in some cases and m′ in some

others. It is not exactly whatCm∨Cm′ does but it still implements some conditional assignment. When
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Figure 8. Pass-through conceptors. This conceptor is able to modify the behavior of the gated working model
by le�ing all the values to pass through the reservoir up to the output, independently of the gating signal (time
steps 1000 to 1500). Black: Evolution of the readout y. Gray: the input value (V). Light gray areas: no conceptor
is applied (i.e. C = I). White areas: the conceptor simulating a constant trigger is applied (i.e. C = CT ), thus
the input is redirected to the output.

a trigger occurs the output jumps towards the value v to be maintained and then relaxes to another

value that depends on v.

In Figure 9, we show the values towards which the output relaxes (i.e. relaxation values) when the

disjunction of two constant-memory conceptors is applied. First, as the disjunction of twice the same

conceptor Cm ∨ Cm is either equivalent to the same conceptor or to an aperture adaptation of it (i.e.

Cm ∨ Cm = φ(Cm, 2) and Cm ∨β Cm = Cm), the value towards which the disjunction Cm ∨ Cm
relaxes is the value of the conceptor itself (i.e. m). �en, we realized that we could predict what would

be the relaxation values in di�erent cases: in general the relaxation value was mostly either almost zero

or the maximum of the absolute values of the two conceptors multiplied by the sign of the new value

to be maintained. We propose the following formula to predict the value towards which Cm1 ∨ Cm2

relaxes:

vrelax(m1,m2, v) =


m1 if m1 = m2

sign(v)×max(|m1|, |m2|) if min(|m1|, |m2|) < |v|
or m1 = −m2

0 otherwise

(1)

where v is the initial value (V ) proposed along with the trigger,m1 (resp. m2) is the constant associated

to conceptor m1 (resp. m2), vrelax(m1,m2, v) is the ultimate value reached while applying conceptor

Cm1∨Cm2 . Said di�erently, the conceptorCm1∨Cm2 implements a conditional assignment (modulo the

sign): if the input value at time of trigger is bigger than the minimum between m1 and m2 then it will

converge towards the maximum of m1 and m2, otherwise it will converge towards 0. �e predictions

made by the formula are less accurate for extreme values such as for v = 1.00 (see Figure 9).

We hypothesize a similar formula for relaxation values of n constant-memory conceptors:

vrelax(m1, ...,mn, v) =



m1 if m1 = ... = mn

sign(v)×max(|m1|, ..., |mn|) if min(|m1|, ..., |mn|) < |v|
or (∀i, j |mi| = |mj |
and ∃i, j such that i > j and mi = −mj)

0 otherwise

where v is the initial value (V ) given along with the trigger, mi is the constant associated to conceptor

Cmi , vrelax(m1,m2, ...,mn, v) is the ultimate value reached while applying conceptor

n∨
i=1

Cmi .
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Figure 9. Relaxation values (i.e. values towards which the output converges) when applying the disjunction
of two constant-memory conceptors. In other words, it corresponds to the final values reached when applying
the conceptor Cm1 ∨ Cm2 . A-C Empirical results from experiments. D-F Predictions based on equation 1.

We also studied how the conjunction constant-memory conceptors were in�uencing the dynamics.

If the disjunction of conceptors is similar to a union (or sum), then the conjunction of conceptors is

similar to an intersection. Moreover, as the memory is represented as the output, the memory cannot

be simultaneously the value m and the value m′ present. It is thus harder to predict what would be

the behavior of such conceptor. In practice, as for the disjunction, when a trigger occurs the output

jumps towards the value v to be maintained and then relaxes to another value. However, in that case

the value towards which it relaxes is easy to describe, it is always almost zero. �e conjunction of

constant-memory conceptors acts therefore as C0.

4 Discussion

Conceptors are powerful tools for performing explicit operations in the latent space of a reservoir even

though the composition of such operations remains a di�cult task. Using a reservoir model of gated

working memory, we have shown another way to enforce a particular memory through the use of ad-

hoc conceptors. �ese constant-memory conceptors therefore provide a synaptic form to the memory,

and we have shown how they can be used to stabilize or discretize the memory. However, the e�ect of

conceptors composition is counter-intuitive and largely di�ers from what we would naturally expect.

For instance, we have seen that the linear interpolation of constant-memory conceptors does not create

another constant-memory conceptor, or at least it does not correspond to one we would have computed.

�e reason being that the space of constant-memory conceptors is not a straight line. Hence, they can-

not be linearly interpolated: a mere linear combination of constant-memory conceptors could not lead
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to another constant-memory conceptor. Nevertheless, we have shown empirically that in all scenarios

a linear combination of two constant-memory conceptors lead to a value that is maintained. However,

this new memory is slightly oscillating around the combination of the constant values (see Figure 6).

�is oscillation being a direct consequence of the perturbation of the system (i.e. the input).

Moreover, the disjunction of constant-memory conceptors gives an example of functional conceptor.

However, it does not implement what we expected. In the case of two conceptors with two constant

values v1 and v2 such that 0 ≤ v1 ≤ v2, we would expect that the disjunction encodes the two values

simultaneously. More speci�cally, we expected such disjunction to implement a choice function (i.e.

a conditional assignment) between the two values stored in each conceptor. Instead, the disjunction

implements another conditional assignment, that does not converge towards v1 but only towards 0
or v2 depending on the given input value. To some extent, v1 and v2 in�uence the disjunction with

di�erent qualitative roles. Moreover, in the low rank case (i.e. when the recurrent weights are the sum

of a low rank matrix and a random perturbation) only the largest �xed points can be stable (Schuessler

et al., 2020). �erefore, we can hypothesize that in the general case of a disjunction of n > 2 constant-

memory conceptors, only the extreme value ma�er in the composite conceptor.

Even though our results are preliminary and will require more work to fully characterize how oper-

ations can be composed intuitively, this work opens the door to another form of working memory:

a procedural (or functional) working memory. Instead of temporarily memorizing declarative infor-

mation, this kind of working memory would be able to memorize procedural information (e.g. how

a task should be performed, which processes should be applied, etc.). For instance, imagine you are

given some instructions which are to sum up a series of numbers. In order to complete this task, it is

necessary to keep track of the current sum (e.g. in a classical short-term declarative working memory)

that needs to be updated each time a new number is given. However, it is also necessary to remember

the preliminary instruction (i.e summing up) in another form of working memory that needs to span

the whole experiment and which is procedural in nature. �is procedural nature makes this working

memory quite peculiar because instead of memorizing a given information, it needs to memorize a pro-

cedure – here, a sequence of operations depending on the context – that needs to be applied each time

an input is given. It is not yet clear how such memory could be encoded in the brain (e.g. sustained

activity, dynamic activity, transient weights) and we think conceptors might be key in answering such

a question, but more experimental and theoretical work will be needed. Similar conceptors than the

ones we computed with our gated working memory reservoir model are likely to be computed with

other working memory models (Lim and Goldman, 2013; Nachstedt and Tetzla�, 2017; Bouchacourt

and Buschman, 2019): it would be interesting to see whether the functional conceptors obtained are

similar (i.e. our results would be generally applicable), or on the contrary, if di�erences occur.
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