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Unsupervised Multi-modal Hashing for
Cross-Modal Retrieval

Jun Yu, Xiao-Jun Wu*, Donglin Zhang

Abstract—With the advantage of low storage cost and high
efficiency, hashing learning has received much attention in
the domain of Big Data. In this paper, we propose a novel
unsupervised hashing learning method to cope with this open
problem to directly preserve the manifold structure by hashing.
To address this problem, both the semantic correlation in textual
space and the locally geometric structure in the visual space
are explored simultaneously in our framework. Besides, the `2,1-
norm constraint is imposed on the projection matrices to learn
the discriminative hash function for each modality. Extensive
experiments are performed to evaluate the proposed method on
the three publicly available datasets and the experimental results
show that our method can achieve superior performance over the
state-of-the-art methods.

Index Terms—Multimodal Hashing, Cross-modal Retrieval,
Unsupervised learning, manifold preserving

I. INTRODUCTION

RECENTLY, the explosive growth of multimedia data
brings enormous challenge in information retrieval [1],

[2], data mining [3], [4], and computer vision [5]. It is
necessary to develop methods to support retrieving relevant
objects from such massive database. Binary codes learning,
a.k.a. hashing, has achieved great success because of its low
storage and high efficiency. Among hashing methods [6],
[7], [8], [9], [10], [11], [12], [13], Neighborhood Preserving
Hashing (NPH) [9], Scalable Deep Hashing (SCADH) [10],
Similarity Preserving Linkage Hashing (SPLH) [11], Weakly
Supervised Multimodal Hashing(WMH) [12] and Discrete Lo-
cally Linear embedding (DLLH) [13] have achieved promising
performance. Nevertheless, these methods are assumed in
single-modal circumstances and do not directly apply to multi-
modal applications.

Cross-modal retrieval is a more interesting scenario be-
cause multimodal data are often available in multimedia
domains. The major task of cross-modal retrieval is to find
the same semantic data from different modal spaces when
given query data. Most of the previous works pay attention to
supervised and semi-supervised multimodal hashing learning
algorithms that focus on learning discriminative features by
ultilizing available semantic labels. Label Consistent Matrix
Factorization Hashing (LCMFH) [14] learns a latent common
space where data classified into the same category share a
common representation. Multi-view Feature Discrete Hashing
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(MFDH) [15] jointly performs classifier learning and sub-
space learning for cross-modal retrieval. Semantic correlation
maximization (SCM) [16] reconstructs the semantic similarity
matrix calculated by the label vectors in hamming space
to learn the discriminative hash codes. Semantics-Preserving
Hashing (SePH) [17] transforms the semantic affinity into
a probability distribution and approximates the distribution
in Hamming space. Semi-supervised Hashing [18] learns the
hash functions by utilizing the label information of partial
data. Although the above methods are very efficient to realize
cross-modal retrieval, they depend on the labeled data and it
is time-consuming and labor-intensive to obtain them in real
applications.

Unsupervised cross-modal hashing methods aim to learn
the high-quality hash codes which preserve the structural and
topological information of data. Cross-View Hashing (CVH)
[19] is a pioneering work that extends the traditional unimodal
spectral hashing [20] to the multimodal situation. Robust
Cross-view Hashing (RCH) [21] learns a common Hamming
space in which the binary codes of the paired different
modalities are as consistent as possible. Canonical Correlation
Analysis (CCA) [5] transforms multiple views into a common
latent subspace in which the correlation between two views is
maximized. Fusion Similarity Hashing (FSH) [22] embeds the
graph-based fusion similarity into a common Hamming space.
The main idea of Inter-Media Hashing (IMH) [23] is that
the learned binary codes preserve inter-media and intra-media
consistency simultaneously. Unsupervised multimodal hashing
generally needs to solve two basic problems: how to preserve
the geometric structure among data points by hash codes
and how to simultaneously select discriminative features for
multiple modalities. Although existing unsupervised hashing
methods have been developed, but above problems are not well
addressed simultaneously. In fact, some tags or texts associated
with uploaded images in social media contain the weakly se-
mantic information. In this paper, we proposed a unsupervised
multi-modal hashing where both the weakly semantic structure
information provided by textual modality and the visually
underlying manifold structure are explored simultaneously.
Besides, the projection matrices are constrained by `2,1-norm
to learn the discriminative and compact binary codes. The
overview of the proposed method is shown in Fig.1 and the
advantages of our method are summarized as follows

(1) We propose a sparse multi-modal hashing method by
which the learned hash codes preserve the semantically and
visually structural information.

(2) Our model jointly performs the multi-modal graph
embedding and discriminative features learning, which further
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improves the performance.
(2) Experimentally, a comparative evaluation of the pro-

posed method on three available datasets with other state-
of-the-art hashing methods shows that our method boosts the
retrieval performance.

Structurally, the rest of this paper falls into four sections. In
section II, we simply introduce the related work in this field.
Our model and the optimization algorithm are presented in
section III. In section IV, we discuss the experimental results
on three available datasets and analyze the sensitivity of some
parameters. Finally, the conclusions are drawn in section V.

II. RELATED WORK

In this section, we preliminarily review the related work
in the field of cross-modal hashing. Cross-modal hashing
algorithms are roughly divided into supervised cross-modal
hashing and unsupervised cross-modal hashing which are
distinguished by whether the label information is utilized or
not.

Supervised cross-modal hashing methods learn the dis-
criminative hashing feature via exploiting the available label
information. Semantic Correlation Maximization (SCM) [16]
utilizes the semantic label to calculate the cosine similarity
which is preserved in hamming space. Supervised Matrix Fac-
torization Hashing (SMFH) [24] integrates the graph regular-
ization and matrix factorization into an overall hashing learn-
ing framework. Semantics-Preserving Hashing (SePH) [17]
transforms the affinity matrix into a probability distribution
and approximates it in Hamming space via minimizing their
Kullback-Leibler divergence. Generalized Semantic Preserv-
ing Hashing (GSePH) [25] preserves the semantic similarity
by the unified binary codes. Semi-supervised NMF (CPSNMF)
[26] uses a constraint propagation approach to get more su-
pervised information, which can greatly improve the retrieval
performance. Cross-Modal Hamming Hashing (CMHH) [27]
designs a pairwise focal loss to generate compact and highly
concentrated hash codes. In spite that supervised hashing
methods have achieved promising performance, they overly
depend on massive labeled data. Fortunately, unsupervised
cross-modal hashing methods can handle effectively the prob-
lem.

Unsupervised cross-modal hashing methods mainly explore
the structure, distribution, correlation and geometry among
data and make these information be preserved well in ham-
ming space. Canonical Correlation Analysis (CCA) [5] learns
a common space where the correlation between different two
modalities is maximized. Inter-Media Hashing (IMH) [23] in-
troduces inter-media consistency and intra-media consistency
to discover a common Hamming space. Cross View Hashing
(CVH) [19] extends the classical unimodal spectral hashing to
the multi-modal scenario. Robust Cross-view Hashing(RCH)
[21] learns a common Hamming space where the binary codes
representing the same semantic content but different modalities
should be as consistent as possible. Collective Reconstructive
Embeddings (CRE) [28] directly learns the unified binary
codes via reconstructive embeddings collectively. Robust and
Flexible Discrete Hashing(RFDH) [29] adopts the discrete ma-
trix decomposition to learn the binary codes, which avoids the

large quantization error caused by relaxation. Fusion Similarity
Hashing(FSH) [22] constructs an undirected asymmetric graph
to model the similarity among objects.

Different from the above approaches, we propose a sparse
multi-modal hashing approach that explores the local manifold
structure and the wealkly semantic correlation to learn the
robust hash functions. The `2,1-norm regularization is incor-
porated to select the discriminative and relevant features from
multi-modal data simultaneously.

III. UNSUPERVISED MULTIMODAL HASHING

A. Notation and Problem Statement

Suppose that the training set O = {oi}ni=1 contains n
instances of image-text pair. V = [v1, v2, ..., vn] ∈ Rd1×n

and T = [t1, t2, ..., tn] ∈ Rd2×n denote the image modality
and text modality respectively. Each instance oi = (vi, ti)
consists of an image vi ∈ Rd1 and a text ti ∈ Rd2 . Without
loss of generality, samples in each modality are zero-centered,
i.e.

∑n
i vi = 0 and

∑n
i ti = 0. Given the code length

r, all instance O can be represented by the binary codes
B = [b1; b2; ...bn] ∈ Rn×r in hamming space. We first
calculate the kernel matrices X(m) = [x

(m)
1 , x

(m)
2 , ..., x

(m)
n ] ∈

Rd×n(m = 1, 2) of the m-th modality by employing the RBF
kernel function. Taking the image modality for an example,
x
(1)
i = [exp(‖vi − a1‖2/σ), ..., exp(‖vi − ad‖2/σ), ]T , where
{aj}dj=1 are d anchor points that are randomly selected from
the image modality of the training data. The aims of our
method is to learn the mapping functions from the kernel
spaces to the common Hamming space, that is, f : Rd →
{1,−1}r for image-modality and g : Rd → {1,−1}r for text-
modality.

Notations. Given an example matrix M and its i − th
row is Mi., the `2,1-norm of M is defined as ‖M‖2,1 =∑n
i=1

√∑m
j=1M

2
ij . sgn(·) signifies the sign function, specif-

ically,

sgn(x) =

{
−1 x < 0

1 x ≥ 0
(1)

B. Structure Preservation

The local manifold structure in the original space should be
preserved in the Hamming space. In the visual space, data
point can be well approximated by the linear combination
of its k-nearest neighbor points. In mult-imodal applications,
the text content associated with an image can provide the
weakly supervised semantic information. Thus, the semantic
correlation of textual space should be considered in the process
of the hashing learning.

1) Visual Model: We hope that the similar locally manifold
structure within visual modality can be projected into the same
hash bin, and vice versa. The Discrete Locally Linear Embed-
ding (DLLE) [13] is employed to preserve the local linear
structure in the discrete Hamming space. The reconstruction
error is written as follows

min
S

1

2

n∑
i=1

‖x(1)i −
n∑
j 6=i

Sjix
(1)
j ‖

2 (2)
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Fig. 1: Illustration of the proposed approach. The proposed framework finds a discrete hamming space where the local geometric
structure of visual space and the semantic correlation information provided by textual modality can be preserved simultaneously.
In the query phase, we can obtain the hash codes of an arbitrary query according to the learned hash functions, and other
modal data with the nearest hamming distance are returned. Best viewed in color.

where S ∈ Rn×n is an affinity matrix.The optimal solution
can be obtained as follows

Si =
G−1i 1

1TG−1i 1
(3)

where X
(1)
j and X

(1)
l are K-nearest neighbor points of

X
(1)
i and Gi is the local Gram matrix defined as (X

(1)
i −

X
(1)
j )T (X

(1)
i − X(1)

l ) for X(1)
i . Each point can be approxi-

mated by an affine combination of its K nearest neighbors in
Hamming space. The reconstruction error as

min
B
‖B − SB‖2 (4)

2) Textual Model: Texts associated with social images are
usually provided by web users. These tagged texts with rich
semantic information are beneficial to hash functions learning.
The pairwise similarity matrix Z ∈ Rn×n is calculated using
the cosine similarity function. The textual affinity between the
oi and oj is defined as follows

Zij =
(x

(2)
i )Tx

(2)
j

‖x(2)i ‖2‖x
(2)
j ‖2

(5)

The higher textual similarity two instances have, the more sim-
ilar binary codes they have. The above idea can be transformed
the following weighted maximization problem

L(B,X(2)) = argmax
B

n∑
i,j=1

Zijbib
T
j

= argmax
B

Tr(BTZB)

(6)

The embedding scheme in Eq. (6) is termed Discrete Locally
Projection Preservation (DLPP) in this paper. To achieve

maximal information entropy, each hash bit is expected to
be balanced on the training data [20]. More specifically, the
number of +1 and that of −1 should be consistent as much
as possible for each bit. We integrate Eq. (5) and Eq. (6) into
the following Eq. (7) to obtain compact binary codes.

min
B
‖B − SB‖2 − βTr(BTZB) + ρ‖1TnB‖2F
s.t.B ∈ {−1, 1}n×r

(7)

C. Hash Functions Learning

The `2,1-norm has been proven to be effective to obain the
discriminative features by some recent works [31], [32]. We
impose the `2,1-norm constraint on the projection matrices
to learn the discriminative representation, which leads to the
following problem

min
P (m),B

2∑
m=1

α(m)γ (‖X(m)TP (m) −B‖2F + λm‖P (m)‖2,1)

s.t.B ∈ {−1, 1}n×r,
2∑

m=1

αm = 1, αm > 0

(8)

where P (m) denotes the projection matrix of the m-th modal-
ity and α(m) is the weight factor with the adjustment coeffi-
cient γ and λm is a penalty parameter.
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Then the overall objective function combining Eq. (7) and
Eq. (8) is given as follows

min
B,P (m),α(m)

2∑
m=1

α(m)γ (‖X(m)TP (m) −B‖2F + λm‖P (m)‖2,1)

+ η‖B − SB‖2F − βTr(BTZB) + ρ‖1TnB‖2F

s.t.B ∈ {−1, 1}n×r,
2∑

m=1

αm = 1, αm > 0

(9)

where β and ρ are two hyper-parameters.
The above Eq. (9) is a non-convex problem. We solve the

optimization problem by updating each variable with the other
variables fixed alternatively.
Update B with other variables fixed. The subproblem is to
minimize the following

min
B

2∑
m=1

α(m)γ‖X(m)TP (m) −B‖2F + η‖B − SB‖2F

− βTr(BTZB) + ρ‖1TnB‖2F
s.t.B ∈ {−1, 1}n×r

(10)

The Eq.(10) is an NP-hard problem since B is constrainted to
be discrete value. We relax it to be continuous value H . Thus
the optimization problem can be transformed to

min
H,B
− 2Tr(RTH) + Tr(HTH) + η‖CH‖2F − βTr(HTZH)

+ ρ‖1TnH‖2F + ξ‖H −B‖2F
(11)

where R =
∑2
m=1 α

(m)γX(m)TP (m) and C = S − I . Then
we can get

H = (ηCTC − βZ + ρ1n1Tn + (ξ + 1)I)−1(R+ ξB) (12)

The problem with respect to B can be presented as

max
B

tr(HBT )

s.t.B ∈ {−1, 1}n×r
(13)

The soloution of B can be directed obtained as

B = sgn(H) (14)

Update P (m) with other variables fixed. Keeping terms
relating to P (m), the objective function Eq. (9) can be rewritten
as follows

min
P (m)
‖X(m)TP (m) −B‖2 + λm‖P (m)‖2,1 (15)

Settting the derivative of Eq. (15) with respect to P (m) to zero,
we can obtain

P (m) = (X(m)X(m)T + λ(m)D
(m))−1X(m)B (16)

where D(m) is a diagonal matrix with the i-th diagonal
element D(m)

ii = 1

2‖P (m)
i ‖2+ε

, and P (m)
i signifies the i-th row

of P (m).

Update weight α(m) with other variables fixed. By
dropping terms irrelating to α(m), we get

min
α(m)

2∑
m=1

α(m)γC(m)

s.t.

2∑
m=1

αm = 1, αm > 0

(17)

where C(m) = ‖X(m)TP (m) − B‖2F + λm‖P (m)‖2,1. We
employ the Lagrange multiplier to transform Eq. (17) into the
following

min
α(m)

2∑
m=1

α(m)γC(m) + ξ(1−
2∑

m=1

α(m)) (18)

Setting the derivate of Eq. (18) with respect to α(m) to zero,
we obtain

α(m) =
(γC(m))1/(1−γ)∑M
m=1(γC

(m))1/(1−γ)
(19)

After acquiring the projection matrix P (m), the binary codes
b of query x is computed according to the rule b =
sgn(xTP (m)). The overall optimization procedure is summa-
rized in Algorithmn 1. This iteration process is repeated until
it converges. As shown in Fig. 4, our algorithm converges
quickly on the WiKi, PASCAL-VOC and UCI Handwritten
Digit.

Algorithm 1 Unsupervised Multi-modal Hashing

Input: X(m) ∈ Rd×n, (m = 1, 2); hash codes length r.
Output: P (m), B, α(m).

Initialize B, P (m), α(m), λ(m), ρ, β and η.
Compute similarity matrix S according to (3)
Compute similarity matrix Z according to (5)

1: repeat
2: Update B according to (12) and (14)
3: Compute D(1)

ii by D(1)
ii = 1

2‖P (1)
i ‖2+ε

.

4: Compute D(2)
ii by D(2)

ii = 1

2‖P (2)
i ‖2+ε

.

5: Update P (1) using Eq.(16)
6: Update P (2) using Eq.(16)
7: Update α(1) according to Eq.(19)
8: Update α(2) according to Eq.(19)
9: until

IV. EXPERIMENTS

A. Datasets

Wiki [33] contains 2,866 multimedia documents harvested
from Wikipedia. Every document consists of an image and a
text description, and each document is classified into one of
10 categories. Each image is represented by a 128-dimensional
SIFT histogram vector. A 10-dimensional feature vector gen-
erated by latent Dirichlet allocation is used to represent each
text. We take 2173 pairs from the dataset to form the training
set and database, the resting 973 as a query set.

PASCAL-VOC [34] consists of 9,963 image-tag pairs.
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Each image is represented by a 512-dimensional GIST feature
vector and each text is represented as a 399-dimensional word
frequency count. Each sample are classified into one of 20
categories. We select 5,649 pairs with only one object in our
experiment. 2,808 pairs are taken out as a training set and
database, the remaining samples as the query data.

UCI Handwritten Digit is comprised of handwritten nu-
merals(0 - 9) collected from Dutch utility maps. Each of the
character shapes is regarded as a class and each class consists
of 200 samples. Following [35], we select 76 Fourier coef-
ficients and 64 Karhunen-Love coefficients of the character
shapes as the feature of two different modalities respectively.
1,500 samples are treated as the training set and database, the
resting 500 as the query set.

B. Experimental Setting

To verify the effectiveness of our method, some comparative
experiments are conducted on two cross-modal retrieval tasks:
Image (Modality 1) query text (Modality 2) database and Text
(Modality 2) query image (Modality 1) database which are
termed as ’Task1’ and ’Task2’ respectively. As our method
is a unsupervised hashing method, for a fair comparison, we
compare our method with six state-of-the-art unsupervised
learning models. Specifically, the baselines include CVH [19],
CCA [5], IMH [23], RCH [21], FSH [22] and CRE [28]. Since
the source code of RCH and CRE is not available, we imple-
mented it by ourselves. The codes of other baselines are kindly
provided by the authors. The value of λ1, λ2, β and ρ are tuned
in the candidate range {1e−5, 1e−4, 1e−3, 1e−2, 1e−1, 1}. γ is
set to 0.5 empirically and the best results are reported in this
paper. Our experiments are implemented on MATLAB 2016b
and Windows 10 (64-Bit) platform based on desktop machine
with 12 GB memory and 4-core 3.6GHz CPU, and the model
of the CPU is Intel(R) CORE(TM) i7-7700.

TABLE I: The mAP results on WiKi

Tasks Methods The length of hash code
16 32 64 128

Task 1

CVH 0.1499 0.1408 0.1372 0.1323
CCA 0.1699 0.1519 0.1495 0.1472
IMH 0.2022 0.2127 0.2164 0.2171
RCH 0.2102 0.2234 0.2397 0.2497
FSH 0.2346 0.2491 0.2531 0.2573
CRE 0.2301 0.2446 0.2599 0.2620
UMH 0.2511 0.2505 0.2578 0.2611

Task 2

CVH 0.1315 0.1171 0.1080 0.1093
CCA 0.1587 0.1392 0.1272 0.1211
IMH 0.1648 0.1703 0.1737 0.1720
RCH 0.2171 0.2497 0.2825 0.2973
FSH 0.2149 0.2241 0.2332 0.2368
CRE 0.2442 0.2695 0.2846 0.2897
UMH 0.4984 0.5057 0.5224 0.5298

Average

CVH 0.1407 0.1290 0.1226 0.1208
CCA 0.1643 0.1456 0.1384 0.1341
IMH 0.1835 0.1915 0.1951 0.1946
RCH 0.2137 0.2365 0.2611 0.2735
FSH 0.2248 0.2366 0.2431 0.2470
CRE 0.2372 0.2571 0.2723 0.2759
UMH 0.3747 0.3781 0.3901 0.3955

TABLE II: The mAP results on PASCAL-VOC

Tasks Methods The length of hash code
16 32 64 128

Task 1

CVH 0.1484 0.1187 0.1651 0.1411
CCA 0.1245 0.1267 0.1230 0.1218
IMH 0.2087 0.2016 0.1873 0.1718
RCH 0.2633 0.3013 0.3209 0.3330
FSH 0.2890 0.3173 0.3340 0.3496
CRE 0.2758 0.3046 0.3216 0.3270
UMH 0.3225 0.3368 0.3741 0.3701

Task 2

CVH 0.0931 0.0945 0.0978 0.0918
CCA 0.1283 0.1362 0.1465 0.1553
IMH 0.1631 0.1558 0.1537 0.1464
RCH 0.2145 0.2656 0.3275 0.3983
FSH 0.2617 0.3030 0.3216 0.3428
CRE 0.2395 0.2713 0.2941 0.2981
UMH 0.4760 0.5472 0.5825 0.5701

Average

CVH 0.1208 0.1066 0.1315 0.1165
CCA 0.1264 0.1315 0.1347 0.1386
IMH 0.1859 0.1787 0.1705 0.1591
RCH 0.2389 0.2834 0.3242 0.3657
FSH 0.2753 0.3102 0.3278 0.3462
CRE 0.2577 0.2880 0.3079 0.3126
UMH 0.3993 0.4420 0.4783 0.4701

TABLE III: The mAP results on UCI Handwritten Digit

Tasks Methods The length of hash code
16 32 64 128

Task 1

CVH 0.3421 0.2496 0.1907 0.1759
CCA 0.3155 0.2360 0.1841 0.2082
IMH 0.2947 0.2375 0.1892 0.1737
RCH 0.6181 0.6636 0.6991 0.7056
FSH 0.6323 0.6776 0.7027 0.7139
CRE 0.6636 0.7425 0.7516 0.7643
UMH 0.7496 0.7944 0.8149 0.8043

Task 2

CVH 0.3215 0.2471 0.1939 0.1695
CCA 0.3160 0.2398 0.1855 0.1102
IMH 0.2943 0.2315 0.1789 0.1514
RCH 0.5810 0.6336 0.6768 0.6979
FSH 0.6460 0.6745 0.7069 0.7149
CRE 0.6448 0.7357 0.7547 0.7671
UMH 0.7327 0.7997 0.8333 0.8417

Average

CVH 0.3318 0.2483 0.1923 0.1727
CCA 0.3157 0.2379 0.1848 0.1592
IMH 0.2945 0.2345 0.1840 0.1626
RCH 0.5996 0.6486 0.6880 0.7017
FSH 0.6392 0.6761 0.7048 0.7144
CRE 0.6542 0.7391 0.7532 0.7657
UMH 0.7411 0.7970 0.8241 0.8230

C. Evaluation metric

The Mean Average Precision (mAP) is used to evaluate
the performance of our method and comparison methods.
Specifically, the Average Precision (AP) for a query q is
defined as follows

AP (q) =
1

lq

R∑
m=1

Pq(m)δq(m) (20)

where Pq(m) denotes the accuracy of top m retrieval results;
δq(m) = 1 if the m-th position is true neighbor of the query
q, and otherwise δq(m) = 0; lq is the correct statistics of top
R retrieval results. (R is set to the number of entire database).
The mAP is defined as the mean of the average precisions of
all queries
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Fig. 2: The mAP variation with respect to β, η and ρ.
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Fig. 3: The mAP variation with respect to different combination of λ1 and λ2 on WiKi(a), PASCAL-VOC (b), and UCI
Handwritten Digit (c).
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Fig. 4: The convergence curve of algorithm 1 on WiKi(a), PASCAL-VOC (b), and UCI Handwritten Digit (c).

D. Retrieval Performance Evaluation

The mAP scores on Wiki, PASCAL-VOC, and UCI Hand-
written Digit are shown in TABLE I, II, and III respectively.
We can observe the following points: (1) The performance
of our method is superior to the baselines. Among baselines,
RCH is a method with `2,1-norm constraint imposing on
projection matrices, but RCH does not take the manifold
structure within each modality into account. FSH constructs
an undirected asymmetric graph to model the similarity among
samples. CRE utilizes domain-specific method to model dif-
ferent modalities and the intra-modal similarity is preserved in
the process of learning unified binary codes. However, FSH
and CRE do not explore the discrimiantive features in their

frameworks. Compared with the above methods, our method
boosts retrieval performance. The significant improvement of
the proposed method can be attributed to the combination
of the `2,1-norm regularization and Structure Preserving. (2)
Our method outperforms all comparison methods in terms
of the average performance for two retrieval tasks on three
datasets. With the increasing of hash code length, the retrieval
performance on the Task 1 and Task 2 is further improved.
The reason for the better performance is that the discriminative
information will be more sufficient with the longer hash codes.
(4) The results on Task 2 are consistently higher than that on
Task 1. This may be because the text modality itself is a weak
supervision information which can benefit to improve retrieval
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TABLE IV: Experiment results (mAP@64bit) on ablation
study

WiKi Pascal VOC UCI Handwritten Digit
β = 0 0.3801 0.3531 0.8014
η = 0 0.3850 0.3056 0.7998
ρ = 0 0.1102 0.4542 0.2082
Ours 0.3901 0.4783 0.8241

performance.
Ablation study Some ablation experiments are conducted

to investigate the influence of different terms in Eq. (9). Three
hyper-parameters (β, η, ρ) steer one of the terms respectively.
β = 0 means our method ignores the inner structure within
text modality. η = 0 indicates our model does not consider the
visually geometric information. ρ = 0 implies the balanced
bits term is ruled out from our model. The comparison results
are shown in Table IV. From Table IV, the importance of the
three terms is dissimilar for different datasets. It is apparent
that each term of the objective function collaboratively con-
tributes to the retrieval performance.

E. Parameter Sensitivity Analysis
In our model, ρ, β, η, λ1 and λ2 are set manually. In this

subsection, we explore the influence of different parameters
setting on retrieval performance. The empirical analysis is
performed for each parameter by varying its value in the
candidate range. To discuss the above parameters conveniently,
the hash code length is fixed at 64 bit in our experiments. In
Fig.2, we plot the performance variation curves with respect
to β, η and ρ. On WiKi, PASCAL-VOC and UCI Handwritten
Digit, our method can achieve the highest mAP score when
β is set to 1e−5, 1e−1 and 1e−6 respectively and η is set to
1e−1, 1 and 1e−4 respectively. ρ represents the importance
of the balanced term in Eq. (9). In Fig.2, we can find that
the ρ should not be too large. λ1 and λ2 are two penalty
parameters controlling the sparse constraint items of two
modalities respectively. The mAP scores as a function of λ1
and λ2 is plotted in Fig.3, which shows that the optimal
combination falls a fixed small range on three datasets.

V. CONCLUSION

In this paper, we propose a unsupervised multi-modal hash-
ing method for cross-modal retrieval. Our model explores the
underlying neighborhood structure of the visual space and the
semantic correlation provied by textual modality to learn the
compact unified hash codes. The sparse constraint is imposed
on our model to learn discriminative hash functions for multi-
modal data. Encouraging experimental results demonstrate that
the effectiveness of the proposed framework on cross-modal
retrieval tasks. In the future, we plan to extend the proposed
method into the deep learning networks.
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