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Abstract: Background Automotive engine knock is an abnormal combustion phenomenon that
affects engine performance and lifetime expectancy, but it is difficult to detect.
Collecting engine vibration signals from an engine cylinder block is an effective way to
detect engine knock.
Methods  This paper proposes an intelligent engine knock detection system based on
engine vibration signals. First, filtered signals are obtained utilizing variational mode
decomposition (VMD), which decomposes the original time domain signals into a
series of intrinsic mode functions (IMFs). Moreover, the values of the balancing
parameter and the number of IMF modes are optimized using genetic algorithm (GA).
IMFs with sample entropy higher than the mean are then selected as sensitive
subcomponents for signal reconstruction and subsequently removed. A multiple
feature learning approach that considers time domain statistical analysis (TDSA), multi-
fractal detrended fluctuation analysis (MFDFA) and alpha stable distribution (ASD)
simultaneously is utilized to extract features from the denoised signals. Finally, the
extracted features are trained by sparse Bayesian extreme learning machine (SBELM)
to overcome the sensitivity issue of hyperparameters in conventional machine learning
algorithms.
Results  A test rig is designed to collect the raw engine data. Compared with other
technology combinations, the optimal scheme from signal processing to feature
classification is obtained, and the classification accuracy of the proposed integrated
engine knock detection method can achieve 98.27%.
Conclusions   We successfully propose and test a universal intelligence solution for the
detection task.
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'cognitive' or 'biologically- inspired'
computational aspects of your work - this
should also be appropriately highlighted in
the paper (including in the abstract,
introduction etc)?

A new intelligent engine knock detection system using multiple feature based-sparse
Bayesian extreme learning machine, genetic algorithm-based signal processing
method & sample entropy is proposed.

Why is this contribution significant (what
impact will it have)?

The study can detect the engine knock accurately and hence reduce the chance of
engine failure. This is also the first research on using advanced machine learning
approach for engine knock detection.
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A Novel Multiple Feature-based Engine Knock 

Detection System using a Sparse Bayesian Extreme 

Learning Machine 

Zhao-Xu Yang, Hai-Jun Rong, Pak Kin Wong, Plamen Angelov, Chi Man Vong, 

Chi Wai Chiu, and Zhi-Xin Yang 

Abstract. 
Background The automotive Automotive engine knock is an abnormal 

combustion phenomenon whichthat affects the engine performance and 

lifetime expectancy, but it is difficult to detect. Collecting eEngine vibration 

signals collected from the an engine cylinder block is an effective way to detect 

engine knock. 
Methods This paper proposes an intelligentce engine knock detection system 

based on engine vibration signal. Firstlysignals. First, filtered signals are obtained 

by utilizing the variational mode decomposition (VMD), which decomposes the 

original time domain signals into a series of intrinsic mode functions (IMFs). 

Moreover, the values of the balancing parameter and the number of IMF modes 

of IMFs are optimized using a genetic algorithm (GA). IMFs with sample entropy 

higher than the mean are then selected as sensitive subcomponents for signal 

reconstruction and subsequently removed. A multiple feature learning approach 

whichthat considers time domain statistical analysis (TDSA), multi-

fractalmultifractal detrended fluctuation analysis (MFDFA) and the alpha stable 

distribution (ASD) simultaneously, is utilized to extract features from the 

denoised signals. Finally, the extracted features are trained by a sparse Bayesian 

extreme learning machine (SBELM) to overcome the sensitivitye issue of 

hyperparameters in conventional machine learning algorithms. Results A test rig 

is designed to collect the raw engine data. Compared with otherathe mass of 

combination technology combinationsies involved, the optimal scheme from 

signal processing to feature classification is obtained, and the classification 

accuracy of the proposed integrated engine knock detection method can 

achieve 98.27% in engine knock detection. Conclusions We successfully propose 

and test a universal intelligence solution for the detection task. 
Keywords: Engine Knock Detection, Variational Mode Decomposition, Multiple 

Feature Learning, Sample Entropy, Sparse Bayesian Extreme Learning Machine. 

1 Introduction 

In a spark-ignition automotive engine, engine knock is defined as an abnormal 

combustion phenomenon whichthat is observed as a source of noise andor can even 

indicate a major engine fault. Engine kKnock is an essential factor constraining that 
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constrains the further improvements ofin the thermal efficiency and causes serious 

engine damage, such as piston or cylinder breakage. During heavy knock, a lot of much 

extra heat is transferred to the combustion chamber wall, resulting in a rapid rise in 

the temperature rise of the piston and cylinder head rapidly. The overheating of these 

parts makes the intensity of the knock continue to increase. This consequential 

runaway phenomenon may trigger the engine failure within a few minutes. Moreover, 

an excessively high pressure pulse due to heavy knock may occur in the end gas area. 

The interaction between this high local pressure and high local surface temperature 

inevitably weakenweakens or corrodecorrodes the engine material. 

On the premise of the accurate identification of signals associated with the engine 

knock, some preventive measures should be performed, such as delaying the ignition 

timing. These signals can be monitored and collected by pressure wave amplitude 

analysis, exhaust gas temperature analysis, heat transfer analysis, etc. [40]. However, 

the high cost of the in-cylinder pressure sensors, as well as the decreased lifetime 

expectancy resulting from blends of hot contacthigh temperatures and high pressure, 

make the pressure wave amplitude method difficult to apply be extensively 

popularized [11]. Exhaust gas temperature analysis suffers from low precision [19], and 

heat transfer analysis is difficult to obtain apply in real time [20]. 

Massive pressure waves [21] occur inside of the an ignition chamber, which and 

can emit an audible hearable sound, and the resulting vibrations create the perceptible 

knock signal. Therefore, engine vibration signal issignals are widely used for engine 

knock detection, which is a compromised solution for resolving conflictconflicts 

between the measuring precision and cost. When vibrations areis detected in the 

cylinder wall, the knock sensor, which is a crystal of the piezoelectric crystal placed on 

the an engine cylinder block, creates a low voltage signal that is fed back to the 

electronic control unit (ECU). Knock can be determined when the resonant frequency 

is close to or beyond the frequency range of the knock frequency. However, the engine 

vibrations includes not only includes the in-cylinder pressure pulse, but also the piston 

slaps, valve train motion, fuel injector pulses andor other engine structural 

vibrationvibrations, which have little influence on knock characteristics, but they are 

easy to easily concealcover up slight knock. Even though an advanced knock module 

can be installed to reduce the background noisesnoise, the knock module requires 

expertise to tune the frequency band, central frequency and gains. In addition fact, it 

is also difficult for the expert experts to determine the optimal parameters of the knock 

module to filter out the background noise under difficult time-varying conditions. 

The vibration signal detection method uses an accelerometer to detect the knock 

characteristics by measuring the vibration acceleration of the cylinder block. Since this 

method has the advantages of easy installation, high reliability and low cost, it is 

commonly employed in real-time engine knock detection. Although using vibration 

signals to determine engine knock is more practical, a cylinder block vibration signal 

has a substantial amount of noise and signals from other vibration sources. Engine 

vibration signals could not cannot be applied to detect knock directly, and the original 

signals need to be processed using an accurate and effective signal denoising 



3 

Completed Files by Springer Nature Author Services 

 

technique. SoTherefore, utilizing the vibration signals for engine knock detection is still 

a challenging task. 

Engine knock detection is a complicated problem that includesing signal denoising, 

feature extraction, and feature classification. In the signal denoising, although signals 

using variational mode decomposition (VMD) [35] are separated into a series of 

intrinsic mode functions (IMFs), IMFs dependsdepend on the values of the balancing 

parameter and the number of modes whichthat are adjustable, and the results may be 

inaccurate when the parametersy are not set in real timein place. SoTherefore, there 

is an urgent need for obtainingto obtain the optimal values of the VMD parameters. To 

reduce the computational burden in the later stage, some nonlinear dynamic 

parameters, such as the energy ratio and correlation coefficient, should be taken used 

to extract the IMFs that represent prominent features. However, they are dependent 

on the record length, which areis usually difficult or even impossible to be 

acquiredacquire, especially in online condition monitoring and diagnosis. 

AppropriateAn appropriate indicator is also needed to determine sensitive 

subcomponents to select and reconstruct important IMFs. DuringIn the feature 

extraction, each feature extraction method extracts different independent and 

complementary information from the signals that are both independent and 

complementary. SoTherefore, an ensemble system using the multiple feature learning 

is proposed in order to achieve high classification accuracy. An optimal feature 

combination usually needs a lot of Mmany experiments are usually needed to test the 

availability and performance of an optimal feature combination in specific 

applicationapplications. In feature classification, machine learning methods play an 

important role in the performance of the final classification results. Traditional neural 

networks and support vector machines have been applied to fault classification [17, 

30]. However, they suffer from the issues, including the of computational burden of 

the large-scale fault classifier and the sensitivity of thee issue of hyperparameters. 

The main motivation of this research is to find the most optimal best solution in 

theory and application. In this paper, a novel intelligence engine knock detection 

system by usingusing a multiple feature based--based sparse Bayesian extreme 

learning machine (SBELM), genetic algorithm-based variational mode 

decompositionVMD (GA-VMD) and sample entropy is proposed, and the salient 

contributions of this paper are organized as follows,: 

1) The traditional engine knock detection system usually relies on one kind of feature 

extracted from engine vibrations. Considering that the combination of different 

feature spaces from the observations would take on achieve better performance 

than any base classifier, an ensemble system using the multiple feature learning is 

proposed in order to achieve high classification accuracy. 

2) In order to To overcome the dependency of the appropriate values of the balancing 

parameter and the number of modes, GA-VMD is used to filter the unavoidable 

noises, in which the genetic algorithm (GA) is applied to obtain the optimal 

parameters to enhance the noise reduction ability. When the original time domain 
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signals are decomposed into a series of IMFs, IMFs with sample entropy higher than 

the mean isare selected as sensitive subcomponents for signal reconstruction. 

3) This work is the first to attempt at applying multiple features captured formfrom 

engine vibration signalsignals and SBELM together for engine knock detection. 

BesidesIn addition to addressing the computationcomputational burden issue of 

the large-scale fault classifier, the extracted features are trained by SBELM to 

overcome the sensitivitye issue of hyperparameters in conventional machine 

learning algorithms. 

4) A universal intelligence solution for the detection task, and the integration of GA-

VMD with, sample entropy, combined with time domain statistical analysis (TDSA),  

and alpha stable distribution (ASD), and SBELM isare also proposed to build an 

effective engine knock detection system. 

This paper is organized as follows. The related work is briefly reviewed in Section 

2. Section 3.1 introduces the outline of the engine knock detection system. The design 

procedure of the detection system is presented together with and the signal filtering 

method are presented in Section 3.2, the feature extraction technique is presented in 

Section 3.3, and the classification procedure, which involves multiple techniques, is 

presented in Section 3.4 that involve multiple techniques. The performance 

evaluations of the proposed detection system are given in Section 4. Finally, a 

conclusion is summarized in Section 5. 

2 Related Work 

We briefly review previous approaches related to engine knock detection. 

2.1 Signal Denoising 

Engine knock detection can be viewed as an engine fault detection problem,  that 

reliesying on the features captured from athe signal. The signal may contain 

noisesnoise or it can be affectedimpact by other component vibrations, so that the 

knock-related information contained therein is not easy to observe. Therefore, many 

efforts have been made to developon signal processing techniques [32], such as the 

fast Fourier transform [15], the short-time Fourier transform [27], the continuous 

wavelet transform [7,39], the discrete wavelet transform [6,34] and nonlinear wavelet 

transforms [16]. FastThe fast Fourier transform method converts a time domain signal 

into a frequency domain signal quickly, but it is not suitable for non-

stationarynonstationary signals such as the knock signal, which experiences rapid 

changes in both time and frequency rapidly. The sShort-time Fourier transform is an 

alternative transform methodation  for time-frequency analysis, but it has not been 

extensively used due to its low time resolution with a fixed window under high 

frequencies. The resolution issue has been solved by wavelet transforms. However, the 

application of a wavelet transform has been bound by its inherent defect, which is the 
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limitation of the selection of a mother wavelet, and it isindeed a nonanon-adaptively 

transformation. Empirical mode decomposition (EMD) [31] is self-adaptable and 

decomposes a signal directly into several IMFs, which are defined as amplitude-

modulated-frequency-modulated signals whose number of local extrema and zero-

crossings differ at most by one [13]. For the phenomenon that mode mixing occurs 

repeatedly in EMD, ensemble empirical mode decompositionEMD (EEMD), which is 

proposed that decreases the chance of undue mode mixing to a certain extent, was 

proposed [5]. The IMF in EEMD is characterized as the mean of an ensemble of trials 

whereby a finite- amplitude white noise signal is added to the decomposed data in 

each trial;, with this approach increases the increase of computational burden since 

the data size of IMF is equal to that of the raw data. In recent years, VMD has been 

introduced into rotating machines for noise analyseis of rotating machines and as a 

fault diagnosis method whichthat has shown very promising results [8,28,35]. 

Although signals are separated into a series of IMFs, IMFs dependsdepend on the 

values of the balancing parameter and the number of modes whichthat are adjustable, 

and the results may be inaccurate when they are not set in real timeplace [3]. 

Therefore, an optimization method utilizing the GA is proposed in this work to solve 

the problem of parameter optimization. 

To reduce the computational burden in the later stages, some nonlinear dynamic 

parameters, such as the energy ratio [38] and correlation coefficient, should be taken 

to extract the IMFs that represent prominent features. However, the reliable 

estimation of both parameters depends on very long datasetsdata sets, which are 

usually difficult or even impossible to be acquired acquire, especially duringin online 

condition monitoring and diagnosis. Entropy is defined as the loss of information in a 

time series or signal, such that approximate entropy [36] and sample entropy [24] are 

created to measure the repeatability or predictability within a time series. Due to its 

self-matching problem, approximate entropy is heavily dependent on the record length, 

and its value is uniformly lower than expected for short records, and lacks relative 

coherence as well. Sample entropy is less dependent on the time series length and , 

which is utilized in this work to select and reconstruct important IMFs. 

2.2 Feature Extraction 

The selection of the feature extraction algorithm is known to beplay an important role 

in determining the performance of the classification system. An ensemble system 

using the multiple feature learning is proposed in order to achieve high classification 

accuracy. This is made by combining the classifiers that are trained on different feature 

sets. The idea of combining different featuresfeature spaces from the observations 

made, that is, the combination of classifiers in different feature spaces, is the most 

effective way of combining classifiers and usually presents better results than any base 

classifier [9]. This occurs because each feature extraction method extracts different 

independent and complementary information from the signal that are both 

independent and complementary. For this purpose, a diverse set of feature extraction 

批注 [Ed3]: Please ensure that the intended meaning 
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methods using different approaches like, such as TDSA, ASD and multi-

fractalmultifractal detrended fluctuation analysis (MFDFA), are selected. 

2.3 Feature Classification 

After the feature exaction, machine learning methods play an important role in the 

performance of the final classification results. Traditional neural networknetworks and 

support vector machine were machines have been applied to fault classification 

[10,14]. Much practical evidence shows that the long training time has greatly 

restricted the efficiency of these algorithms. In recent years, extreme learning machine 

(ELM) ismachines (ELMs) have been utilized for multi-classmulticlass classification 

based on athe single hidden layer feed-forward network (SLFN) [12]. Recent studies 

show that the learning speed of ELM is faster than thethat of traditional learning 

algorithms [17,26], so ELM can be suitablecompetent for large-scale problems . The 

dependent parameter of ELM is the number of hidden neuronsneuron nodes, but the 

initial hidden node parameters are random. Considering the susceptibility caused by 

the number of hidden neurons in conventional ELM, there might be a large 

amountnumber of hidden neurons selected in the trained model due to the 

minimization of the training error whilein ranking neurons, resulting in a highlyhigh 

computational cost. The SBELM classifier is presented in this work; it has  with the 

benefits of a lower computational load from than ELM, and a small weight, and better 

together with prediction posterior probability thanfrom relevance vector machines 

(RVMs) [30], which has . Hence, SBELM requires less calculation and isto be more 

suitable as a large-scale fault classifier. 

2.4 Previous Schemes 

 

Fig. 1Fig.1. Engine knock detection framework and project work flow 

Knock detection is usually a complicated problem whichthat needs to combine 

requires a combination of multiple techniques. Some previous schemes providedgave 

effective solutions by exploiting different technologies, and ensured the reliability of 

批注 [Ed4]: Please note that we have not checked the 
text in your images because they are not editable in 
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contact our support staff. 



7 

Completed Files by Springer Nature Author Services 

 

the knock detection. A sound Sound vibration signal processing was proposed in [25]. 

In [25], a combination of methods, such as pass high-frequency filters, normalized 

envelope functions and regression, wereas used to describe the knock patterns, and 

then, the Euclidean distance gave was used to determine a decision on the existence 

of a detonation and achieved an accuracy of aboutapproximately 95%. However, the 

linerlinear filter and distance-based classifier have limited abilities of noise reduction 

and feature classification abilities, respectively. A knock characteristic detection 

method based on wavelet- denoising and EMD was proposed in [4]. The results 

indicated that the knock detection accuracy was 97%. AAn approach for detecting 

engine knocks inof various intensities based on the vibration signal of an engine block 

using VMD and semi-supervisedsemisupervised local fisherFisher discriminant 

analysis was proposed in [3], and the classification rate forof strong knocks was over 

95%. As mentioned above, there is much room for improvement in the denoising 

performance and accuracy. 

3 Designed of the Engine Knock Detection System 

3.1  Outline of the Detection System 

Motivated by the above general engine fault diagnostic requirements, a novel practical 

engine knock detection framework and project work flow workflow are proposed in 

Fig. 1. The proposed framework contains three main sections, including : signal 

filtering, feature extraction and classification. The GA-VMD method is developed to 

separate noisesnoise from the raw signal with a low computationcomputational 

burden compared with EEMD, where VMD is integrated with GA to achieve 

appropriate values of the balancing parameter and number of modes. While the VMD 

converts the original signal into a series of IMFs, sensitive IMFs are then selected by 

sample entropy for further filtered signal reconstruction, and those unconsidered IMFs 

are removed. In terms of candidate feature extraction techniques before fault 

classification, the TDSA, MFDFA and ASD methods, and their possible combinations, 

are tested to describe the distinguishable characteristics of the denoised signals, 

respectively. These features are trained by SBELM for establishingto establish a 

precision classifier. After the features of an unseen signal are fed to the trained 

classifier, a universal detection scheme is achieved to accurateaccurately identify 

engine knock online, such that the ECU could docan perform some actions to protect 

the engine, such as the retardation of the ignition in advance, to protect the engine. 

3.2 Signal Filtering 

GA-VMD For the nonlinear and non-stationarynonstationary time- frequency 

characteristiccharacteristics, GA-VMD is considered for signal filtering in the following 

work. 
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The goal of VMD is to decompose a real valued input signal f into a discrete number 

of subssub-signals (i.e., IMFs) uk, that have specific sparsity properties while 

reproducing the input. Here, the sparsity property of each mode is chosen to be its 

bandwidth in the spectral domain. In other words, we assume the kth mode to be 

mostly compact around a center pulsation ωk, which is to be determined along with 

the decomposition. 

In order to To assess the bandwidth of a mode, the following scheme is proposed. 

(i) For each mode uk, the associated analytic signal is computed by means of the Hilbert 

transform in order to obtain a unilateral frequency spectrum. (ii) For each mode, the 

frequency spectrum of the mode is shifted to the baseband, by mixing with an 

exponentially tuned value withto the respective estimated center frequency. (iii) The 

bandwidth is now estimated through the Gaussian smoothness of the demodulated 

signal, i.e., i.e., . the squared L2−norm of the gradient. The resulting constrained 

variational problem is given as follows,: 

 
where t is the time script, δ is the Dirac distribution and * denotes convolution. 

{uk} :={u1,...,uK} and {ωk}:={ω1,...,ωK} are shorthand notations for the sets of all modes 

and their center frequencies, respectively. k=1,2,..., K, and K is the number of modes 

of the intrinsic mode components. 

The solution to Eq. (1) can be easily achieved via an unstrained optimization 

problem using the augmented Lagrangian method 

 
where a is the balancing parameter of the data-fidelity constraint, and λ is the Lagrange 

multiplier. An alternating direction method of multipliers is adopted to solve Eq. (2). 

The estimated modes uk and the corresponding updated center frequency ωk in the 

frequency domain can be achieved as follows: 

 

 
where 𝑓(𝜔) ≔ 1 √2𝜋⁄ ∫ 𝑓(t) exp(−j𝜔t)𝑑t

 

ℝ
  with j2 = −1, is the Fourier transform of the 

批注 [Ed5]: Please ensure that the intended meaning 
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signal f(t). The Lagrangian multiplier is updated as: 

 
where τ0 is the update parameter. 

However, the values of the balancing parameter a and the number of modes K in 

Eq. (2) need to be predefined based on experience. For small values of a, one or more 

additional modes comprise of noise. For large values of a, the essential parts of the 

signal are shared by at least two distinct modes, and their center frequencies overlap, 

resulting in mode duplication. In addition, when the value of K is set too large, 

tampering features impede the accuracy of signal filtering, and essential intrinsic mode 

components are missed when the value of K is set too small. AlsoAdditionally, the 

computationcomputational load can also be large due to the size of the data and a 

large mode number. SoTherefore, it is necessary to optimize those values to achieve 

satisfactory performance. 

In the existing optimization techniquesologies, many sequential search techniques 

are based on greedy methods. They areIt is not suitable for global optimality but 

acceptable for local optimality. For instance, orderly searches consist of forward and 

backward selection. However, orderly forward and backward search techniques are 

not only more computationally expensive but also cannot perform undo processes, 

such as deleting or inserting features. In recent years, a novel emetic genetic 

algorithmGA method for solving the traveling salesman problem was proposed in [1]. 

An application of GA and fuzzy goal programming to solve congestion management 

problemproblems was proposed in [22]. The GA technique is based on evolutionary 

theory and the random search method. In this case, randomness is added to the search 

process to avoid local optimumoptima. GA is reliable and widely used in the area of 

optimization of artificial neural network parameters or signal processing algorithm 

parameters [28,37]. Therefore, GA is introduced in this work to obtain the optimal 

values of the VMD parameters. For the optimization of signal processing parameters, 

the entropy concept is applied to the GA-VMD algorithm. In theory, a smaller entropy 

value leads to stronger properties and a clear signal distribution. MinimumThe 

minimum envelope spectrum entropy value (MESEV) is proposed as the fitness 

function of the optimization and is obtained by the following steps: 

(i) The Hilbert transform of an IMF signal, which is further described as a time series 

{uk(t)}, can be expressed by 

 
where t=1,2,...,N, and N is the length of the signal. 

(ii) The envelope of the signal uk(t) is: 

 
(iii) TNormalization to the envelope E(t) is normalized as follows: 
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(iv) The envelope spectrum entropy value after normalization is: 

 
(v) The minimum envelope spectrum entropy valueMESEV is: 

 
The proposed GA-VMD method is summarized in Fig. 2. The initial ranges for 

parameters a and K are assigned according to the actual situation at the beginning of 

the process. Then, it GA-VMD initializes the population of GA and calculates the MESEV 

of each IMF. The operators in GA are compared to determine whether the current 

MESEV is the minimum. If not, the population is updated by new individuals until 

reaching the minimum is reached. MESEV is used as a fitness function, so that the 

iteration is stopped when the minimum MESEV is converged toconverges to a stable 

constant or it reaches the preset number of iterations. The values of a and K atunder 

the minimum MESEV are the optimal values. 

Sample Entropy IMF selection methods whichthat are commonly used in VMD are 

presented in this work to select and reconstruct important IMFs. Sample entropy is 

investigated to determine sensitive subcomponents. 
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Fig. 2Fig.2. Flowchart of the GA-VMD method 

Even though a higher energy ratio can reflect the fault-related information, faults 

usually appear inat a low energy ratio. Noise always exists in raw signals and that may 

cause incorrect IMFsIMF selections. By dDefining N−m+1 templates, each of size m, 

which are composed as Fm(t)=[f(t), f(t+1),..., f(t+m-1)];, as well as 

Uk
m(t)=[uk(t),uk(t+1),...,uk(t+m-1)];, and t=1,...,N-m+1, the distance, d[Fm(t),Uk

m(t)], 

between Fm(t) and Uk
m(t) is computed as d[Fm(t),Uk

m(t)]=max|f(t+j)-uk(t+j)|, j=0,...,m−1. 

The sample entropy (SampEn) [24] is different from the energy-based method, which 

is expressed as: 

 

where 𝐷𝑘
𝑚(𝑗) =

𝑁𝑘
𝑚(𝑗)

𝑁−𝑚+1
  is the probability that Uk

m(t) matches Fm(t), and Nk
m(j) is 

defined as the number of template matchingmatches, i.e., the number of 

d[Fm(t),Uk
m(t)]<r. In [23], Pincus suggested that the value of the threshold r should be 

selected between 0.1 and 0.25 and multiplied by the standard deviation of the raw 
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signal and that m should be equal to 1 or 2. The IMFs with values higher than a preset 

threshold are chosen as the sensitive IMFs to reconstruct the denoisedenoised signal. 

Remark 1. The above selection algorithms are used to determine the sensitive 

subcomponents from all IMFs, and the sensitive IMFs couldcan reflect the knock 

features. The main pure signal is then reconstructed from the selected IMFs;, i.e., 

𝑓(𝑡) = ∑ 𝑢𝒫(𝑡)𝒦
𝒫=1 , where 𝑢𝒫(𝑡) is the 𝒫th sensitive IMFsIMF decomposed by VMD, 

and K is the number of the sensitive IMFs. 

3.3 Feature Extraction 

In this section, a brief description of the three main feature sets used in the proposed 

multiple feature learning system is given. 

Time Domain Statistical Analysis Traditionally, machinery signals wereare usually 

extracted by time domain statistical analysis (TDSA) [29]. These statistical features 

describe the characteristics of a signal by a direct calculation with simple computations. 

The features Features such as the standard deviation, root -mean -square, peak, 

skewness, kurtosis, crest factor, shape factor and impulse factor are employed in this 

work. 

Alpha Stable Distribution AlphaThe alpha stable distribution alpha stable distribution 

(ASD) is suitable for describing random signals having that have a highly non-Gaussian 

distributions and heavy tails [33]. In ASD, the probability density function (PDF), which 

is utilized for describing the statistical characteristics of data, can be determined by 

the four parameters α, β, γ and δ. These parameters are usually expressed by their 

characteristic functions, 

 

where 𝜃(t, 𝛼) = {
tan (

𝜋𝛼

2
) 𝛼 ≠ 1

2

𝜋
log|t| 𝛼 = 1

. In this work, the four parameters (α, β, γ and δ) 

are used to describe the different characteristics as the features for the further 

classification. 

Multif-Fractal Detrended Analysis Fluctuation Analysis Detrended Multifractal 

detrended fluctuation analysis (DFA) is a fractal scaling method for perceiving long-

range correlationcorrelations in noisy and nonstationary time sequences. However, 

DFA is a mono-fractalitymonofractality method and is barely able to deal with multi-

fractalitymultifractality nonlinear time series in dynamical mechanismmechanisms. 

Therefore, multi-fractalmultifractal detrended fluctuation analysis (MFDFA) was 

proposed for the multifractality non-stationarynonstationary time series analysis by 

extending the theory of DFA [18]. MFDFA has been verified in revealing the dynamic 

behavior hidden in multi-scalemultiscale nonstationary signals. which and is described 

as follows. 
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The processed bounded time series {𝑓(1), … , 𝑓(𝑡)}  is converted into an 

unbounded time series {ℱ(1), ⋯ , ℱ(𝑡)} by a cumulative sum as follows: 

 
where 𝑓̅(𝑡) is the mean of the time series  {𝑓(1), ⋯ , 𝑓̂(𝑡)}. Then, F (t) is divided into 

Np non-overlappingnonoverlapping segments with equivalent lengths p, where 

Np≡int(N/p). If N cannot be divided by p, the remaining part of the profile may be left- 

off.truncated. To retain with this unused part, the same process is implemented from 

the opposite end, and 2Np segments are derived. For segment l=1,...,Np, the least -

square of F2(p,l) is calculated as, 

 
For segment l=Np+1,...,2Np 

 
where fl(i) is a fitting polynomial in the lth segment. Different orderorders of the 

polynomial resultsresult in are obtained by different eliminating trends from the 

profile. The qth order fluctuation function can be obtained by the average over all 

segments 

 
where q is any real value except zero. Using different time scales of p, the scaling 

behavior of the fluctuation functions can be determined by analyzing the logarithmic 

relationship of Fq(p) versus p for each q, 

 
TheSetting a relationship between the generalized Hurst exponent H(q) and the 

scaling exponent τ(q), it is as follows:yields 

The singularity exponent hq and the multifractal singularity spectrum Dq are selected 

as the features and expressed as, 

 
where H0(q) represents the derivative of H(q) with respect to q. The Holder exponent 

hq characterizes the strength of the singularity, and Dq represents the Hausdorff 

dimension of the fractal subset with the exponent hq, which are utilized to describe 

the different characteristics. 

批注 [Ed6]: Please ensure that the intended meaning 
has been maintained in this edit. 
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Fig. 3Fig.3. Multiple feature learning process 

Remark 2. The three feature extractors describe the features from three aspects, and 

have multi-multiple forms of arrangements and compositions. Time domain features 

have been proven to be effective for degradation monitoring and failure prognostics 

in the existing literaturesliterature. MFDFA is able to characterize the internal dynamics 

mechanism of fault signalsignals and to detect slight changes in complex 

environmentenvironments. The widely used ASD method has good robustness in the 

modeling of pulse shape in non-Gauss signals. 

Remark 3. The above feature extraction techniques, including the TDSA, MFDFA and 

ASD methods, and their possible arrangements (i.e., combinations), as shown in Fig. 3, 

are tested to describe the distinguishable characteristics of the denoised signals, 

respectively. The optimal arrangement for finalizing the design of the feature 

extraction approach, as shown in Fig. 4, is determined according to the optimal 

classification results obtained through the SBELM classifiers, which areis described in 

the following section. 

 
Fig. 4Fig.4. Final knock detection system 

3.4  Sparse Bayesian Extreme Learning Machine for Engine Knock Detection 

The sparse Bayesian extreme learning machine (SBELM) classifier is trained onby data 

(x,T), which containis achieved from the above characteristics of any one arrangement 

and the known knock label, respectively. It is well- known that the neural network 

methods have been used successfully for fault diagnoses, alsoand recently, athe family 

of ELMELMs has been developed for training aan SLFN with fast learning speeds and 

high good generation performance. However, the execution time of ELM is quite 

unstable and, dependsing on the number of hidden neurons (network size). Although 

a kernel -based ELM (KELM)  has been proposed that does not require hidden neurons 

and tends to provide better accuracy than basic ELM has been proposed, it suffers from 
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the issues of a large size of model size issues when the size of the training dataset 

increasesis large. Before the development of ELM, RVM was also available. RVM can 

train the kernel machine onfor a dataset and automatically prune the irrelevant basis 

elements to gain sparsity. ForTo reduce the reduction of sensitivity of the number of 

hidden neurons in conventional ELM, SBELM was proposed combined, and it combines 

the advantages of the low computational load offrom ELM and the small weight 

together withand good prediction posterior probability offrom RVM. Reference [17] 

showed that when the number of hidden nodes is over 50, the classification accuracy 

could keepremain stable. This feature makes it more suitable as a large-scale fault 

classifier. The SBELM algorithm can be explained as follows. 

The output weight of SBELM is learned by the Bayesian method instead of using 

the Moore-Penrose generalized inverse of the matrix [2]. The hidden layer output 

H=[h1.,...,ht.,...,hN]T becomes the input of SBELM, where ht∈RL is the hidden feature 

mapping with respect to input xt∈RL, L is the number of characteristics of the optimal 

arrangement, and N is the number of classifier outputoutputs. Each training sample xt 

from the extracted features can be treated as an independent Bernoulli case. 

Using iterative reweighted least squares to find the Laplace mode Ŵ is efficient; 

hence,, so that the gradient ∇E and Hessian matrix φ are necessary tomust be 

computed: 

 
where W=(w1.,...,wm.,...,wL)T is the hidden layer matrix. T = (𝒯1, … , 𝒯𝑡 … , 𝒯𝑁)𝑇 , 𝒯𝑖 ∈

{0,1} is a target output vector. α=[α1.,...,αL]T is the independent prior in relation toship 

with each wm, and some values of wm are regulated to zero by adaptive rectangular 

decompositionthe (ARD) to select important hidden neurons. Y=(y1,...,yN)T with, where 

yt=σ(ht,wt);, A=diag(α); and B is a diagonal matrix, where with bt=yt(1-yt). Subsequently, 

Ŵ can be obtained by 

 

where T̂ = HW + B−1(T − Y). The center W and covariance matrix Σ of the Gaussian 

distribution are 

 
As a result, ln{P(T|W,H)P(W|α)}∝N(Ŵ,Σ) is formed, and the log marginal likelihood 

L(α)=ln P(T|α,H) can be computed by setting the L(α) to zero, as the followsing 

expression: 
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By setting the initial values of wm and αm, Ŵ and Σ are updated by Eq. (24), and the 

values of αm are updated by substituting αm and Σ into Eq. (25). The marginal likelihood 

function is iterated to the maximum value until the convergence criterion is met. 

In summary, the whole learning procedure of the fault diagnosis scheme is given 

below. Given the knock label 𝒯𝑡   and the training denoised signal 𝑓(𝑡) , the training 

procedure is shown as follows. 

 
Fig. 5Fig.5. Test rig 

Training procedure 

 
Testing procedure  

For each denoised signal 𝑓(𝑡), 
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4 Experiment and Evaluation 

4.1 Experimental Setup 

In order to To test and train the proposed framework, a test rig is designed to collect 

the raw engine data and it is presented as below. 

A Honda K20A Type-R engine, which is a four-stroke, four-cylinder spark-ignition 

engine, is utilized as the test rig, as shown in Fig. 5. The research octane number of the 

fuel is 98, which wasis purchased from a regular gas station. The experimental setup 

as shown in Fig. 6 can be divided into three main sections. The first section containsis 

the ECUelectronic control unit, the engine and relative peripheral sensors, where the 

raw data isare collected via a knock sensor. The second section containsis the 

dynamometer and its control system for varying the loading condition of the engine. 

The third section containsis the combustion analyzer with an in-cylinder pressure 

sensor, which is used to detect whether knock exists in the experiment. The data 

collected by the in-cylinder pressure can validate the result of the proposed system. 

The main components are as follows: 

 
Fig. 6Fig.6. Test rig setup 

Electronic Control Unit A MoTeC M800 programmable ECU can controls the engine by 

monitoring sensor signals and adjusting the outputs based on the look-up tables. The 

ECU can control the spark timing, fuel injection time and engine temperature, etc. In 

this work, the injection time and ignition timing are important for ECU control. During 

the experiment, the injection time and ignition timing at different engine speeds and 

loads can be adjusted through the fuel map and ignition map in the ECU, respectively. 

The fuel map mainly controls the air-fuel ratio or air- ratio. To measure the air-fuel 
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ratio/air- ratio, a lambda sensor/oxygen sensor is installed in the exhaust pipe and used 

for measurement. 

Dynamometer and Control System A DW160 eddy-current dynamometer is used to 

apply the engine load and control the engine throttle for simulating different driving 

conditions. The dynamometer is coupled to the test engine. 

Combustion Analyzer A MA3001 combustion analyzer, which iswas produced by 

PowerMAC Co., Ltd., is used for analyzingto analyze the in-cylinder pressure and 

corresponding crank angle. The analyzer consists of two parts: (i) The cCrank angle 

sensor, which is mounted on the engine crankshaft terminal to measure the engine 

crank angle in the engine cycle. The sensor is used to convert the rotational speed and 

phase position of the crankshaft into a digital angle signal, which helps monitor the 

pressure wave for knock detection. (ii) A piezoelectric in-cylinder pressure sensor is 

employed to measure the in-cylinder combustion pressure for validation. The signal 

from the cylinder pressure sensor is then amplified by a charge amplifier. The crank 

angle signal and the amplified in-cylinder pressure signal are sent to the analyzer for 

pressure wave analysis. Before starting the experiment, the devices havehad to be 

calibrated. The calibrated range and sensitivity charge of the amplifier isare set to 

150bar150 bar and −10.22pC/bar in order 22 pC/bar to match the in-cylinder pressure 

sensor. The mode of the amplifier is set to 0–10-10V10 V according to the specification 

of the combustion analyzer. The voltage-pressure conversion coefficient of the 

combustion analyzer is set to be 15, depending on the amplifier and the test engine 

torque. It is worth noting that the top dead center position needs to be calibrated 

when the crank angle sensor is installed on the test engine. 

Data Collection and Analysis A software called GoldWave is installed on a computer 

to record the engine signals from the knock sensor. The signal is then passed to 

MATLAB to conduct signal filtering, feature extraction and classification. 

4.2  Operating Cconditions for experimentEexperimental Ddata Ccollection 

In order to To verify the proposed scheme, real engine data isare recorded and 

analyzed. Since the fuel used in the experiment has a high-octane high octane number, 

engine knock isdoes not easy to easily occur. In order to To produce a knock 

conditionconditions under different driving conditions without damaging the engine 

in the laboratorylab, the engine is operated under two working conditions: i) low speed 

with high load condition, conditions and ii) high speed with low load 

conditionconditions. The engine load is provided by the dynamometer by applying an 

opposite torque to the engine. The ignition timing is advanced gradually. The initial 

engine temperature before knocking is holdis held at 85◦C85°C ± 5◦C5°C. The engine 

load, speed and air-fuel ratio are changed within a certain range. The combustion 

analyzer records the pressure wave pattern to determine the presence of engine knock 

so that the training and test data can be obtained. A total of 1800 sets of data are 

recorded according to different driving conditions, as shown in Table 1. 
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Table 1. Experimental data 

 

 
Fig. 7Fig.7. Pressure versus crank angle atunder (Leftleft) nonknon-knock and (Rightright) knock 

conditions 

At the beginning of the experiment, knock does not occur easily at idle speeds due to 

the high anti-knock quality of the fuel, even if when the ignition timing is substantially 

advanced very much and the air-fuel ratio is enriched. Under this condition, the 

cylinder pressure wave pattern in the combustion analyzer is still smooth, as shown 

inon the left hand-hand side of Fig. 7. When the ignition advanceadvances and the 

engine load are kept increasingcontinues to increase, the shape of the pressure wave 

sharply increases. WhenUntil the ignition timing and engine load are increased to a 

certain range, an obviously high and sharp pressure wave appears, indicating the 

existence of knock, as shown inon the right hand-hand side of Fig. 7. Therefore, it is 

not easy to generate a knock at a low engine speed withunder a high-octane fuel unless 

the engine load is high. Certainly, engine operatesengines operating at a high engine 

speed under a high-octane high octane fuel can generate a knock easily under a low 

engine load. It is noteworthy that the combustion analyzer and in-cylinder pressure 

signal are not suitable for in-use vehicles due to their high costs, so they are used only 

for validation and labeling only. The actual knock detection signal is the engine 

vibration signal captured byfrom the knock sensor. 
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Fig. 8Fig.8. Time domain engine vibration signals 

Table 2. Experimental setup of the sample vibration signals 

 

The vibration signal collected by the knock sensor converts the shock of cylinder 

pressure into an electronic signal. For each driving condition, the raw signals are 

recorded for 0.15 secondseconds with a sampling rate of 48000Hz48000 Hz. Therefore, 

each sample containcontains a time series with 7200 sampling points. 6Six randomly 

selected vibration signals from the 1800 sets of data shown in Table 2 are illustrated in 

Fig. 8, with where half of the signals are nonknon-knock labeled signals and half are 

knock labeled signals. They are used as training datasetdatasets to train the classifiers. 

It can be observed from Fig. 8 that the nonknon-knock signals (s1, s2, s3) are veryquite 

difficult to manually distinguish the difference manually from the knock signals (s4, s5, 

s6). Therefore, the proposed framework is applied to remove the noises noise from the 
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vibration signals and detectsdetect knock. The experimental data and program code in 

MatlabMATLAB are available at https://github.com/wangdai11/EKDS. 

4.3 Results and Evaluation 

Signal Filtering Signal filtering is the first step of the proposed framework, andto it 

reduces noise from the raw vibration signals. VMD converts the raw signals into a 

series of IMFs. Sample entropy is employed intoin the proposed signal processing 

methods to remove the insensitive IMFs. For comparison, signal s6, is usedas an 

example in this section, is utilized to evaluate the filtering ability of the proposed GA-

VMD. 

IMFs of VMD dependsdepend on the adjustable parameterparameters a and K, 

which are inaccurate when the parameters are set inappropriately. Therefore, GA is 

proposed to obtain the appropriate values for a and K. The parameters of GA are set 

as follows: population size=50, number of generations=200, mutation rate=0.01, 

mutation percentage of theon population=0.2, and crossover percentage of theon 

population=0.8. The input ranges of a and K are set to [100,10000] and [2,20], 

respectively. Taking the average of each optimal value of a and K aAfter 50 runs of GA, 

the average values are a=1463 and K=9.9, respectively. Therefore, a and K are set to 

1500 and 10. 

Fig. 9 illustratesis an example that shows the influence of setting different values 

of a and K on signal filtering. When a is set too large or when K is set inappropriately, 

some knock resonant frequencies (Fig. 9f, 9h9h, 9j, and 9l9l) cannot displaybe clearly 

asdisplayed compared with Fig. 9b. Choosing sample entropy as the IMF selection 

method due to the best noise reduction ability, Fig. 9c and Fig. 9d show the GA-VMD 

results. Fig. 9c, Fig. 9d and Appendix A show that only the GA-VMD can clearly reflect 

all the resonant frequencies clearly. 

The results of using VMD and different IMF selection methods for signal s6 are shown 

in Fig. 10 and Table 3. Each method takes the threshold T to select the appropriate 

IMFs for signal reconstruction, where 𝑇 =
∑ 𝐼𝑀𝐹𝐾

𝐾
𝑛−1

𝐾
  and K is the total number of IMFs. 

Those IMFs with values higher than the threshold are chosen and highlighted in red in 

Table 3. Those selected IMFs are reconstructed into a denoising signal, and the 

envelope spectrum of the filtered signals is used to identify the knock resonant 

frequency. Fig. 11 shows the envelope spectrum of the GA-VMD noise reduction under 

different IMF selectioned methods. Fig. 11h and Appendix B show that only the sample 

entropy can reflect the knock resonant frequencies, as shown in Fig. 11e clearly. This 

further indicates that the sample entropy approach has a good noise reduction and 

signal reconstruction abilities. 

带格式的: 字体: 加粗
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Fig. 9Fig.9. Noise reduction ability under different values of a and K 

Table 3. Results of GA-VMD with different IMF selection methods 

 
Feature Extraction Feature extraction, a pretreatment for machine learning 

methodmethods, is the second step of the proposed knock detection method. The 

applicationapplications of TDSA, ASD and MFDFA are used for extracting cognizable 

features from the filtered signals. Each extracted feature can compress a huge large 

number of time series data into specific numbers. These specific numbers representing 

meaningful features are then used to establish a classification model for knock 

detection. 
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Table 4 shows the TDSA features of 24 randomly selected 24 engine vibration 

signals under different conditions, including mean ymean, standard deviation ystd, root -

mean square yrms, peak ypeak, skewness yskew, kurtosis ykurt, crest factors ycrf and yclf , 

shape factor ysf and impulse factor yif , which are created under different ignition timing 

and loading conditions. In Table 4, the sample signals A1 to A8 are at of 1000 rpm, B1 to 

B8 are ofat  2000 rpm and C1 to C8 are at of 3000 rpm. These statistical features can be 

used to separate knock data from the nonknon-knock data. Therefore, these statistical 

features are kept for the inputs of the classifiers. 

 
Fig. 1Fig.10. IMFs obtained based on GA-VMD 

The ASD algorithm is a feature extraction method that emphasizes the 

characteristic parameters α, β, γ, and δ. The values of these parameters are self-

generated by the wave patterns of the signal. The ASD characteristic parameters and 

the magnitudes of the PDF are different under knock or and nonknon-knock 

conditionconditions, as shown in Fig. 12. Therefore, the parameterparameters α, β, γ, 
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δ and h are selected as the inputs of the classifiers. Table 6 shows the five ASD 

parameters of the same 24 vibration samples (A1 to A8, B1 to B8 and C1 to C8) in Table 4. 

Fig. 13 depicts that the knock data mainly lay between the large values of γ and α, 

but the nonknon-knock data are dispersive. Most of the nonknon-knock data have 

higher values of h and α than the knock data. In this case, most of knock data can be 

separated from the nonknon-knock data withunder this method. 

 

Fig. 1Fig.11. Envelope spectrum of GA-VMD under different IMF selection methods 

MFDFA is another feature extraction approach whichthat emphasizes the 3 points in 
the multifractal spectrum: i) Thethe first points of the multifractal curves (hqa, ,Dqa ); ii) 
Thethe end points of the multifractal curves (hqb, ,Dqb ); and iii) Thethe peaks of the 
multifractal curves (hq0,1). The signal under various working conditions provideprovides 
different spectrumsspectra, as shown in Fig. 14. Table 7 shows the five multifractal 
parameters (hqa , Dqa , hqb , Dqb , and hq0) of the same 24 vibration samples (A1 to A8, B1 to 
B8 and C1 to C8). The distribution results of the multifractal parameters in Fig.ure 15 show 
that most of the knock data in Table 4 can also be separated from the nonknon-knock 
data under GA-VMD. Therefore, MFDFA is also considered in this work. 

Table 4. Example of the TDSA result of GA-VMD+Sample entropy 
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Fig. 1Fig.12. PDF spectrum of different signals 

 
Fig. 1Fig.13. ASD parameters 
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Fig. 1Fig.14. Multifractal spectraum of different signals 

The above three feature extraction methodmethods are feasible and produce 

different separable features, so they are used in different combinations. In total, 20 

features based on the TDSA, ASD and MFDFA methods are obtained, as shown in Table 

5. The dDifferent characteristics of the knock data and nonknon-knock data are then 

entered tointo the machine learning methods for building classifiers for diagnosis. 

 
Fig. 1Fig.15. MFDFA parameters 

Table 5. Extracted features 
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Table 6. ASD results with GA-VMD+Sample entropy 

 
Classification Classification is the last step of the proposed framework. The extracted 

features are learned using two other two machine learning algorithms, where ELM and 

kernel based--based ELM (KELM) are applied for comparison. To verify the statistical 

performance of the test results, we use the bootstrapping for the dataset. 

Bootstrapping is a test or metric that relies on random sampling with replacement. The 

dataset is separated into two groups, nonknon-knock data and knock data, wherein 

900 sets are randomly selected as training data and the remainingrest of 900 sets are 

used as test data. The division of the training and test datasetsdata sets is presented 

in Table 8. The mean results are achieved by repeatingafter 10 repetitionstimes and 

are shown in Table 9. 

Table 7. MFDFA results with GA-VMD+Sample entropy 
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Table 8. Details of the training and testing datasets 

 
Table 8 shows that this knock detection problem is a binary classification problem. 

In order to To select an appropriate classification method, the accuracies of the three 

machine learning methods are compared. For ELM and SBELM, the number of initial 

hidden neurons have tomust be defined. The initial hidden neurons for ELM and SBELM 

are set to 200. For KELM, the kernel is introduced to the model,; thus, the 

regularization parameter and kernel parameter have to be set. The kernel function of 

KELM is a radial basis function. The regularized parameter and the kernel parameter of 

KELM are set to be 1.0. The test accuracies are shown in Table 9, and the best accuracy 

is highlighted in red. Table 9 shows that the average accuracy of SBELM is slightly higher 

than those of KELM and ELM because the parameters of SBELM isare not sensitive to 

its hyperparameters. 

Table 9 reveals that the integrated features of GA-VMD integrated with, sample 

entropy, TDSA, ASD and SBELM show have the best accuracy of 98.27%, which is 

highlighted in red in this testthe table. It is noted that ASD and TDSA produce have high 

classification accuracies in classification, whereas MFDFA shows has poor performance. 

Even though combining MFDFA with other feature extraction methods can improve 

the overall precision a little bitslightly, MFDFA does not contribute too much to the 

system accuracy. It also appearsseems that MFDFA is not compatible with GA-VMD 

because it hasproduces the worst accuracy. In summary, Table 9 shows that the 

integration of SBELM with GA-VMD, sample entropy, ASD and TDSA is an accurate 

classification method for automatic knock detection. 
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Table 9. Accuracies of various combinations of technologies based on the test dataset 

 

5 Conclusion 

In this paper, a novel intelligence engine knock detection system using a multiple 

feature based--based SBELM algorithmsparse Bayesian extreme learning machine is 

successfully developed. GA-VMD is used to filter the unavoidable noises, in which GA 

is applied to obtain the optimal parameters to enhance the noise reduction ability. 

When the original time domain signals are decomposed into a series of IMFs, IMFs 

with sample entropy higher than the mean isare selected as sensitive subcomponents 

for signal reconstruction. Multiple featuresmethods, including the TDSA, MFDFA and 

ASD methods, are applied together to extract features from the denoised signals. The 

Extracted features extracted from the reconstructed signals are then classified by 

SBELM. The eExperimental results show that the accuracy of the knock detection 

system built by SBELM is superior to the accuracies of those built by ELM and KELM. 

Therefore, the integration of GA-VMD, with sample entropy, combined with TDSA, and 

ASD, and SBELM is effective for building automatic engine knock detection 

systemsystems. Although the proposed method is successfully applied to real 

engineengines for engine knock detection, the dataset is recorded from athe specific 

engine model. It will beis appealedappealing to apply to different engine models to 

further prove its the reliability of the proposed method in the future work. Moreover, 

the training and test data for the proposed system canwould be expanded to cover 

more engine speeds, engine loads, air-fuel ratios, fuel octane numbers and engine 

temperatures in order  to enhance the system generalization. In our current work, the 

proposed GA-VMD method has the limitation of eliminating the non-Gaussian noise 

under the heavy noise disturbances. Non-Gaussian noisesnoise always existexists in 

the automotive propulsion systems and, which usually leadleads to inconsistenciesy 

and the divergence of the detection system. Therefore, the future work wouldshould 
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consider the noise rejection capacity by using the correntropy to cope with the issue 

of non-Gaussian noisesnoise. 



A Novel Multiple Feature-based Engine Knock
Detection System using Sparse Bayesian Extreme

Learning Machine

Zhao-Xu Yang, Hai-Jun Rong, Pak Kin Wong ?, Plamen Angelov, Chi Man Vong,
Chi Wai Chiu, and Zhi-Xin Yang

Abstract.
Background Automotive engine knock is an abnormal combustion phenomenon
that affects engine performance and lifetime expectancy, but it is difficult to de-
tect. Collecting engine vibration signals from an engine cylinder block is an ef-
fective way to detect engine knock.
Methods This paper proposes an intelligent engine knock detection system based
on engine vibration signals. First, filtered signals are obtained by utilizing varia-
tional mode decomposition (VMD), which decomposes the original time domain
signals into a series of intrinsic mode functions (IMFs). Moreover, the values of
the balancing parameter and the number of IMF modes are optimized using ge-
netic algorithm (GA). IMFs with sample entropy higher than the mean are then
selected as sensitive subcomponents for signal reconstruction and subsequently
removed. A multiple feature learning approach that considers time domain sta-
tistical analysis (TDSA), multi-fractal detrended fluctuation analysis (MFDFA)
and alpha stable distribution (ASD) simultaneously, is utilized to extract features
from the denoised signals. Finally, the extracted features are trained by sparse
Bayesian extreme learning machine (SBELM) to overcome the sensitivity of hy-
perparameters in conventional machine learning algorithms.
Results A test rig is designed to collect the raw engine data. Compared with
other technology combinations, the optimal scheme from signal processing to
feature classification is obtained, and the classification accuracy of the proposed
integrated engine knock detection method can achieve 98.27%.
Conclusions We successfully propose and test a universal intelligence solution
for the detection task.
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Keywords: Engine Knock Detection, Variational Mode Decomposition, Multi-
ple Feature Learning, Sample Entropy, Sparse Bayesian Extreme Learning Ma-
chine.

1 Introduction

In a spark-ignition automotive engine, engine knock is defined as an abnormal combus-
tion phenomenon that is observed as a noise and can even indicate a major engine fault.
Engine knock is an essential factor that constrains further improvements in thermal ef-
ficiency and causes serious engine damage, such as piston or cylinder breakage. During
heavy knock, much extra heat is transferred to the combustion chamber wall, resulting
in a rapid rise in the temperature of the piston and cylinder head. The overheating of
these parts makes the intensity of the knock continue to increase. This consequential
runaway phenomenon may trigger engine failure within a few minutes. Moreover, an
excessively high pressure pulse due to heavy knock may occur in the end gas area.
The interaction between this high local pressure and high local surface temperature
inevitably weakens or corrodes the engine material.

On the premise of the accurate identification of signals associated with engine
knock, some preventive measures should be performed, such as delaying the ignition
timing. These signals can be monitored and collected by pressure wave amplitude anal-
ysis, exhaust gas temperature analysis, heat transfer analysis, etc. [40]. However, the
high cost of in-cylinder pressure sensors, as well as the decreased lifetime expectancy
resulting from high temperatures and high pressure, make the pressure wave amplitude
method difficult to apply extensively [11]. Exhaust gas temperature analysis suffers
from low precision [19], and heat transfer analysis is difficult to apply in real time [20].

Massive pressure waves [21] occur inside of an ignition chamber, and can emit an
audible sound, and the resulting vibrations create the perceptible knock signal. There-
fore, engine vibration signals are widely used for engine knock detection, which is a
compromised solution for resolving conflicts between measuring precision and cost.
When vibrations are detected in the cylinder wall, the knock sensor, which is a piezo-
electric crystal placed on an engine cylinder block, creates a low voltage signal that
is fed back to the electronic control unit (ECU). Knock can be determined when the
resonant frequency is close to or beyond the frequency range of the knock frequency.
However, engine vibrations include not only the in-cylinder pressure pulse but also
piston slaps, valve train motion, fuel injector pulses and other engine structural vi-
brations, which have little influence on knock characteristics, but they easily conceal
slight knock. Even though an advanced knock module can be installed to reduce back-
ground noise, the knock module requires expertise to tune the frequency band, central
frequency and gains. In addition, it is difficult for experts to determine the optimal pa-
rameters of the knock module to filter out background noise under difficult time-varying
conditions.

The vibration signal detection method uses an accelerometer to detect knock charac-
teristics by measuring the vibration acceleration of the cylinder block. Since this method
has the advantages of easy installation, high reliability and low cost, it is commonly em-
ployed in real-time engine knock detection. Although using vibration signals to deter-
mine engine knock is more practical, a cylinder block vibration signal has a substantial
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amount of noise and signals from other vibration sources. Engine vibration signals can-
not be applied to detect knock directly, and the original signals need to be processed
using an accurate and effective signal denoising technique. Therefore, utilizing vibra-
tion signals for engine knock detection is still a challenging task.

Engine knock detection is a complicated problem that includes signal denoising,
feature extraction, and feature classification. In signal denoising, although signals us-
ing variational mode decomposition (VMD) [35] are separated into a series of intrinsic
mode functions (IMFs), IMFs depend on the values of the balancing parameter and the
number of modes that are adjustable, and the results may be inaccurate when the pa-
rameters are not set in place. Therefore, there is an urgent need to obtain the optimal
values of the VMD parameters. To reduce the computational burden in the later stage,
some nonlinear dynamic parameters, such as energy ratio and correlation coefficient,
should be used to extract the IMFs that represent prominent features. However, they are
dependent on the record length, which is usually difficult or even impossible to acquire,
especially in online condition monitoring and diagnosis. An appropriate indicator is also
needed to determine sensitive subcomponents to select and reconstruct important IMFs.
During feature extraction, each feature extraction method extracts different independent
and complementary information from the signals. Therefore, an ensemble system us-
ing multiple feature learning is proposed to achieve high classification accuracy. Many
experiments are usually needed to test the availability and performance of an optimal
feature combination in specific applications. In feature classification, machine learning
methods play an important role in the performance of the final classification results.
Traditional neural networks and support vector machines have been applied to fault
classification [17, 30]. However, they suffer from issues, including the computational
burden of the large-scale fault classifier and the sensitivity of hyperparameters.

The main motivation of this research is to find the best solution in theory and appli-
cation. In this paper, a novel intelligence engine knock detection system using multiple
feature based sparse Bayesian extreme learning machine (SBELM), genetic algorithm-
based VMD (GA-VMD) and sample entropy is proposed, and the salient contributions
of this paper are organized as follows:

1) The traditional engine knock detection system usually relies on one kind of feature
extracted from engine vibrations. Considering that the combination of different fea-
ture spaces from the observations would achieve better performance than any base
classifier, an ensemble system using multiple feature learning is proposed to achieve
high classification accuracy.

2) To overcome the dependency of the appropriate values of the balancing parameter
and the number of modes, GA-VMD is used to filter unavoidable noise, in which
the genetic algorithm (GA) is applied to obtain the optimal parameters to enhance
the noise reduction ability. When the original time domain signals are decomposed
into a series of IMFs, IMFs with sample entropy higher than the mean are selected
as sensitive subcomponents for signal reconstruction.

3) This work is the first to attempt applying multiple features captured from engine
vibration signals and SBELM together for engine knock detection. In addition to
addressing the computational burden issue of the large-scale fault classifier, the ex-
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tracted features are trained by SBELM to overcome the sensitivity of hyperparame-
ters in conventional machine learning algorithms.

4) A universal intelligence solution for the detection task and the integration of GA-
VMD with sample entropy, time domain statistical analysis (TDSA) , alpha stable
distribution (ASD), and SBELM are also proposed to build an effective engine knock
detection system.

This paper is organized as follows. The related work is briefly reviewed in Section
2. Section 3.1 introduces the outline of the engine knock detection system. The de-
sign procedure of the detection system and the signal filtering method are presented in
Section 3.2, the feature extraction technique is presented in Section 3.3, and the clas-
sification procedure, which involves multiple techniques, is presented in Section 3.4.
The performance evaluations of the proposed detection system are given in Section 4.
Finally, a conclusion is summarized in Section 5.

2 Related Work

We briefly review previous approaches related to engine knock detection.

2.1 Signal Denoising

Engine knock detection can be viewed as an engine fault detection problem that re-
lies on the features captured from a signal. The signal may contain noise or it can
be affected by other component vibrations, so the knock-related information contained
therein is not easy to observe. Therefore, many efforts have been made to develop sig-
nal processing techniques [32], such as fast Fourier transform [15], short-time Fourier
transform [27], continuous wavelet transform [7,39], discrete wavelet transform [6,34]
and nonlinear wavelet transform [16]. The fast Fourier transform method converts a
time domain signal into a frequency domain signal quickly, but it is not suitable for
non-stationary signals, such as the knock signal, which experiences rapid changes in
both time and frequency. The short-time Fourier transform is an alternative transform
method for time-frequency analysis, but it has not been extensively used due to its
low time resolution with a fixed window under high frequencies. The resolution issue
has been solved by wavelet transforms. However, the application of a wavelet trans-
form has been bound by its inherent defect, which is the limitation of the selection of
a mother wavelet, and it is a nonadaptive transformation. Empirical mode decomposi-
tion (EMD) [31] is self-adaptable and decomposes a signal directly into several IMFs,
which are defined as amplitude-modulated-frequency-modulated signals whose number
of local extrema and zero-crossings differ at most by one [13]. For the phenomenon that
mode mixing occurs repeatedly in EMD, ensemble EMD (EEMD), which decreases the
chance of undue mode mixing to a certain extent, was proposed [5]. The IMF in EEMD
is characterized as the mean of an ensemble of trials whereby a finite-amplitude white
noise signal is added to the decomposed data in each trial; this approach increases the
computational burden since the data size of IMF is equal to that of the raw data. In
recent years, VMD has been introduced for noise analyses of rotating machines and as
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a fault diagnosis method that has shown very promising results [8, 28, 35]. Although
signals are separated into a series of IMFs, IMFs depend on the values of the balancing
parameter and the number of modes that are adjustable, and the results may be inaccu-
rate when they are not set in place [3]. Therefore, an optimization method utilizing GA
is proposed in this work to solve the problem of parameter optimization.

To reduce the computational burden in the later stages, some nonlinear dynamic pa-
rameters, such as energy ratio [38] and correlation coefficient, should be taken to extract
the IMFs that represent prominent features. However, the reliable estimation of both
parameters depends on very long datasets, which are usually difficult or even impos-
sible to acquire, especially during online condition monitoring and diagnosis. Entropy
is defined as the loss of information in a time series or signal, such that approximate
entropy [36] and sample entropy [24] are created to measure the repeatability or pre-
dictability within a time series. Due to its self-matching problem, approximate entropy
is heavily dependent on the record length, and its value is uniformly lower than ex-
pected for short records and lacks relative coherence. Sample entropy is less dependent
on the time series length and is utilized in this work to select and reconstruct important
IMFs.

2.2 Feature Extraction

The selection of the feature extraction algorithm is known to play an important role in
determining the performance of the classification system. An ensemble system using
multiple feature learning is proposed to achieve high classification accuracy. This is
made by combining the classifiers that are trained on different feature sets. The idea of
combining different feature spaces from the observations made, that is, the combination
of classifiers in different feature spaces, is the most effective way of combining classi-
fiers and usually presents better results than any base classifier [9]. This occurs because
each feature extraction method extracts different independent and complementary in-
formation from the signal. For this purpose, a diverse set of feature extraction methods
using different approaches, such as TDSA, ASD and multi-fractal detrended fluctuation
analysis (MFDFA), are selected.

2.3 Feature Classification

After feature exaction, machine learning methods play an important role in the perfor-
mance of the final classification results. Traditional neural networks and support vec-
tor machines have been applied to fault classification [10, 14]. Much practical evidence
shows that the long training time has greatly restricted the efficiency of these algorithms.
In recent years, extreme learning machines (ELMs) have been utilized for multi-class
classification based on a single hidden layer feed-forward network (SLFN) [12]. Recent
studies show that the learning speed of ELM is faster than that of traditional learning
algorithms [17, 26], so ELM can be suitable for large-scale problems. The dependent
parameter of ELM is the number of hidden neuron nodes, but the initial hidden node
parameters are random. Considering the susceptibility caused by the number of hidden
neurons in conventional ELM, there might be a large number of hidden neurons se-
lected in the trained model due to the minimization of the training error while ranking
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neurons, resulting in a high computational cost. Instead of explicitly adding/deleting
hidden neurons in the conventional sparse ELMs, SBELM automatically tunes most of
the output weights to zeros with an assumed prior distribution, thus gaining sparsity
and achieving very high generalization. Hence, SBELM requires less calculation and is
more suitable as a large-scale fault classifier.

2.4 Previous Schemes

Knock detection is usually a complicated problem that requires a combination of mul-
tiple techniques. Some previous schemes provided effective solutions by exploiting
different technologies and ensured the reliability of knock detection. Sound vibration
signal processing was proposed in [25]. In [25], a combination of methods, such as
pass high-frequency filter, normalized envelope function and regression, was used to
describe knock patterns, and then, the Euclidean distance was used to determine the
existence of a detonation and achieved an accuracy of approximately 95%. However,
the linear filter and distance-based classifier have limited noise reduction and feature
classification abilities, respectively. A knock characteristic detection method based on
wavelet denoising and EMD was proposed in [4]. The results indicated that the knock
detection accuracy was 97%. An approach for detecting engine knocks of various inten-
sities based on the vibration signal of an engine block using VMD and semi-supervised
local Fisher discriminant analysis was proposed in [3], and the classification rate for
strong knocks was over 95%. As mentioned above, there is much room for improve-
ment in the denoising performance and accuracy.
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Fig. 1. Engine knock detection framework and project workflow
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3 Designed of the Engine Knock Detection System

3.1 Outline of the Detection System

Motivated by the above general engine fault diagnostic requirements, a novel practical
engine knock detection framework and project workflow are proposed in Fig.1. The pro-
posed framework contains three main sections: signal filtering, feature extraction and
classification. The GA-VMD method is developed to separate noise from the raw signal
with a low computational burden compared with EEMD, where VMD is integrated with
GA to achieve appropriate values of the balancing parameter and the number of modes.
While the VMD converts the original signal into a series of IMFs, sensitive IMFs are
then selected by sample entropy for further filtered signal reconstruction, and the uncon-
sidered IMFs are removed. In terms of candidate feature extraction techniques before
fault classification, TDSA, MFDFA, ASD and their possible combinations are tested to
describe the distinguishable characteristics of the denoised signals. These features are
trained by SBELM to establish a precision classifier. After the features of an unseen
signal are fed to the trained classifier, a universal detection scheme is achieved to accu-
rately identify engine knock online, such that the ECU can perform some actions, such
as the retardation of the ignition in advance, to protect the engine.

3.2 Signal Filtering

GA-VMD For nonlinear and non-stationary time-frequency characteristics, GA-VMD
is considered for signal filtering in the following work.

The goal of VMD is to decompose a real valued input signal f into a discrete number
of sub-signals (i.e., IMFs) uk that have specific sparsity properties while reproducing
the input. Here, the sparsity property of each mode is chosen to be its bandwidth in the
spectral domain. In other words, we assume the kth mode to be mostly compact around
a center pulsation ωk, which is to be determined along with the decomposition.

To assess the bandwidth of a mode, the following scheme is proposed. (i) For each
mode uk, the associated analytic signal is computed by means of the Hilbert transform
to obtain a unilateral frequency spectrum. (ii) For each mode, the frequency spectrum
of the mode is shifted to the “baseband” by mixing an exponentially tuned value with
the respective estimated center frequency. (iii) The bandwidth is now estimated through
the Gaussian smoothness of the demodulated signal, i.e., the squared L2−norm of the
gradient. The resulting constrained variational problem is given as follows,

min
{uk},{ωk}

K∑
k=1

∥∥∥∥∥∥∂t

[(
δ(t) +

j
πt

)
∗ uk(t)

]
exp(−jωkt)

∥∥∥∥∥∥2

2

s.t.
K∑

k=1

uk(t) = f (t)

(1)

where t is the time script, δ is the Dirac distribution and ∗ denotes convolution. {uk} :=
{u1, . . . , uK} and {ωk} := {ω1, . . . , ωK} are shorthand notations for the sets of all modes
and their center frequencies, respectively. k = 1, 2, . . . ,K and K is the number of modes
of the intrinsic mode components.
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The solution to Eq.(1) can be easily achieved via an unstrained optimization prob-
lem using the augmented Lagrangian method

L({uk}, {ωk}, λ) :=a
K∑

k=1

∥∥∥∥∥∥∂t

[(
δ(t)+

j
πt

)
uk(t)

]
exp(−jωkt)

∥∥∥∥∥∥2

2

+

∥∥∥∥∥∥∥ f (t)−
K∑

k=1

uk(t)

∥∥∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

K∑
k=1

uk(t)
〉 (2)

where a is the balancing parameter of the data-fidelity constraint, and λ is the Lagrange
multiplier. An alternating direction method of multipliers is adopted to solve Eq.(2).
The estimated modes uk and the corresponding updated center frequency ωk in the
frequency domain can be achieved as follows:

un+1
k (ω) =

f̃ (ω) −
∑

i<k un+1
i (ω) −

∑
i>k un

i (ω) + λn(ω)/2
1 + 2a(ω − ωn

k)2 (3)

ωn+1
k =

∫ ∞
0 ω|un+1

k (ω)|2dω∫ ∞
0 |u

n+1
k (ω)|2dω

(4)

where f̃ (ω) := 1/
√

2π
∫
R

f (t) exp(−jωt)dt with j2 = −1, is the Fourier transform of the
signal f (t). The Lagrangian multiplier is updated as:

λn+1(ω) = λn(ω) + τ0

 f̃ (ω) −
∑

k

un+1
k (ω)

 (5)

where τ0 is the update parameter.
However, the values of the balancing parameter a and the number of modes K in

Eq.(2) need to be predefined based on experience. For small values of a, one or more
additional modes comprise noise. For large values of a, the essential parts of the signal
are shared by at least two distinct modes, and their center frequencies overlap resulting
in mode duplication. In addition, when the value of K is set too large, tampering features
impede the accuracy of signal filtering, and essential intrinsic mode components are
missed when the value of K is set too small. Additionally, the computational load can
also be large due to the size of the data and a large mode number. Therefore, it is
necessary to optimize those values to achieve satisfactory performance.

In the existing optimization techniques, many sequential search techniques are based
on greedy methods. They are not suitable for global optimality but acceptable for local
optimality. For instance, orderly searches consist of forward and backward selection.
However, orderly forward and backward search techniques are not only more computa-
tionally expensive but also cannot perform undo processes, such as deleting or inserting
features. In recent years, a novel memetic GA method for solving the traveling sales-
man problem was proposed in [1]. An application of GA and fuzzy goal programming
to solve congestion management problems was proposed in [22]. The GA technique
is based on evolutionary theory and the random search method. In this case, random-
ness is added to the search process to avoid local optima. GA is reliable and widely
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used in the optimization of artificial neural network parameters or signal processing
algorithm parameters [28, 37]. Therefore, GA is introduced in this work to obtain the
optimal values of the VMD parameters. For the optimization of signal processing pa-
rameters, the entropy concept is applied to the GA-VMD algorithm. In theory, a smaller
entropy value leads to stronger properties and a clear signal distribution. The minimum
envelope spectrum entropy value (MESEV) is proposed as the fitness function of the
optimization and is obtained by the following steps:

(i) The Hilbert transform of an IMF signal, which is further described as a time series
{uk(t)}, can be expressed by

hk(t) =
1
π

∫ ∞

−∞

uk(t)
t − τ

dτ (6)

where t = 1, 2, , . . . ,N, and N is the length of the signal.
(ii) The envelope of the signal uk(t) is:

Ek(t) =

√
u2

k(t) + h2
k(t) (7)

(iii) The envelope E(t) is normalized as follows:

Nk(t) =
Ek(t)∑N

t=1 Ek(t)
(8)

(iv) The envelope spectrum entropy value after normalization is:

Vk = −

N∑
t=1

Nk(t) ln Nk(t) (9)

(v) The MESEV is:
〈a,K〉 = arg min{Vk} (10)

The proposed GA-VMD method is summarized in Fig. 2. The initial ranges for
parameters a and K are assigned according to the actual situation at the beginning of the
process. Then, GA-VMD initializes the population of GA and calculates the MESEV of
each IMF. The operators in GA are compared to determine whether the current MESEV
is the minimum. If not, the population is updated by new individuals until the minimum
is reached. MESEV is used as a fitness function so that the iteration is stopped when
the minimum MESEV converges to a stable constant or reaches the preset number of
iterations. The values of a and K at the minimum MESEV are the optimal values.

Sample Entropy IMF selection methods that are commonly used in VMD are pre-
sented in this work to select and reconstruct important IMFs. Sample entropy is inves-
tigated to determine sensitive subcomponents.

Even though a higher energy ratio can reflect the fault-related information, faults
usually appear at a low energy ratio. Noise always exists in raw signals and may cause
incorrect IMF selections. By defining N − m + 1 templates, each of size m, which are
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Assign the parameter ranges

Is the MESEV minimum?

Start

Initialize the population

VMD  

        For k=1:K

                                         

                                                      ς is the tolerance level

Compute MESEV through Eq.(10)

Selection, crossover, and mutation 

operators

Export a , K and MESEV 

End

Use new individuals 

to update population

Yes

No

Yes

Initialize {u
1

k},{ω
1

k},{λ
1
},n=0

Update uk  through Eq.(3)

Update ωk  through Eq.(4)

n=n+1

Update λ  through Eq.(5)

Is  k||u
n+1

k-u
n
k||

2/||un
k||

2<ς 
No

Fig. 2. Flowchart of the GA-VMD method

composed as Fm(t) = [ f (t), f (t+1), . . . , f (t+m−1)], Um
k (t) = [uk(t), uk(t+1), . . . , uk(t+

m−1)], t = 1, . . . ,N −m + 1. The distance d[Fm(t),Um
k (t)], between Fm(t) and Um

k (t), is
computed as d[Fm(t),Um

k (t)] = max
[
| f (t + j) − uk(t + j)|

]
, j = 0, . . . ,m−1. The sample

entropy (SampEn) [24] is different from the energy-based method, which is expressed
as:

SampEnk = ln


∑N−m+1

j=1 Dm
k ( j)

N − m + 1
−

∑N−(m+1)+1
j=1 Dm+1

k ( j)

N − (m + 1) + 1

 (11)

where Dm
k ( j) =

Nm
k ( j)

N−m+1 is the probability that Um
k (t) matches Fm(t), and Nm

k ( j) is defined
as the number of template matches, i.e., the number of d[Fm(t),Um

k (t)] < r. In [23],
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Pincus suggested that the value of the threshold r should be selected between 0.1 and
0.25 and multiplied by the standard deviation of the raw signal and that m should be
equal to 1 or 2. The IMFs with values higher than a preset threshold are chosen as the
sensitive IMFs to reconstruct the denoised signal.

Remark 1. The above selection algorithms are used to determine the sensitive subcom-
ponents from all IMFs, and the sensitive IMFs can reflect the knock features. The main

pure signal is then reconstructed from the selected IMFs, i.e., f̂ (t) =
K∑
P=1

uP(t), where

uP(t) is the Pth sensitive IMF decomposed by VMD, and K is the number of sensitive
IMFs.

3.3 Feature Extraction

In this section, a brief description of the three main feature sets used in the proposed
multiple feature learning system is given.

Time Domain Statistical Analysis Traditionally, machinery signals were usually ex-
tracted by TDSA [29]. These statistical features describe the characteristics of a signal
by a direct calculation with simple computations. Features such as standard deviation,
root mean square, peak, skewness, kurtosis, crest factor, shape factor and impulse factor
are employed in this work.

Alpha Stable Distribution ASD is suitable for describing random signals that have
highly non-Gaussian distributions and heavy tails [33]. In ASD, the probability density
function (PDF), which is utilized for describing the statistical characteristics of data,
can be determined by the four parameters α, β, γ and δ. These parameters are usually
expressed by their characteristic functions,

φ(t) = exp
(
jδt − γ|t|α

[
1 + jβsign(t)θ(t, α)

])
(12)

where θ(t, α) =

 tan
(
πα
2

)
α , 1(

2
π

)
log |t| α = 1

. In this work, four parameters (α, β, γ and δ) are used

to describe the different characteristics as features for further classification.

Multi-Fractal Detrended Fluctuation Analysis Detrended fluctuation analysis (DFA)
is a fractal scaling method for perceiving long-range correlations in noisy and non-
stationary time sequences. However, DFA is a mono-fractality method and is barely able
to deal with multi-fractality nonlinear time series in dynamical mechanisms. Therefore,
MFDFA was proposed for multi-fractality non-stationary time series analysis by ex-
tending the theory of DFA [18]. MFDFA has been verified in revealing the dynamic
behavior hidden in multi-scale non-stationary signals and is described as follows.

The processed bounded time series { f̂ (1), . . . , f̂ (t)} is converted into an unbounded
time series {F (1), . . . ,F (t)} by a cumulative sum as follows:

F (t) =

t∑
i=1

( f̂ (i) − f̄ (t)) (13)
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where f̄ (t) is the mean of the time series { f̂ (1), . . . , f̂ (t)}. Then, F (t) is divided into Np

non-overlapping segments with equivalent lengths p, where Np ≡ int(N/p). If N cannot
be divided by p, the remaining part of the profile may be truncated. To retain with this
unused part, the same process is implemented from the opposite end, and 2Np segments
are derived. For segment l = 1, . . . ,Np, the least square of F2(p, l) is calculated as

F2(p, l) =
1
p

p∑
i=1

(
F

(
(l − 1)p + i

)
− fl(i)

)2
(14)

For segment l = Np + 1, . . . , 2Np,

F2(p, l) =
1
p

p∑
i=1

(
F

(
N − (l − Np)p + i

)
− fl(i)

)2
(15)

where fl(i) is a fitting polynomial in the lth segment. Different orders of the polynomial
result in different eliminating trends from the profile. The qth order fluctuation function
can be obtained by the average over all segments

Fq(p) =

 1
2Np

2Np∑
l=1

(
F2(l, p)

)q/2


1
q

(16)

where q is any real value except zero. Using different time scales of p, the scaling
behavior of the fluctuation functions can be determined by analyzing the logarithmic
relationship of Fq(p) versus p for each q,

Fq(p) ∝ pH(q) (17)

The relationship between the generalized Hurst exponent H(q) and the scaling ex-
ponent τ(q) is as follows:

τ(q) = qH(q) − 1 (18)

The singularity exponent hq and the multi-fractal singularity spectrum Dq are se-
lected as the features and expressed as

hq = τ′(q) = H(q) + qH′(q) (19)

Dq = qhq − τ(q) = q[hq − H(q)] + 1 (20)

where H′(q) represents the derivative of H(q) with respect to q. The Hölder exponent hq

characterizes the strength of the singularity, and Dq represents the Hausdorff dimension
of the fractal subset with the exponent hq, which are utilized to describe the different
characteristics.

Remark 2. The three feature extractors describe the features from three aspects, and
have multiple forms of arrangements and compositions. Time domain features have
been proven to be effective for degradation monitoring and failure prognostics in the
existing literatures. MFDFA is able to characterize the internal dynamics mechanism
of fault signals and to detect slight changes in complex environments. The widely used
ASD method has good robustness in the modeling of pulse shape in non-Gauss signals.
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Fig. 3. Multiple feature learning process

Remark 3. The above feature extraction techniques, including TDSA, MFDFA, ASD,
and their possible arrangements (i.e., combinations), as shown in Fig.3, are tested to de-
scribe the distinguishable characteristics of the denoised signals. The optimal arrange-
ment for finalizing the design of the feature extraction approach, as shown in Fig.4, is
determined according to the optimal classification results obtained through the SBELM
classifiers, which are described in the following section.

Denoised Signal

Characteristics Set  xt SBELM

Trained Classifier 
Selected Optimal 

Arrangement of Features

Classification

Result

Fig. 4. Final knock detection system

3.4 Sparse Bayesian Extreme Learning Machine for Engine Knock Detection

The SBELM classifier is trained on data (x,T), which contain the above characteristics
of any one arrangement and the known knock label. It is well known that neural net-
work methods have been used successfully for fault diagnoses, and recently, a family
of ELMs have been developed for training an SLFN with fast learning speeds and good
generation performance. However, the execution time of ELM is quite unstable and de-
pends on the number of hidden neurons (network size). Although a kernel-based ELM
(KELM) that does not require hidden neurons and tends to provide better accuracy than
basic ELM has been proposed, it suffers from large model size issues when the size
of the training dataset is large. Before the development of ELM, relevance vector ma-
chine (RVM) was also available. RVM can train the kernel machine on a dataset and
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automatically prune the irrelevant basis elements to gain sparsity. To reduce the sensi-
tivity of the number of hidden neurons in conventional ELM, SBELM was proposed,
and it combines the advantages of the low computational load of ELM and the small
weight and good prediction posterior probability of RVM. Reference [17] showed that
when the number of hidden nodes is over 50, the classification accuracy could remain
stable. This feature makes it more suitable as a large-scale fault classifier. The SBELM
algorithm can be explained as follows.

The output weight of SBELM is learned by the Bayesian method instead of using
the Moore-Penrose generalized inverse of the matrix [2]. The hidden layer output H =

[h1, . . . , ht, . . . , hN]T becomes the input of SBELM, where ht ∈ RL is the hidden feature
mapping with respect to input xt ∈ RL, L is the number of characteristics of the optimal
arrangement, and N is the number of classifier outputs. Each training sample xt from
the extracted features can be treated as an independent Bernoulli case.

Using iterative reweighted least squares to find the Laplace mode Ŵ is efficient;
hence the gradient ∇E and Hessian matrix φ must be computed:

∇E = ∇W ln{P(T|W,H)P(W|α)} = HT (T − Y) − AW (21)

φ = ∇W∇W ln{P(T|W,H)P(W|α)} = −(HT BH + A) (22)

where W = (w1, . . . ,wm, . . . ,wL)T is the hidden layer matrix. T = (T1, . . . ,Tt, . . . ,TN)T ,
Ti ∈ {0, 1} is a target output vector. α = [α1, . . . , αL]T is the independent prior in rela-
tion to each wm, and some values of wm are regulated to zero by adaptive rectangular
decomposition (ARD) to select important hidden neurons. Y = (y1, . . . , yN)T , where
yt = σ(ht,wt), A = diag(α) and B is a diagonal matrix, where bt = yt(1 − yt). Subse-
quently, Ŵ can be obtained by

Wnew = Wold − φ
−1∇E = (HT BH + A)−1HT BT̂ (23)

where T̂ = HW + B−1(T − Y). The center Ŵ and covariance matrix Σ of the Gaussian
distribution are

Σ = (HT BH + A)−1 and Ŵ = ΣHT BT̂ (24)

As a result, ln{P(T|W,H)P(W|α)} ∝ N(Ŵ, Σ) is formed and the log marginal likeli-
hood L(α) = ln P(T|α,H) can be computed by setting L(α) to zero as follows:

∂L(α)
∂αm

=
1

2αm
−

1
2
Σmm −

1
2

ŵ2
m = 0→ αnew

m =
1 − αmΣmm

ŵ2
m

(25)

By setting the initial values of wm and αm, Ŵ and Σ are updated by Eq.(24) and the
values of αm are updated by substituting αm and Σ into Eq.(25). The marginal likelihood
function is iterated to the maximum value until the convergence criterion is met.

In summary, the whole learning procedure of the fault diagnosis scheme is given
below. Given the knock label Tt and the training denoised signal f̂ (t), the training pro-
cedure is shown as follows.
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Training procedure

(i) Extract the characteristic data x(r)
t via generating all possible arrangements of three

feature extraction methods from the denoised training signal f̂ (t), r = 1, . . . , 7
(ii) For each arrangement,

Initialization: randomly generate input weights and calculate the output of hidden
layer H, W = 0, α = 10−51
Step 1: Estimation of output weights W
(a) Set the initial value Σ = 0, and define an intermediate variable g = 0
(b) Sequentially calculate the mapping of every input x(r)

t to ht with random ELM
hidden weights
For t = 1 : N
ε = ε + yt(1 − yt)hT

t ht

g = g + (−1)(Tt − yt)hT
t

End for
(c) Σ = (ε + diag(α))−1, ∇E = g + diag(α)W
(d) Find step size λ with line search method, W = W − λΣ−1∇E
(e) If norm(∇E) is under a predefined gradient tolerance, then go to Step 2. Other-

wise, go to Step 1.
Step 2: Estimation of hyperparameter α.

(f) For every αm

αm = (1 − αmΣ
−1
mm)/w2

k
End for
Step 3: Pruning nodes

(g) If αm >predefined maximum
prune αm, wm, H(:,m), L = L − 1

End if
(h) If the absolute difference between two successive logarithm values of αm is

lower than given tolerance, then stop. Otherwise, repeat Step 1 to Step 3.
(iii) Calculate the classifier results of each arrangement, and select the optimal arrange-

ment.

Testing procedure For each denoised signal f̂ (t),

(i) Extract the characteristic data xt via selected optimal arrangement from the de-
noised signal f̂ (t).

(ii) Calculate the output of the related classifier, whose parameters are inherited from
training procedure.

4 Experiment and Evaluation

4.1 Experimental Setup

To test and train the proposed framework, a test rig is designed to collect the raw engine
data and is presented below.
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Fig. 5. Test rig

A Honda K20A Type-R engine, which is a four-stroke, four-cylinder spark-ignition
engine, is utilized as the test rig as shown in Fig. 5. The research octane number of the
fuel is 98, which was purchased from a regular gas station. The experimental setup as
shown in Fig. 6 can be divided into three main sections. The first section contains the
ECU, the engine and relative peripheral sensors, where the raw data are collected via a
knock sensor. The second section contains the dynamometer and its control system for
varying the loading condition of the engine. The third section contains the combustion
analyzer with an in-cylinder pressure sensor, which is used to detect whether knock
exists in the experiment. The data collected by the in-cylinder pressure can validate the
result of the proposed system. The main components are as follows:

Electronic Control Unit A MoTeC M800 programmable ECU controls the engine by
monitoring sensor signals and adjusting the outputs based on the look-up tables. The
ECU can control the spark timing, fuel injection time and engine temperature. In this
work, the injection time and ignition timing are important for ECU control. During
the experiment, the injection time and ignition timing at different engine speeds and
loads can be adjusted through the fuel map and ignition map in the ECU, respectively.
The fuel map mainly controls the air-fuel ratio or air ratio. To measure the air-fuel
ratio/air ratio, a lambda sensor/oxygen sensor is installed in the exhaust pipe and used
for measurement.

Dynamometer and Control System A DW160 eddy-current dynamometer is used to
apply the engine load and control the engine throttle for simulating different driving
conditions. The dynamometer is coupled to the test engine.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



17

Fig. 6. Test rig setup

Combustion Analyzer An MA3001 combustion analyzer, which was produced by
PowerMAC Co., Ltd., is used to analyze the in-cylinder pressure and corresponding
crank angle. The analyzer consists of two parts: (i) The crank angle sensor, which is
mounted on the engine crankshaft terminal to measure the engine crank angle in the
engine cycle. The sensor is used to convert the rotational speed and phase position of
the crankshaft into a digital angle signal, which helps monitor the pressure wave for
knock detection. (ii) A piezoelectric in-cylinder pressure sensor is employed to mea-
sure the in-cylinder combustion pressure for validation. The signal from the cylinder
pressure sensor is then amplified by a charge amplifier. The crank angle signal and the
amplified in-cylinder pressure signal are sent to the analyzer for pressure wave analysis.
Before starting the experiment, the devices had to be calibrated. The calibrated range
and sensitivity charge of the amplifier are set to 150bar and −10.22pC/bar to match the
in-cylinder pressure sensor. The mode of the amplifier is set to 0−10V according to the
specification of the combustion analyzer. The voltage-pressure conversion coefficient
of the combustion analyzer is set to 15, depending on the amplifier and the test engine
torque. It is worth noting that the top dead center position needs to be calibrated when
the crank angle sensor is installed on the test engine.

Data Collection and Analysis A software called GoldWave is installed on a computer
to record the engine signals from the knock sensor. The signal is then passed to MAT-
LAB to conduct signal filtering, feature extraction and classification.

4.2 Operating Conditions for Experiment Data Collection

To verify the proposed scheme, real engine data are recorded and analyzed. Since the
fuel used in the experiment has a high-octane number, engine knock does not easily oc-
cur. To produce knock conditions under different driving conditions without damaging
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the engine in the laboratory, the engine is operated under two working conditions: i) low
speed with high load conditions and ii) high speed with low load conditions. The engine
load is provided by the dynamometer by applying opposite torque to the engine. The
ignition timing is advanced gradually. The initial engine temperature before knocking
is held at 85◦C ± 5◦C. The engine load, speed and air-fuel ratio are changed within a
certain range. The combustion analyzer records the pressure wave pattern to determine
the presence of engine knock so that the training and test data can be obtained. A total
of 1800 sets of data are recorded according to different driving conditions, as shown in
Table 1.

Table 1. Experimental data

Operation condition
Number

of samples
Objective

Speed
(rmp)

Load
(Nm) Air-fuel Ignition Timing

(◦BTDC)

1000±300 60 ± 5 1±0.5 10◦±2.5 to 45◦±2.5 320 Simulate a low speed and high load driving condition
2000±300 12 ± 5 1±0.5 10◦±2.5 to 45◦±2.5 990 Simulate a high speed and low load driving condition
3000±300 12 ± 5 1±0.5 10◦±2.5 to 45◦±2.5 490 Simulate a high speed and low load driving condition

Fig. 7. Pressure versus crank angle under (left) non-knock and (right) knock conditions

At the beginning of the experiment, knock does not occur easily at idle speeds due
to the high anti-knock quality of the fuel, even when the ignition timing is substantially
advanced and the air-fuel ratio is enriched. Under this condition, the cylinder pressure
wave pattern in the combustion analyzer is still smooth, as shown on the left-hand side
of Fig.7. When the ignition advances and the engine load continues to increase, the
shape of the pressure wave sharply increases. When the ignition timing and engine load
are increased to a certain range, an obviously high and sharp pressure wave appears,
indicating the existence of knock, as shown on the right-hand side of Fig.7. Therefore,
it is not easy to generate a knock at a low engine speed with a high-octane fuel unless
the engine load is high. Certainly, engine operating at a high engine speed under a high-
octane fuel can generate knock easily under a low engine load. It is noteworthy that the
combustion analyzer and in-cylinder pressure signal are not suitable for in-use vehicles
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Fig. 8. Time domain engine vibration signals

due to their high costs, so they are used only for validation and labeling only. The actual
knock detection signal is the engine vibration signal captured by the knock sensor.

The vibration signal collected by the knock sensor converts the shock of cylin-
der pressure into an electronic signal. For each driving condition, the raw signals are
recorded for 0.15 seconds with a sampling rate of 48000 Hz. Therefore, each sample
contains a time series with 7200 sampling points. Six randomly selected vibration sig-
nals from the 1800 sets of data shown in Table 2 are illustrated in Fig.8, where half of
the signals are non-knock labeled signals and half are knock labeled signals. They are
used as training dataset to train the classifiers. It can be observed from Fig.8 that the
non-knock signals (s1, s2, s3) are very difficult to manually distinguish from the knock
signals (s4, s5, s6). Therefore, the proposed framework is applied to remove noise from
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Table 2. Experimental setup of the sample vibration signals

Vibration
Signal

Speed
(rpm)

Load
(Nm)

Air-fuel
ratio

Ignition timing
(◦BTDC)

Non-
knock

s1 1000 58.1 0.9 20
s2 2000 7 0.9 20
s3 3000 9 0.9 20

Knock
s4 1000 58.1 0.9 40
s5 2000 12 0.9 40
s6 3000 15 0.7 42

vibration signals and detect knock. The experimental data and program code in MAT-
LAB are available at https://github.com/wangdai11/EKDS.

4.3 Results and Evaluation

Signal Filtering Signal filtering is the first step of the proposed framework, and it
reduces noise from the raw vibration signals. VMD converts the raw signals into a
series of IMFs. Sample entropy is employed in the proposed signal processing methods
to remove the insensitive IMFs. For comparison, signal s6 is used as an example in this
section to evaluate the filtering ability of the proposed GA-VMD.

IMFs of VMD depend on the adjustable parameters a and K, which are inaccurate
when the parameters are set inappropriately. Therefore, GA is proposed to obtain the
appropriate values for a and K. The parameters of GA are set as follows: population
size=50, number of generations=200, mutation rate=0.01, mutation percentage of the
population=0.2, and crossover percentage of the population=0.8. The input ranges of a
and K are set to [100, 10000] and [2, 20] respectively. After 50 runs of GA, the average
values are a = 1463 and K = 9.9 respectively. Therefore, a and K are set to 1500 and
10.

Fig. 9 illustrates an example that shows the influence of different values of a and K
on signal filtering. When a is set too large or when K is set inappropriately, some knock
resonant frequencies (Fig. 9 f , 9h, 9 j, and 9l) cannot be clearly displayed compared with
Fig. 9b. Choosing sample entropy as the IMF selection method due to the best noise
reduction ability, Fig. 9c and Fig. 9d show the GA-VMD results. Fig. 9c, Fig. 9d and
Appendix A show that only GA-VMD can clearly reflect all the resonant frequencies.

The results of using VMD and different IMF selection methods for signal s6 are
shown in Fig. 10 and Table 3. Each method takes the threshold T to select the appro-
priate IMFs for signal reconstruction, where T =

∑K
n=1 IMFK

K and K is the total number
of IMFs. The IMFs with values higher than the threshold are chosen and highlighted in
red in Table 3. The selected IMFs are reconstructed into a denoising signal and the en-
velope spectrum of the filtered signals is used to identify the knock resonant frequency.
Fig. 11 shows the envelope spectrum of the GA-VMD noise reduction under different
IMF selection methods. Fig. 11h and Appendix B show that only the sample entropy
can reflect the knock resonant frequencies as shown in Fig. 11e. This further indicates
that the sample entropy approach has good noise reduction and signal reconstruction
abilities.
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Fig. 9. Noise reduction ability under different values of a and K

Feature Extraction Feature extraction, a pretreatment for machine learning methods,
is the second step of the proposed knock detection method. The applications of TDSA,
ASD and MFDFA are used for extracting cognizable features from the filtered signals.
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Fig. 10. IMFs obtained based on GA-VMD
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Table 3. Results of GA-VMD with different IMF selection methods

s6 Correlation Coefficient Energy Ratio Sample Entropy

IMF1 0.7790 0.5632 0.0645
IMF2 0.3963 0.0744 0.5218
IMF3 0.3051 0.0356 0.6086
IMF4 0.2535 0.0236 0.5841
IMF5 0.2338 0.0215 0.5775
IMF6 0.2086 0.0162 0.5748
IMF7 0.1954 0.0147 0.5362
IMF8 0.1875 0.0128 0.5934
IMF9 0.1934 0.019 0.5911
IMF10 0.1442 0.0084 0.5979

T 0.2897 0.0790 0.5260

Each extracted feature can compress a large number of time series data into specific
numbers. These specific numbers representing meaningful features are then used to
establish a classification model for knock detection.

Table 4 shows the TDSA features of 24 randomly selected engine vibration signals
under different conditions, including mean ymean, standard deviation ystd, root mean
square yrms, peak ypeak, skewness yskew, kurtosis ykurt, crest factor ycr f and ycl f , shape
factor ys f and impulse factor yi f , which are created under different ignition timing and
loading conditions. In Table 4, the sample signals A1 to A8 are at 1000 rpm, B1 to B8
are at 2000 rpm and C1 to C8 are at 3000 rpm. These statistical features can be used to
separate knock data from non-knock data. Therefore, these statistical features are kept
for the inputs of the classifiers.

The ASD algorithm is a feature extraction method that emphasizes the characteristic
parameters α, β, γ, and δ. The values of these parameters are self-generated by the
wave patterns of the signal. The ASD characteristic parameters and the magnitudes
of the PDF are different under knock and non-knock conditions as shown in Fig. 12.
Therefore, the parameters α, β, γ, δ and h are selected as the inputs of the classifiers.
Table 6 shows the five ASD parameters of the same 24 vibration samples (A1 to A8, B1
to B8 and C1 to C8) in Table 4.

Fig. 13 depicts that the knock data mainly lay between the large values of γ and α,
but the non-knock data are dispersive. Most of the non-knock data have higher values
of h and α than the knock data. In this case, most knock data can be separated from the
non-knock data with this method.

MFDFA is another feature extraction approach that emphasizes the 3 points in the
multi-fractal spectrum: i) the first points of the multi-fractal curves (hqa ,Dqa ); and ii)
the end points of the multi-fractal curves (hqb ,Dqb ); and iii) the peaks of the multi-
fractal curves (hq0 ,1). The signal under various working conditions provides different
spectra, as shown in Fig. 14. Table 7 shows the five multi-fractal parameters (hqa , Dqa ,
hqb , Dqb , and hq0 ) of the same 24 vibration samples (A1 to A8, B1 to B8 and C1 to C8).
The distribution results of the multi-fractal parameters in Fig. 15 show that most of the
knock data in Table 4 can also be separated from the non-knock data under GA-VMD.
Therefore, MFDFA is also considered in this work.

The above three feature extraction methods are feasible and produce different sep-
arable features, so they are used in different combinations. In total, 20 features based
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Fig. 11. Envelope spectrum of GA-VMD under different IMF selection methods

on TDSA, ASD and MFDFA methods are obtained, as shown in Table 5. The different
characteristics of the knock data and non-knock data are then entered into the machine
learning methods for building classifiers for diagnosis.
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Table 4. Example of the TDSA result of GA-VMD+Sample entropy

ymean ystd yrms ypeak yskew ykurt ycr f ycl f ys f yi f

N
on

-K
no

ck

A1 2.29 × 10−7 9.87 × 10−3 0.001 0.010 -0.112 4.508 5.318 8.438 1.315 6.991
A2 −4.19 × 10−8 9.70 × 10−3 0.001 0.010 0.124 5.063 5.842 9.351 1.322 7.721
A3 −4.80 × 10−7 2.60 × 10−3 0.003 0.011 0.017 3.000 4.002 5.913 1.253 5.014
A4 −3.40 × 10−7 2.36 × 10−3 0.002 0.010 0.004 3.046 4.108 6.124 1.258 5.169
B1 2.56 × 10−6 2.42 × 10−3 0.002 0.020 0.151 5.609 7.186 11.518 1.326 9.527
B2 8.60 × 10−7 4.11 × 10−3 0.004 0.030 -0.098 4.153 6.326 9.556 1.274 8.060
B3 2.94 × 10−6 2.47 × 10−3 0.002 0.022 -0.073 5.251 7.651 12.234 1.323 10.124
B4 2.01 × 10−6 3.72 × 10−3 0.004 0.036 -0.242 4.882 7.204 11.008 1.285 9.257
C1 5.28 × 10−7 2.09 × 10−3 0.002 0.029 0.103 7.403 10.688 17.640 1.354 14.470
C2 9.29 × 10−7 3.87 × 10−3 0.004 0.037 -0.273 4.680 7.435 11.426 1.289 9.582
C3 −6.60 × 10−6 4.39 × 10−3 0.004 0.037 -0.266 4.537 7.492 11.530 1.289 9.656
C4 −3.10 × 10−6 4.39 × 10−3 0.004 0.043 -0.308 4.789 7.037 10.916 1.296 9.122

K
no

ck

A5 −5.66 × 10−7 4.11 × 10−3 0.004 0.014 -0.095 2.994 5.204 1.253 1.253 4.408
A6 6.31 × 10−7 3.28 × 10−3 0.003 0.014 0.037 3.099 6.204 1.253 1.253 5.433
A7 −2.13 × 10−6 3.29 × 10−3 0.003 0.014 -0.068 3.159 6.535 1.263 1.263 5.509
A8 −5.12 × 10−7 4.05 × 10−3 0.004 0.017 0.054 3.642 6.534 1.278 1.278 5.506
B5 8.55 × 10−6 5.29 × 10−3 0.005 0.027 -0.053 3.604 7.890 1.279 1.279 6.662
B6 4.94 × 10−7 4.91 × 10−3 0.005 0.027 -0.041 3.789 8.380 1.281 1.281 7.027
B7 −1.52 × 10−6 5.45 × 10−3 0.005 0.035 -0.103 3.817 9.849 1.275 1.275 8.298
B8 8.95 × 10−6 6.06 × 10−3 0.006 0.030 -0.100 3.577 7.410 1.271 1.271 6.246
C5 9.29 × 10−7 3.87 × 10−3 0.004 0.029 -0.183 4.496 11.467 1.281 1.281 9.662
C6 −6.82 × 10−6 5.21 × 10−3 0.005 0.033 -0.192 4.196 9.614 1.283 1.283 8.068
C7 5.41 × 10−6 6.16 × 10−3 0.006 0.030 -0.070 3.528 7.338 1.278 1.278 6.156
C8 1.49 × 10−5 5.33 × 10−3 0.005 0.029 0.023 3.676 8.363 1.279 1.279 7.013
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Fig. 12. PDF spectrum of different signals

Classification Classification is the last step of the proposed framework. The extracted
features are learned using two other machine learning algorithms, where ELM and
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Fig. 13. ASD parameters
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Fig. 14. Multi-fractal spectra of different signals

Table 5. Extracted features

Methods Features Total

TDSA
Mean, standard deviation, root mean square,
peak, skewness, kurtosis, crest factor, clearance
factor, shape factor, impulse factor

10

ASD α, β, γ, γ, h 5
MFDFA hqa ,Dqa ,hqb ,Dqb ,hq0 5

KELM are applied for comparison. To verify the statistical performance of the test
results, we use bootstrapping for the dataset. Bootstrapping is a test or metric that re-
lies on random sampling with replacement. The dataset is separated into two groups,
non-knock data and knock data, wherein 900 sets are randomly selected as training data
and the remaining 900 sets are used as test data. The division of the training and test
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Fig. 15. MFDFA parameters

Table 6. ASD results with GA-VMD+Sample entropy

α β γ δ

N
on

-K
no

ck

A1 2.000 -1.000 1.90 × 10−3 −2.86 × 10−5

A2 1.957 -0.112 2.32 × 10−3 1.60 × 10−5

A3 1.847 0.154 1.02 × 10−3 4.39 × 10−5

A4 2.000 1.000 2.06 × 10−3 6.37 × 10−6

B1 1.968 -1.000 2.91 × 10−3 −1.89 × 10−5

B2 1.951 -0.448 2.95 × 10−3 5.02 × 10−7

B3 1.805 0.076 1.29 × 10−3 1.91 × 10−6

B4 1.977 0.609 2.63 × 10−3 3.54 × 10−5

C1 1.966 -1.000 2.96 × 10−3 −3.73 × 10−5

C2 1.793 -0.389 1.49 × 10−3 −4.61 × 10−5

C3 1.828 0.079 1.30 × 10−3 1.28 × 10−5

C4 1.795 0.529 1.55 × 10−3 7.55 × 10−5

K
no

ck

A5 1.990 -1.000 3.30 × 10−3 −1.48 × 10−5

A6 1.972 -0.173 3.12 × 10−3 1.50 × 10−5

A7 1.976 0.068 2.99 × 10−3 3.95 × 10−5

A8 1.988 1.000 3.33 × 10−3 7.06 × 10−6

B5 1.964 -1.000 4.05 × 10−3 4.44 × 10−5

B6 1.927 -0.523 4.08 × 10−3 2.03 × 10−6

B7 1.943 -0.305 4.52 × 10−3 7.81 × 10−6

B8 1.976 0.627 4.60 × 10−3 −9.65 × 10−6

C5 1.952 -1.000 3.56 × 10−3 −5.84 × 10−5

C6 1.926 -0.295 3.04 × 10−3 −1.30 × 10−5

C7 1.929 0.013 2.99 × 10−3 1.93 × 10−5

C8 1.962 0.163 4.08 × 10−3 2.05 × 10−5

datasets is presented in Table 8. The mean results are achieved after 10 repetitions and
are shown in Table 9.

Table 8 shows that this knock detection problem is a binary classification prob-
lem. To select an appropriate classification method, the accuracies of the three machine
learning methods are compared. For ELM and SBELM, the number of initial hidden
neurons must be defined. The initial hidden neurons for ELM and SBELM are set to
200. For KELM, the kernel is introduced to the model; thus, the regularization parame-
ter and kernel parameter have to be set. The kernel function of KELM is a radial basis
function. The regularized parameter and the kernel parameter of KELM are set to 1.0.
The test accuracies are shown in Table 9, and the best accuracy is highlighted in red. Ta-
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Table 7. MFDFA results with GA-VMD+Sample entropy

hq0 hqa Dqa hqb Dqb

N
on

-K
no

ck

A1 0.098 -0.090 0.599 0.370 0.356
A2 0.215 0.012 0.602 0.584 0.162
A3 0.317 0.078 0.548 0.692 0.204
A4 0.230 0.019 0.590 1.099 -0.626
B1 0.050 -0.042 0.793 0.164 0.727
B2 0.058 -0.064 0.713 0.238 0.525
B3 0.202 0.010 0.593 0.439 0.449
B4 0.278 0.048 0.454 0.547 0.347
C1 0.048 -0.077 0.702 0.160 0.746
C2 0.062 -0.070 0.699 0.235 0.566
C3 0.244 0.061 0.579 0.443 0.547
C4 0.263 0.035 0.506 0.563 0.271

K
no

ck
A5 0.119 -0.070 0.600 0.455 0.231
A6 0.243 0.035 0.599 0.561 0.308
A7 0.340 0.105 0.520 0.693 0.243
A8 0.429 0.181 0.517 1.316 -0.537
B5 0.049 -0.065 0.735 0.159 0.749
B6 0.204 0.015 0.575 0.386 0.601
B7 0.237 0.060 0.609 0.468 0.458
B8 0.258 0.041 0.539 0.559 0.273
C5 0.044 -0.063 0.738 0.151 0.733
C6 0.071 -0.067 0.687 0.222 0.641
C7 0.241 0.047 0.570 0.447 0.534
C8 0.273 0.088 0.607 0.523 0.405

Table 8. Details of training and testing datasets

Group Label Number of the training data Number of test data Total

1 Non-knock 550 550 1100
2 Knock 350 350 700

Total 900 900 1800

ble 9 shows that the average accuracy of SBELM is slightly higher than those of KELM
and ELM because the parameters of SBELM are not sensitive to its hyperparameters.

Table 9 reveals that the features of GA-VMD integrated with sample entropy, TDSA,
ASD and SBELM have the best accuracy of 98.27%, which is highlighted in red in
the table. It is noted that ASD and TDSA have high classification accuracies, whereas
MFDFA has poor performance. Even though combining MFDFA with other feature
extraction methods can improve the overall precision slightly, MFDFA does not con-
tribute too much to the system accuracy. It also appears that MFDFA is not compatible
with GA-VMD because it has the worst accuracy. In summary, Table 9 shows that the
integration of SBELM with GA-VMD, sample entropy, ASD and TDSA is an accurate
classification method for automatic knock detection.

5 Conclusion

In this paper, a novel intelligence engine knock detection system using multiple feature
based SBELM algorithm is successfully developed. GA-VMD is used to filter the un-
avoidable noises, in which GA is applied to obtain the optimal parameters to enhance
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Table 9. Accuracies of various combinations of technologies based on the test dataset

Feature extraction Signal filtering method ELM KELM SBELM

TDSA
Raw data 93.17% 93.71% 93.50%

EEMD+sample entropy 94.36% 95.12% 95.23%
GA-VMD+sample entropy 95.66% 97.72% 97.62%

ASD
Raw data 87.43% 91.76% 91.44%

EEMD+sample entropy 89.49% 91.87% 92.63%
GA-VMD+sample entropy 92.84% 92.52% 95.88%

MFDFA
Raw data 72.80% 75.40% 74.65%

EEMD+sample entropy 70.63% 73.23% 73.56%
GA-VMD+sample entropy 63.59% 64.78% 63.92%

TDSA+ASD
Raw data 92.41% 93.71% 93.50%

EEMD+sample entropy 94.47% 95.44% 94.58%
GA-VMD+sample entropy 96.09% 97.72% 98.27%

TDSA+MFDFA
Raw data 92.84% 94.04% 93.72%

EEMD+sample entropy 94.69% 95.34% 95.12%
GA-VMD+sample entropy 95.23% 97.39% 96.86%

ASD+MFDFA
Raw data 94.25% 94.36% 93.72%

EEMD+sample entropy 91.65% 95.44% 94.37%
GA-VMD+sample entropy 94.04% 95.88% 96.86%

TDSA+ASD
+MFDFA

Raw data 93.82% 93.71% 94.37%
EEMD+sample entropy 93.39% 95.34% 94.26%

GA-VMD+sample entropy 95.44% 97.18% 97.40%

the noise reduction ability. When the original time domain signals are decomposed into
a series of IMFs, IMFs with sample entropy higher than the mean are selected as sen-
sitive subcomponents for signal reconstruction. Multiple methods, including TDSA,
MFDFA and ASD, are applied together to extract features from the denoised signals.
The features extracted from the reconstructed signals are then classified by SBELM.
The experimental results show that the accuracy of the knock detection system built by
SBELM is superior to the accuracies of those built by ELM and KELM. Therefore, the
integration of GA-VMD with sample entropy, TDSA, ASD, and SBELM is effective for
building automatic engine knock detection systems. Although the proposed method is
successfully applied to real engines for engine knock detection, the dataset is recorded
from a specific engine model. It will be appealing to apply different engine models to
further prove the reliability of the proposed method in future work. Moreover, the train-
ing and test data for the proposed system can be expanded to cover more engine speeds,
engine loads, air-fuel ratios, fuel octane numbers and engine temperatures to enhance
the system generalization. In our current work, the proposed GA-VMD method has
the limitation of eliminating non-Gaussian noise under heavy noise disturbances. Non-
Gaussian noise always exists in automotive propulsion systems, and usually leads to
inconsistencies and divergence of the detection system. Therefore, future work should
consider the noise rejection capacity by using correntropy to cope with the issue of
non-Gaussian noise.
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Appendix A Result of knock resonant frequencies affected by
VMD parameters

Table A1. Result of knock resonant frequencies affected by VMD parameters

Signal
Raw

signal
VMD+sample entropy

K =10,
α=1500

K =10,
α=5000

K =10,
α=10000

K =5,
α=1500

K =20,
α=1500

K
no

ck
re

so
na

nt
fr

eq
ue

nc
ie

s

f0 X X X X X X
f1 X X X X X X
f2 X X X X X X
f3 X X X X X X

2 f0 X X X X X X
2 f1 X X X X X X
2 f2 X X X X X X
2 f3 X X X X X X
3 f0 X X X X X X
3 f1

3 f2 X X X X X
3 f3 X X X X X
4 f0 X X X
4 f1 X X X X
4 f2

4 f3 X X X X
5 f0 X X X
5 f1

5 f2 X X X
5 f3 X X X

X is used to mark the resonant frequency which appears in the different processed signals.
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Appendix B Noise reduction ability of GA-VMD under different
IMF selection methods

Table B1. Noise reduction ability of GA-VMD under different IMF selection methods

Signal
Raw

signal
GA-VMD+

Correlation Coefficient
GA-VMD+

Energy Ratio
GA-VMD+

Sample Entropy

K
no

ck
re

so
na

nt
fr

eq
ue

nc
ie

s

f0 X X
f1 X X X
f2 X X
f3 X X

2 f0 X X X
2 f1 X X
2 f2 X X
2 f3 X X
3 f0 X X X
3 f1

3 f2 X X
3 f3 X X
4 f0 X X
4 f1 X X
4 f2

4 f3 X X
5 f0 X X
5 f1

5 f2 X X
5 f3 X X
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