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Abstract
Existing deep learning–based medical image segmentation methods have achieved gratifying progress, but they still 
suffer from the coarse boundaries with similar pixels of target. Because the boundary of medical images becomes blurred 
and the gradient is inconsistent and not apparent, high-resolution images are needed for more accurate segmentation. To 
tackle these problems, we propose an efficient multi-layer edge perception U-shaped structure for medical image 
segmentation. In this paper, we present a multi-layer edge perception network for describing more precise edges of medical 
targets. The U-structure architecture of our network embeds a multi-layer edge perception module, which has the following 
advantages: (1) connect-ing different scales and channels to help the network better learn the feature of the medical image 
via the combination of a pyramid structure and several edge perception modules; (2) a new downsampling block is 
designed to improve the network’s sensibility to the target boundary. We demonstrate the effectiveness of the proposed 
model on the DRIVE datasets, and achieve a Dice gain of 0.841 over other models. In this paper, we propose an efficient 
multi-layer edge perception U-shaped structure for medical image segmentation. A large number of experiments show that 
the performance of our proposed multi-layer edge perception U-shaped network is significantly better than the traditional 
segmented network structure.
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Introduction

As one of the basic themes of computer vision, semantic segmentation aims to assign semantic labels to each pixel in 
the image [1], which has been successfully applied in many fields, e.g., augmented reality and autonomous driving [2, 
3], and human-machine interaction. With a full convolutional network (FCN) [4], the performance of deep 
convolutional network in the segmentation task has been significantly improved. For medical image segmentation, U-
Net [5] has greatly reduced the size of the dataset for training the neural network yet still further improves the 
segmentation performance.

As the internal structure of the human body is relatively fixed, the distribution of the targets for segmentation is similar, 
where the semantics are simple and quite clear. However, this may be affected by the information of the images, which may 
cause the blurred view of the targets. At the same time, the boundary of medical images becomes blurred and the gradient is 
inconsistent and not apparent; thus, high-resolution images are needed for more accurate segmentation. Therefore, the 
encoder-decoder structure [6–8] used in U-Net provides a good solution for the subsequent medical image segmentation.

For medical image segmentation, the full convolutional network (FCN) [4] and U-Net [5] are the two 
commonly used architectures. Despite their good representational power, they are still incapable of extracting 
enough information of target edge. To tackle this issue, researchers have made a lot of research from different aspects, 
such as using different scale feature maps [9–12] for enhanced feature extraction, the addition of the attention 
mechanism [13–15] for improved feature representation, and optimizing the loss function [16–19] can be used not only for 
speed but also bet-ter performance to accelerate the convergence of the network while training.
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In this paper, we also use the encoder-decoder structure for semantic segmentation, which can extract features 
through the cascade of convolution modules. During the convolution, a low-level feature map contains more details for 
boundary segmentation, while a high-level feature map has more abstract features for positioning [20]. Here comes a 
challenging problem as how to combine the information from the low- and high-level feature maps for improved edge 
perception. To tackle this problem, we propose an edge perception module which can efficiently extract both the high-level 
and low-level features and fuse them. At the same time, some information may be lost in the processes of upsampling and 
downsampling, which requires us to adopt some measures to reduce such information loss [16]. In order to further 
improve the segmentation accuracy and reduce the information loss, we also redesign the downsampling block.

In summary, the main contributions of our paper are threefold:

• We propose a multi-layer edge perception module for embedding in a U-structure by combining an image pyramid
with the attention mechanism for improving feature extraction and edge preservation. In addition, the proposed
module can be extended to other network models for enhancing their ability of feature representation.

• We redesigned the downsampling convolution block, inspired by the idea of the residual network [21], which
enables the encoder to more effectively capture fine-grained details of the foreground objects and
reconstructed in the decoder.

• We have implemented a useful extension of the standard Net, by combining the multi-layer edge perception and
downsampling convolution block. On the DRIVE datasets, we achieve a Dice gain of 0.841 over other models. It
provides a new research idea for medical image segmentation.

Related Works

Encoder‑Decoder The encoder-decoder structure is first applied in the field of natural language processing [22, 23]. 
Since it can effectively encode and convert the information, it is later widely used in the field of computer vision. This 
structure consists of two parts. In the encoder, the spatial dimension of the feature map is continuously reduced, and the 
larger range of information is more easily obtained at the deeper level. In the decoder, the details and spatial dimensions of 
the object are restored. Such as in [4, 24], the deconvolution [25] method is used to upsample the low-resolution features; in 
U-NET [5], the jumping connection method is used to fuse the features extracted by the encoder with the upsampled
information of the decoder. The relevant works [26–29] have demonstrated the validity of the encoder-decoder–based
structural in several semantic segmentation benchmarks. In addition, the encoder-decoder structure is also applied to
salient target detection [30, 31].

Attention Mechanism The mechanism of attention originated from the research on human vision, which was initially 
applied in the field of machine translation, and then gradually became an important part of neural networks, and  its 
application fields were expanded to natural language processing, computer vision, and other aspects. Attention 
mechanism is a means to quickly screen out high-value information from a large amount of information with limited 
attention resources. It can be understood that it redistributes the computing resources which were originally distributed 
equally according to the importance of attention objects, and concentrates the resources to the part with the most abundant 
information. In the related research of computer vision, the core idea of attention mechanism is to find correlations based on 
the original data, so as to highlight some important features. The spatial domain attention proposed by Jaderberg et al. [32] can 
transform the spatial information in the original image to another space while retaining the key information. The 
channel attention proposed by Hu et al. [14] can allocate resources among various convolution channels. Wang et al. [33] 
proposed combining attention mechanism with the mask that put forward the residual attention to learn not only the mask 
after the characteristics of the tensor as input of the next layer. At the same time, it will mask the characteristics of the 
tensor as input of the next layer; this way it can get more abundant characteristics, and thus better able to pay attention to 
the key characteristics.



Proposed Method

Architecture Overview

As shown in Fig. 1, the proposed multi-layer edge perception network is a U-shaped structure, which is widely used in 
the field of semantic segmentation [13, 30]. It consists of encoder and decoder. In the encoder, there are many 
repeated multi-path downsampling block, and each block is followed by a ReLU activation function and a maximum 
pooling layer with a step size of 2. In the decoder, the inter-polation algorithm is used for the upsampling operation. The 
result is connected with the corresponding feature map to improve the network generalization ability.

We introduce two innovative modules into the network architecture :(1) The multi-layer edge perception module 
combines the pyramid idea with the attention mechanism, which can make the network more focused on sensitive areas, 
thus improving the ability of the network to capture feature information and the capacity of segmenting the edge of objects. (2) 
We design a multi-path downsampling block to guide the extraction and fusion of multiscale information, which can make the 
multi-level segmentation information obtained by the network, so as to make up for the loss of information caused in the process 
of multiple downsampling.

Fig. 1  Illustration of the proposed multi-layer edge perception module U-shaped network. There are three modules,respectively, the MEP 
network (a), the multi-layer edge perception module (b), and the multi-path downsampling module (c). The input image goes through 
the multi-path downsampling module first in which the downsampled factor is 2 at each scale. The result from module c concated as the 
input of multi-layer edge perception module (b). After that, we concate their result and the final segmentation result is obtained after several 
interpolation upsampling



To be more specific, we first deploy multi-layer edge perception module and multi-path downsampling block 
in the encoder to extract a series of depth feature maps. Then, the upsampling operation is carried out by 
interpolation algorithm in the decoder to restore the image resolution. Finally, we convolve the output result of 
the decoder to get the segmentation result.

Multi‑layer Edge Perception Module

The key to make high-quality semantic segmentation is that network can capture enough detail information. At 
this point, the researchers have done a lot of work, such as Hu et al. [14] who proposed a cross-channel attention 
mechanism, modeling the features based on the dependence of each channel in order to improve the network 
express ability. Jaderberg et al. [32] proposed the spatial attention mechanism that can select the region of interest, 
 and find the areas that need to be paid more attention in  the features. The pyramid structure proposed by He et al. 
[34] extracts information from feature maps of various dimensions, which enables the network to capture more 
abundant features and improve the network’s ability to understand the semantic information.

Based on the above three advantages of design, we put forward a module named multi-layer edge perception mod-
ule, which has three different sizes of convolution layers to  extract multiple figures of features of the medical image 
information, and at the same time we introduce spatial atten-tion mechanism and cross-channel attention mechanism to 
enhance the sensitivity of the network to object boundaries. We fuse the multi-level feature extraction which establishes 
dependencies between channels. And then we homogenize the result to selectively reinforce features containing use-
ful information and suppress unwanted features. Finally, we upsample the feature and fuse them as our result which is 
the input of the decoder.

To be more specific, we adopt the idea of pyramid structure model in the multi-layer edge perception module framework. 
Input features are extracted in different dimensions through a 3*3 convolution layer and a 5*5 convolution layer 
respectively. Then, the extracted feature information is fused and put into the cross-channel attention module to establish 
the channel relationship dependency model. In the meantime, the input feature map is also sent into a 1*1 con-volution 
layer and sigmoid function. The two outputs are concated as the result after being re-coded. This module not only 
enhances the network feature representation, but also strengthens the network’s description of edge details. The multi-
layer edge perception module framework is shown in Fig. 2.

CSE Module

In order to further improve the capability of the network and reduce the parameter, we propose a new channel 
attention model named CSE module, which is more effective than the original SE module. The SE module is a  
representative channel attention mechanism module in the neural network. It can enhance the representation of 
features by modeling the dependencies between feature mapping channels. The SE module first compresses the 
spatial dependencies through spatial global average pooling to learn channel-specific feature representation, then 
using two full connection layers to compress and increase the dimensions of channels, and finally through a sigmoid 
function to highlight the useful channels. Assume that given the feature map Xi ∈ RC∗W∗H , the channel attention 
feature map Ach(Xi) ∈ RC∗1∗1 is calculated by the following formula:

Ach(Xi) = �(WC(�(WC

r

(Fgap(Xi)))))

where Fgap(X) =
1

WH

∑W,H
i,j=1 Xi,j is to calculate the global average pooling of each channel, WC

r

∈ RC∗1∗1 and Wc ∈ RC∗1∗1 

represent the parameters of the full connection layer in the process of dimension reduce and dimension increase, 
respectively, � represents the sigmoid activation function, and � represents the ReLU function.



Fig. 2  Multi-layer edge 
perception module. The input 
goes through three convolution 
layers with kernel sizes of 1*1, 
3*3, and 5*5, respectively. The 
output of 1*1 convolution layer 
is fed into the sigmoid 
function. The outputs of 3*3 
and 5*5 convolution layer are 
fused and then sent into the 
channel attention module. The 
results were homogenized and 
then upsampled. We fuse the 
two results as the output

Fig. 3  The structure of SE 
module and CSE module: a 
traditional SE module, b CSE 
module. In the traditional SE 
module, two layers of a full 
connection layer are used for 
dimension reduction and dimen-
sion increase, respectively, 
causing the loss of information. 
In the CSE module, use a layer 
of convolution instead. FC 
means fully connected

However, the SE module also has its problem. The first is the loss of information due to channel compression in  the 
process of dimensionality reduction. In the SE module, the input feature map will first go through a fully  
connected layer for dimensionality reduction, and then the original dimension will be restored by another fully 
connected layer. The reduction of channel dimension will cause partial loss of information [35]. In addition, due to the 
fully connected layer, with the deepening of network depth, the number of channels becomes higher and the 
number of parameters becomes larger, which will cause a large computational burden, resulting in reducing the 
convergence rate of network and making training difficult.



WH

∑W,H

i,j=1where, Fgap(X) =  1 
Xi,j calculates the global average 

Therefore, we propose to optimize the SE module by using the convolution layer, replacing the original two-
layer fully connected network with one layer of convolution, which also can effectively establish the relationship 
dependence between channels while reducing the loss of information. As shown in Fig. 3, suppose that given the 
feature map Xi ∈ RC∗W∗H , the channel attention feature map Ach(Xi) ∈ RC∗1∗1 is calculated by the following formula:

Ach(Xi) = �(WC(Fgap(Xi)))

pooling of each channel, Wc ∈ RC∗1∗1 represents the parameters

propagation during training the network by way of
skip connection. Meanwhile, studies show [37] that the use of residual structure breaks network asymmetry, 
reduces neural network degradation, and enhances network generalization ability. The pooling pyramid model 
can use different sizes of convolution kernels to obtain different scales of feature maps so as to obtain different 
dimensions of information and enhance the representational ability of the network. DenseNet makes use of 
intensive skip connections to full use of features, which makes up for the information loss caused in the 
downsampling process and makes the network have a smaller generalization error bound [38].

As shown in Fig. 4, the proposed multi-path downsam-pling block carries out 3*3 convolution and 1*1 
convolution for the input, respectively, and fuses the convolution result with the input jump connection as the 
output. Assuming that the input of layer l is xl , the output after 3*3 convolution is F3l(xl) , and the output after 1*1 
convolution is F1l(xl) , then the output of layer l is expressed as follows:

Ol = F3l(xl) + F1l(xl) +  xl

of the channel-dependent convolutional layer, and � represents the sigmoid activation function.

Multi‑path Downsampling Block

Inspired by the deep residual network [21], pooled pyramid model [34], and DenseNet [36], we proposed a new 
downsampling block which fully utilizes the advantages of the above three models. The residual network 
simplifies the learning process and enhances the gradient 

Fig. 4  Different ways of down-
sampling block: a ResNet conv 
block, b U-Net conv block, c 
multi-path Conv block

The advantages of using the proposed downsampling block are as follows: (a) it can obtain feature maps of 
different dimensions through the different scales of convolution layers, so that the network can capture more 
global  feature information through different sizes of receptive fields; (b) it can accelerate the convergence of 
the network and improve the generalization ability of the network through dense jump connections.



1. Dice coefficient was used as the evaluation index, which is usually used to calculate the similarity of two samples. The
calculation formula of Dice coefficient is as follows:

Dice =
2TP

2TP + FP + FN

2. Pixel accuracy is the ratio of all correctly classified pixels to the total number of pixels. The calculation formula is as 
follows:

TP + TN
PA = TP + TN + FP + FN

3. Sensitivity is the ratio of the number of samples correctly predicted as positive to the total number of true
positive samples; it is computed as follows:
Sensitivity =        TP

TP + FN

Experiment

Experiment Details

Dataset For the experiments, the ISIC Archive dataset is used. This dataset is publicly available and commonly used 
to medical image segmentation frameworks. This ISIC Archive contains over 23K images of skin lesions, labeled 
“benign” or “malignant.” In the dataset, some images have multiple segmentation offered, made with different skill 
levels. We randomly pick up 3K images as the training set and 1K images as the testing set.

Data Augmentation For data augmentation, we adopt random mirror and random resize between 0.5 and 2 for all 
datasets, and additionally add random rotation between −10 and 10°, and random Gaussian blur for benchmark. This 
comprehensive data augmentation scheme makes the network resist overfitting [9].

Training Details All the models were trained on a single NVIDIA 1080Ti with 11GB memory. During the training 
process, parameters were initialized randomly, and RMSProp algorithm was used as the optimizer, and the initial 
learning rate was 0.0001. Unless specified, the input image is resized to 800*800 pixels, using a weight decay factor 
of 1e−8 and a momentum drop parameter of 0.9, respectively.

Evaluation Metrics We evaluate our method by 4 widely used metrics: Dice coefficient (Dice), pixel accuracy (PA), 
sensitivity (Sen), and volumetric overlap error (VOE). Con-sidering tumor segmentation region (positive) and 
background (negative), we compute the terms true positive (TP), true negative (TN), false positive (FP), and false 
negative (FN). 

Ablation Study

Multi‑layer Edge Perception Module Table  1 shows the results between U-Net and U-Net with the multi-layer 
edge perception module. In the edge perception module, we introduce channel and spatial attention mechanism to 
extract medical image information from different dimensions. By recoding the features, we can selectively strengthen 
the features containing useful information and suppress the useless features.

4. VOE means volumetric overlap error; it is computed as
follows:

TP

VOE = 1 − FN + FP − TP

follows:



MEP multi-layer edge perception module, SE cross-channel 
attention module, BI bilinear interpolation, NNI nearest neighbor 
interpolation, SPC sub-pixel convolutional

Method PA Sen VOE Dice

0.927 0.634 0.371 0.762
0.931 0.669 0.334 0.787
0.946 0.685 0.308 0.793

U-Net
U-Net+MEP(SE)+SPC
U-Net+MEP(SE)+NNI
U-Net+MEP(SE)+BI 0.944 0.689 0.311 0.795

To explore more possibilities, we also conduct experiments on different interpolation functions and sub-pixel convolution 
methods. For different interpolation algorithms, there is no significant difference between them on this dataset. At  the same 
time, the effect of sub-pixel convolution is also not  improved. We think that may be caused by the image pixel quality. 
From Table 1, it can be seen that compared with the traditional U-Net model, our method makes the Dice 

Table 1  Ablation experiment results for validation of multi-layer edge perception modules

Fig. 5  Comparison of heat maps 
of various networks. The image 
is the actual image: a is the heat 
map of the last downsampling 
block, b is the heat map of the 
last attention module, c is the 
heat map of the multi-layer edge 
perception module

increase by 0.03. At the same time, for other methods, our proposed module also plays a good effect.
coefficient 

In order to better show the effectiveness of the multi-layer edge perception module, we demonstrate the heat map of 
different U-structure networks. The picture comes from the DRIVE datasets. It can be seen that our method has more 
focus on the boundary of the object compared to the other U-structure method in Fig. 5. Especially to the network with 
the single attention module, the proposed method combined with the idea of multiple attention mechanisms can improve 
the detail presentation ability in the picture. That is because through the MEP module, our network can locate more 
information. When the network is propagating forward, the invalid information has been suppressed. Thus, the network 
can segment the object edge details better and more accurate segmentation results can be obtained.

CSE Module Table 2 shows the result between MA-UNet with SE module, ECA module, and CSE module. Compared 
with the traditional SE module, we use a single convolution layer to replace the two fully connected layers in the 
SE module. The idea is somewhat similar to ECANet, so we also conducted experimental comparisons with ECA 
module. From Table 2, it can be seen that our optimization method can improve the Dice coefficient by 0.013 compared 
with the traditional SE module. Compared with the ECA module, our method also achieved relatively good results. 
We think that this is due to the fact that for datasets with small pixel quality, it may be redundant to establish the 
connection between channels by multi-layer convolution.

In order to further explore the effect of different convolution kernel sizes on performance, we also set the 
CSE convolution layer sizes of 1*1, 3*3, and 5*5 for experiments. As can be seen in Table 3, as the size of convolution 
kernel increases, the segmentation effect decreases. This is because the size of features in the CSE module is small, 
and it is easy to lose a lot of information if a large convolution kernel is used at this time, so the kernel size of 1*1 is 
the best choice. 



Table 2  Ablation experiment for validation of the CSE module compared with ECA module and SE module. The CSE module uses a 
layer of convolution to replace the two fully connected layers in the SE module

Method PA Sen VOE Dice

U-Net 0.927 0.634 0.371 0.762
U-Net+MEP(ECA) 0.941 0.673 0.322 0.781
U-Net+MEP(SE) 0.944 0.689 0.311 0.795
U-Net+MEP(CSE size=1) 0.951 0.705 0.291 0.808

Table 3  Ablation experiment for CSE module with different sizes of kernel

Method PA Sen VOE Dice

U-Net 0.927 0.634 0.371 0.762
U-Net+MEP(CSE size=5) 0.931 0.611 0.388 0.756
U-Net+MEP(CSE size=3) 0.934 0.655 0.356 0.771
U-Net+MEP(CSE size=1) 0.951 0.705 0.291 0.808

Multi‑path Downsampling Block Table 4 shows the result between the different methods with the multi-path 
downsampling block. Compared with the traditional downsampling block, we use three different sizes of 
convolution layers to capture feature information. Meanwhile, we add intensive skip connection to improve the 
convergence and generalization ability of the network. According to Table 4, it can be seen that compared with the 
traditional downsampling block, our multi-path downsampling block makes the Dice coefficient increase by 0.043 
with U-Net. It also works in ResNet. That is because the multi-path downsampling block can obtain feature maps of 
different dimensions, so that the network can capture more feature information to make up for the loss of 
information in the process of downsampling.

Table 4  Ablation experiment for validation of multi-path downsampling block

MDS multipath downsampling

Method PA Sen VOE Dice

ResNet 0.930 0.592 0.410 0.711
ResNet+MDS 0.933 0.622 0.398 0.732
U-Net 0.927 0.634 0.371 0.762
U-Net+MDS 0.959 0.718 0.282 0.805
U-Net+MEP+CSE+MDS 0.963 0.754 0.249 0.841

Table 5  Comparison of our method and the seven methods. The listed segmentation frameworks are evaluated on the same 
public dataset using the same number of training and testing images

Method Parameters PA Sen VOE Dice

R2U-Net [39] 156.5M 0.932 0.578 0.422 0.706
Deeplabv3+ [12] 161.7M 0.935 0.697 0.387 0.710
Attention R2U-Net [39] 157.9M 0.921 0.617 0.401 0.733

69.1M 0.927 0.634 0.371 0.762
36.7M 0.936 0.678 0.326 0.798
92.7M 0.942 0.701 0.299 0.802
73.4M 0.959 0.718 0.282 0.805
60.5M 0.971 0.859 0.261 0.818

U-Net [5]
U-Net++ [7]
Attention U-Net [13]
U-Net+MDS
FCN [4]
MEP-UNet (ours) 111.1M 0.963 0.754 0.249 0.841



We demonstrated the effectiveness of our module through a series of ablation experiments. At the same 
time, in the experimental process, we can also find that each module can still play a good mutual 
enhancement effect.

Fig. 6  Scatter plots of four indicators with different models

Comparison with Other Medical Segmentation Method

We compare our model with a series of U-structure methods including a one-base model, U-Net, and four U-structure 
models: U-Net++, R2U-Net, Attention U-Net, Attention R2U-Net. At the same time, we also compare with networks 
based on ResNet like Deeplabv3+ and FCN.

Quantitative Comparison

Results from the U-structure segmentation method are summarized in Tables 4 and 5 for comparison purposes. 
Because these methods have not been trained on the DRIVE datasets before, we retrained them on the same 
training datasets with the same auxiliary function; this comparison gives an insight on how our proposed method 
compares to the relevant work.



Fig. 7  Qualitative comparison of the proposed method with five other U-structure methods. From the right to left are Images, GT, Ours, FCN, 
Attention-UNet, UNet++, U-Net, Attention-R2U-Net, Deeplabv3+, R2U-Net

To more clearly compare the advantages of each model, we make the scatter plots of four indicators with different 
models. From Table 4 and Fig. 6, it can be seen that the single attention model does not maximize the power of 
the attention mechanism. In the process of downsampling, simply deepening the depth and adding the parameters of 
the network do not work for the result. Lastly, our method got better performance on ISIC Archive, which achieved 
0.841 Dice. 

Qualitative Comparison

To give an intuitive understanding of the promising performance of our models, we illustrate the sample results of 
our models and several other methods in Fig. 7. It can be seen that our MEP-UNet is able to divide the target edge 
more clearly.

The rows 1 through 4 of Fig.  7 show the results of  different shapes of skin melanoma. As we can observe, 
our MEP-UNet is able to produce accurate results on the large and small skin melanoma. We also can see from 
the third and fourth rows of Fig. 7 that our method can achieve high-quality segmentation of the object disturbed 
with hair. The fifth and sixth rows show the results of target with complex boundaries. Compared to the single 
attention mechanism, our method can more focus on the boundary of the object. In summary, our model can handle 
various skin melanoma and produce high-accuracy segmentation results.
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