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Abstract
According to the psychological literature, implicit motives allow for the characterization of behavior, subsequent success, 
and long-term development. Contrary to personality traits, implicit motives are often deemed to be rather stable personal-
ity characteristics. Normally, implicit motives are obtained by Operant Motives, unconscious intrinsic desires measured 
by the Operant Motive Test (OMT). The OMT test requires participants to write freely descriptions associated with a set 
of provided images and questions. In this work, we explore different recent machine learning techniques and various text 
representation techniques for facing the problem of the OMT classification task. We focused on advanced language repre-
sentations (e.g, BERT, XLM, and DistilBERT) and deep Supervised Autoencoders for solving the OMT task. We performed 
an exhaustive analysis and compared their performance against fully connected neural networks and traditional support 
vector classifiers. Our comparative study highlights the importance of BERT which outperforms the traditional machine 
learning techniques by a relative improvement of 7.9%. In addition, we performed an analysis of how the BERT attention 
mechanism is being modified. Our findings indicate that the writing style features acquire higher importance at the moment 
of accurately identifying the different OMT categories. This is the first time that a study to determine the performance of 
different transformer-based architectures in the OMT task is performed. Similarly, our work propose, for the first time, using 
deep supervised autoencoders in the OMT classification task. Our experiments demonstrate that transformer-based methods 
exhibit the best empirical results, obtaining a relative improvement of 7.9% over the competitive baseline suggested as part 
of the GermEval 2020 challenge. Additionally, we show that features associated with the writing style are more important 
than content-based words. Some of these findings show strong connections to previously reported behavioral research on 
the implicit psychometrics theory.

Keywords  Operant motive test · Psycholinguistics · BERT · Supervised autoencoder · Deep learning · Natural language 
processing

Introduction

The idea that language use reveals information about person-
ality has long circulated in the social and medical sciences. 
Previous research has demonstrated that the way people use 
words convey a great deal of information about themselves 
and their mental health conditions [1–4], including academic 
success [5]; however, much of the previous research has 
focused on the analysis of self-reports or essays. In contrast, 
implicit motives, which are indicators used by professional 
psychologists during the aptitude diagnosis, are not readily 
accessible to the conscious mind and, therefore, not detected 
using self-reports of personal needs, or through essay writ-
ing [6]. Instead, they are primarily assessed using indirect 
measures that rely on projective techniques that instruct 
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individuals to produce imaginative stories based on ambigu-
ous pictures stimuli that depict people in different situations 
(Examples of these stimuli pictures are shown in Fig. 1). 
These pictures aim to influence the content of the subjects’ 
fantasy and to provoke that such fantasy is projected onto 
the characters through a short (textual) story (see Table 1 
for some examples of the type of produced stories for the 
top-left image from Fig. 1). Consequently, this motivational 
response emerges through the contents of the written imag-
inative material and can be coded for its motive imagery 
using standardized and validated content coding systems.

The most frequently used measures of implicit motives are 
the Picture Story Exercise (PSE) [7], the Thematic Apper-
ception Test (TAT) [8], the Multi-Motive Grid (MMG) [9], 
and the Operant Motive Test (OMT) [10, 11]. Generally 
speaking, these tests are based on the operant methods, i.e., 
participants are asked ambiguous questions or are shown 
simple images, which they have to describe. Specifically, the 

OMT test is a projective instrument in which participants are 
presented ambiguous pictures (e.g., sketched scenarios) and 
ask to think of a story that describes what is happening in the 
picture. Thus, participants are asked to first pick the main 
protagonist, think of a story involving this person, and then 
answer the following three questions as spontaneously as 
possible: “What is important to this person in this situation 
and what is the person doing?, How does the person feel?, 
and Why does the person feel that way?” [11, 12]. Then, 
trained psychologists label these textual answers with one of 
five motives, namely M-power, A-affiliation, L-achievement, 
F-freedom, and 0-zero; and each motive is associated with 
its corresponding level or emotion (from 0 to 5), resulting in 
a total of 30 (5-motives × 6-levels) different OMT categories. 
In Table 2 we briefly describe the meaning of the operant 
motives; interested reader is referred to [11, 12].

Even though nowadays there is a huge demand for psy-
chological data and its automated analysis, see for example, 
works presented at forums such as the CLPsych workshop1, 
until recently, little research has been performed on the 
Operant Motive classification task [13–18]. The primary rea-
son is the lack of available labeled psychological text data, 
as [19] point out, and the difficulty of capturing psychologi-
cal traits from text data, especially from very short texts.

Accordingly, in this paper, we aim to mitigate the lack 
of research on this issue and we explore how the recent 
advances in natural language processing (NLP) can be 
applied in the task of automatically identify psychological 

Fig. 1   Sample images that are 
shown to subjects during the 
OMT test. Credits of the image 
correspond to organizers of the 
GermEval 2020 shared task2

Table. 1   Example answers produced to the stimuli image on the top-
left side of Fig. 1

Motive Sample text (Closest English translation)

A sie nimmt am Gespräch nicht teil und wendet sich ab. gel-
angweilt. es interessiert sie nicht, worüber die anderen 
beiden reden. schlecht.

(she does not take part in the conversation and turns away. 
bored. they don’t care what the other two talk about. 
bad.)

M weicht ängstlich zuruück. unterlegen. wird zurechtgew-
iesen. Gelegenheit den Fehler zu korrigieren

(withdraws fearfully. inferior. is rebuked. Opportunity to 
correct the mistake)

1  Computational Linguistics and Clinical Psychology Workshop 
(https://​clpsy​ch.​org/)
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traits from short textual data, specifically, we performed 
an exhaustive evaluation on the classification of the Oper-
ant Motives from the text. We evaluate the impact of very 
recent deep learning architectures such as transformers [20] 
(BERT, XLM, DistilBert), recent generalization techniques 
as supervised autoencoders [21], traditional classification 
methods, e.g., fully connected neural networks and support 
vector machines. To perform our experiments, we use the 
dataset provided during the “GermEval 2020 Task on the 
Classification and Regression of Cognitive and Emotional 
Style from Text” [22].2

The present paper represents an important extension of 
our previous reported participation [18] at the GermEval 
2020 [22]. The main addition relies upon the adaptation and 
evaluation of recent generalization techniques, namely, deep 
supervised autoencoders (SAE). To the best of our knowl-
edge, this is the very first time such an exhaustive evaluation 
of SAE techniques is performed on the OMT classification 
task. Additionally, we perform a thorough analysis of how 
the attention mechanism from the transformers architectures 
is affected when solving the OMT task.

In summary, the main contributions of this paper are as 
follows: 

1.	 To the best of our knowledge, this paper represents 
the very first systematic exploration, and comparison, 
of several recent NLP technologies as well as machine 
learning techniques on the OMT classification task;

2.	 We propose a supervised autoencoder architecture for 
solving the OMT classification task, which as per our 
literature review, none of the recent research has applied 
this type of technology on the posed task. At the same 

time, we evaluate the impact of different feature types, 
ranging from char ngrams to recent contextual embed-
dings, as inputs to the proposed SAE;

3.	 Finally, we conducted an analysis of how the attention 
mechanism of the transformer-based architectures is 
adapted during the OMT classification task. This type 
of analysis provides, to some extent, transparency on 
how the classifier is making its decisions. During this 
process, we observed some strong connections between 
our obtained results and psychometrics research.

The rest of the paper is organized as follows. Related work is 
discussed in “Related Work”. “Dataset” describes the data-
set used in this work and its main characteristics. Details 
of our applied methodology are given in “Methodology”. 
The experimental setup, results, and analysis are provided 
in “Results and Discussion”. Finally, we share our main con-
clusions and future work directions in “Conclusion”.

Related Work

Nowadays, there is an acknowledged necessity for digital solu-
tions for addressing the burden of mental health diagnosis 
and treatment. It is recognized that won’t be possible to treat 
people by professionals alone, and even if possible, some 
people might require to use alternative modalities to receive 
mental health support [23]; such situation has become more 
evident with the current COVID-19 pandemic. Examples of 
recent efforts building technology toward this direction are 
the Woebot [24] and Wysa [25] dialog systems for health and 
therapy support for patients that have depression symptoms; 
Expressive Interviewing [26], which is a conversational agent 
aiming at support users to cope with COVID-19 issues.

The underlying hypothesis of most these works relies on 
the notion of the language as a powerful indicator about our 
personality, social, or emotional status, and mental health 
[3, 27]. Accordingly, the NLP community has focused on 
proposing several methods to identify different psychologi-
cal traits from texts, and to examine the connection between 
language and mental health. As a few examples of this type 
of research, we can mention dementia identification [28, 29], 
depression detection [27, 30, 31], crisis counselling [32], 
suicide risks identification [31, 33, 34], mental illnesses 
classification [35, 36], anxiety detection [37], personality 
traits identification [38, 39], etc.

Although plenty of research has been done in the field of 
mental disorders detection and personality traits detection, 
there has been very little research for identifying motiva-
tion, success, or similar characteristics from psychological 
projective tests. One representative work, that brought back 
the discussion of how these traits could be automatically 
detected through traditional NLP techniques, is the research 

Table. 2   Brief outline of the motives (imagery types) [11, 12]

Type Definition

Power (M) Subjects concerned about having impact, con-
trol, or influence on another person, group, or 
the world at large.

Freedom (F) Subjects concerned about stories that include 
the themes self-joy, increases in self-esteem 
through praise and attention, self-growth and 
self-actualization, integration of negative 
experiences into the self, rigid self-protection, 
or expressions of the fear of self-devaluation.

Affiliation (A) Subjects concerned about establishing, main-
taining, or restoring friendship or friendly 
relations among persons, groups, etc.

Achievement (L) Subjects concerned about a standard of excel-
lence.

2  https://​www.​inf.​uni-​hambu​rg.​de/​en/​inst/​ab/​lt/​resou​rces/​data/​germe​
val-​2020-​cogni​tive-​motive.​html
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reported in [16]. Authors performed a process of features 
engineering to train a logistic model tree (LMT) [40] to clas-
sify a reduced set of implicit motives (0, M, A, and L). An 
LMT is a decision tree, which performs logistic regression at 
its leaves. In their research, authors found that the perplexity 
of the language models for each motive, closed-class words, 
and ratios (words per sentence ratio, type/token ratio) were 
the most discriminating features during the classification 
process. In [15], authors proposed using a Long Short-Term 
Memory (LSTM) neural network combined with an atten-
tion mechanism for classifying OMT motives (0, M, A, and 
L) from text data. For their experiments, authors employed 
pre-trained german fastText word embeddings [41] to rep-
resent tokens in the OMT data. Authors mention that when 
reviewing tokens that have high associated attention weights 
and compared with the Linguistic Inquiry and Word Count 
(LIWC) tool [42], they found a weak connection between 
LIWC categories and the OMT theory.

More recently, during the 5th SwissText & 16th KON-
VENS Joint Conference 20203, it was organized a shared 
task on the classification and regression of cognitive and 
motivational style from the text, GermEval 20202 . This rep-
resented the very first time a shared task for detecting and 
classifying OMT motives was organized, providing a huge 
dataset under which was carefully curated for this purpose 
[22]. An important characteristic of the provided dataset is 
the fact of including the F-motive, and the labeling of six 
emotions (or levels), representing the first time a dataset with 
these characteristics is ever released. Three different research 
teams participated during the shared task, showing as the 
main results, the pertinence of using recent Bidirectional 
Encoder Representations from Transformers (ie., BERT) for 
solving the posed task. The winning approach employed the 
pre-trained Digitale Bibliothek MunchenerDigitalisierung-
szentrum (DBMDZ) German model, achieving an F-score of 
70% in the prediction of motives, and levels [17]. Generally 
speaking, and based on the shared task submissions [22], it 
is possible to observe that the performance of systems using 
pre-trained BERT embeddings and attention-based models 
tend to perform better than linear models. We referred the 

interested reader to the system description papers presented 
during the shared task [13, 17, 18].

Hence, and with the aim of providing a more detailed 
analysis of the performance of different Natural Language 
Processing techniques and Machine Learning approaches in 
the recently released GermEval 2020 dataset, this paper will 
positively impact future research done on the comprehension 
of the implicit motive theory and its automatic detection 
through recent techniques. Accordingly, in this paper, we 
present a substantial extension of our system description 
paper [18], presented during the GermEval 2020, with the 
following main differences: i) we introduce and perform a 
series of experiments using novel generalization techniques, 
namely deep supervised autoencoders; which have never 
been tested on the OMT task before; ii) we evaluate the per-
formance of three different transformer-based architectures; 
and, iii) we perform an analysis on the attention mechanism 
of transformer-based technologies which helps to understand 
why this type of technologies are well suited for this par-
ticular problem, showing strong connections with previous 
findings from the psychometrics research field.

Dataset

To perform our experiments, we employed the dataset avail-
able in the GermEval 2020 shared task on the “Classification 
and Regression of Cognitive and Motivational style from 
the text”.1 The provided data, mostly written in standard 
German language, has been collected from around 14000 
subjects that participated in the OMT test.4 Each answer 
was manually labeled with the motives (0, A, L, M, F) and 
the levels (from 0 to 5). This annotation was performed 
by expert psychologists, trained by the OMT manual as 
described in [11]. The size of the data set is 209,000 texts, 
from which 167,2005 are part of the training (train) partition, 
20,900 are part of the development (dev), and partition and 
20,900 for testing (test). Tables 3, 4, and 5 show the distribu-
tion of the instances across the different classes for the train, 
dev, and test partitions respectively.

Table. 3   Distribution of the 
train partition across the OMT’s 
motives and levels values

0 1 2 3 4 5 Total:

0 7610 0 1 1 2 4 7,618
A 13 2838 9574 1362 7556 6798 28,141
M 21 9482 6870 10797 27175 14251 68,596
L 6 2396 12863 6289 7544 3747 32,845
F 8 1766 5539 4302 9059 9313 29,987
Total: 7,658 16,482 34,847 22,751 51,336 34,113 167,187

3  https://​swiss​text-​and-​konve​ns-​2020.​org/​shared-​tasks/

4  There are a few cases where answers were given in English or French.
5  A total of 13 instances were removed from the training partition 
due to its lack of label, leaving 167,187 instances.
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As can be observed in tables (Tables 3, 4, and 5), the 
dataset is highly unbalanced, making the classification task 
more challenging. The majority of the instances ( ≊ 41%) are 
from the power motive (M), followed by the achievement (L) 
motive ( ≊ 20%) . Regarding the levels, most of the instances 
are grouped among classes 4 ( ≊ 30.7%) , 5 ( ≊ 20.4%) , and 2 
( ≊ 20.84%) . It is important to mention that the same distribu-
tion remains in the dev and test partitions (Tables 4 and 5). 
Table 6 shows some statistics of the GermEval 2020 data-
set, for train, dev, and test partitions. We compute the aver-
age number of tokens, vocabulary, and lexical richness of 
each text in the dataset. Lexical richness (LR), also known 
as “type/token ratio” is a value that indicates how the terms 
from the vocabulary are used within a text. LR is defined 
as the ratio between the vocabulary size and the number of 
tokens from a text ( LR = |V|∕|T| ). Thus, a value close to 1 
indicates a higher LR, which means vocabulary terms are 
used only once, while values near to 0 represent a higher 
number of tokens used more frequently (i.e., more repetitive).

Two main observations can be done at this point. On the 
one hand, notice that for the three partitions (i.e., train, dev, 
and test), textual descriptions are very short, on average 20 
tokens with a vocabulary of 18 words, resulting in a very 
high LR (0.92). The high LR value means that very few 
words are repeated within each textual description, i.e., very 
few redundancies. On the other hand, globally speaking, the 
complete dataset has a low LR (0.08 for train and 0.13 for 
dev and test). Although these values are not directly com-
parable due to the size of each partition, they indicate, to 

some extent, that information across texts is very repetitive, 
i.e., similar types of words are being used by tested subjects 
for describing different images, even though they belong to 
different classes (motives and levels). Overall, this initial 

analysis helped us to envision the complexity and nature of 
the data. Finally, we measure the coverage ratio of the Ger-
man word embeddings (EmbC)6 into our dataset, resulting 
in a 68.26% of coverage for the training partition, 83.93% 
for the dev set, and 84.10% for the test set. Similar to the LR 
score, we can not directly compare EmbC results due to the 
size of each partition. However, it was expected not to have 
a 100% coverage due to the noise contained in the OMT 
data, e.g., the many spelling and grammar errors present. 
Nevertheless, it is relevant to highlight the low coverage in 
the training set ( ∼ 68% ). As it will be explained in “Results 
Analysis”, this low coverage has an important impact on the 
experiments based on these word embeddings.

Methodology

Figure 2 shows the general view of the applied methodology 
for performing our experiments in this paper. As shown, 
given a textual description, we extract different types of 
features: character n-grams, word n-grams, non-contextual 
word embeddings (FastText), and pre-trained contextual 
embeddings (BERT). Then, depending on the selected 
learning strategy, computed features are feed to a specific 
learning technique, e.g., a supervised autoencoder (SAE), a 
fully connected network (FC), or into a transformer-based 
architecture (ST); that is trained to detect motives and levels 
from text, i.e., the OMT task. It is important to mention that 
instead of facing the OMT task as a 30 class classification 

Table. 4   Distribution of the 
dev partition across the OMT’s 
motives and levels values

0 1 2 3 4 5 Total:

0 1004 0 0 0 0 0 1,004
A 0 386 1198 169 939 855 3,547
M 4 1203 886 1321 3335 1787 8,536
L 0 295 1531 833 951 493 4,103
F 0 200 647 541 1121 1201 3,710
Total: 1,008 2,084 4,262 2,864 6,346 4,336 20,900

Table. 5   Distribution of the 
test partition across the OMT’s 
motives and levels values

0 1 2 3 4 5 Total:

0 963 0 0 0 0 1 964
A 0 367 1182 164 936 888 3,537
M 0 1224 821 1383 3396 1766 8,590
L 0 315 1525 815 906 437 3,998
F 1 192 715 555 1109 1239 3,811
Total: 964 2,098 4,243 2,917 6,347 4,331 20,900

6  For some of our experiments, we used word embeddings trained 
with FastText on 2 million German Wikipedia articles, available at: 
https://​www.​spinn​ingby​tes.​com/​resou​rces/​worde​mbedd​ings/
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problem, we split the problem into two separate classifi-
cation tasks: motives (5 classes), and levels detection (6 
classes). This decision was made in accordance with the 
operant motive (OMT) theory [11], which states that motives 
and levels are disjoint orthogonal and thus not directly con-
nected. Thus, at the end of our methodology, we fuse the 
predicted labels in order to get the motive-level combination 
of the given instance. Notice the dashed lines that go from 
BERT to the FC and SAE; these lines represent a series 
of experiments done after fine-tuning BERT on the posed 
task, where the newly computed embeddings are used as 

features to the FC and SAE learning techniques (see “Simple 
Transformer” to know the details of the fine-tunning pro-
cess). Finally, the solid line that goes directly from the input 
textual description to the transformers block, it represents 
a series of experiments where the ST’s are configured as 
classifiers by adding a simple dense layer at the end.

Following sections describe in detail the applied meth-
odology for performing all our experiments. The proposed 
supervised autoencoder is detailed in “Supervised Autoen-
coders”. The description of the fine-tuning of transformer-
based architectures is depicted in “Simple Transformer”, and 
the configuration of the traditional fully connected neural 
network is described in “Fully Connected Neural Network”. 
“Preprocessing” details the preprocessing operations to 
the dataset. “Evaluation Metrics” describe the considered 
evaluation metrics. An finally, “Baseline and Validation 
Approaches” defines the considered baseline and employed 
validation strategies (see Fig. 3).

Supervised Autoencoders

An autoencoder (AE) is a neural network that learns a repre-
sentation (encoding) of input data and then learns to recon-
struct the original input from the learned representation. 
The autoencoder is mainly used for dimensionality reduc-
tion or feature extraction [43]. Normally, AE are used in 
an unsupervised learning fashion, meaning that we leverage 
the neural network for the task of representation learning. 
By learning to reconstruct the input, the AE extracts the 
underlying abstract attributes that facilitate accurate predic-
tion of the input.

Table. 6   Statistics of the OMT dataset in terms of number of tokens, 
vocabulary size and lexical richness. The minimum length of the texts 
is 1 token, while the maximum length is 99, 90, and 96 tokens for 
train, dev, and test partitions, respectively. In all partitions, the 75% 
of the data has a length of 27 tokens

Partition Metric Average ( �) Total

Training Tokens 20.27 (±12.08) 3,389,945
Vocabulary 18.07 (±9.82) 63,133
LR 0.92 (± 0.08) 0.08
EmbC 43,095 (68.26%)

Development Tokens 20.38 (±12.17) 425,880
Vocabulary 18.17 (±9.94) 19,571
LR 0.92 (± 0.08) 0.13
EmbC 16,426 (83.93%)

Test Tokens 20.24 (±12.01) 423,018
Vocabulary 18.05 (±9.76) 19,780
LR 0.92 (±0.08) 0.13
EmbC 16,636 (84.10%)

Fig. 2   Proposed methodology. 
Given a textual description, we 
evaluated several text repre-
sentations as input for different 
recent learning algorithms, 
including simple transform-
ers, fully connected neural 
networks, and our proposed 
deep supervised autoencoder. In 
the end, predicted motive and 
level are combined to produce 
the final motive-level classifica-
tion output
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Thus, a supervised autoencoder (SAE) is an autoencoder with 
the addition of a supervised loss on the representation layer (see 
Fig. 3). For the case of a single hidden layer, a supervised loss 
is added to the output layer and for a deeper autoencoder, the 
innermost (smallest) layer would have a supervised loss added to 
the bottleneck layer that is usually transferred to the supervised 
layer after training the autoencoder.

In supervised learning, the goal is to learn a function for a 
vector of inputs � ∈ ℝ

d to predict a vector of targets � ∈ ℝ
m . 

Consider a SAE with a single hidden layer of size k, and with 
weights for the first layer defined as � ∈ ℝ

k×d . The function 
is trained on a finite batch of independent and identically 
distributed (i.i.d.) data, (�1, �1), ..., (�t, �t), with the goal of 
a more accurate prediction on new samples generated from 
the same distribution. The weight for the output layer con-
sists of weights �p ∈ ℝ

m×k to predict � and �r ∈ ℝ
d×k to 

reconstruct � . Let Lp be the supervised loss and Lr be the loss 
for the reconstruction error. In the case of regression, both 
losses might be represented by a squared error, resulting in 
the objective:

The addition of supervised loss to the autoencoder loss 
function acts as regularizer and results (as shown in Eq. 1) 
in the learning of the better representation for the desired 
task [21]. Although SAE have been extensively evaluated on 
image classification taks [21], its pertinence on thematic and 
non-thematic text classification tasks has not been extensively 
evaluated, being this an important contribution of this work.

(1)

1

t

t∑

i=1

[
Lp(�p��i, �i) + Lr(�r��i, �i)

]
=

1

2t

t∑

i=1

[
||�p��i − �i||22 + ||�r��i − �i||22

]

Consequently, in order to perform a broad evaluation 
of this approach, we passed as input features to the SAE 
different types of text representation, namely pre-trained 
BERT encodings and also fine-tuned BERT encodings, in 
both cases using as representation the information extracted 
from the last hidden layer (LastHL), and the concatenation 
of the 4 last hidden layers (Concat4LHL).7 Additionally, we 
also tested several traditional text representation techniques: 
word and char n-grams (with ranges 1–2 and 1–3). Finally, 
we also evaluate the performance of the SAE architecture 
using as a representation type non-contextual embeddings, 
in particular, we tried the German FastText embeddings 
trained on 2 million German Wikipedia articles.8 All these 
variations can be observed at the bottom part of Fig. 2. For 
all our performed experiments, the overall configuration of 
the SAE model was done using nonlinear activation func-
tion (ReLU) with 3 hidden layers, the number of nodes in 
the representation layer was set to 300, and we trained to a 
maximum of 100 epochs.

Simple Transformer

The transformer model [44] introduces an architecture that 
is solely based on attention mechanism and does not use 
any recurrent networks but yet produces results superior in 
quality to Seq2Seq [45] models, incorporating the advantage 
of addressing the long term dependency problem found in 
Seq2Seq model.

Fig. 3   An example of a Supervised Autoencoder, where the supervised component (y-labels) is included. The input of the SAE is any type of 
pre-defined features computed over the document collection, e.g., character n-grams, word embeddings, or sentence encodings

7  More details on how these encoddings are extracted in "Fully Con-
nected Neural Network"
8  https://​www.​spinn​ingby​tes.​com/​resou​rces/​worde​mbedd​ings/
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For our experiments using simple transformers (ST) 
architectures, we setup three different state-of-the-art 
configurations: 

1.	 Bert [46]: we use a pre-trained model referred as bert-
base-german-cased, with 12-layer, 768-hidden, 12-heads, 
110M parameters.9 The model is pre-trained on German 
Wikipedia dump (6GB of raw text files), the OpenLegal-
Data dump (2.4 GB), and news articles (3.6 GB). We refer 
to this configuration as ST-Bert in our experiments.

2.	 XLM [47]: for this configuration we use a model with 
6-layer, 1024-hidden, 8-heads, which is an English-
German model trained on the concatenation of English 
and German Wikipedia documents (bert-base-german-
cased). We refer to this configuration as ST-XLM in our 
experiments.

3.	 DistilBert [48]: for this model we used a model with 
6-layer, 768-hidden, 12-heads, 66M parameters (distil-
bert-base-german-cased). We refer to this configuration 
as ST-DistilBert in our experiments.

For all the previous configurations, in order to perform the 
fine-tuning of the ST architecture as a classifier, a simple 
dense layer with softmax activation is added on top of the 
final hidden state h of the first token [CLS], through a weight 
matrix W, and we predict the probability of label c the fol-
lowing way:

Then, all weights, including the model’s ones and W, are 
adapted, in order to maximize the log-probability of the cor-
rect label. The training is done using a Cross-Entropy loss 
function. To perform these experiments, we used the Simple 
Transformers library which allows us to easily implement 
this setup.10

As main configuration parameters, we set the  max_
length parameter to 90,11 and we re-trained the models up 
to two epochs. From here after, we refer as Bert-(FT) to 
the fine-tuned experiments. It is important to mention that 
the considered models, i.e., BERT, XLM, and DistilBERT, 
represent state-of-the-art language models available in the 
German Language. Although there are many other recent 
technologies, none of these are trained in German. Further 
details of employed models can be found at huggingface 
web page.12

(2)p(c|�) = softmax(W�)

Fully Connected Neural Network

As an additional classification method, we configured a fully 
connected neural network (FC). This type of artificial neural 
network is configured such that all the nodes, or neurons, 
in one layer, are connected to all neurons in the next layer. 
The topology of the employed network and its configuration 
parameters are mentioned in Table 7.

For the performed experiments using FCs, we passed as 
input features to the FC the sentence representation gener-
ated using BERT encodings. Thus, to generate the represen-
tation of the input text, we evaluate several configurations, 
namely: last hidden layer (LHL), concatenation of the 4 last 
hidden layers (Concat4LHL), min, max and mean pool of 
the last hidden layers. However, we only report the best per-
formances obtained during the validation stage, i.e., LHL 
and Concat4LHL configurations. On the one hand, for gen-
erating the Concat4LHL representation we concatenate the 
last four layers values from the token [CLS]. As known, the 
[CLS] token at the beginning of the sentence is treated as 
the sentence representation. On the other hand, for the LHL 
configuration, we preserve as the text representation the val-
ues of the last hidden layer from the token [CLS].

For the reported experiments under the FC method (see 
Fig. 2), two configurations of BERT were tested for generat-
ing the LHL and Concat4LHL representation: i) pre-trained 
German encodings of BERT (distilbert-base-german-cased), 
referred as Bert(pre-trained); and ii) resultant fine-tuned 
BERT encodings from the re-training we explained in “Sim-
ple Transformer”, referred as Bert(fine-tuned).

Preprocessing

For performing our experiments, we perform different 
preprpocessing operations depending on the selected rep-
resentation type, i.e., word/char n-grams or contextual/non-
contextual word embeddings (see Fig. 2).

In particular, for all the experiments performed with 
the pre-trained BERT embeddings, or in the fine-tuning 
process of the transformers architectures, we did not per-
form any type of preprocessing operation. Contrastly, 
when char/word n-grams or FastText embeddings are 

Table. 7   Fully connected 
neural network configuration 
parameters. Notice that the 
number of input neurons 
depends on the representation 
type, while the number of 
output neurons is determined 
by the classification task, e.g., 
for the motive task, there are 5 
output neurons

Hyper Parameter Range

number of layers 3
number of hidden layers 1
nodes in hidden layer 16
activation function ReLU

10  https://​pypi.​org/​proje​ct/​simpl​etran​sform​ers
11  For deciding this value, we consider the information obtained in 
the data analysis described in "Dataset".
12  https://​huggi​ngface.​co/​trans​forme​rs/​pretr​ained_​models.​html

9  https://​deeps​et.​ai
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employed, we apply the following preprocessing opera-
tions to the input text: 1) we remove all non-alphabetical 
symbols, e.g., numbers, strange symbols; 2) every word is 
lower cased. Other preprocessing techniques, like remov-
ing stopwords, punctuation or replacing German umlauts 
(ä, Ä, ö, Ö, ü, Ü) and ligatures (e.g., ß) were no applied 
as previous research indicates that no improvement is 
obtained from doing it [17].

Finally, it also worth mentioning that we did not apply 
any type of spelling or grammar corrector. We decide not 
to do it given that such types of errors have shown to be 
important style markers in several tasks of authorship analy-
sis [49].

Evaluation Metrics

For measuring the overall effectiveness of the classification 
process, we use standard set-based evaluation measures, 
such as precision, recall and macro F-score. This decision 
was based on agreement with previous work and the official 
OMT classification task that reports and rank results with 
these metrics [22], specifically using the macro F1.

Generally speaking, when evaluating a classification task, 
there are four types of outcomes that occur: 

1.	 True positives (TP) refer to the case when the classifier 
predicts an observation belongs to class c and it actually 
belongs to that class.

2.	 True negatives (TN) refers to the case when the classifier 
predicts an observation not belonging to class c and it 
actually does not belong to that class.

3.	 False positives (TP) occur when the classifier predicts 
an observation belongs to class c when in reality it does 
not.

4.	 False negatives (FN) occur when the classifier predicts 
an observation as not belonging to class c when in fact 
it does.

Thus, precision (P) and recall (R) are defined as shown in 
expression Eqs. 3 and 4 respectively.

The F-score (or F1), also known as the harmonic mean 
of P and R, is computed as follows:

(3)P =
TP

TP + FP

(4)R =
TP

TP + FN

(5)F1 = 2 ×
P × R

P + R

Although the F1 score is a good metric to compare the 
performance of classifiers, the macro F1-score (F1-macro) 
is recommended to assess the quality of problems with 
multiple binary labels or multiple classes. Accordingly, 
the F1-macro is defined as the mean of the class-wise 
F1-scores (Eq. 6):

where i is the class index and N the total number of classes. 
Notice that the F1-macro is not affected by the classes 
imbalance.

Although the Accuracy ( Acc = TP

TP+FP+TN+FN
 ) score is a 

common metric to compare performance results, the Acc 
is not recommended in classification problems where there 
is a large class imbalance. In such particular scenario, it is 
very likely that a model tends to predict the value of the 
majority class for all predictions and achieve a high clas-
sification accuracy, however, this does not mean that such 
model is useful in the posed task, a phenomenon known 
as the accuracy paradox [50].

Baseline and Validation Approaches

As a baseline, we replicated the approach proposed by the 
GermEval 2020 OMT task organizers, i.e., a linear Sup-
port Vector Classifier (SVC) using as a form of representa-
tion of the documents a traditional tf-idf strategy. Proposed 
baseline consists of a 30 (combined motive/level labels) 
binary SVCs (one-vs-all) classifiers.

In order to report robust and stable results, we imple-
mented two different validation strategies. On the one hand, 
we performed a stratified k cross-fold validation strategy 
with k = 5 using the entire dataset (train+dev+test); we refer 
to this configuration as ‘5CFV’ experiments. And, on the 
other hand, we report results on the dev and test partitions, 
which allows direct comparisons with the GermEval 2020 
shared task participants.

Results and Discussion

The results of each of the considered approaches (see Fig. 2) 
are reported in Tables 8 and 9 for the fivefold validation 
strategy and for the dev partition, respectively. Results are 
reported in terms of F1-macro, precision, and recall metric.

For the results reported in Table 8, we can observe that 
the proposed baseline is able to reach an F1-macro of 64.5%, 
even though this baseline faces the OMT task as a 30 class 
problem. A similar behavior is observed in Table 9, where 
the SVC baseline classifier yields good performance on the 

(6)F1-macro =
1

N

N∑

i=0

F1i
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dev partition (F1 = 63.9%). Hence, we can conclude that the 
proposed SVC represents a hard baseline, showing stable 
results in both validation strategies.

In general, we can observe that our proposed supervised 
autoencoder is not able to generalize well in comparison 
to ST and FC methods. Observe that while in the 5CFV 

configuration the best result is achieved when fine-tuned 
encodings are used as text representation technique (Table 8, 
SAE(Bert-FT)) F1 = 67.4%; in the dev partition the best 
performance is obtained when input features are defined by 
word n-grams from range 1 to 2 (F1 = 63.4%). As known, 
word n-grams are useful to capture the identity of a word and 

Table. 8   Average performance 
( � ) obtained across the 5-cross-
fold-validation strategy (5CVF); 
the number between parenthesis 
represents the standard 
deviation ( �)

Symbol ‘ † ’ indicates that the obtained performance is statistically significant according to the Wilcoxon 
test with p < 0.05

Method Configuration Configuration F1-macro Precision Recall
type sub-type �(±�) �(±�) �(±�)

ST† Bert base-german-cased 0.701 (±0.003) 0.701 (±0.003) 0.702 (±0.004)
ST† XLM mlm-ende-1024 0.691 (±0.002) 0.693 (±0.003) 0.693 (±0.002)
ST† Distilbert base-german-cased 0.695 (±0.004) 0.696 (±0.003) 0.696 (±0.004)
FC Bert LHL 0.589 (±0.002) 0.603 (±0.004) 0.586 (±0.003)
FC Bert Concat4LHL 0.610 (±0.006) 0.621 (±0.003) 0.608 (±0.007)
FC† Bert-(FT) LHL 0.693 (±0.002) 0.689 (±0.002) 0.697 (±0.003)
FC† Bert-(FT) Concat4LHL 0.687 (±0.002) 0.682 (±0.001) 0.693 (±0.003)
SAE char n-grams(1-2) 0.556 (±0.001) 0.555 (±0.004) 0.569 (±0.003)
SAE char n-grams(1-3) 0.628 (±0.006) 0.624 (±0.006) 0.634 (±0.005)
SAE word n-grams(1-2) 0.630 (±0.004) 0.628 (±0.006) 0.634 (±0.005)
SAE word n-grams(1-3) 0.634 (±0.002) 0.632 (±0.002) 0.638 (±0.002)
SAE FastText German-Wiki 0.614 (±0.004) 0.614 (±0.006) 0.618 (±0.003)
SAE Bert LHL 0.558 (±0.010) 0.558 (±0.011) 0.567 (±0.008)
SAE Bert Concat4LHL 0.563 (±0.011) 0.572 (±0.009) 0.568 (±0.010)
SAE† Bert-(FT) LHL 0.674 (±0.020) 0.669 (±0.021) 0.683 (±0.021)
SAE† Bert-(FT) Concat4LHL 0.656 (±0.007) 0.651 (±0.007) 0.664 (±0.008)
Baseline SVM tf-idf 0.646(±0.003) 0.650(±0.003) 0.644(±0.003)

Table. 9   Obtained results on 
the dev partition of the OMT 
classification task

Symbol ‘ † ’ indicates that the obtained performance is statistically significant according to the Wilcoxon 
test with p < 0.05

Method Configuration type Configuration sub-type F1-macro Precision Recall

ST† Bert base-german-cased 0.698 0.699 0.699
ST† XLM mlm-ende-1024 0.688 0.689 0.690
ST† Distilbert base-german-cased 0.692 0.694 0.693
FC Bert LHL 0.589 0.601 0.585
FC Bert Concat4LHL 0.616 0.620 0.617
FC Bert-(FT) LHL 0.673  0.675 0.673
FC† Bert-(FT) Concat4LHL 0.675 0.673 0.678
SAE char n-grams(1-2) 0.554 0.556 0.564
SAE char n-grams(1-3) 0.629 0.624 0.636
SAE word n-grams(1-2) 0.634 0.631 0.639
SAE word n-grams(1-3) 0.630 0.627 0.635
SAE FastText German-Wiki 0.474 0.485 0.476
SAE Bert LHL 0.540 0.555 0.547
SAE Bert Concat4LHL 0.571 0.569 0.575
SAE Bert-(FT) LHL 0.633 0.631 0.636
SAE Bert-(FT) Concat4LHL 0.624 0.623 0.629
Baseline SVM tf-idf 0.639 0.644 0.638
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its context. Thus, these results indicate, to some extent, that 
the SAE attempts to exploit this information when solving 
the classification task. A similar performance is obtained 
when character n-grams are used as input features, specifi-
cally n-grams of size 1-3. These results are also interesting, 
as they are aligned with previous research findings, dem-
onstrating the relevance of character n-grams in different 
non-thematic classification tasks [51, 52]. Char n-grams 
are capable of providing an excellent trade-off between 
sparseness and word’s identity, while at the same time they 
combine different types of information: punctuation, mor-
phological makeup of a word, lexicon, and even context. As 
main observations of the SAE performance we can high-
light that, using fine-tuned BERT encoddings produced the 
best results under the 5CFV strategy (outperforming the 
proposed baseline), but word and character n-grams are not 
capable to improve the baseline performance. Similarly, 
for the experiments on the dev partition (Table 9) where 
even though the results obtained with the fine-tuned BERT 
encodings are similar to those obtained with word and char 
n-grams, none of these configurations were able to improve 
the SVC baseline (63.9%).

Regarding the performance of the FCs, the best perfor-
mance is obtained when we use as features the fine-tune 
BERT encodings extracted from the last hidden layer (F1 
= 69.3%) for the 5CFV experiments, and when the con-
catenation of the 4 last hidden layers is used (F1 = 67.5%), 
in the dev partition. In both cases, Tables 8 and 9, we can 
observe an important difference on the performance of the 
FC when pre-trained or fine-tuned encodings are used. Gen-
erally speaking, the impact of the fine-tuning allows a better 
performance of the neural networks (as expected), outper-
forming the proposed baseline in both cases.

Overall, based on these experiments (Tables 8 and 9), 
the best performance (in terms of classification F1 score) 
was obtained by a simple transformer using BERT embed-
ding. The attention-based architecture was found effective in 
comparison to FC and SAE methods. Consequently, during 
GermEval 2020 competition, we submitted a subset of what 
we found were the most effective configurations. Table 10 
shows the performance of our submitted systems.

As can be observed in Table 10, our best performing sys-
tem was the simple transformer architecture using BERT 
encodings. Specifically, this was our configuration that 
obtained the second place during the GermEval 2020 com-
petition [22]. As a reference, we put at the bottom of the 
table the performance of the baseline system, and the perfor-
mance obtained by the first and second places. As expected, 
the SAE were not able to improve the baseline system. 
However, our configuration based on the fully connected 
network, using the fine-tuned BERT encodings was able to 
outperform the proposed baseline. It is worth mentioning 
that the wining approach during GermEval 2020 is based 

on a BERT methodology as well [17], with the pre-trained 
Digitale Bibliothek Münchener Digitalisierungszentrum 
(DBMDZ13) German model, validating the positive impact 
of transformer-based methods. Although the employed 
methodology by the winning approach [17] and our best 
configuration is the same, there are a few variations that are 
important. We consider as base model the BERT pre-trained 
on German Wikipedia, Open-Legal-Data and news articles. 
On the contrary, [17] used the DBMDZ13 model. We did not 
apply any data correction process, while [17] made a data 
exploration to find all non-German texts, they applied an 
automatic translation process of all of these into German, 
and applied a spellchecker to correct spelling mistakes. Nev-
ertheless, in spite of these extra effort, obtained results are 
very close for both techniques.

Results Analysis

In this section, we present a more detailed analysis of the 
obtained results by our best configuration. Accordingly, 
Figs. 4 and 5 show detailed classification results between 
the SVC baseline, and our best configuration (ST-BERT). 
For ease of understanding we split the problem into detec-
tion of motives (Fig. 4) and detection of levels (Fig. 5). It can 
be observed that the ST architecture significantly increases 
the number of correctly classified instances in motives M 
(+2.5%), L (+6.2%), F (+14.38%), and A (+5.9%), however, 
this situation is not the same for motive zero (-4.5%). A 
similar situation occurs in the levels detection task (Fig. 5). 
For all the levels’ categories, the ST is able to increase 

Table. 10   Obtained results on the test partition of the OMT classifi-
cation task. Performance results are reported as given by the GermE-
val 2020 organizers [22]

Symbol ‘ † ’ indicates that the obtained performance is statistically sig-
nificant according to the Wilcoxon test with p < 0.05

Method Configuration Configuration F1-macro
type sub-type

ST† Bert base-german-cased 0.698
ST† XLM mlm-ende-1024 0.686
ST† Distilbert base-german-cased 0.688
FC Bert-(FT) LHL 0.671
SAE char n-grams(1-3) 0.628
SAE word n-grams(1-2) 0.634
Baseline SVM tf-idf 0.644
1st place [17] - - 0.704
3rd place [13] - - 0.678

13  https://​github.​com/​dbmdz/​berts
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the number of correctly classified instances: 5 (+9.7%), 4 
(+2.0%), 3 (+29.5%), 2 (+0.07%), 1 (+7.4%), 0 (+2.3%).

As mentioned in “Methodology”, instead of solving a 30 
class problem, we split the OMT classification task in two 
separated problems, i.e., motives and levels classification prob-
lems. Thus, obtained results are aligned with the OMT theory 
[11], since according to our experiments it is possible to detect 
motives and levels separately, reinforcing the fact that motives 
and levels are not directly connected. Nevertheless, some of 
the methods presented during the GermEval 2020 did face 
the OMT problem as a 30 class classification task [22], which 
indicates that the OMT theory has to be revised and compared 
against what the NLP community has found.

In addition to the previous analysis, and given that a 
common concern is the lack of transparency of many deep 
learning architectures, we perform an analysis of what is the 

attention mechanism focusing on when solving the OMT 
task. The result of this analysis is shown in Table 12. The 
main intention of this type of analysis is to provide a better 
understanding of the connection between machine learning 
algorithms and language usage. To perform this analysis, 
we randomly select 5 sample texts produced by evaluated 
subjects in the dev partition. We show the results only for the 
distinct motives (A, F, L, M, 0). For a fair comparison, we 
selected textual samples belonging to the same level class, 
in this case, all samples belong to level 4.

To visualize the attention mechanism, we extract the 
attention weights based on [CLS] token from the last layer, 
average each token weight across all attention heads, and 
finally normalize weights across all tokens so that each 
weight is a value between 0.0 (very low attention) and 1.0 

Fig. 4   Confusion matrices for the MOTIVES classification task: top-
baseline performance; bottom-ST performance Fig. 5   Confusion matrices for the LEVELS classification task: top-

baseline performance; bottom-ST performance
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(very high attention)14. The highlight criteria of the words 
are shown in Table 11.

Table 12 demonstrates the visualization of how the 
attention mechanism works in the Operant Motive Test 
classification task. Attention weights are extracted after 
the fine-tuning of the BERT method. As an important 
observation, notice the attention of functional words: ist, 
und, an, der, das, zu, sie, sind, ein, einer, von (is, and, at, 
the, the, to, they, are, a, one, from). This indicates that 
for the simple transformer architecture the writing style 
is becoming more relevant at the moment of solving the 
classification task.

And additional observation is the attention paid to the 
word’s ending. As known, during the tokenization process, 
unknown words are split into smaller tokens. When this is 
the case, the symbol ‘#’ is added to the generated tokens. 
Especially for motive L, we can notice many cases where 
tokens with the symbol ‘#’ are receiving the attention from 
the simple transformer architecture. Notice that negation 
words are resulting very important, e.g., nicht, as well as 
some punctuation marks, e.g., ‘.’, ‘?’.

Furthermore, in Fig. 6, we show the usage given to the 
top 25 terms with higher attention values. For performing 
this analysis, we obtained the top most important words, i.e., 
words with higher attention values, for each motive category 
(A, F, L, M). Then, to obtain these 25 words, we intersected 

the corresponding sets. The figure illustrates the relative fre-
quency given to each of these words according to the motive 
class. As can be seen in the figure, subjects from different 
categories use these words with different frequency values. 
This frequency analysis also explains the good performance 
of the SVM classifier; which is based on a traditional tf-idf 
vectorial representation. However, even though frequency 
counts are helping the SVM to accurately separate among 
classes, the context in which these words appear is impor-
tant, i.e., how users are employing these lexical units is rel-
evant for solving the task.

Accordingly, in Figs. 7 and 8, we illustrate the context 
in which words nicht (not) and sind (are) are employed in 
our dataset. For this analysis, we took all the text generated 
by users from the same category (i.e., M, A, F, and L), and 
perform a collocation analysis fixing a target word (in this 
case: nicht/sind). As known, a collocation is a sequence 
of words that co-occur with high frequency within some 
corpus. Thus, for generating the visualization of each tree, 
we kept the most frequent collocations from each cate-
gory. From this analysis, it is possible to observe that, even 
though these target words are frequently used by subjects, 
the employed contexts by each category are very differ-
ent from each other. For example, subjects labeled with 
motive M (power) use the nicht words in an imperative/
control fashion, e.g., kommen nicht auf (do not come up), 
while subjects categorized with A (affiliation) motive use 
it to show concern about others, e.g., sie nicht alline (they 
are not alone). Similarly, for F (freedom) class, subjects 
use this negation to indicate concern about themselves, 
e.g., möchte nicht mitbekommen (don’t want to notice); 
and in the L (achievement) motive, the common context 
denotes insecurity, e.g., sie nicht weiss (she doesn’t know). 
Hence, the good performance of transformer-based NN 
architectures is explained by this analysis, as the attention 
mechanism of BERT is able to learn contextual relations 
between words (and sub-words) from the input text. Notice 
that these findings are aligned with previous psychometrics 
research (see Table 2).

This analysis provided interesting insights that we can 
summarize as: ST architecture pays higher attention to the 
use of personal pronouns, stop words, negation, punctua-
tion marks, unknown words, and some conjugation styles, 
filtering out most of the unimportant elements such as 
content words. But not just isolated words, the context 
in which these words appear are providing important 
information to the transformer-based NN methods at the 
moment of detecting motives-levels. In other words, the 
writing style (how we write) is more relevant than content 
words (what we write) for solving the OMT classifica-
tion task. Additionally, it is particularly interesting how 
the usage of negations words (nicht, and ##t which cor-
respond to “–n’t” contractions) are frequently used by the 

Table. 11   Followed criteria of highlight colors used in the visualiza-
tion of the attention mechanism

Attention Description Highlight
weights color

0.00 - 0.20 Very Low Attention N/A
0.20 - 0.40 Low Attention

0.40 - 0.60 Medium Attention

0.60 - 0.80 High Attention

0.80 - 1.00 Very High Attention

14  We adapted the implementation from: https://​github.​com/​uzaym​acar/​
compa​rativ​ely-​finet​uning-​bert/​tree/​f579a​d55bf​7afee​5292f​40a09​43eb0​
ef018​abe83
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power (M) and the freedom (F) motives. This finding is 
partially aligned with previously reported from the psy-
chological theory [53], where it has been showed that so-
called activity inhibition (AI) trait is mainly described as 
negations in combination with the power motive. Finally, 
our performed collocations analysis helped to understand 
and visualize the type of context that is helping the trans-
former-based NN architecture to solve the problem more 
accurately. Overall, these findings could foster implicit 
psychometrics theory, and consequently, advanced apti-
tude diagnostics supported by NLP technologies.

The aptitude test (i.e., OMT) is a type of psychologi-
cal test that could affect the subjects’ lives, specially if 
performed automatically without any human intervention 
[54]. Hence, there is an important urgency for understand-
ing how this type of automatic decisions are being done 
by recent machine learning technologies. As stated in 
[55], explainable methods are becoming more relevant, 
particularly in the health-care domain. Thus, it is neces-
sary to consider many aspects when designing explainable 
ML methods, e.g., who is the domain expert?, who are 
the affected users?, among others [56, 57]. Accordingly, 

Table. 12   Attention mechanism visualization for the OMT classification task

Motive Sample text (closest English translation)

A

(she needs understanding and turns to someone who listens to and understands her; she feels safe and accepted and tells what is burden-
some; she is accepted as she is.)

F

(to have done everything correctly and to stand up to the other person, despite the fact that the other party seems unreasonable.)
L

(she climbs a mountain and must not lose her balance. a little in an uncomfortable position. she does not think that it would be so dif-
ficult. she manages to do it with courage and is amazed that she did it. fortunately a new one to find her side.)

M

(she wants to show the other person that she is disappointed, disappointed with the other person, because the other person has not lived 
up to her expectations.)

0

(the people are thinking of a solution, desperate and panicked, because they are about to drown? ... good ... all three are saved.)

1167Cognitive Computation  (2021) 13:1154–1171

123456789)1 3



and as part of our future work, we plan to extend our 
interpretability analysis towards the design of responsi-
ble artificial intelligence algorithms (i.e., explainable and 

transparent) in the context of mental health automated 
analysis by applying some of the proposed recommenda-
tions in [56].

Fig. 6   Top 25 terms with higher attention across MOTIVES categories

Fig. 7   Contextual tree of word nicht. Words in the leaves represent the most frequent words appearing next to the target word, in this case, nicht. 
Below each tree, its corresponding motive class is mentioned
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Conclusion

This paper represents a first step towards the analysis 
of recent NLP technologies for solving the OMT clas-
sification task. To this end, we performed a compara-
tive analysis among state-of-the-art simple transformer-
based architectures, e.g., BERT, XLM, and DistilBert, 
very recent generalization techniques as supervised 
autoencoders and traditional machine learning tech-
niques. Notably, transformer-based methods exhibit the 
best empirical results, obtaining a relative improvement 
of 7.9% over the baseline suggested as part of the Ger-
mEval 2020 challenge [22]. We performed an explora-
tion on how the attention mechanism is working in this 
particular task, and obtained results revealed that features 
associated with the writing style are more important that 
content-based words. Some of these findings shown 
strong connections to behavioral research made on the 
implicit psychometrics theory. For example, as the result 
of our performed analysis, we observed that the usage 
of negations in combination with the power motive it is 
supported by the research made by [53]. As future work, 
we plan to evaluate the impact of hyperparameter tuning 

through optimization methods, such as Bayes optimizer 
[58], evaluate the impact of early-fusion strategies in the 
performance of the SAE, and to perform further analysis 
on how the attention mechanism from the transformers 
architecture is working in the OMT task.

Finally, we would like to emphasize the importance of 
the ethical necessity of carefully understanding the research 
being done in the field of NLP & psychology. Although 
NLP technologies indicate that solving this type of tasks 
is, to some extent, possible, further research needs to be 
conducted to carefully explain the relation between psy-
chological tests and subjects aptitudes. The authors would 
like to clearly state that we are against the use of this type 
of technology to discriminate against people in any type of 
our daily life situations. Even though we believe that this 
research is important, as can be useful for psychologists pro-
fessionals, claiming that the NLP/ML community is able 
to accurately classify users according to their professional 
aptitudes and personality traits is not something we agree 
on. We support the idea that this type of research can help to 
validate previous theories as well as to support mental health 
care practitioners to evaluate or get important insights from 
closed and controlled studies.

Fig. 8   Contextual tree of word sind. Words in the leaves represent the most frequent words appearing next to the target word, in this case, sind. 
Below each tree, its corresponding motive class is mentioned
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