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Abstract
Feature selection (FS) is a crucial area of cognitive computation that demands further studies. It has recently received a lot 
of attention from researchers working in machine learning and data mining. It is broadly employed in many different appli-
cations. Many enhanced strategies have been created for FS methods in cognitive computation to boost the performance of 
the methods. The goal of this paper is to present three adaptive versions of the capuchin search algorithm (CSA) that each 
features a better search ability than the parent CSA. These versions are used to select optimal feature subset based on a 
binary version of each adapted one and the k-Nearest Neighbor (k-NN) classifier. These versions were matured by applying 
several strategies, including automated control of inertia weight, acceleration coefficients, and other computational factors, 
to ameliorate search potency and convergence speed of CSA. In the velocity model of CSA, some growth computational 
functions, known as exponential, power, and S-shaped functions, were adopted to evolve three versions of CSA, referred 
to as exponential CSA (ECSA), power CSA (PCSA), and S-shaped CSA (SCSA), respectively. The results of the proposed 
FS methods on 24 benchmark datasets with different dimensions from various repositories were compared with other k-NN 
based FS methods from the literature. The results revealed that the proposed methods significantly outperformed the per-
formance of CSA and other well-established FS methods in several relevant criteria. In particular, among the 24 datasets 
considered, the proposed binary ECSA, which yielded the best overall results among all other proposed versions, is able to 
excel the others in 18 datasets in terms of classification accuracy, 13 datasets in terms of specificity, 10 datasets in terms of 
sensitivity, and 14 datasets in terms of fitness values. Simply put, the results on 15, 9, and 5 datasets out of the 24 datasets 
studied showed that the performance levels of the binary ECSA, PCSA, and SCSA are over 90% in respect of specificity, 
sensitivity, and accuracy measures, respectively. The thorough results via different comparisons divulge the efficiency of the 
proposed methods in widening the classification accuracy compared to other methods, ensuring the ability of the proposed 
methods in exploring the feature space and selecting the most useful features for classification studies.
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Introduction

The Internet is currently being adopted by people, gov-
ernments, and institutions all over the world in almost all 
aspects of life. Thereby, a large amount of data is gener-
ated every day in a wide variety of forms, with these data-
sets typically serving as an extension of knowledge [1]. In 
this regard, society may create data from a broad range of 
sectors, including health, agriculture, and industry, among 
many others [2, 3]. These datasets may be categorized and 
then used for information, forecasts, and insights. Due to 
the favors of rapidly advancing data collection and stor-
age technologies, organizations and governments often 
collect and use these vast volumes of data on a regular 
basis. Raw datasets are frequently fruitless and possibly 
unusable unless a proper automated method is used to 
extract useful information from them. In any case, get-
ting usable information has proved to be a very difficult 
task [4]. Traditional data analysis techniques often fail 
when attempting to analyze huge amounts of datasets. 
Even when the dataset is very small, the atypical form of 
the data might make it challenging to employ traditional 
methods to effectively process and analyze such datasets. 
In many cases, the problems that need to be addressed 
cannot be solved with the existing data analysis methods, 
and so new methods have to be taken [5]. Based on these 
discussions, the key principles of data mining (DM) can 
be used to identify the observable patterns in unprocessed 
datasets [6]. DM approaches especially attempt to learn 
about various features within the data by removing and 
simulating the content of the data. In this, DM is a generic 
process that involves a number of transformation opera-
tions, starting from pre-processing the data and ending 
with post-processing the output produced by a pre-built 
DM technique [7]. Due to some problems inherent in the 
raw datasets, which may often include redundant, irrel-
evant, or unimportant data [8], these datasets cannot then 
be utilized directly for post-processing steps. In this, pre-
processing steps must be used to the gathered data to clean 
it up and get it ready for further phases of machine learn-
ing (ML) methods [7]. Data pre-processing is perhaps 
the most prolonged and difficult phase of the knowledge 
detection process due to the variety of ways that may be 
used to collect data. From these angles, this work specifi-
cally focuses on feature selection (FS) to confront with the 
above obstacles.

Feature selection is an important area of study in ML 
tasks, where ML is one of the key areas of cognitive com-
putation. In many ML tasks, high dimensionality, on the 
one side, augments the information of data, on the other 
side, leads to curse of dimensionality problem [6]. In point 
of fact, for a lot of real-world applications, a small subset 

of informative and discriminate features can act better than 
employing all of the features. Data dimensionality reduc-
tion [9, 10] may be thought of as a cognitive method for 
analyzing the inherent properties of data. Feature selection 
[1, 7], favorably, can tackle the problems of high dimen-
sions by lowering the dimensionality in ML tasks. It poses 
one of the most important pre-steps, which aims to remove 
duplicate or irrelevant data from the dataset that will be 
analyzed [11]. On this account, the benefits of FS stretch 
from data dimensionality and reducing over-fitting to elim-
inating noisy data, ameliorating classification accuracy, 
speeding up the model’s learning cycle, and reducing com-
plexities within the dataset, among many other merits of FS 
methods [12]. Due to the above blessings, FS techniques 
have become active research areas and have been properly 
used in various fields such as facial recognition [13], image 
classification [14], and micro-array analysis [15].

Recently, many COVID-19 cases have been collected, 
and the dataset has been established [16]. Regardless of 
the location, cases volume, pandemic wave, or time of the 
collected COVID-19 data, the gathered dataset consists of 
fifteen features, and FS methods attempt to locate the subset 
of the most informative features. This subset will be used in 
machine learning or deep learning methods for classification 
purposes. Moreover, some methods have used COVID-19 
data to discover chronic lung diseases. This is to estimate 
the severity and mortality rate among COVID-19 patients 
[17–19]. As of now, there more than 900 million people in 
China who have been infected with COVID-19, and that 
number is rising by the millions every day. Thus, China 
immediately ceased providing daily COVID figures and 
abandoned its zero COVID policies. An increase in COVID 
cases is also expected in rural China this year. It is expected 
that the COVID wave in China would peak in 2 to 3 months. 
COVID-19 and chronic obstructive pulmonary disease 
(COPD) have several potential adverse interrelations that 
may influence infection course and clinical results. There 
are some mechanisms that may be considered for increased 
COVID-19 infection susceptibility in COPD such as ineffec-
tive immunity and decreased antiviral defense [20]. COPD 
is linked with worse clinical results from COVID-19 [20], 
where COVID-19 has a large impact on the habitual care 
of COPD patients. There is evidence that COPD patients 
have worse outcomes from COVID-19 [18, 19]. A result 
of COVID-19 has been isolation and increased anxiety in 
COPD patients, with conceivably deleterious long-term 
repercussions [20].

Returning to the essence of this study, in general, during 
the implementation of the FS process, a subset of the can-
didate features is selected from the original feature set, and 
its relevance is then measured by an evaluation criterion. 
The process of selecting and evaluating a subset of features 
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is repeated until a preset stopping condition is met. Then, 
the best obtained subset is validated in the test dataset [21]. 
Two opposing goals are used in feature selection methods 
to optimize the search in the search space, namely, to reduce 
the redundancy of the selected features and to increase the 
relevance of the class label [22]. Various search techniques 
could be used to deal with these goals. These techniques can 
be classified as single-objective and multi-objective meth-
ods [23]. In the single-objective FS methods, the solution 
is enhanced by evaluating a particular objective function. 
Therefore, the used objective function will affect the quality 
of the solution obtained from the optimization algorithm. 
Moreover, there is no specific objective that can be suit-
able for all optimization problems. Thus, defining a fitness 
function for optimizing a single objective can lessen the 
performance of the optimization method. Consideration of 
different conflicting goals in a fitness function can overcome 
the above obstacles and may return a non-dominated set of 
solutions, which can be several subsets of feature that meet 
different objectives. The chief handicap of multi-objective 
optimization methods is the increased complexity of the 
search space [24]. Furthermore, the intricacy of the majority 
of real-world problems are further challenges of FS methods. 
This, in turn, requires a large amount of solution space due 
to the dependency and non-linear needs between the dataset 
characteristics [6]. Examining each subset produced dur-
ing the generation of various subsets is necessary in order 
to determine which subsets best suit assessment techniques 
like maximizing classification rate or reducing error [25]. 
This method is computationally costly and cumbersome, 
especially for datasets with high-dimensions. In such a case, 
creating all possible subsets of high dimensional datasets 
becomes impractical and computationally costly. Hence, 
dealing with such complex problems is difficult using con-
ventional FS methods. These and other difficulties have led 
researchers to investigate many different strategies to get 
excellent performance levels in classification purposes [26]. 
Thus, the application of meta-heuristics has been targeted 
in the search for improved solutions to FS problems with 
an optimal rate of performance [5]. These techniques have 
generally proven to be effective in tackling optimization 
real-world problems in reasonable amounts of time with 
minimal computing effort in a wide range of engineering 
and science fields.

From the standpoint of cognitive computation, the chal-
lenges posed by high dimensionality problems in ML tasks 
may be overcome by adopting highly reliable FS approaches 
as well as robust classification models that learn from data. 
In this study, a newly developed meta-heuristic, named 
capuchin search algorithm (CSA) [27], was adopted to 
solve broadly available feature selection problems in the 
field of medical diagnosis. Although CSA has the ability 
to get the optimal solution in solving diverse problems in 

the optimization field [28, 29], it is customarily confined 
to the local optima especially when it encounters complex 
problems with many local optimums. This may be ascribed 
to its narrow search ability and modest convergence prop-
erty. Hence, this study made some improvements to the basic 
CSA to efficiently solve such convoluted FS problems. This 
is developed in keeping with the ideology of continuous 
improvements to come up with highly powerful solutions 
to real-world problems. This is the first and main motive for 
this work. The basic CSA has two essential parameters in the 
velocity updating model, referred to as cognitive and social 
parameters, which help the capuchins to reach the optimal 
solution. However, these parameters are constants during 
the iterative process of CSA, which may impair exploration 
and exploitation features when addressing hard optimiza-
tion problems. As well-adapted cognitive and social param-
eters as well as an efficient inertia weight mechanism are 
expected to influence the performance of CSA, it is worth 
noting and investigating to enhance CSA from the point of 
view of using adaptive strategies for these parameters. Based 
on the underlying CSA, a promising velocity updating model 
with proper control parameters can be implemented to guide 
the local and global search stages of the capuchins in the sur-
rounding environment. In this respect, three improved ver-
sions of CSA were developed to deal with the early conver-
gence and low search ability of CSA. Each version has added 
a reasonable improvement to the parent CSA by adopting 
different growth functions to update the values of the cog-
nitive and social models during the path iterations of CSA. 
These versions are called exponential CSA (ECSA), power 
CSA (PCSA), and S-shaped CSA (PCSA). Subsequently, a 
new inertia weight was proposed for all of these versions 
to further control the velocity model. This improvement is 
intended to empower these versions to have more explo-
ration and exploitation abilities. These functions not only 
provide effective guidance for the capuchins in the search 
areas, but they are also useful in alleviating the stagnancy of 
CSA. As the optimization frameworks of the proposed and 
basic variants of CSA are continuous, they can only handle 
continuous search spaces, but they have trouble in tackling 
problems with binary search spaces. In light of this, binary 
versions of these variants were created by adjusting the key 
operators and parameters of these variants to align with the 
nature of the search space of FS problems. This is the second 
motive of the current work. In this work, we address the 
shortcomings of CSA based on cognitive models to provide 
efficient and reliable optimization algorithms. To strengthen 
the efficacy of the proposed methods on FS problems, we 
expand the work utilizing growth computation models. For 
many of the datasets considered in this study, we found that 
the proposed FS methods when in combination with adap-
tive inertia weight during the iteration process of these meth-
ods can consistently provide higher performance levels than 
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other FS methods. To sum up, the theoretical contributions 
of the proposed work can be recapped as follows:

– Three enhanced binary versions of CSA were proposed 
and applied together with the basic binary CSA to solve 
a variety of 24 datasets collected from the UCI machine 
learning repository.

– Three new cognitive and three new social models were 
embedded into the proposed methods to improve the 
diversity of solutions and increase the balance between 
exploration and exploitation features to promote the best-
found solutions.

– The performance of the evolved FS algorithms were com-
pared with other highly effective FS methods in terms of 
several relevant criteria.

The reset of this work is arranged as follows: a literature 
review of several feature selection methods is presented 
in the “Related Works” section. The “Basic Capuchin 
Search Algorithm” section provides a brief description of 
the parent CSA. The following “Proposed Algorithms of 
CSA” section presents in detail the proposed algorithms. 
Next, the “Proposed Algorithms for Feature Selection” sec-
tion describes the binary versions of the proposed feature 
selection methods. In the “Experimental Results and Discus-
sions” section, the experimental results are presented and 
discussed. Finally, conclusions and several future directions 
are provided in the “Conclusion and Future Works” section.

Related Works

More recently, meta-heuristic algorithms have been widely 
used by many researchers to address different kinds of FS 
problems of varied levels of complexity [4, 5]. Astonish-
ingly, meta-heuristics have reported notable advantages and 
delivered impressive accuracy when used as wrapper-based 
methods for solving FS problems. Well-known classes of 
meta-heuristics including swarm intelligence, evolutionary 
algorithms, and physics-based algorithms, as well as several 
hybridization algorithms that combine two algorithms of the 
same class or different classes, have been used to solve FS 
problems [6]. The following is a review of some selected FS 
methods classified according to the class of algorithms used, 
which have reported promising performance in the literature.

Swarm Intelligence‑Based FS

There are many prominent examples of applications of 
swarm intelligence (SI) algorithms as search methods for 
wrapper-based approaches to solve FS problems in differ-
ent domains [2, 4, 5, 30]. An efficient study for solving FS 
problems was presented by Arora et al. [2]. In that study, 

Arora et al. evolved two diversified binary variants of but-
terfly optimization algorithm (BBOA). The S- and V-shape 
transfer functions were applied to generate the two binary 
versions of BOA. These versions were assessed on 21 data-
sets collected from the UCI repository. It was found in [2] 
that BBOA with S-shape is better than BBOA with V-shape 
as well as many other similar FS algorithms in all evalua-
tion methods and all studied datasets. Xian-Fang et al. [30] 
evolved a three-stage FS method as follows: (1) In the first 
stage, irrelevant features were eliminated using C-relevance; 
(2) in the second stage, the kth feature cluster was used to 
collect analogous features in the same cluster; and (3) an 
improved version of particle swarm optimization (PSO) 
was used to determine the optimal feature set. This algo-
rithm, referred to as HFS-C-P, was assessed on 18 datasets 
collected from public repositories. Xian-Fang et al. stated 
that the HFS-C-P algorithm achieved promising results, in 
respect of fitness score, number of selected features, and 
computational time, in all considered datasets better than 
those achieved by other algorithms. In a more recent and 
effective work on FS problems, an improved binary variant 
of the rat swarm optimizer (RSO) combined with the local 
search paradigm of PSO was proposed [4]. In this method, 
three crossover mechanisms, controlled by a switch prob-
ability, were embedded with RSO to improve the diversity of 
its solutions. This method was examined on 24 datasets col-
lected from various repositories and assessed using several 
evaluation methods. While this method revealed promising 
levels of performance, its convergence rate is a little modest. 
Last but not least, another good work for solving FS prob-
lems is presented in [5] using a binary version of Horse herd 
Optimization Algorithm, referred to as BHOA. In this algo-
rithm, three transfer functions, namely, S-shape, V-shape, 
and U-shape, were used to obtain the binary domain of the 
HOA, where these variants were integrated with three types 
of crossover mechanisms to produce fifteen different vari-
ants of the BHOA. The performance of these versions was 
examined on 24 real-world datasets and evaluated using a set 
of six metric measures. The best-formed version of the pro-
posed versions is a BHOA with an S-shape and a one-point 
crossover. A comparative evaluation was conducted against 
21 FS methods. The BHOA method was able to find very 
competitive results against these comparative methods, but 
the implementation of the 15 versions of BHOA demands a 
large computational burden.

Evolutionary Algorithms‑Based FS

Evolutionary algorithms (EAs) represent another broad 
class of meta-heuristics inspired by the natural processes of 
evolution. These algorithms have been broadly adapted to 
mature appropriate approaches for solving FS problems with 
a promising degree of accuracy using low computational 
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burden and a small number of selected features [31, 32]. 
Appropriately, many variants of EAs, such as genetic algo-
rithm (GA) [33], genetic programming (GP) [31], and binary 
differential evolution (DE) [32], have been used in the lit-
erature to tackle several types of FS problems. Recently, 
Awadallah et al. [34] developed a FS method based on a 
binary version of the JAYA algorithm, denoted as BJAM, 
with the help of an adaptive mutation operator. This operator 
was used to diversify the population during the iterative pro-
cess, where this operator was managed using a pre-defined 
mutation rate. The JAYA algorithm was converted to binary 
utilizing an S-shape transfer function. The BJAM algorithm 
was assessed on 22 datasets selected from the UCI reposi-
tory, where a good performance degree was realized com-
pared to other FS methods.

Physics‑Based Algorithms‑Based FS

Simulated annealing (SA) [35] is one of the popular and 
broadly physics-based (PB) algorithms used to tackle FS 
problems. In [36], SA was used as a FS method for detect-
ing various denial of service attacks. Several hybridization 
methods of PB algorithms with SI algorithms or EAs have 
been presented in the literature to solve FS problems. For 
example, a hybridization method of the whale optimization 
algorithm (WOA) with SA was used to solve FS problems 
for 18 datasets taken from the UCI repository [37]. In this 
method, SA was utilized to improve neighborhood search 
ability of WOA, where WOA was used to ameliorate the 
exploitation ability of the native algorithms. The perfor-
mance of this hybrid model is promising and superior to the 
parent and other algorithms. Other examples of hybrid-based 
FS methods include a hybridization of a binary coral reefs 
algorithm with SA [38] and a binary spotted hyena algo-
rithm with SA [39]. There are many other hybrid FS meth-
ods evolved in the literature such as a hybrid approach of 
genetic algorithms and artificial bee colony (ABC) [40] and 
a hybrid approach of Harris Hawks optimization algorithm 
with SA [41]. These hybrid models-based FS problems have 
achieved acceptable performance, but were subject to sig-
nificant computations and complexity. There are many other 
researchers who have combined wrapper-based with filter-
based methods to solve FS problems as discussed below.

Hybrid Filter‑Wrapper Model‑Based FS

Hybridization of filter and wrapper-based methods has 
been extensively used in the literature to strengthen the 
performance of FS tasks [42]. These hybrid models mainly 
comprise of two stages: the first stage is carried out based 
on a filter method to select the most important features, 
while the second stage is implemented based on a wrap-
per method in order to select a subset of features based 

on these selected features. For example, hybridization of 
mutual information (MI) as a filter method and binary 
cuckoo search as a wrapper method was presented in [43] 
to solve FS problems. Lai et al. [44] evolved a hybrid FS 
model using information gain (IG) as a filter method and 
an improved simplified swarm optimization (ISSO) as a 
wrapper method. In this method, IG was applied to select 
the most important features representing genes, while 
ISSO was applied to search for the optimal subset of genes. 
Another hybrid filter-wrapper method gene selection from 
microarray data for gene expression is reported in [45], 
where improved swarm-optimization was implemented as 
a wrapper-based method. The above hybrid filter-wrap-
per models for FS problems revealed reasonable perfor-
mance. However, the filter methods may prevent some 
important features despite their sensible performance. 
Also, the wrapper methods that used some meta-heuris-
tics may suffer from poor stability [46], where random 
search affected the stability of the selected features. A 
promising FS technique using a hybridization of binary 
biogeography optimization (BBO) with support vector 
machine recursive feature elimination (SVM-RFE), known 
as BBO-SVM-RFE, was developed in [6]. The SVM-RFE 
is embedded into the BBO to improve the quality of the 
obtained solutions in the mutation operator in order to 
reinforce the exploitation capability as well as to strike an 
adequate balance between exploitation and exploration of 
the original BBO. The BBO-SVM-RFE was assessed on 
18 benchmark datasets. Comparative results showed that 
BBO-SVM-RFE revealed a wise degree of performance 
in terms of accuracy and number of selected features 
against other existing FS methods. However, the structure 
of BBO-SVM-RFE is complex and has slow convergence 
behavior, where the optimal solutions require high com-
putational efforts. While the aforesaid feature selection 
methods realized promising levels of performance in a 
fair-minded time in addressing the FS problems deemed 
in the aimed applications and datasets, they cannot ensure 
that in all experimental runs, the optimal solutions will be 
identified. This insinuates that locating the optimal feature 
subset is not ensured. Moreover, they demonstrated that 
they can address FS problems that were taken into account 
in their studies by identifying a minimal number of attrib-
utes from a selected subset. However, each of these FS 
methods behaved properly in the problems considered and 
might fell short in other real-world FS problems, espe-
cially those with high-dimensional datasets. Besides, some 
FS methods such as the one reported in [4] suffered from 
large computational time and local optimums. Also, the 
method presented in [5] provided sensible results in some 
datasets but not for all considered datasets in that study. 
The deficiencies of the above FS systems might be attrib-
uted to the possibility that meta-heuristic algorithms may 
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fall into local optimum solutions, especially when tackling 
complex FS problems with varied degrees of complex-
ity and high dimensionality. Hence, there is still a need 
for further amelioration on FS methods, particularly for 
datasets with a large number of features and a high level 
of complexity. This motivated this study to strengthen the 
performance of the basic CSA to deal with FS problems 
of high complexity. This is carried out by developing three 
improved variants of this basic algorithm and using binary 
versions of the core and proposed algorithms of CSA to 
explore their capacities and efficiencies in handling famil-
iar FS problems with different numbers of features, sam-
ples, and dimensions.

Basic Capuchin Search Algorithm

CSA is a new swarm intelligence algorithm developed 
to imitate the foraging activity and locomotion practices 
of capuchins while roaming in forests. The population of 
CSA is divided into two bunches: leaders (i.e., alpha capu-
chins) and followers (i.e., the remaining capuchins). Lead-
ers lead the followers, where they go after each other and 
the leaders directly or indirectly. Leaders are accountable 
for locating food sources for themselves and the other cap-
uchins in the group. The other capuchins (i.e., followers) 
update their position by pursuing the leaders. As reported 
in [27], leaders employ the following strategies of move-
ments while foraging, which can be presented as shown 
below:

• The leaders’ positions when jumping on trees are deter-
mined as follows: 

 where xi
j
 denotes the current position of the leaders at 

dimension j, Fj is the position of the food of the capu-
chins found so far at dimension j, Pbf  indicates the equi-
librium probability provided by the capuchins’ tails 
which is equal to 0.75, vi

j
 is the current velocity of the ith 

capuchin at dimension j which is defined in Eq. 3, � is the 
capuchins’ leaping angle defined in Eq. 2, g is the force 
of gravity which is equal to 9.81, n is the number of capu-
chins, and rand is a random value generated in the inter-
val [0, 1]. 

(1)
xi
j
=Fj +

Pbf (v
i
j
)2sin(2𝜃)

g

i < n∕2; 0.1 < rand ≤ 0.25

(2)� =
3

2
r

 where r is a random value produced in the range [0, 1]. 

 where xi
bestj

 stands for the best position of capuchin i at 
dimension j, a1 and a2 are positive values that are equal 
to 1.5 and 1.5, respectively, r1 and r2 are random values 
in the interval [0, 1], and � stands for the inertia weight 
of the velocity defined as given by Eq. 4. 

 where k is the iteration index representing the current 
number of iterations, K is a predefined maximum number 
of iterations, and wmin and wmax are the minimum and 
maximum weight values that were set to 0.2 and 0.9, 
respectively.

• The leaders’ positions while foraging on the banks of 
rivers using the jumping strategy can be determined as 
follows: 

 where Pef  stands for the elasticity probability of capu-
chins’ motion on the ground which is equal to 9.

• The leaders’ position while foraging on the ground 
using normal walking can be decided as follows: 

• The leaders’ position while swaying on trees can be 
decided as follows: 

 where � is a dominant parameter defined in Eq. 8. 

• The leaders’ position while climbing trees can be 
decided as follows: 

 where vi
j−1

 is the former velocity of capuchin i at dimen-
sion j.

• The random movement of leaders while foraging can 
be decided as follows: 

(3)vi
j
= �vi

j
+ a1

(
xi
bestj

− xi
j

)
r1 + a2

(
Fj − xi

j

)
r2

(4)� = wmax −
(
wmax − wmin

) k
K

(5)
xi
j
=Fj +

Pef Pbf (v
i
j
)2sin(2𝜃)

g

i < n∕2; 0.25 < rand ≤ 0.50

(6)
xi
j
=xi

j
+ vi

j

i < n∕2; 0.5 < rand ≤ 0.70

(7)
xi
j
=Fj + 𝜏Pbf × sin(2𝜃)

i < n∕2; 0.7 < rand ≤ 0.8

(8)� = 2e−21(
k

K
)2

(9)
xi
j
=Fj + 𝜏Pbf (v

i
j
− vi

j−1
)

i < n∕2; 0.80 < rand ≤ 1.0
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 where Pr denotes the random search probability of the 
leaders that has a value of 0.1, and ubj and lbj stand for 
the upper and lower limits of the search space at dimen-
sion j.

The followers’ positions can be updated as per Eq. 11:

where xi−1
j

 and xi
j
 stand for the former and current position 

of the followers at dimension j, respectively, and x́i
j
 repre-

sents the current leaders’ position at dimension j.
Each new solution for each capuchin’s position is 

assessed using a pre-defined fitness criterion. The opti-
mization process of CSA can be implemented through 
iterative steps, whereby capuchins’ positions are evaluated 
and updated. These steps are reiterated at each iteration, 
through which the convergence behavior can be got when 
the maximum number of iterations is realized. Algorithm 1 
presents a short illustration of the iterative steps of CSA.

As CSA has affirmed its reliability and efficacy 
in addressing a lot of broadly well-known real-world 
problems [27, 28], we concluded that CSA could be an 

(10)
xi
j
=𝜏 ×

[
lbj + rand × (ubj − lbj)

]

i < n∕2; rand ≤ Pr

(11)xi
j
=

1

2

(
x́i
j
+ xi−1

j

)
n∕2 ≤ i ≤ n

appropriate alternative algorithm to avail as a feature 
selection method.

Proposed Algorithms of CSA

Issues of CSA

Although CSA can search for optimal solutions while solv-
ing optimization problems, its search ability is limited by its 
original mathematical model and the defects of the velocity 
update model, where these flaws often lead to local optima 
in addressing complex optimization problems [27, 28]. 
The reason is that capuchins in CSA update their velocities 
toward food sources by relying on constant social and cogni-
tive models for locomotion and repetitive foraging. However, 
these fixed values for such key parameters cannot guarantee 
that CSA can escape stagnation or that it is not confined to 
local optima. In addition, CSA challenges another issue of 
feeble exploration and exploitation competencies. This is 
obviously faced as a result of updating the original position 
of the capuchins in CSA, which does not take into account 
the control of key parameters of the velocity model during 
the iterative process. Therefore, there must be some strate-
gies that help update the velocity model of the capuchins as 
well as fine-tuning of the key parameters in CSA. Further-
more, the exploration aptitude of CSA is insufficient in the 
inception search stage, so its modest exploitation causes the 
difficulty of finding the global solution in the late search 
stage. In this case, local optima is usually received. Thus, a 
reasonable compromise must be made between exploration 
and exploitation in order to enhance the search capacity of 
CSA. For this purpose, a new mechanism is needed to rein-
force the swarming behavior among capuchins, in which the 
best ones play a spirited role in leading others. In this, the 
best capuchins can help other capuchins to avoid premature 
convergence once they are bounded into local optima, and 
without any capability to prevent or deal with this circum-
stance. To deal with the aforementioned issues in CSA, an 
update was made to the velocity model of the basic CSA that 
uses adaptive social and cognitive models, with the goal of 
improving the performance score of CSA. The following 
subsections provide detailed descriptions of the proposed 
variants of CSA, referred to as exponential CSA (ECSA), 
power CSA (PCSA), and S-shaped CSA (SCSA).

Exponential Model of CSA (ECSA)

During the iterative process of CSA, the characteristics of 
the population distribution vary not only with iteration num-
ber but with the iterative state as well. For example, at a 
premature stage, the capuchins may be dispersed in different 
areas of the search space, and thus, the distribution of the 
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population is scattered. In the proposed ECSA, two steps 
including adaptation of the inertia weight and controlling 
the acceleration coefficients were carried out for the velocity 
model as shown below:

Adaptation of the Inertia Weight

The inertia weight � in CSA is used to balance global and 
local search potentials. For optimal performance, the value 
of � is expected to be large in the case of exploration and 
small in the case of exploitation. However, it is not necessar-
ily true to reduce � in CSA simply with time. Thus, an itera-
tive factor f was proposed to be used in the inertia weight 
� to take part some properties with � . In this, the factor f is 
also relatively large during the exploration case and becomes 
relatively small in the convergence condition. Thus, it would 
be useful to enable � to put up with the iterative state using a 
sigmoid mapping �(f ) : ℜ+

→ ℜ− . Here, the inertia weight � 
shown in Eq. 12 was proposed to be utilized in the velocity 
model of ECSA.

In this work, � is initialized to 0.9. Since � is not neces-
sarily monotonic over time, but monotonic with the itera-
tive factor f, � will, thus, adapt to the search environment 
illustrated by f. In the case of jumping out or exploration 
case, large f and � will benefit the global search, as noted 
earlier. On the contrary, when f is small, an exploitation case 
or convergence case is identified, and thus, � goes down to 
benefit the local search. In view of this, the movements of 
the capuchins in the proposed ECSA model are implemented 
by a new integrated velocity-updating model with adapta-
tion of the inertia weight throughout the iterative process. 
To be more specific, this new inertia weight was proposed 
to help update the capuchin’s capuchins to move adaptively 
toward food.

Control of the Acceleration Coefficients

In addition to the inertia weight, the acceleration coefficients 
a1 and a2 are also important parameters in CSA that con-
trol the overall velocity of the capuchins. Accordingly, an 
adaptive control can be devised for these coefficients on 
the basis of the following idea. Parameter a1 represents the 
“self-cognition” that attracts the capuchins to their own his-
torical best positions, helping to explore local niches and to 
preserve the diversity of capuchins. This parameter reveals 
how much confidence a capuchin has in itself. Parameter 
a2 represents the “social effect” that drives the capuchins 
to converge towards the current globally best area, which 
aids in rapid convergence. This parameter divulges how 
much trust a capuchin has in its neighbors. Braik et al. [27] 

(12)�(f ) =
1

1.5e−2.6∗f
∈ [0.4, 0.9] ∀f ∈ [0, 1]

stated in their original work of CSA that the implemented 
experiments showed that both the “cognitive-only” model 
and the “social-only” model are essential for the success of 
CSA, for which a constant value of 1.50 was used for each 
of the acceleration coefficients. However, it is anticipated 
that using ad hoc values of a1 and a2 instead of a constant 
value of 1.50 for different problems could result in better 
performance. To do so, the exponential models introduced 
in [47] were used to define the cognitive and social models 
in order to originate an enhanced variant of CSA, referred to 
as exponential CSA (ECSA). The exponential growth func-
tion shown in Eq. 13 was proposed to represent the cognitive 
model of the capuchins in ECSA.

where t = k

k2
 , the parameter �0 denotes the initial estimate of 

the cognitive parameter, and the parameter �1 represents the 
final estimate of the social parameter approximately achiev-
able by the capuchins at the end of the ECSA’s iterative 
process.

It is important to note that the exponential function a2 is 
derived from the exponential function a1 as settled in Eq. 14.

According to Eqs. 13 and 14, the exponential function of 
the social model of the capuchins in ECSA is established 
in Eq. 15.

To estimate the parameters �0 and �1 for the functions of 
cognitive and social parameters, there are several conven-
tional and intelligent methods mentioned in the literature 
[27]. One of the common traditional estimation methods is 
the least square estimation method [48]. This method has 
many issues with estimation accuracy and needs a large 
number of measurements to be able to give a good estima-
tion of parameters. Other methods include the use of meta-
heuristics in estimating the parameters [27]. These methods 
may demand senior computational efforts.

The parameters �0 and �1 of the exponential models used 
for a1 and a2 were selected through the use of experimental 
design by examining the proposed ECSA on feature selection 
problems. For all of the feature selection problems solved 
in this work, �0 and �1 are equal to 2.0 and 1.0, respectively. 
These values presented a high level of efficiency in solving 
feature selection problems as presented in the results section. 
However, optimal values are often obtained only empirically, 
perhaps, not the “best” values. Thereby, these parameters 
can be adapted to other problems as it is demanded.

The values of a1 and a2 are updated exponentially at 
each iteration loop of ECSA. In Fig. 1, the curve of the 

(13)a1(t;�0, �1) = �0(1 − e−�1t)

(14)a2(t;�0, �1) =
�a1(t;�0, �1)

�t

(15)a2(t;�0, �1) = �0�1e
−�1t
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cognitive parameter of ECSA shows that the tendency of 
this parameter diminishes in an exponential manner. This 
has an impact on the conduct of the capuchins in ECSA 
which can be shifted towards more exploration and exploi-
tation. Due to that, the capuchins can finish their foraging 
by locating the food at the end of their wanderings. This 
may also avoid local optimal solutions.

As can be observed in Fig. 1, the ECSA is proposed 
with time-varying acceleration coefficients, where a 
larger a1 and a smaller a2 were initially set and gradually 
reversed during the search process. As per this manner, it 
is expected that ECSA could divulge better overall perfor-
mance than the basic CSA. This may be due to the time-
varying of a1 and a2 that can balance the global and local 
search capabilities, which means that the adaptation of a1 
and a2 can be encouraging in improving the performance 
of the basic CSA. As the iterative process of ECSA contin-
ues, the capuchins would clump together and converge into 
a locally or globally optimal region. Thus, the population 
distribution information would be various from that in the 
premature stage. In other words, the curve in Fig. 1 that 
represents the cognitive parameter expands exponentially 
until the capuchins realize and find the position of food 
sources. In this way, exploration and exploitation stages 
of the basic CSA are ameliorated, and the capuchins can 
eventually find food and not lose other comrade capuchins 
in the group while foraging.

Bounds of the Acceleration Coefficients

As discussed earlier, the aforementioned adjustments for 
inertia weight and acceleration coefficients should not be 
too troublesome. Thus, the maximum increase or decrease 
between two iterations is bounded by

where � is called the “acceleration rate.”
Experiments revealed that a uniformly created random 

value for � in the range of [0.05, 0.1] performed better in 
most of the feature selection problems under study. Note 
that 0.5 was used for � , where it is recommended to make 
“slight” changes.

Power Model‑Based CSA (PCSA)

The inertia weight � used in PCSA is the same as that used 
in ECSA which is given in Eq. 12. The difference between 
PCSA and ECSA models is the functions used to control 
the acceleration coefficients of the velocity of these mod-
els. Anyway, the cognitive and social coefficients of PCSA 
are adapted using the power model described in [49]. This 
is why this algorithm of CSA is referred to as power CSA 
(PCSA). This model is based upon the heterogeneous Pois-
son process model. The mathematical function formulated 
in Eq. 17 was utilized to carry out a1 in the velocity model 
in PCSA.

where t = k

K
 . It is important to note that the power model 

of a2 is derived from the power model of a1 as defined in 
Eq. 14. According to Eqs. 17 and 14, the power function of 
the social model of the capuchins in PCSA can be defined 
as shown in Eq. 18.

Equations 17 and 18 were employed to update a1 and 
a2 during the iterative process of PCSA. It is important 
to know that Eq. 18 was used to find a2 in this model. A 

(16)||ai(t + 1) − ai(t)
|| ≤ �, i = 1, 2

(17)a1(t;�0, �1) = �0t
�1

(18)a2(t;�0, �1) = �0�1t
�1−1

Fig. 1  Proposed exponential functions for a
1
 and a

2
 in the proposed ECSA, Left image a

1
 , Right image a

2
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pool of values in the range from 0 to 5 were applied to 
each of �0 and �1 . For all of the feature selection problems 
tackled in this work, �0 and �1 are equal to 2.0 and 0.1, 
respectively. These parameters were selected by experi-
mental testing of a large subset of test datasets of varied 
complexities, where this value reported the best accuracy 
of the proposed PCSA. However, these parameters can be 
adapted for other problems as it is needed. The values of 
a1 and a2 were updated in PCSA, in non-linear form, as 
displayed in Fig. 2.

It is evident from Fig. 2 that the proclivities of a1 and 
a2 of PCSA are decreasing and increasing non-linearly, 
respectively. This has an impact on the search conduct of 
PCSA which can be moved towards more exploration or 
exploitation in a faster base when compared to CSA that 
utilizes constant values for the parameters a1 and a2.

It is clear from Eqs. 17 and 18 that when t is small, 
a1 has an extreme value and swiftly lessens to a mini-
mum value. On the other hand, the value of a2 is small 
when t is small, and it progressively augments towards its 
maximum value. In this context, the capuchins in PCSA 
can find a food source at the end of their foraging activ-
ity. In detail, a1 starts from a large value and declines 
little by little to a small value to denote that the capu-
chins find a source of food. Conversely, a2 starts with a 
small value and gradually expands to a maximum value 
to indicate that the capuchins ultimately became aware 
of the location of the food source. This scenario of using 
power functions for a1 and a2 can ameliorate exploration 
and exploitation as presented in the evaluation results. 
The maximum increase or decrease between two succes-
sive iterations of the acceleration coefficients in PCSA is 
bounded using Eq. 16.

Delayed S‑Shaped Model‑Based CSA (SCSA)

The inertia weight � used in SCSA is the same as that used in 
ECSA and PCSA which is defined in Eq. 12. The difference 
between the former proposed algorithms of CSA and SCSA 
is the models used to control the acceleration coefficients 
of the velocity model of SCSA. In any case, the acceleration 
coefficients of SCSA are adapted using the S-shaped model 
introduced in [50]. This is why this algorithm of CSA is 
called S-shaped CSA (SCSA). The S-shaped mathematical 
growth model used to define the parameter a1 is presented 
as given in Eq. 19.

where t = K

k
.

Equation 14 was used to derive a2 from a1 in terms of 
iterations as defined in 19, where a2 was got as presented 
in Eq. 20.

For all of the feature selection problems addressed in this 
work, �0and�1 are equal to 2.0 and 1.0, respectively. These 
parameters were determined by empirical testing of a large 
number of feature selection problems, where these param-
eters were changed several times until a trustworthy solution 
was acquired by the proposed SCSA. The growth functions 
representing the parameters a1 and a2 are updated in a non-
linear shape as displayed in Fig. 3.

In Fig. 3, the curve of a1 in SCSA shows that the trend 
of this parameter is gradually decreasing in a non-linear 
manner. Briefly, the parameters �0 and �1 in Eqs. 13, 15, 
17, 18, 19, and 20 can be fine-tuned for other problems as 

(19)a1(t;�0, �1) = �0
(
1 −

(
1 + �1t

)
e−�1t

)

(20)a2(t;�0, �1) = �0�
2
1
te−�1t

Fig. 2  Proposed power functions for a
1
 and a

2
 in the proposed PCSA, Left image a

1
 , Right image a

2



1894 Cognitive Computation (2023) 15:1884–1921

1 3

demanded. The three new algorithms of the basic CSA were 
proposed to lay out a suitable setting for a1 and a2 in order to 
enhance the exploration and exploitation features of CSA. 
These proposed algorithms are anticipated to fulfill efficient 
convergence and ameliorate the performance of the parent 
CSA in solving feature selection problems under study. 
Besides, the proposed algorithms of CSA could deliver 
outstanding potential to reliably evade stagnation in local 
optima regions and help them to find the global optima.

Briefly, in the original mechanism of updating capuchins’ 
velocity as presented in Eq. 3, the values of a1 and a2 are 
constants during the iterative process of CSA. This points 
out that exploration and exploitation processes in CSA 
are based on a mathematical model that relies on station-
ary parameters. This has a big impact on global and local 
search abilities that can only give sensible exploration and 
exploitation without strict structure. In the proposed ECSA, 
PCSA, and SCSA, the parameters a1 and a2 were applied as 
interactive operators to foster exploration and exploitation 
capabilities of these proposed versions of CSA. With a set 
of different values for a1 and a2 , these proposed algorithms 
can switch between global and local searches to promote 
the convergence performance of CSA to realize optimality.

Supportive Positioning Update Process

For further exploration and exploitation, the positions of 
leaders and followers in ECSA, PCSA, and SCSA are then 
updated as per the mechanism proposed in Eq. 21.

where xi
k+1

 and xi
k
 denote the next and present positions of the 

ith capuchin at the next and current iterations, respectively, 

(21)xi
k+1

=

{
xi
k
+ vi

k
rand ≥ 0.5

Fj + 𝜆
[
lbj + r

(
ubj − lbj

)]
rand < 0.5

vi
k
 stands for the present velocity of the ith capuchin at itera-

tion k, r and rand are uniformly random values generated 
in the interval from 0 to 1, and � is defined as a function of 
iterations as drafted in Eq. 22.

the parameters �0 , �1 , and �1 are constant values used to 
automatically update the parameter � at each iteration. These 
parameters are useful for strengthening exploration and 
exploitation conducts. For all of the test problems subse-
quently addressed in this work, �0 , �1 , and �2 are set to 2, 4, 
and 2, respectively. These constants were captured by pilot 
testing of a bunch of test problems. However, they can be 
refined to suit other problems that those problems require.

The parameter � is defined as a function of iterations k to 
control the random movement of capuchins iteratively and 
thus decreases with the number of iterations. Specifically, 
this parameter was proposed for dynamic system optimiza-
tion to secure convergence by diminishing the search speed 
as well as to enhance exploration and exploitation of the 
proposed algorithms. This parameter can enable capuchins 
to scout more search space and exploit each region while 
looking for food or other capuchins’ food. This is to arrive at 
an efficient convergence process, which can further improve 
the performance of ECSA, PCSA, and SCSA in solving fea-
ture selection problems. In this light, it is anticipated that 
the combination of the parameter � with ECSA, PCSA, and 
SCSA will intensify the exploration capacity of these ver-
sions and bring them closer to the optimal solution.

The first case of Eq. 21 (i.e., when rand ≥ 0.5 ) was sug-
gested to allow capuchins to advance toward food sources. 
The second case of Eq. 21  (i.e., when rand < 0.5 ) was 
suggested to empower capuchins to scout several ran-
dom positions in the search domain to improve local and 

(22)� = �0e
−(�1k∕K)

�2

Fig. 3  Proposed S-shaped functions for a
1
 and a

2
 in the proposed SCSA, Left image a

1
 , Right image a

2
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global search capabilities and to strike a sufficient balance 
between exploration and exploitation. This gives capu-
chins in ECSA, PCSA, and SCSA a great deal of ability 
to explore every potential position in the search space. In 
sum, Eq. 21 was combined with the mathematical models 
of ECSA, PCSA, and SCSA during their search iterations 
to address a number of FS problems from various domains, 
where the optimum feature subset characterizing the data-
set is chosen. This is performed to get better classification 
efficiency by these versions than can be got with the basic 
CSA. In addition, the length of the feature subset is antici-
pated to be reduced with these versions over that realizable 
by the basic binary CSA.

To summarize, the proposed exponential, power, and 
S-shaped models for the cognitive and social models of 
the proposed ECSA, PCSA, and SCSA were utilized in 
these algorithms to improve the mobility of capuchins. In 
this work, the proposed binary ECSA, PCSA, and SCSA 
were applied to identify the most significant features from 
medium, small, and high-dimensional datasets in binary 
search spaces, on top of reducing the redundant and irrel-
evant features.

Complexity Analysis of ECSA, PCSA, and SCSA

Time complexity of an optimization algorithm can be 
drafted using a function that relates the algorithm’s running 
time to the size of the optimization problem. Given this, 
Big-O notation can be used. The time complexity analysis 
of these optimization methods basically relies on the fol-
lowing steps: problem definition, initialization procedure, 
population update, fitness evaluation, and selection method. 
The computational time of the fitness assessment is highly 
dependent on the particular optimization problems. In 
doing so, the general computational complexity of each of 
ECSA, PCSA, and SCSA is the same and can be computed 
as follows:

As Eq. 23 implies, the time complexity of ECSA, PCSA, 
and SCSA mainly depends on the total number of iterations 
(K), the population size (n), the dimension of the problem 
under study (d), and the cost of the fitness function (c). Also, 
the S-shaped transfer function used to get binary versions 
of these proposed algorithms is intended to update the solu-
tions. In specific form, the general computational complex-
ity of ECSA, PCSA, and SCSA can be formulated in the 
worst case as follows:

(23)

O(ECSA) =O(problem def .) +O(init.)

+O(K(population update))

+O(K(fitness eval.))

+O(K(selection procedure))

where V stands for the number of assessment experiments.
The number of iterations (K) is often greater than the 

population size (n), the problem dimension (d), and the cost 
of the fitness function (c). In this regard, the main param-
eters K and n are essential in evaluating the complexity 
issue of optimization algorithms. Also, as nd ≪ VKnd and 
nd ≪ VKcn , so the components 1 and nd can be ruled out 
from the time complexity given in Eq. 24. Consequently, the 
general time complexity of ECSA, PCSA, and SCSA can be 
viewed as follows:

Proposed Algorithms for Feature Selection

The proposed ECSA, PCSA, and SCSA algorithms aspire 
to extend the exploration and exploitation characteristics of 
CSA beyond enhancing CSA to deal with complex search 
spaces for challenging feature selection problems. The pro-
posed binary FS algorithms aim to find the optimal subset 
of attributes for classification tasks by locating the most rel-
evant attributes and abolishing the unimportant attributes. 
In this work, a wrapper-based FS approach was intended 
using four different binary algorithms to address a pool of 
benchmark feature selection datasets that vary in complexity, 
number of attributes, and characteristics. However, the CSA 
was originally introduced to handle continuous optimiza-
tion problems, whereby each search agent in CSA updates 
its position based on its current position, the position of the 
best individual found so far, and the position of all other 
remaining search agents [27]. Thus, the proposed algorithms 
of CSA can only deal with continuous search spaces. Any-
way, as these algorithms are tailored to solve FS problems, 
where the search spaces of such problems can be deline-
ated by binary values due to their familiar nature. Hence, 
there is a need to use binary versions of the algorithm, CSA, 
ECSA, PCSA, and SCSA, to evolve a search strategy for 
FS problems of binary search spaces. In light of this, some 
operators of these methods demand to be altered to create 
binary versions of them, which can provide output in binary 
forms as either “*0” or “*1.” This allows the search agents 
of these algorithms (i.e., capuchins) to have binary solutions 
while solving FS problems. As per this, the capuchins can 
change their position in the search space during the iterative 
procedural loops, where the movements of the capuchins 
are associated with values of “*1” and “*0.” Considering 
this, an S-shape transfer function (TF) was used to transform 
the continuous CSA, ECSA, PCSA, and SCSA into binary 

(24)
O(ECSA) = O(1) +O(nd) +O(VKnd)

+O(VKnc) +O
(
VKn2d

)

(25)O(ECSA) ≅ (VKnd + VKnc + VKn2d)
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ones, referred to as BCSA, BECSA, BPCSA, and BSCSA, as 
described in the “S-Shape Transfer Function” section, with 
the objective function of these algorithms in the “Fitness 
Function” section.

S‑Shape Transfer Function

As per the assertions conducted in [51], one of the most 
practical ways of transforming an optimization method that 
deals with continuous problems to a method that can address 
binary problems is to create a binary version of the purposed 
optimization method. To do this without modifying the basis 
of the algorithm, a transfer function is the most widely norm 
used in this area. This strategy aims to establish the prob-
ability that an element in the feature subset, xi , will be con-
strained in a binary form that can be either “*0” or “*1.” 
An element value of “*0” presents that the corresponding 
feature is not chosen, while a value of “*1” points out that 
the feature was chosen. In this study, an S-shape TF was 
utilized to conduct the transformation task. The S-shape TF 
that was applied to transform the position of the capuchins 
(i.e., search agents) in the proposed algorithms of CSA from 
continuous to binary is presented in Eq. 26:

where S refers to the transfer vector, S
(
xk
m,j

)
 which repre-

sents the probability value of the S-shape value, xk
m,j

 stands 
for the jth element in the solution x (i.e., search agents) at 
the mth dimension, and k denotes the current iteration.

The values of the elements in the solution x are converted 
to either “*1” or “*0” using Eq. 27.

where rand stands for a function that generates a uniform 
random number in the range [0, 1].

Fitness Function

A wrapper-based FS method needs a learning algorithm 
to be involved in evaluation of the selected subset of fea-
tures. Here, the k-Nearest Neighbor (k-NN) classifier [52] 
was used to get a sense of the classification accuracy of the 
obtained solutions. In addition, each optimization problem 
must be solved using a fitness function, which is essential 
to any wrapper-based FS approach. While drafting a FS 
method, two key considerations must be made: How to 
express the solution and evaluate it. A binary vector with 

(26)S
(
xk
m,j

)
=

1

1 + exp
−xk

m,j

(27)xk
m,j

=

⎧
⎪⎨⎪⎩

1 rand < S
�
xk
m,j

�
,

0 rand ≥ S
�
xk
m,j

�

a length equal to the number of features in the dataset is 
used in this study to create a feature subset. Two discrepancy 
objectives are imposed on the feature selection problem as a 
multi-objective optimization problem as follows: (1) lessen 
the amount of features that are chosen, and 2) problem the 
k-NN classifier’s classification accuracy. It is broadly known 
that as the number of features selected in a solution dimin-
ishes, the quality of the solution improves, by which the 
solution with the lowest number of features associated with 
the largest classification value is the best solution which is 
required to be achieved. These two opposite goals should 
be deemed into one objective function in the proposed FS 
algorithms. By this, these goals were implemented into one 
objective function for each solution in the iterative process 
of the proposed BCSA, BECSA, BPCSA, and BSCSA that 
was computed using the k-NN classifier as presented below:

where �k is the rate of classification error got by k-NN, |R| 
and |N| are the number of selected and original features, 
respectively, and � and � are the weights of the classification 
quality and selection ratio of the chosen features, respec-
tively, where they are two counteractive parameters in the 
interval [0, 1], in which � is the complement of �.

The fitness function presented in Eq. 28 that considers 
the trade-off between the selected features in each solution 
vector (i.e., minimization) and the classification accuracy 
rate of the learning classifier (i.e., maximization) is used to 
assess the selected subsets of the proposed BECSA, BPCSA, 
and BSCSA as FS methods.

The proposed BECSA, BPCSA, and BSCSA as FS meth-
ods are evaluated using the fitness function shown in Eq. 28, 
which takes into account the trade-off between the classifi-
cation accuracy rate of the learning classifier (i.e., maximi-
zation) and the selected features in each solution vector (i.e., 
minimization). The schematic diagram of the proposed work 
is presented in Fig. 4.

Experimental Results and Discussions

The effectiveness and robustness of the proposed algorithms 
of CSA and basic CSA in solving FS problems are studied 
and analyzed in this section. First, a brief description of the 
datasets used for the evaluation tasks is found in the “Dataset 
Description” section. Then, the parameter settings of the 
proposed algorithms and the characteristics of the system 
used to run the algorithms are provided in the “Parameter 
Settings” section, while the evaluation metrics are formu-
lated in the “Performance Measures” section. The results 
of evaluation and analysis of the proposed algorithms are 

(28)fitness = ��k + �
|R|
|N|
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Fig. 4  Schematic diagram of the proposed algorithms of CSA for feature selections



1898 Cognitive Computation (2023) 15:1884–1921

1 3

summarized in the “Evaluation of the Proposed Methods” 
section. Finally, the outcomes of the fundamental CSA and 
the best developed algorithm compared to other algorithms 
are presented in the “Performance Comparison with Other 
Methods” section.

Dataset Description

The performance of the proposed algorithms of CSA is 
evaluated using 24 benchmark datasets of different num-
ber of features and varying complexity. These datasets were 
extracted from patients’ medical diagnoses. It should be 
noted that these datasets were collected from the UCI repos-
itory, KEEL repository, Kaggle, and another well-known 
medical website.1 Table 1 presents a brief description of the 
first 23 datasets used in the current study.

From Table 1, it can be clearly seen that only the main char-
acteristics of each dataset are presented as follows: number of 
features, number of samples, number of classes, and the source 
of each dataset. In addition, the number of samples ranged 
from 62 and 1151, the number of features ranged from 9 to 
5966, and the number of classes ranged from 2 to 6.

Table 2 shows a description of the real-world corona-
virus disease (i.e., SARS-CoV-2 or broadly called COVID-
19) dataset, where this dataset was gathered from [16], 
which comprises of 15 features.

In order to prevent overfitting in solving the feature selec-
tion problems under study based on the proposed feature 
selection models, the data is randomly split into training 
and testing datasets. This is also to ensure the stability of 
the outcomes. In this, the total number of instances in the 
datasets shown in Tables 1 and 2 were split into two parti-
tions, where 80% of the instances were used for training, and 
the remaining 20% of the instances in the dataset were used 
for testing. This is also recommended in many related works 
in the literature [5, 37]. For parameter tuning, the number 
of iterations of the training model was set to 100 based on 
early stopping criteria, as aforementioned, in order to help 
prevent overfitting. These two techniques make it possible 
to ameliorate the number of training instances by altering 
the existing ones. Parameter optimization of the proposed 
methods can be found in the “Sensitivity Analysis” section. 
There are many other methods to reduce model overfitting 
such as 10-fold cross validation [53], early stopping criteria 
[54], and image augmentation by generating new training 
samples from the existing training dataset [55].

Parameter Settings

The parameter settings of the proposed algorithms are 
recorded in Table 3. It should be pointed out that each 
algorithm is repeated 30 independent times to give an 
idea of its stability. Thereafter, the results of the pro-
posed algorithms are collected and summarized in terms 
of average and standard derivation values. Furthermore, 

Table 1  A brief description of the first 23 datasets

Dataset # Features # Samples # Classes Source

Diagnostic 30 569 2 UCI
Breast 9 699 2 UCI
Prognostic 33 194 2 UCI
Coimbra 9 115 2 UCI
BreastEW 30 596 2 UCI
Retinopathy 19 1151 2 UCI
Dermatology 34 366 6 UCI
ILPD 10 583 2 UCI
Lymphography 18 148 4 UCI
Parkinsons 22 194 2 UCI
ParkinsonC 753 755 2 UCI
SPECT 22 267 2 KEEL
Cleveland 13 297 5 KEEL
HeartEW 13 270 2 KEEL
Hepatitis 18 79 2 KEEL
Saheart 9 461 2 KEEL
Spectfheart 43 266 2 KEEL
Thyroid 21 7200 3 KEEL
Heart 13 302 5 Kaggle
PimaDiabetes 9 768 2 Kaggle
Leukemia 7129 72 2 Medical website
Colon 2000 62 2 Medical website
ProstateGE 5966 102 2 Medical website

Table 2  A characterization of the COVID-19 dataset utilized

No. Features Description

1 ID Patients’ ID
2 Location The locations to which patients belong
3 Country The country to which the patients belong
4 Gender Patients’ sex
5 Age Patients’ ages
6 Sym_on Patients’ date of symptoms
7 Hosp_vis The date of the patient’s visit to the hospital
8 Vis_wuhan Whether the patients have visited Wuhan
9 From_wuhan Whether the patients are from Wuhan or China
10 Symptom1 Patients’ symptoms
11 Symptom2 Patients’ symptoms
12 Symptom3 Patients’ symptoms
13 Symptom4 Patients’ symptoms
14 Symptom5 Patients’ symptoms
15 Symptom6 Patients’ symptoms

1 https:// jundo ngl. github. io/ scikit- featu re/ datas ets. html.

https://jundongl.github.io/scikit-feature/datasets.html
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all the experiments were conducted and carried out using 
a personal computer with Intel(R) Core(TM) i7-7700HQ 
with 2.80GHz CPU and 16.0 GB RAM. The proposed 
algorithms and other comparative algorithms were imple-
mented using Matlab 2022a.

Performance Measures

This study verifies the effectiveness and accuracy of the 
proposed algorithms against other comparative ones. Sev-
eral performance measures are utilized for these purposes, 
which can be defined as follows [4, 5]: 

1. Classification accuracy: This evaluation method intro-
duces the correct classification ratio of the studied cases 
in the test dataset as shown in Eq. 29. 

 where the true positive (TP) is the correctly defined 
classes; the true negative (TN) is the properly rejected 
classes; the false positive (FP) is the incorrectly identi-
fied classes; and the false negative (FN) is the incor-
rectly rejected classes.

2. Sensitivity: This metric is utilized to calculate the pro-
portion of all true positive cases in the test dataset as 
given by Eq. 30. 

3. Specificity: This metric measure was introduced to com-
pute the proportion of all true negative cases in the test 
dataset as given by Eq. 31. 

4. Fitness value: This metric measure is used to determine 
the quality of the desired solution as given by the math-
ematical formula defined in Eq. 28.

(29)Accuracy =
TP + TN

TP + TN + FP + FN

(30)Sensitivity =
TP

TP + FN

(31)Specificity =
TN

FP + TN

5. Number of selected features: This criterion is used to 
present the number of features in the desired solution.

For comparison purposes, the average results and standard 
deviations of these metric measures were obtained, where 
each algorithm was executed 30 independent times as 
aforementioned.

Evaluation of the Proposed Methods

The evaluation of the developed algorithms of CSA together 
with the original CSA for feature selection is studied in this 
section. In this, the performance levels of the proposed algo-
rithms (binary exponential CSA (BECSA), binary power 
CSA (BPCSA), and binary S-shaped CSA (BSCSA)) are 
compared with those of the binary version of the parent CSA 
(BCSA). This is necessary to specify the version of CSA 
reveals the best level of performance. Tables 4, 5, and 6 
display the results of the different variants of CSA based 
upon the following evaluation measures: (i) classification 
accuracy rates, (2) fitness values, (3) sensitivity, (4) specific-
ity, and (5) number of selected features. The average (AV) 
and standard deviation (SD) values of the results of each 
algorithm, which were performed 30 independent runs, for 
each dataset and each evaluation measure are recorded in 
Tables 4, 5, and 6. On top of that, the average ranking of 
each proposed algorithm for each evaluation measure was 
obtained using Friedman’s test and is provided in the last 
line of these tables. The best results are highlighted in bold 
to give them more weight over the other results.

Initially, the average results and standard deviations 
of the different variants of CSA in terms of classification 
accuracy and fitness values are summarized in Table 4. The 
higher average accuracy results mean better algorithm per-
formance. It can be clearly seen that the performance of 
the four variants of CSA was similar by obtaining the same 
accuracy results in 8 datasets (i.e., Breast, Prognostic, Coim-
bra, Saheart, PimaDiabetes, Leukemia, Colon, and Prostat-
eGE). In addition, the performance of BECSA, BPCSA, and 
BSCSA was better than the basic BCSA in the ILPD and 
COVID-19 datasets. Besides, BECSA performed better or 
comparable to other versions by obtaining the best accuracy 
results in 18 datasets. BSCSA obtained the best results in 14 
datasets, while BCSA achieved the best accuracy results in 
12 datasets. Surprisingly, the performance of BPCSA was 
better than or similar to other proposed versions in 11 data-
sets. On the other hand, the results of the standard deviation 
(SD) reflect the robustness of the algorithm, with the lowest 
SD results being the best. Reading the results in Table 4 once 
more, it can be shown that the proposed BECSA was more 
robust than the other variants by getting the minimum SD 
values in 17 out of the 24 datasets considered in this study. 
Finally, but not least, it can be observed that the proposed 

Table 3  Parameter settings of the developed FS methods

Parameter Setting

Number of iterations 100
Population size 30
P
bf

 , P
ef

 , Pr 0.75, 0.9, 0.1
For BCSA: a

1
 , a

2
1.5, 1.5

For BECSA, BPCSA, BSCSA: a
1
 , a

2
Adaptive

Classifier k-NN with k = 5

Number of runs 30
� and � of the fitness function 0.99 and 0.01
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Table 4  A comparison of the 
four binary variants of the CSA 
algorithm based on average 
classification accuracy and 
fitness values

Accuracy Fitness

Dataset Measure BCSA BECSA BPCSA BSCSA BCSA BECSA BPCSA BSCSA

Diagnostic AV 0.9590 0.9655 0.9649 0.9649 0.0423 0.0369 0.0375 0.0377
SD 0.0085 0.0027 0.0016 0.0016 0.0081 0.0027 0.0015 0.0016

Breast AV 0.9926 0.9926 0.9926 0.9926 0.0123 0.0123 0.0123 0.0123
SD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Prognostic AV 0.8947 0.8947 0.8947 0.8947 0.1070 0.1076 0.1079 0.1078
SD 0.0000 0.0000 0.0000 0.0000 0.0012 0.0005 0.0005 0.0005

Coimbra AV 0.9130 0.9130 0.9130 0.9130 0.0908 0.0905 0.0905 0.0905
SD 0.0000 0.0000 0.0000 0.0000 0.0005 0.0000 0.0000 0.0000

BreastEW AV 0.9912 0.9912 0.9906 0.9912 0.0132 0.0128 0.0135 0.0129
SD 0.0000 0.0000 0.0022 0.0000 0.0011 0.0004 0.0019 0.0005

Retinopathy AV 0.7123 0.7152 0.7146 0.7148 0.2889 0.2859 0.2861 0.2866
SD 0.0046 0.0032 0.0039 0.0029 0.0046 0.0024 0.0033 0.0024

Dermatology AV 0.9920 0.9967 0.9930 0.9958 0.0122 0.0080 0.0115 0.0091
SD 0.0071 0.0061 0.0072 0.0066 0.0062 0.0055 0.0065 0.0058

ILPD AV 0.7557 0.7565 0.7565 0.7565 0.2453 0.2440 0.2440 0.2440
SD 0.0027 0.0000 0.0000 0.0000 0.0031 0.0000 0.0000 0.0000

Lymphography AV 0.9448 0.9506 0.9448 0.9529 0.0595 0.0539 0.0594 0.0519
SD 0.0172 0.0174 0.0172 0.0169 0.0162 0.0163 0.0162 0.0158

Parkinsons AV 0.9778 0.9803 0.9829 0.9829 0.0227 0.0212 0.0189 0.0189
SD 0.0089 0.0110 0.0123 0.0123 0.0084 0.0100 0.0114 0.0114

ParkinsonC AV 0.8022 0.8150 0.8009 0.8035 0.1982 0.1880 0.2020 0.1994
SD 0.0346 0.0197 0.0209 0.0229 0.0340 0.0195 0.0207 0.0226

SPECT AV 0.8805 0.8786 0.8792 0.8792 0.1225 0.1245 0.1240 0.1237
SD 0.0114 0.0095 0.0094 0.0117 0.0116 0.0092 0.0089 0.0113

Cleveland AV 0.6017 0.6096 0.6085 0.6102 0.3980 0.3891 0.3905 0.3884
SD 0.0116 0.0031 0.0052 0.0000 0.0127 0.0038 0.0060 0.0003

HeartEW AV 0.8951 0.9062 0.9031 0.9012 0.1072 0.0966 0.0995 0.1012
SD 0.0156 0.0047 0.0080 0.0101 0.0151 0.0043 0.0073 0.0095

Hepatitis AV 0.9375 0.9479 0.9438 0.9458 0.0631 0.0534 0.0577 0.0556
SD 0.0000 0.0237 0.0191 0.0216 0.0006 0.0226 0.0182 0.0208

Saheart AV 0.7065 0.7065 0.7065 0.7065 0.2939 0.2939 0.2939 0.2939
SD 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

Spectfheart AV 0.9170 0.9120 0.9145 0.9132 0.0867 0.0913 0.0890 0.0903
SD 0.0161 0.0114 0.0129 0.0117 0.0165 0.0112 0.0124 0.0116

Thyroid AV 0.9911 0.9908 0.9903 0.9906 0.0111 0.0122 0.0133 0.0127
SD 0.0013 0.0008 0.0011 0.0007 0.0011 0.0009 0.0011 0.0009

Heart AV 0.8778 0.8889 0.8867 0.8878 0.1248 0.1141 0.1162 0.1152
SD 0.0160 0.0160 0.0166 0.0163 0.0152 0.0151 0.0157 0.0154

PimaDiabetes AV 0.7451 0.7451 0.7451 0.7451 0.2574 0.2574 0.2574 0.2574
SD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Leukemia AV 1.0000 1.0000 1.0000 1.0000 0.0012 0.0047 0.0048 0.0048
SD 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

Colon AV 0.9167 0.9167 0.9167 0.9167 0.0835 0.0870 0.0870 0.0870
SD 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

ProstateGE AV 0.9000 0.9000 0.9000 0.9000 0.1004 0.1038 0.1038 0.1038
SD 0.0000 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000

COVID-19 AV 0.9589 0.9593 0.9593 0.9593 0.0430 0.0427 0.0434 0.0431
SD 0.0015 0.0000 0.0000 0.0000 0.0018 0.0007 0.0011 0.0008

Avg. Rankings 2.979 2.083 2.708 2.229 2.792 1.875 2.854 2.479
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BECSA ranked first by having the minimum average rank-
ing using Friedman’s test, while BSCSA and BPCSA ranked 
second and third, respectively. BCSA was ranked last by 
having the largest average rankings. This proves the effi-
ciency of the proposed changes to the main structure of the 
original CSA while favoring the proposed BECSA.

Figure 5 shows the average accuracy results of the four 
variants of CSA in all datasets using a radar chart. The shape 
with the larger area indicates that the algorithm obtains 
higher accuracy results and thus better performance. Obvi-
ously, the proposed BECSA, BPCSA, and BSCSA have 
almost the same scheme; however, there are slight differ-
ences between the BECSA, BPCSA, BSCSA, and BCSA 
algorithms.

The average fitness values and standard derivations of 
the four variants of CSA are presented in Table 4. A lower 
fitness value indicates better performance. From Table 4, it 
can be seen that the four variants got the same best results 
in the Breast, Saheart, and PimaDiabetes datasets. In addi-
tion, BECSA, BPCSA, and BSCSA obtained the same best 
fitness figures that are better than BCSA in the Coimbra and 
ILPD datasets. Besides, BECSA performed better or similar 
to the other variants by having the best results in 14 datasets. 
BCSA comes in second with the best results in 10 datasets. 
BSCSA and BPCSA came in third and fourth with the best 
results in 8 and 6 datasets, respectively. In the same vein, 
it can be observed that BECSA performed more robustly 

than other competitors by having the lowest SD values in 
18 out of 24 datasets. Reading the results given in Table 4 
one more time, one can see that the proposed BECSA was 
ranked first by getting the minimum average rankings using 
Friedman’s test. As per this, BSCSA, BCSA, and PBSCA 
ranked second, third, and fourth, respectively.

Figure 6 shows the convergence behavior of the pro-
posed BCSA, BECSA, BPCSA, and BSCSA according to 
the fitness results. In these plots, the x-axis reflects the 
number of iterations, while the y-axis represents the fit-
ness values. The convergence behavior of the best solu-
tion obtained by each algorithm over 30 independent runs 
is illustrated in these plots. The preferred algorithm is 
the one that culminates the minimum fitness results with 
few iterations and at the same time does not get stuck in 
local optima. From Fig. 6, it can be noticed that there are 
slight differences between the behavior of the four pro-
posed algorithms when navigating the search space of each 
problem. This is due to how well the algorithm balances 
exploitation and exploration capabilities. Upon examining 
the plots in Fig. 6 again, it can be viewed that the conver-
gence conducts of the four proposed algorithms are nearly 
identical in the first 50 iterations in the Coimbra, Breast, 
ILPD, PimaDiabetes, and Saheart datasets. The conver-
gence behavior of the four proposed companions becomes 
identical after half of the iterations in BreastEW, Retinopa-
thy, Dermatology, Lymphography, Cleveland, HeartEW, 

Fig. 5  Radar graph for BCSA, 
BECSA, BPCSA, and BSCSA 
based on the average classifi-
cation accuracy results for all 
datasets
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Fig. 6  Convergence characteristic curves of BCSA, BECSA, BPCSA, and BSCSA for all studied datasets
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Table 5  A comparison of the 
four binary variants of the CSA 
algorithm in terms of sensitivity 
and specificity values

Sensitivity Specificity

Dataset Measure BCSA BECSA BPCSA BSCSA BCSA BECSA BPCSA BSCSA

Diagnostic AV 0.8801 0.8963 0.8805 0.8749 0.9625 0.9703 0.9663 0.9649
SD 0.0497 0.0413 0.0418 0.0461 0.0223 0.0260 0.0245 0.0194

Breast AV 0.9877 0.9919 0.9903 0.9904 0.9988 0.9934 0.9957 0.9955
SD 0.0035 0.0068 0.0060 0.0060 0.0045 0.0083 0.0072 0.0076

Prognostic AV 0.3214 0.2714 0.3201 0.3125 0.8932 0.9207 0.9068 0.9000
SD 0.1508 0.1269 0.1441 0.1836 0.0692 0.0489 0.0558 0.0592

Coimbra AV 0.7332 0.7225 0.6691 0.6695 0.7923 0.8202 0.8199 0.8133
SD 0.1177 0.1178 0.1103 0.1534 0.1066 0.0979 0.1190 0.1133

BreastEW AV 0.9579 0.9454 0.9456 0.9511 0.9220 0.9323 0.9219 0.9281
SD 0.0238 0.0234 0.0266 0.0256 0.0408 0.0457 0.0499 0.0453

Retinopathy AV 0.6465 0.6773 0.6624 0.6506 0.6828 0.6961 0.6836 0.6955
SD 0.0469 0.0500 0.0347 0.0484 0.0467 0.0495 0.0543 0.0455

Dermatology AV 0.9909 0.9909 0.9908 0.9888 0.9073 0.9399 0.9263 0.9340
SD 0.0188 0.0209 0.0217 0.0245 0.0482 0.0456 0.0296 0.0499

ILPD AV 0.8400 0.8447 0.8356 0.8381 0.3097 0.2757 0.2755 0.2625
SD 0.0508 0.0488 0.0406 0.0494 0.0991 0.0774 0.1006 0.0705

Lymphography AV 0.6541 0.5263 0.6453 0.5900 0.8771 0.8663 0.8779 0.8892
SD 0.4712 0.5011 0.4651 0.4906 0.0729 0.0711 0.0668 0.0609

Parkinsons AV 0.9075 0.9240 0.9214 0.9154 0.5785 0.5812 0.5710 0.5242
SD 0.0578 0.0482 0.0493 0.0638 0.1538 0.1931 0.1424 0.2274

ParkinsonC AV 0.8823 0.9007 0.8870 0.8871 0.3262 0.4038 0.3642 0.3889
SD 0.0282 0.0345 0.0304 0.0377 0.1219 0.0847 0.0676 0.1003

SPECT AV 0.5953 0.5814 0.6100 0.6274 0.7408 0.7537 0.7512 0.7946
SD 0.1186 0.1094 0.1246 0.1141 0.1183 0.0983 0.1390 0.1071

Cleveland AV 0.1779 0.1735 0.1488 0.1652 0.6516 0.6642 0.6611 0.6682
SD 0.0828 0.1428 0.0981 0.1168 0.0587 0.0715 0.0632 0.0652

HeartEW AV 0.8788 0.8807 0.8470 0.8547 0.7139 0.7481 0.7215 0.7374
SD 0.0652 0.0673 0.0651 0.0816 0.1234 0.0964 0.1099 0.1056

Hepatitis AV 0.3337 0.2586 0.2282 0.2456 0.9583 0.9535 0.9531 0.9640
SD 0.3451 0.3351 0.3433 0.3365 0.0529 0.1029 0.0567 0.0482

Saheart AV 0.2964 0.2798 0.2725 0.2659 0.7623 0.7833 0.7842 0.7798
SD 0.0797 0.0761 0.0879 0.0650 0.0516 0.0471 0.0591 0.0451

Spectfheart AV 0.8723 0.8701 0.8738 0.8468 0.4145 0.4380 0.4354 0.4353
SD 0.0499 0.0543 0.0662 0.0750 0.1639 0.1685 0.1699 0.1547

Thyroid AV 0.6909 0.7042 0.6883 0.6966 0.9876 0.9872 0.9860 0.9873
SD 0.0926 0.1003 0.0941 0.0726 0.0031 0.0036 0.0029 0.0037

Heart AV 0.9280 0.9396 0.9342 0.9462 0.6416 0.6238 0.6438 0.6216
SD 0.0478 0.0462 0.0441 0.0434 0.1307 0.1143 0.1251 0.0951

PimaDiabetes AV 0.4973 0.4791 0.5202 0.4885 0.8008 0.8203 0.7859 0.8058
SD 0.0630 0.0550 0.0530 0.0651 0.0318 0.0314 0.0413 0.0396

Leukemia AV 0.7610 0.6932 0.7980 0.7534 0.9735 0.9782 0.9474 0.9720
SD 0.1685 0.2449 0.1708 0.1970 0.0449 0.0452 0.0650 0.0476

Colon AV 0.5633 0.5972 0.5340 0.6252 0.8640 0.8328 0.8987 0.8154
SD 0.2570 0.2216 0.2931 0.2288 0.1201 0.1669 0.1364 0.1495

ProstateGE AV 0.8216 0.8305 0.8646 0.8313 0.8198 0.8487 0.8373 0.8455
SD 0.1309 0.1214 0.0884 0.1553 0.1264 0.1178 0.1197 0.0968

COVID-19 AV 0.5997 0.6161 0.5984 0.6010 0.9794 0.9788 0.9790 0.9777
SD 0.0928 0.1144 0.1027 0.0937 0.0108 0.0109 0.0151 0.0123

Avg. Rankings 2.333 2.333 2.708 2.625 2.958 1.833 2.667 2.542
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Thyroid, and Heart. The convergence behavior of the four 
algorithms is not identical in most iterations and becomes 
indistinguishable in the last few iterations as shown in the 
plots of Spectfheart and COVID-19 datasets. However, the 
convergence behavior of the proposed BECSA is superior 
to others in the Parkinsons, Prognostic, and Hepatitis data-
sets. Finally, the convergence conduct of BCSA is better 
than the other variants in the Leukemia, Colon, Prostat-
eGE, ParkinsonC, and SPECT datasets. It should be dis-
tinguished that the performance of the proposed BECSA 
is better than BCSA in terms of average fitness values in 
these datasets as displayed in Table 4.

The average sensitivity and specificity results as well 
as the standard derivations of the four proposed binary 
variants of CSA are given in Table 5. Higher sensitivity 
and specificity indicate better performance. According to 
the sensitivity results, it can be clearly seen that BCSA 
got the best sensitivity results in 9 datasets, while BECSA 
acquired the best sensitivity results in 8 datasets. BPCSA 
achieved the best sensitivity results in 4 datasets, while 
BSCSA ranked last by having the best scores in 3 datasets. 
Therefore, both BCSA and ECSA were ranked first by hav-
ing the same minimum average ranking using Friedman’s 
test, while the remaining two variants came in the last two 
rankings. When reading the sensitivity results again, it can 
be noticed that the performance of BCSA, BECSA, and 
BPCSA is almost the same as per the SD results, while the 
performance of these three algorithms was better than that 
of the basic BSCSA.

The specificity outcomes of the developed binary ver-
sions of CSA are recorded in Table 5. Apparently, BECSA 
performed better than or similar to the other variants by 
having the best specificity scores in 13 out of 24 data-
sets. BCSA and BSCSA came in second place with each 
having the best specificity results in 4 datasets. BPCSA 
finally came out with the best results in 3 datasets. In 
the same vein, BECSA ranked first by obtaining the 
minimum average ranking using Friedman’s test, while 
BSCSA, BPCSA, and BCSA ranked second, third, and 
fourth, respectively.

Finally, the average number of selected features and 
standard derivations of the four variants of CSA are pre-
sented in Table 6. It is worthy to note that the minimum 
average of the selected features points out a better per-
formance score. From Table 6, it can be seen that BCSA 
obtained the lowest average of the number of selected 
features in 15 out of 24 datasets. At the same time, each 
algorithm of the remaining variants got the lowest average 
of the selected features in 7 datasets. Additionally, BCSA 
is placed first by achieving the minimum average ranking 
using Friedman’s test, while BECSA is ranked second. 
BPCSA was placed third using Friedman’s test, and finally, 
BSCSA ranked last.

Table 6  A comparison of the four binary variants of the CSA algo-
rithm in terms of the number of selected features

Dataset Measure BCSA BECSA BPCSA BSCSA

Diagnostic AV 5.30 8.47 8.37 9.03
SD 3.42 1.74 1.54 1.16

Breast AV 5.00 5.00 5.00 5.00
SD 0.00 0.00 0.00 0.00

Prognostic AV 9.47 11.67 12.67 12.37
SD 4.01 1.65 1.63 1.65

Coimbra AV 4.27 4.00 4.00 4.00
SD 0.45 0.00 0.00 0.00

BreastEW AV 13.43 12.20 12.60 12.43
SD 3.35 1.30 1.65 1.57

Retinopathy AV 7.80 7.50 6.87 8.03
SD 2.44 2.22 2.05 1.92

Dermatology AV 14.50 16.07 15.30 16.67
SD 4.51 3.19 2.87 3.22

ILPD AV 3.37 3.00 3.00 3.00
SD 0.67 0.00 0.00 0.00

Lymphography AV 8.73 8.93 8.60 9.40
SD 1.86 1.96 1.75 2.04

Parkinsons AV 1.43 3.90 4.33 4.33
SD 1.04 2.23 1.94 2.04

ParkinsonC AV 177.47 367.17 367.07 366.43
SD 64.22 15.01 14.41 11.13

SPECT AV 9.30 9.47 9.83 9.10
SD 2.51 1.76 2.09 1.58

Cleveland AV 4.73 3.33 3.70 3.27
SD 2.30 0.96 1.34 0.45

HeartEW AV 4.30 4.87 4.57 4.47
SD 1.12 0.51 0.82 0.86

Hepatitis AV 2.30 3.50 3.77 3.70
SD 1.06 1.68 1.45 1.29

Saheart AV 3.03 3.00 3.00 3.00
SD 0.18 0.00 0.00 0.00

Spectfheart AV 19.80 18.27 19.17 19.20
SD 5.54 2.92 3.90 3.18

Thyroid AV 4.87 6.47 7.73 7.17
SD 0.57 1.11 1.34 1.49

Heart AV 4.90 5.33 5.23 5.27
SD 1.09 0.96 0.97 0.98

PimaDiabetes AV 4.00 4.00 4.00 4.00
SD 0.00 0.00 0.00 0.00

Leukemia AV 878.53 3347.43 3365.70 3365.20
SD 170.66 13.62 13.58 9.80

Colon AV 206.10 902.07 906.43 907.50
SD 27.16 6.50 8.33 7.51

ProstateGE AV 841.50 2842.37 2843.30 2843.70
SD 106.92 10.29 13.04 13.67

COVID-19 AV 3.30 3.43 4.40 3.93
SD 0.79 0.94 1.59 1.17

Avg. Rankings 2.042 2.375 2.771 2.812
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Discussion of the Results

As evidenced by a second reading of the findings in Table 4, 
BECSA exclusively outperformed its competitors in respect 
of the accuracy it obtained in 7 out of the 24 problems and 
had the highest accuracy rate in an overall of 18 problems. 
Similar to this, BPCSA, BSCSA, and BCSA were exclu-
sively best in 0, 2, and 3 problems, respectively, and had the 
greatest accuracies in 11, 14, and 12 problems, respectively. 
It is evident that BECSA, BPCSA, BSCSA, and BCSA 
achieved the optimum accuracy in one dataset, namely, Leu-
kemia, with a value of 100% . In addition, BECSA achieved 
accuracy rates near to 100% in other datasets, including 
Diagnostic, Breast, BreastEW, Dermatology, and Thyroid. 
In these datasets, BECSA performed quite well, consistently 
locating a solution close to the near-optimal solution over 
30 independent runs. In the Dermatology dataset, BPCSA 
achieved an accuracy value of 99.30% , whereas BCSA, 
BECSA, and BSCSA earned accuracy values of 99.20% , 
99.67% , and 99.58% , respectively. For the Diagnostic data-
set, BPCSA and BSCSA obtained an accuracy of 96.49% , 
while BECSA has obtained an accuracy of 96.55% . BSCSA 
was exclusive to obtain an accuracy rate of 95.29% in the 
Lymphography dataset, and BCSA arrived at an accuracy 
rate of 88.05% exclusively in the SPECT dataset. BCSA 
has the greatest accuracy in the Spectfheart, coming up at 
91.70% , while BECSA, BPCSA, and BSCSA have accuracy 
values of 91.20% , 91.45% , and 91.32% , respectively. In the 
Thyroid dataset, BCSA has the greatest accuracy, coming in 
at 99.11% , while BECSA, BPCSA, and BSCSA have accu-
racy rates of 99.08% , 99.03% , and 99.06% , respectively. For 
COVID-19, the proposed BECSA, BSCSA, and BPCSA 
achieved a classification rate of 95.93% , where BCSA has 
realized a classification rate 95.89% . Furthermore, BCSA 
has an SD of 0.0015, while the others have an SD value of 
0.0000. Retinopathy, ILPD, Cleveland, Saheart, and Pima-
Diabetess were among the datasets for which it was chal-
lenging to obtain accuracy levels near to 80% . This can be 
attributed to the difficult nature of these problems. Hav-
ing said that, as we shall show in a moment, the proposed 
BECSA algorithm attained accuracy levels that were on par 
with or better than those reported in the literature. In terms 
of best outcomes, BECSA is able to obtain good solutions 
for all datasets under consideration, with the exception of 
the Cleveland dataset, where the performance was subpar 
which is 60.96% . This insinuates that BECSA is stuck in 
the local optimum solution, which, although not the best 
solution to this problem, is nonetheless not far from that 
best solution. In the Breast, Prognostic, Coimbra, ILPD, 
Saheart, Leukemia, PimaDiabetes, ProstateGE, COVID-
19, and Colon datasets, the proposed BECSA, BSCSA, and 
BPCSA have the lowest standard deviations with a value of 
0.0000. These findings support the effectiveness of BECSA, 

BSCSA, and BPCSA in achieving appropriate exploration 
and exploitation in addition to a proper balance between 
these two features.

The developed binary methods of CSA for FS problems 
have the goal of lowering the fitness scores produced by 
the criterion defined in Eq. 28. This is shown as the aver-
age fitness values in Table 4, which also includes the aver-
ages and standard deviations of the standard and developed 
algorithms of CSA over 30 independent runs for each of 
the 24 FS problems. Overall, Table 4 shows that BECSA is 
capable of finding the global optimal solution constantly and 
exclusively in 9 datasets and achieving the best fitness out-
comes in an overall of 13 datasets. Evidently, it came in the 
first place by getting these outcomes. BCSA came in second 
place by getting the lowest average fitness values in seven 
problems and the lowest fitness scores over a number of ten 
datasets. The third place was kept for BSCSA, with best 
exclusive fitness values in 2 datasets and best fitness values 
in an overall of 8 problems. BPCSA was placed last, with no 
unique best fitness results in any dataset and best fitness out-
comes in an overall of 6 datasets. For the Retinopathy, ILPD, 
Saheart, and PimaDiabetes datasets, although best solutions 
were not constantly found, the outcomes got are not far from 
the global optimum solution which can be substantiated by 
the very humble standard deviations obtained. BECSA had 
the best obtained fitness score of 0.0212 for the Parkinsons 
data set. This value is not too far from the values obtained 
by BPCSA and BSCSA where the values got by these two 
algorithms were 0.0189. For the Hepatitis dataset, BECSA 
revealed the best fitness of 0.0534, while BCSA, BSCSA, 
and BPCSA showed comparable small fitness values of 
0.0631, 0.0556, and 0.0577, respectively.

It is important to note that higher sensitivity values cor-
respond to higher levels of performance. Table 5 reveals that 
BECSA ranked first by having the top exclusive sensitivity 
findings across 9 of the 24 datasets. The BCSA algorithm 
came second by providing the highest exclusive sensitiv-
ity findings in 7 datasets (Prognostic, Coimbra, BreastEW, 
Lymphography, Cleveland, Hepatitis, and Saheart) and had 
the highest sensitivity outcomes in an overall of 8 problems, 
the eighth of which being the Dermatology dataset. BPCSA 
appeared in third place with best exclusive sensitivity out-
comes in 4 problems, that is, Spectfheart, PimaDiabetes, 
Leukemia, and ProstateGE, whereas BSCSA appeared in 
the last place with best exclusive sensitivity outcomes only 
in 3 datasets, that is, SPECT, Heart, and Colon. Addition-
ally, a sensitivity value of 99.09% was reported by both 
of BCSA and BECSA, compared to 99.08% and 98.88% 
reported by BPCSA and BSCSA for the Dermatology data-
set, respectively. BCSA obtained an exclusive sensitivity 
result of 73.32% for the Coimbra dataset, while BECSA, 
BSCSA, and BPCSA recorded sensitivity values of 72.25% , 
66.91% , and 66.95% , respectively. Returning to Table 5, one 
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can emphasize that there is a relatively large discrepancy 
between the findings produced by BCSA and those recorded 
by its developed partners.

Table 5 shows the specificity findings of the fundamental 
binary and proposed binary versions of CSA in relation to 
their average and standard deviation outcomes. It is obvi-
ous that BECSA emerged in the first place where it got the 
best exclusive specificity outcomes in 13 datasets. This 
binary variant of CSA is successively followed by BCSA, 
BSCSA, and BPCSA, with these versions had the best exclu-
sive specificity results in 4, 4, and 3 datasets, respectively. 
There is only a slight difference between the results of these 
versions arrived at for the Breast, Lymphography, Cleve-
land, Hepatitis, Thyroid, Leukemia, and COVID-19 data-
sets. For the Coimbra dataset, there is an extremely little 
difference between the specificity result got by BECSA and 
that got by BPCSA, with the former having a specificity 
value of 82.02% and the latter having a specificity score of 
81.99% . For the Diagnostic dataset, the proposed BECSA 
and BPCSA algorithms reported specificity values of 97.03% 
and 96.63% , respectively, while BCSA and BSCSA reported 
specificity values of 96.25% and 96.49% , respectively. There 
are either zero or almost zero values for the SD results in 
Table 5, which indicates the robustness of the proposed FS 
methods.

The average number of features got in the classification 
of 24 datasets for each of the binary algorithms proposed for 
CSA is presented in Table 6. Comparison of the four pro-
posed FS methods in Table 6 reveals a significant difference 
in the results. BCSA was the most beneficial FS method in 
reducing the features need for classification, where, com-
pared to the other algorithms, the average number of attrib-
utes that were selected was the fewest. BCSA has the exclu-
sive fewest number of features in 13 out of 24 datasets, with 
an overall of lowest average number of selected features is 
in 15 datasets. BECSA has the exclusive minimal number 
of features in the BreastEW and Spectfheart datasets, shared 
the minimal number of chosen features for the Breast and 
PimaDiabetes datasets with BCSA, BPCSA, and BSCSA, 
and shared the minimum number of selected features for 
Coimbra, ILPD, Saheart with BPCSA and BSCSA. The pro-
posed BPCSA exclusively captured the minimum number 
of features in the Retinopathy and Lymphography datasets, 
and BSCSA exclusively captured the minimum number of 
features in the SPECT and Cleveland datasets.

Finally, it is preferable to determine the relative per-
formance of one or all of the developed FS methods when 
their performance levels are compared to those of other FS 
methods. This is because the absolute performance of the 
proposed FS methods compared to each other is not fair to 
grade these methods. In this, it is clear from a review of the 
results in Tables 4, 5, and 6 that BECSA beat all competing 
algorithms in all evaluation criteria. Because of this, the 

outcomes of both the basic BCSA and the proposed BECSA 
are compared with those of widely used algorithms stated 
in the pertinent literature, as presented later in a subsection 
below.

Limitations of the Proposed Methods

Although the proposed FS algorithms of CSA have shown 
outstanding performance levels in addressing low, medium, 
and high-dimensional FS problems in binary search spaces, 
they do not guarantee overall optimality. Furthermore, for 
several datasets including Retinopathy, ILPD, Cleveland, 
Saheart, and PimaDiabetes, the classification accuracy, 
sensitivity, and specificity rates were essentially modest. 
The corresponding fitness values for these datasets on the 
basis of the proposed FS methods are not small to the extent 
required. According to this, the proposed FS algorithms have 
some limitations, such as falling into local optimal values or 
departing from the global optimal solution, which impacts 
how well they perform when tackling complex FS problems 
with a large number of features and dimensions. Besides, 
the number of features selected by the proposed FS in some 
datasets methods for the classification tasks is reasonable 
and is not better than that of the basic binary version of CSA. 
Despite having good performance in the majority of the test 
FS problems, the proposed FS methods may experience poor 
convergence rates and may become stuck in the local opti-
mum in certain datasets, such as in the case of the Cleve-
land dataset. The sensitivity and specificity results for some 
datasets such as Retinopathy, Lymphography, SPECT, and 
Cleveland are not as large as needed. In order to cope with 
these limitations, more works on how to make the proposed 
FS methods perform better may be considered. By enhanc-
ing these proposed algorithms’ exploration and exploitation 
capabilities within the binary search spaces of the relevant 
datasets, these issues might be avoided.

Sensitivity Analysis

A thorough sensitivity analysis based on the Design of 
Experiment (DoE) technique was carried out in order to pin-
point the best parameter settings of the proposed FS methods 
by which the experimental results can be greatly affected. 
The proposed FS methods that employ k-NN as a classi-
fier used DoE to examine the sensitivity of the key control 
parameters ( �0 , and �1 ). The ranges of the key control param-
eters were first established, and the values of these param-
eters were defined to assess if the best values fell within 
the range or whether more experiments were required. The 
experiments using FS methods then employed a parameter 
with one input of the generated DoE values in the designated 
range, leaving the other parameters at their starting values. 
These experiments were performed in a systematic manner 
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in order to study the influence of the input parameters on 
the accuracy level of the proposed binary algorithms and to 
arrive at a sensible solution. In this situation, a comprehen-
sive analysis was conducted using the previously indicated 
parameters, and the average classification accuracy was 
obtained for each experiment for each proposed FS method 
for all datasets. The values of each parameter used in this 
experimental analysis are as follows: (1) the control param-
eters for BECSA are identified to be �0 = 0.5, 1.0, 1.5, 2.0 
and �1 = 0.5, 1.0, 1.5, 2.0; (2) the control parameters for 
BPCSA are identified to be �0 = 0.5, 1.0, 1.5, 2.0 and �1 = 
0.1, 0.3, 0.5, 1.0; (3) the control parameters of BSCSA are 
identified to be �0 = 0.5, 1.0, 1.5, 2.0 and �1 = 0.5, 1.0, 1.5, 
2.0. The number of capuchins and the maximum iterations 
in this study were set to 100 and 30, respectively, correlated 
with 30 separate runs.

1. The control parameters �0 and �1 of BECSA: the pro-
posed BECSA was tested for various values of the 
parameters �0 and �1 . The average classification accu-
racy of BECSA with different values for �0 and �1 when 
employed to solve the feature selection problems under 
investigation, with the other parameters left intact, is 
shown in Table 7. The computational results in Table 7 
show that BECSA presented the best classification rates 
when the parameters �0 and �1 of BECSA are equal to 
2.0 and 1.0, respectively. This demonstrates the signifi-
cance of employing a sensible range of these crucial 
parameters to augment the robustness of BECSA.

2. The control parameters �0 and �1 of BPCSA: the pro-
posed BPCSA was tested for a variety of range values 
of �0 and �1 . Table 8 displays the average classification 
accuracy rate of BPCSA when applied to the feature 
selection problems under study, while the other param-
eters were left unchanged. The optimal classification 
accuracy for BPCSA is obvious from Table 8 when the 
values of the parameters �0 and �1 are equal to 2.0 and 
0.1, respectively. This highlights the need to study the 
BPCSA’s sensitivity to various values of this parameter.

3. The control parameters �0 and �1 of BECSA: the pro-
posed BSCSA was tested for a variety values of the 
parameters �0 and �1 . The average classification accu-
racy of BECSA when applied to the 24 feature selection 
problems under study, with varying the values of �0 and 
�1 and with all other parameter values left unaltered, is 
shown in Table 9. Table 9 clearly shows that the clas-
sification accuracy results on the basis of the values 
of �0 and �1 change considerably, demonstrating how 
sensitive the BSCSA is to these parameters. Addition-
ally, it should be noted that the values of �0 and �1 were 
adjusted to 2.0 and 1.0, respectively, for BSCSA to pro-
duce the optimal classification accuracy.

The most sensitive values out of all those provided in 
Tables 7, 8, and 9 were chosen after sensitivity analysis. As 
mentioned, while addressing feature selection problems, the 
classification accuracy of the proposed BECSA, BPCSA, 
and BSCSA can be impacted by different values of the 
parameters �0 and �1 . For datasets with different degrees of 
dimensionality, the standard deviation values of the classi-
fication accuracy of BECSA, BPCSA, and BSCSA are low, 
indicating that these proposed methods are almost stable to 
changes in the relevant control parameters for each corre-
sponding method. In sum, the findings in Tables 7, 8, and 9 
demonstrate that BECSA, BPCSA, and BSCSA are usually 
quite sensitive to the parameter settings of �0 and �1.

Performance Comparison with Other Methods

To study the performance of the proposed BECSA in depth, 
its findings on FS problems were compared with those of 
standard BCSA and other FS methods, namely, Binary 
Biogeography-Based Optimization (BBBO) [56], Binary 
Moth-Flame Optimization (BMFO) algorithm [57], Binary 
Teaching-Learning-Based Optimization (BTLBO) [58], 
Binary Success-History based Adaptive Differential Evo-
lution with Linear population size reduction (BLSHADE) 
[59], Binary Particle Swarm Optimization (BPSO) [60], 
Binary Ali Baba and the Forty Thieves (BAFT) algorithm 
[1], and Binary Honey Badger Algorithm (BHBA) [61]. 
Not only were the details of the experimental results pro-
vided in this comparison, but also an in-depth and careful 
comparison with those comparative optimization methods 
was made. The same experimental conditions, including 
maximum number of iterations and population size, were 
applied to all of the examined FS methods in order to make 
an equitable comparison of the proposed BECSA with the 
comparative optimization methods. Table 10 contains the 
parameter settings for each of the competing algorithms.

The experimental runs were performed 30 times in 
total, independently, to get statistically meaningful find-
ings. Based on the overall capabilities and findings reached 
throughout these runs, the statistical results were then 
obtained. The number of attributes in each dataset is the 
same as the dimension of each associated dataset. Classifi-
cation accuracy, sensitivity, specificity, fitness values, and 
number of selected features were used to evaluate the perfor-
mance of the proposed BECSA, and this performance was 
compared to the performance of other methods in terms of 
all the above criteria. The best outcomes are highlighted in 
bold in all comparison tables to give them more weight than 
the other findings. In Table 11, the average classification 
accuracy results for the basic BCSA, the proposed BECSA, 
and other competing methods are tabulated along with their 
respective standard derivation results.
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Table 7  Classification accuracy 
of BECSA using different 
values of �

0
 and �

1
 with the 

k-NN classifier

Dataset Measure �
0
= 0.5 �

0
= 1.0 �

0
= 1.5 �

0
= 2.0 �

1
= 0.5 �

1
= 1.0 �

1
= 1.5 �

1
= 2.0

Diagnostic AV 0.7787 0.8149 0.8401 0.9645 0.7305 0.9559 0.8476 0.6759
SD 0.0032 0.0032 0.0027 0.0033 0.0032 0.0032 0.0027 0.0031

Breast AV 0.8006 0.8377 0.8637 0.9916 0.7510 0.9828 0.8714 0.6948
SD 0.0036 0.0033 0.0030 0.0011 0.0041 0.0017 0.0031 0.0023

Prognostic AV 0.7216 0.7551 0.7785 0.8938 0.6769 0.8858 0.7854 0.6263
SD 0.0039 0.0033 0.0036 0.0032 0.0027 0.0019 0.0024 0.0027

Coimbra AV 0.7364 0.7706 0.7944 0.9121 0.6907 0.9040 0.8015 0.6391
SD 0.0037 0.0034 0.0035 0.0022 0.0043 0.0024 0.0029 0.0045

BreastEW AV 0.7995 0.8366 0.8624 0.9902 0.7499 0.9814 0.8702 0.6938
SD 0.0038 0.0035 0.0033 0.0029 0.0011 0.0120 0.0018 0.0100

Retinopathy AV 0.5769 0.6036 0.6223 0.7145 0.5411 0.7081 0.6279 0.5006
SD 0.0038 0.0038 0.0032 0.0039 0.0038 0.0038 0.0032 0.0037

Dermatology AV 0.8039 0.8412 0.8672 0.9957 0.7541 0.9868 0.8750 0.6977
SD 0.0073 0.0073 0.0061 0.0074 0.0072 0.0072 0.0061 0.0071

ILPD AV 0.6102 0.6385 0.6582 0.7557 0.5723 0.7490 0.6641 0.5296
SD 0.0121 0.0114 0.0114 0.0100 0.0219 0.0123 0.0201 0.0223

Lymphography AV 0.7667 0.8023 0.8271 0.9496 0.7192 0.9412 0.8345 0.6654
SD 0.0209 0.0209 0.0174 0.0211 0.0207 0.0205 0.0174 0.0203

Parkinsons AV 0.7907 0.8274 0.8529 0.9793 0.7417 0.9706 0.8606 0.6862
SD 0.0132 0.0132 0.0110 0.0133 0.0131 0.0130 0.0110 0.0128

ParkinsonC AV 0.6574 0.6878 0.7091 0.8142 0.6166 0.8069 0.7155 0.5705
SD 0.0236 0.0236 0.0197 0.0239 0.0234 0.0232 0.0197 0.0230

SPECT AV 0.7087 0.7415 0.7645 0.8777 0.6647 0.8699 0.7713 0.6150
SD 0.0114 0.0114 0.0095 0.0115 0.0113 0.0112 0.0095 0.0111

Cleveland AV 0.4917 0.5145 0.5304 0.6090 0.4612 0.6036 0.5352 0.4267
SD 0.0037 0.0037 0.0031 0.0038 0.0037 0.0037 0.0031 0.0036

HeartEW AV 0.7309 0.7648 0.7885 0.9053 0.6856 0.8972 0.7955 0.6343
SD 0.0056 0.0056 0.0047 0.0057 0.0056 0.0055 0.0047 0.0055

Hepatitis AV 0.7645 0.8000 0.8248 0.9469 0.7172 0.9385 0.8321 0.6635
SD 0.0284 0.0284 0.0238 0.0287 0.0281 0.0279 0.0237 0.0276

Saheart AV 0.5698 0.5963 0.6147 0.7058 0.5345 0.6995 0.6202 0.4946
SD 0.0241 0.0238 0.0228 0.0198 0.0281 0.0198 0.0187 0.0309

Spectfheart AV 0.7356 0.7697 0.7935 0.9111 0.6900 0.9030 0.8006 0.6384
SD 0.0137 0.0137 0.0114 0.0138 0.0135 0.0134 0.0114 0.0133

Thyroid AV 0.7991 0.8362 0.8621 0.9898 0.7496 0.9810 0.8698 0.6936
SD 0.0010 0.0010 0.0008 0.0010 0.0009 0.0009 0.0008 0.0009

Heart AV 0.7170 0.7502 0.7734 0.8880 0.6725 0.8801 0.7803 0.6222
SD 0.0192 0.0192 0.0160 0.0194 0.0190 0.0188 0.0160 0.0186

PimaDiabetes AV 0.6010 0.6288 0.6483 0.7443 0.5637 0.7377 0.6541 0.5216
SD 0.0238 0.0229 0.218 0.0187 0.0252 0.0189 0.0210 0.0278

Leukemia AV 0.8066 0.8440 0.8701 0.9990 0.7566 0.9901 0.8779 0.7000
SD 0.0045 0.0038 0.0030 0.0035 0.0009 0.0023 0.0013 0.0018

Colon AV 0.7394 0.7737 0.7976 0.9158 0.6935 0.9076 0.8048 0.6417
SD 0.0043 0.0040 0.0038 0.0012 0.0048 0.0015 0.0033 0.0056

ProstateGE AV 0.7259 0.7596 0.7831 0.8991 0.6809 0.8911 0.7901 0.6300
SD 0.0046 0.0033 0.0043 0.0033 0.0053 0.0033 0.0034 0.0058

COVID-19 AV 0.7737 0.8096 0.8347 0.9583 0.7258 0.9498 0.8421 0.6715
SD 0.0032 0.0035 0.0033 0.0010 0.0036 0.0009 0.0028 0.0033
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Table 8  Classification accuracy 
of BPCSA using different 
values of �

0
 and �

1
 with the 

k-NN classifier

Dataset Measure �
0
= 0.5 �

0
= 1.0 �

0
= 1.5 �

0
= 2.0 �

1
= 0.1 �

1
= 0.3 �

1
= 0.5 �

1
= 1.0

Diagnostic AV 0.7399 0.7794 0.8642 0.9560 0.9543 0.6732 0.6541 0.5789
SD 0.0019 0.0019 0.0016 0.0020 0.0019 0.0019 0.0016 0.0019

Breast AV 0.7611 0.8018 0.8890 0.9834 0.9817 0.6925 0.6729 0.5956
SD 0.0040 0.0037 0.0030 0.0014 0.0012 0.0055 0.0060 0.0086

Prognostic AV 0.6860 0.7227 0.8013 0.8864 0.8848 0.6242 0.6065 0.5368
SD 0.0054 0.0047 0.0042 0.0028 0.0029 0.0056 0.0063 0.0068

Coimbra AV 0.7001 0.7375 0.8177 0.9046 0.9029 0.6370 0.6189 0.5478
SD 0.0056 0.0053 0.0045 0.0023 0.0025 0.0060 0.0064 0.0069

BreastEW AV 0.7596 0.8002 0.8872 0.9815 0.9797 0.6911 0.6715 0.5944
SD 0.0027 0.0027 0.0023 0.0027 0.0026 0.0026 0.0022 0.0026

Retinopathy AV 0.5479 0.5772 0.6400 0.7080 0.7067 0.4986 0.4844 0.4288
SD 0.0047 0.0047 0.0040 0.0048 0.0047 0.0046 0.0039 0.0046

Dermatology AV 0.7614 0.8021 0.8894 0.9838 0.9821 0.6928 0.6731 0.5958
SD 0.0087 0.0087 0.0074 0.0088 0.0086 0.0086 0.0072 0.0085

ILPD AV 0.5801 0.6111 0.6776 0.7495 0.7482 0.5278 0.5128 0.4539
SD 0.0123 0.0119 0.0107 0.0101 0.0100 0.0197 0.0209 0.0245

Lymphography AV 0.7244 0.7632 0.8462 0.9361 0.9344 0.6592 0.6405 0.5669
SD 0.0208 0.0209 0.0176 0.0210 0.0206 0.0204 0.0173 0.0202

Parkinsons AV 0.7537 0.7940 0.8803 0.9738 0.9721 0.6857 0.6663 0.5897
SD 0.0149 0.0149 0.0126 0.0150 0.0147 0.0146 0.0124 0.0145

ParkinsonC AV 0.6141 0.6469 0.7173 0.7935 0.7921 0.5588 0.5429 0.4805
SD 0.0253 0.0253 0.0214 0.0255 0.0251 0.0248 0.0210 0.0246

SPECT AV 0.6741 0.7102 0.7875 0.8711 0.8695 0.6134 0.5960 0.5275
SD 0.0114 0.0114 0.0096 0.0115 0.0113 0.0112 0.0094 0.0111

Cleveland AV 0.4666 0.4915 0.5450 0.6029 0.6018 0.4245 0.4125 0.3651
SD 0.0063 0.0063 0.0053 0.0064 0.0062 0.0062 0.0052 0.0061

HeartEW AV 0.6925 0.7295 0.8089 0.8948 0.8932 0.6301 0.6122 0.5419
SD 0.0097 0.0097 0.0082 0.0098 0.0096 0.0095 0.0080 0.0094

Hepatitis AV 0.7237 0.7624 0.8453 0.9351 0.9334 0.6585 0.6398 0.5663
SD 0.0232 0.0232 0.0195 0.0233 0.0229 0.0227 0.0192 0.0225

Saheart AV 0.5417 0.5707 0.6328 0.7000 0.6987 0.4929 0.4789 0.4239
SD 0.0087 0.0033 0.0080 0.0076 0.0065 0.0064 0.0086 0.0095

Spectfheart AV 0.7012 0.7387 0.8191 0.9061 0.9044 0.6380 0.6199 0.5487
SD 0.0156 0.0156 0.0132 0.0158 0.0155 0.0153 0.0130 0.0152

Thyroid AV 0.7593 0.7999 0.8870 0.9812 0.9794 0.6909 0.6713 0.5942
SD 0.0013 0.0013 0.0011 0.0013 0.0013 0.0013 0.0011 0.0013

Heart AV 0.6799 0.7162 0.7942 0.8785 0.8769 0.6186 0.6011 0.5320
SD 0.0201 0.0201 0.0170 0.0203 0.0199 0.0197 0.0167 0.0195

PimaDiabetes AV 0.5713 0.6019 0.6673 0.7382 0.7369 0.5198 0.5051 0.4471
SD 0.0067 0.0064 0.0058 0.0044 0.0045 0.0076 0.0079 0.0088

Leukemia AV 0.7668 0.8078 0.8956 0.9908 0.9890 0.6977 0.6779 0.6000
SD 0.0047 0.0043 0.0031 0.0008 0.0011 0.0050 0.0054 0.0069

Colon AV 0.7029 0.7405 0.8210 0.9082 0.9066 0.6396 0.6214 0.5500
SD 0.0043 0.0040 0.0024 0.0013 0.0014 0.0046 0.0047 0.0056

ProstateGE AV 0.6901 0.7270 0.8061 0.8917 0.8901 0.6279 0.6101 0.5400
SD 0.0045 0.0043 0.0034 0.0019 0.0020 0.0056 0.0057 0.0063

COVID-19 AV 0.7356 0.7749 0.8592 0.9505 0.9487 0.6693 0.6503 0.5756
SD 0.0041 0.0037 0.0020 0.0009 0.0010 0.0049 0.0051 0.0057
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Table 9  Classification accuracy 
of BSCSA using different 
values of �

0
 and �

1
 with the 

k-NN classifier

Dataset Measure �
0
= 0.5 �

0
= 1.0 �

0
= 1.5 �

0
= 2.0 �

1
= 0.5 �

1
= 1.0 �

1
= 1.5 �

1
= 2.0

Diagnostic AV 0.7836 0.8256 0.8383 0.9553 0.7600 0.9551 0.8148 0.7549
SD 0.0019 0.0019 0.0016 0.0019 0.0019 0.0019 0.0016 0.0019

Breast AV 0.8061 0.8493 0.8624 0.9828 0.7818 0.9826 0.8382 0.7765
SD 0.0043 0.0040 0.0039 0.0013 0.0034 0.0014 0.0035 0.0036

Prognostic AV 0.7266 0.7656 0.7773 0.8858 0.7047 0.8857 0.7555 0.6999
SD 0.0045 0.0043 0.0041 0.0022 0.0047 0.0022 0.0042 0.0049

Coimbra AV 0.7415 0.7812 0.7932 0.9040 0.7191 0.9038 0.7710 0.7143
SD 0.0047 0.0044 0.0043 0.0013 0.0052 0.0013 0.0043 0.0053

BreastEW AV 0.8050 0.8481 0.8611 0.9814 0.7807 0.9812 0.8370 0.7754
SD 0.0037 0.0032 0.0024 0.0009 0.0042 0.0010 0.00383 0.0036

Retinopathy AV 0.5805 0.6116 0.6210 0.7077 0.5630 0.7076 0.6036 0.5592
SD 0.0035 0.0035 0.0030 0.0035 0.0034 0.0034 0.0030 0.0034

Dermatology AV 0.8087 0.8521 0.8651 0.9859 0.7843 0.9857 0.8409 0.7790
SD 0.0080 0.0080 0.0067 0.0080 0.0078 0.0078 0.0068 0.0078

ILPD AV 0.6144 0.6473 0.6572 0.7490 0.5959 0.7489 0.6388 0.5918
SD 0.0066 0.0063 0.0060 0.0051 0.0071 0.0047 0.0061 0.0073

Lymphography AV 0.7739 0.8154 0.8279 0.9435 0.7506 0.9433 0.8047 0.7455
SD 0.0204 0.0204 0.0173 0.0205 0.0199 0.0201 0.0173 0.0201

Parkinsons AV 0.7982 0.8410 0.8539 0.9732 0.7742 0.9730 0.8300 0.7689
SD 0.0149 0.0149 0.0126 0.0149 0.0145 0.0146 0.0126 0.0146

ParkinsonC AV 0.6525 0.6875 0.6981 0.7955 0.6329 0.7954 0.6785 0.6286
SD 0.0277 0.0277 0.0234 0.0278 0.0270 0.0272 0.0234 0.0272

SPECT AV 0.7140 0.7523 0.7638 0.8705 0.6925 0.8703 0.7424 0.6878
SD 0.0141 0.0141 0.0119 0.0142 0.0138 0.0139 0.0120 0.0139

Cleveland AV 0.4956 0.5221 0.5301 0.6042 0.4806 0.6040 0.5153 0.4774
SD 0.0096 0.0083 0.0080 0.0071 0.0091 0.0077 0.0081 0.0093

HeartEW AV 0.7319 0.7711 0.7830 0.8923 0.7098 0.8921 0.7610 0.7050
SD 0.0122 0.0122 0.0103 0.0122 0.0119 0.0120 0.0103 0.0120

Hepatitis AV 0.7681 0.8093 0.8217 0.9364 0.7450 0.9362 0.7987 0.7399
SD 0.0261 0.0261 0.0221 0.0262 0.0255 0.0257 0.0221 0.0257

Saheart AV 0.5738 0.6045 0.6138 0.6995 0.5565 0.6994 0.5966 0.5527
SD 0.0086 0.0083 0.0080 0.0081 0.0091 0.0077 0.0076 0.0089

Spectfheart AV 0.7416 0.7814 0.7934 0.9042 0.7193 0.9040 0.7712 0.7144
SD 0.0141 0.0141 0.0119 0.0142 0.0138 0.0139 0.0120 0.0139

Thyroid AV 0.8045 0.8476 0.8606 0.9808 0.7803 0.9806 0.8365 0.7750
SD 0.0008 0.0008 0.0007 0.0008 0.0008 0.0008 0.0007 0.0008

Heart AV 0.7210 0.7597 0.7713 0.8790 0.6993 0.8788 0.7497 0.6945
SD 0.0197 0.0197 0.0166 0.0198 0.0192 0.0194 0.0167 0.0194

PimaDiabetes AV 0.6051 0.6376 0.6473 0.7377 0.5869 0.7376 0.6292 0.5829
SD 0.0056 0.0053 0.0050 0.0045 0.0061 0.0057 0.0051 0.0063

Leukemia AV 0.8121 0.8557 0.8688 0.9901 0.7877 0.9899 0.8445 0.7823
SD 0.0027 0.0023 0.0020 0.0007 0.0031 0.0013 0.0019 0.0032

Colon AV 0.7445 0.7844 0.7964 0.9076 0.7220 0.9074 0.7741 0.7172
SD 0.0042 0.0039 0.0037 0.0015 0.0046 0.0015 0.0038 0.0048

ProstateGE AV 0.7309 0.7701 0.7819 0.8911 0.7089 0.8909 0.7600 0.7041
SD 0.0046 0.0040 0.0039 0.0023 0.0045 0.0027 0.0037 0.0046

COVID-19 AV 0.7791 0.8208 0.8334 0.9498 0.7556 0.9496 0.8101 0.7505
SD 0.0047 0.0042 0.0040 0.0014 0.0048 0.0013 0.0035 0.003s3
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Again, a higher value of the accuracy results means better 
robustness, while a lower value of SD reflects the stability of 
the algorithm. It can be seen from Table 11 that the proposed 
BECSA ranked first exclusively by having the best accuracy 
results in 5 datasets and achieved the highest accuracy in a 
total of 13 datasets. BCSA ranked second by exclusively 
acquiring the best accuracy results in 3 datasets and realized 
the highest accuracy in a total of 10 datasets. BHBA came in 
third by exclusively achieving the best results in 5 datasets 
and achieved the highest accuracy in a total of 11 datasets. 
BBBO ranked fourth by having the best results exclusively in 
2 datasets, namely, the Cleveland and Hepatitis. BLSHADE 
came in fifth place by achieving the best results in 3 datasets, 
while BAFT came in sixth by fulfilling the best result only 
in ProstateGE dataset. BPSO, BMFO, and BTLBO did not 
achieve the best results in any of the datasets. However, both 
BCSA and BECSA obtained 100% accuracy in the Leukemia 
dataset. When reading the SD results recorded in Table 11, 
it can be noticed that the proposed BECSA was more robust 
than other rivals by having the minimum SD values in 13 
out of the 24 datasets.

The average fitness value and standard deviation of all 
rivals in each dataset are presented in Table 12.

It should be perceived that the minimum fitness values 
reveal better performance for the optimization algorithms. 
From Table 12, it can be observed that BECSA, BCSA, and 
BHBA ranked first, second, and third, respectively, where 
each exclusively got the minimum fitness values in an 
overall of 7 datasets. BTLBO ranked fourth by exclusively 

achieving the minimum fitness values in 3 datasets, namely, 
Parkinsons, Cleveland, and Hepatitis. Finally, BLSHADE, 
BBBO, BAFT, BMFO, and BPSO did not report any lowest 
fitness results in any of the datasets examined in this work, 
where they ranked fifth, sixth, seventh, eighth, and ninth, 
respectively. When reading the standard derivation results 
tabulated in Table 12 one more time, it can be shown that 
the performance of BECSA is more powerful than the other 
competitors by acquisition the lowest SD results in 11 out 
of 24 datasets.

The sensitivity results of the proposed ECSA compared 
to BCSA and the other comparative methods are given in 
Table 13.

Then, we move on to compare the proposed BECSA 
with other competing algorithms in respect of the sensi-
tivity results that the FS algorithms intend to increase. It 
should be noted that higher sensitivity results mean pref-
erable performance level. The results of these competing 
algorithms are summarized in terms of the average sen-
sitivity results associated with their standard derivation 
values in Table 13. Regarding the results presented in this 
table, without a doubt, BLSHADE has the largest sensi-
tivity figures compared to all other rivals. Specifically, 
BLSHADE exclusively achieved the highest sensitivity 
values in 12 out of 24 datasets. Evidently, BCSA ranked 
second by obtaining the best sensitivity results in 3 out 
of 24 datasets. BHBA ranked third even though it did not 
achieve any optimal sensitivity result than all other com-
peting algorithms, but its results are rather high, while the 

Table 10  Parameter settings 
of the comparative binary 
algorithms

Algorithm Parameter Value

All algorithms Population size, number of iterations 30, 100
BBBO Habitat modification probability 1

Immigration probability bounds for each gene [0, 1]
Mutation probability 0
Maximum migration and immigration rates for each island 1
Step size for numerical integration of probabilities 1

BMFO Convergence constant [−1, −2]
Logarithmic spiral 0.75

BPSO Inertia weight ( �) [0.9, 0.4]
Cognitive factor (c

1
 ), Social factor (c

2
) 1.8, 2.0

BTLBO No especial parameters Population size is 5 as 
this method has two 
stages

BAFT Td
0
 , s, L 2.0, 2.0, 100

�
0
,�

1
,�

0
,�

1
1.0, 2.0, 0.1, 2.0

BLSHADE Crossover rateM
CR

0.5
Scaling factorM

F
0.5

Archive rate, memory size 1.4, 5
Pbest 0.11

BHBA The ability of the honey badger to get food ( � ), C 6.0, 2
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Table 11  Comparison results between the proposed BECSA and other methods based on classification accuracy

Dataset Measure BCSA BECSA BBBO BMFO BPSO BTLBO BAFT BLSHADE BHBA

Diagnostic AV 0.9590 0.9655 0.9634 0.9431 0.8575 0.8044 0.9540 0.9699 0.9823
SD 0.0085 0.0027 0.0086 0.0731 0.1112 0.1044 0.0074 0.0101 0.0000

Breast AV 0.9926 0.9926 0.9730 0.9191 0.8502 0.7331 0.9824 0.9868 0.9926
SD 0.0000 0.0000 0.0035 0.1213 0.1558 0.1661 0.0066 0.0033 0.0000

Prognostic AV 0.8947 0.8947 0.8184 0.7754 0.7211 0.7018 0.8895 0.8947 0.8947
SD 0.0000 0.0000 0.0144 0.0669 0.0506 0.0348 0.0118 0.0000 0.0000

Coimbra AV 0.9130 0.9130 0.8783 0.7971 0.6522 0.6014 0.8174 0.8261 0.8261
SD 0.0000 0.0000 0.0289 0.1258 0.2157 0.1827 0.0194 0.0000 0.0000

BreastEW AV 0.9912 0.9912 0.9693 0.9510 0.9322 0.9348 0.9327 0.9398 0.9487
SD 0.0000 0.0000 0.0056 0.0181 0.0165 0.0205 0.0048 0.0040 0.0040

Retinopathy AV 0.7123 0.7152 0.7077 0.7236 0.6306 0.6225 0.6939 0.7139 0.7417
SD 0.0046 0.0032 0.0108 0.0359 0.0511 0.0236 0.0196 0.0200 0.0024

Dermatology AV 0.9920 0.9967 0.9901 0.9455 0.8737 0.8286 0.9859 0.9887 0.9944
SD 0.0071 0.0061 0.0066 0.0654 0.0847 0.0868 0.0000 0.0063 0.0077

ILPD AV 0.7557 0.7565 0.7371 0.7130 0.6899 0.6896 0.7374 0.7461 0.7739
SD 0.0027 0.0000 0.0118 0.0549 0.0266 0.0284 0.0167 0.0113 0.0000

Lymphography AV 0.9448 0.9506 0.8575 0.7908 0.7333 0.7310 0.5389 0.5594 0.6402
SD 0.0172 0.0174 0.0150 0.0646 0.0701 0.0668 0.0415 0.0437 0.0208

Parkinsons AV 0.9778 0.9803 0.9974 0.9718 0.9231 0.9094 0.9744 0.9744 0.9744
SD 0.0089 0.0110 0.0103 0.0483 0.0476 0.0385 0.0000 0.0000 0.0000

ParkinsonC AV 0.8022 0.8150 0.6956 0.6916 0.6826 0.6770 0.7483 0.7550 0.7550
SD 0.0346 0.0197 0.0021 0.0118 0.0087 0.0057 0.0094 0.0000 0.0000

SPECT AV 0.8805 0.8786 0.7377 0.7006 0.6252 0.6088 0.7585 0.7849 0.8377
SD 0.0114 0.0095 0.0181 0.0445 0.0573 0.0615 0.0207 0.0215 0.0169

Cleveland AV 0.6017 0.6096 0.6808 0.6661 0.6113 0.5910 0.5729 0.5763 0.5763
SD 0.0116 0.0031 0.0100 0.0500 0.0477 0.0419 0.0076 0.0000 0.0000

HeartEW AV 0.8951 0.9062 0.8395 0.8463 0.7414 0.6796 0.8667 0.8741 0.9630
SD 0.0156 0.0047 0.0301 0.0567 0.1028 0.0672 0.0275 0.0304 0.0000

Hepatitis AV 0.9375 0.9479 1.0000 0.9708 0.9208 0.8792 0.8750 0.8750 0.9250
SD 0.0000 0.0237 0.0000 0.0426 0.0769 0.0675 0.0000 0.0000 0.0280

Saheart AV 0.7065 0.7065 0.7246 0.6953 0.6054 0.6022 0.7109 0.7304 0.7609
SD 0.0000 0.0000 0.0096 0.0491 0.0476 0.0531 0.0182 0.0179 0.0000

Spectfheart AV 0.9170 0.9120 0.8516 0.8063 0.7597 0.7497 0.8679 0.8717 0.9094
SD 0.0161 0.0114 0.0155 0.0470 0.0547 0.0364 0.0267 0.0207 0.0084

Thyroid AV 0.9911 0.9908 0.9751 0.9737 0.9542 0.9401 0.9800 0.9836 0.9875
SD 0.0013 0.0008 0.0036 0.0171 0.0192 0.0105 0.0023 0.0008 0.0010

Heart AV 0.8778 0.8889 0.8233 0.8222 0.7161 0.6633 0.7867 0.8067 0.8500
SD 0.0160 0.0160 0.0230 0.0552 0.0864 0.0683 0.0361 0.0190 0.0000

PimaDiabetes AV 0.7451 0.7451 0.7712 0.7495 0.7004 0.7192 0.7765 0.7974 0.7974
SD 0.0000 0.0000 0.0000 0.0300 0.0679 0.0490 0.0286 0.0000 0.0000

Leukemia AV 1.0000 1.0000 0.9952 0.9524 0.9238 0.9262 0.9286 0.9429 0.9857
SD 0.0000 0.0000 0.0181 0.0433 0.0261 0.0130 0.0000 0.0319 0.0319

Colon AV 0.9167 0.9167 0.7222 0.7222 0.6139 0.5500 0.8333 0.8667 0.9167
SD 0.0000 0.0000 0.0505 0.0911 0.0742 0.0603 0.0000 0.0456 0.0000

ProstateGE AV 0.9000 0.9000 0.8517 0.8117 0.7700 0.7517 0.9000 0.9000 0.9000
SD 0.0000 0.0000 0.0091 0.0468 0.0466 0.0404 0.0000 0.0000 0.0000

COVID-19 AV 0.9589 0.9593 0.9543 0.9465 0.9188 0.9097 0.9523 0.9581 0.9593
SD 0.0015 0.0000 0.0025 0.0234 0.0219 0.0242 0.0026 0.0026 0.0000
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Table 12  Comparison results between the proposed BECSA and other methods based on fitness values

Dataset Measure BCSA BECSA BBBO BMFO BPSO BTLBO BAFT BLSHADE BHBA

Diagnostic AV 0.0423 0.0369 0.0413 0.0599 0.1446 0.0346 0.0512 0.0354 0.0217
SD 0.0081 0.0027 0.0088 0.0725 0.1102 0.0049 0.0080 0.0103 0.0004

Breast AV 0.0123 0.0123 0.0308 0.0832 0.1524 0.0293 0.0217 0.0179 0.0107
SD 0.0000 0.0000 0.0033 0.1204 0.1542 0.0034 0.0073 0.0039 0.0005

Prognostic AV 0.1070 0.1076 0.1848 0.2266 0.2802 0.1775 0.1148 0.1089 0.1080
SD 0.0012 0.0005 0.0141 0.0661 0.0500 0.0143 0.0118 0.0004 0.0006

Coimbra AV 0.0908 0.0905 0.1253 0.2049 0.3492 0.1234 0.1879 0.1797 0.1762
SD 0.0005 0.0000 0.0282 0.1242 0.2137 0.0289 0.0190 0.0009 0.0015

BreastEW AV 0.0132 0.0128 0.0366 0.0540 0.0723 0.0398 0.0728 0.0650 0.0563
SD 0.0011 0.0004 0.0053 0.0180 0.0160 0.0055 0.0042 0.0042 0.0037

Retinopathy AV 0.2889 0.2859 0.2951 0.2777 0.3700 0.2813 0.3083 0.2884 0.2606
SD 0.0046 0.0024 0.0110 0.0359 0.0503 0.0219 0.0194 0.0198 0.0027

Dermatology AV 0.0122 0.0080 0.0156 0.0584 0.1298 0.0172 0.0211 0.0172 0.0106
SD 0.0062 0.0055 0.0061 0.0646 0.0840 0.0059 0.0007 0.0068 0.0070

ILPD AV 0.2453 0.2440 0.2651 0.2870 0.3115 0.2614 0.2640 0.2556 0.2268
SD 0.0031 0.0000 0.0123 0.0542 0.0263 0.0156 0.0174 0.0113 0.0000

Lymphography AV 0.0595 0.0539 0.1465 0.2108 0.2680 0.1439 0.4621 0.4409 0.3613
SD 0.0162 0.0163 0.0144 0.0639 0.0694 0.0083 0.0418 0.0432 0.0204

Parkinsons AV 0.0227 0.0212 0.0078 0.0313 0.0798 0.0056 0.0305 0.0296 0.0280
SD 0.0084 0.0100 0.0098 0.0475 0.0467 0.0048 0.0005 0.0010 0.0006

ParkinsonC AV 0.1982 0.1880 0.3068 0.3108 0.3191 0.3049 0.2554 0.2484 0.2476
SD 0.0340 0.0195 0.0021 0.0116 0.0086 0.0027 0.0091 0.0009 0.0005

SPECT AV 0.1225 0.1245 0.2656 0.3012 0.3760 0.2558 0.2453 0.2187 0.1662
SD 0.0116 0.0092 0.0179 0.0438 0.0566 0.0151 0.0201 0.0203 0.0173

Cleveland AV 0.3980 0.3891 0.3211 0.3342 0.3894 0.3059 0.4287 0.4243 0.4226
SD 0.0127 0.0038 0.0100 0.0493 0.0476 0.0238 0.0078 0.0015 0.0008

HeartEW AV 0.1072 0.0966 0.1631 0.1562 0.2601 0.1457 0.1366 0.1288 0.0411
SD 0.0151 0.0043 0.0295 0.0563 0.1018 0.0273 0.0279 0.0306 0.0006

Hepatitis AV 0.0631 0.0534 0.0036 0.0313 0.0818 0.0033 0.1289 0.1270 0.0778
SD 0.0006 0.0226 0.0007 0.0420 0.0757 0.0006 0.0004 0.0007 0.0268

Saheart AV 0.2939 0.2939 0.2792 0.3068 0.3958 0.2812 0.2911 0.2709 0.2401
SD 0.0002 0.0000 0.0093 0.0481 0.0470 0.0130 0.0177 0.0181 0.0000

Spectfheart AV 0.0867 0.0913 0.1526 0.1969 0.2425 0.1439 0.1373 0.1321 0.0959
SD 0.0165 0.0112 0.0150 0.0466 0.0542 0.0166 0.0263 0.0195 0.0078

Thyroid AV 0.0111 0.0122 0.0297 0.0299 0.0493 0.0252 0.0152 0.0144 0.0144
SD 0.0011 0.0009 0.0039 0.0168 0.0187 0.0038 0.0030 0.0015 0.0008

Heart AV 0.1248 0.1141 0.1793 0.1791 0.2855 0.1656 0.2174 0.1974 0.1531
SD 0.0152 0.0151 0.0229 0.0543 0.0857 0.0217 0.0362 0.0182 0.0000

PimaDiabetes AV 0.2574 0.2574 0.2320 0.2526 0.3011 0.2320 0.2283 0.2058 0.2056
SD 0.0000 0.0000 0.0007 0.0289 0.0665 0.0006 0.0294 0.0006 0.0000

Leukemia AV 0.0012 0.0047 0.0101 0.0527 0.0803 0.0073 0.0771 0.0615 0.0182
SD 0.0002 0.0000 0.0178 0.0429 0.0258 0.0129 0.0001 0.0316 0.0308

Colon AV 0.0835 0.0870 0.2803 0.2806 0.3871 0.2388 0.1712 0.1369 0.0878
SD 0.0001 0.0000 0.0498 0.0902 0.0734 0.0380 0.0001 0.0451 0.0005

ProstateGE AV 0.1004 0.1038 0.1522 0.1919 0.2326 0.1501 0.1052 0.1039 0.1015
SD 0.0002 0.0000 0.0091 0.0463 0.0461 0.0125 0.0000 0.0000 0.0000

COVID-19 AV 0.0430 0.0427 0.0507 0.0567 0.0849 0.0502 0.0531 0.0467 0.0443
SD 0.0018 0.0007 0.0028 0.0231 0.0218 0.0026 0.0029 0.0029 0.0004
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Table 13  Comparison results between the proposed BECSA and other methods based on sensitivity results

Dataset Measure BCSA BECSA BBBO BMFO BPSO BTLBO BAFT BLSHADE BHBA

Diagnostic AV 0.8801 0.8963 0.8916 0.8728 0.7251 0.6186 0.8654 0.8900 0.8821
SD 0.0497 0.0413 0.0522 0.1332 0.1973 0.2016 0.0352 0.0302 0.0425

Breast AV 0.9877 0.9919 0.9680 0.9294 0.8796 0.7830 0.9574 0.9630 0.9684
SD 0.0035 0.0068 0.0157 0.0982 0.1190 0.1305 0.0100 0.0074 0.0055

Prognostic AV 0.3214 0.2714 0.1648 0.1855 0.1843 0.1024 0.8441 0.9027 0.8675
SD 0.1508 0.1269 0.1457 0.1541 0.1996 0.1079 0.1584 0.1636 0.1244

Coimbra AV 0.7332 0.7225 0.6909 0.6764 0.6275 0.5525 0.7123 0.6504 0.5610
SD 0.1177 0.1178 0.1006 0.1669 0.2032 0.1849 0.1610 0.0532 0.1652

BreastEW AV 0.9579 0.9454 0.9603 0.9655 0.9575 0.9625 0.9397 0.9217 0.9497
SD 0.0238 0.0234 0.0182 0.0197 0.0239 0.0250 0.0215 0.0294 0.0242

Retinopathy AV 0.6465 0.6773 0.6336 0.6654 0.6189 0.6315 0.5936 0.5978 0.5546
SD 0.0469 0.0500 0.0396 0.0402 0.0692 0.0456 0.0412 0.0510 0.0635

Dermatology AV 0.9909 0.9905 0.9828 0.9809 0.9406 0.9366 0.9517 0.9620 0.9594
SD 0.0188 0.0209 0.0255 0.0362 0.0648 0.0563 0.0000 0.0203 0.0263

ILPD AV 0.8400 0.8447 0.8178 0.8423 0.8272 0.8148 0.7736 0.8247 0.8083
SD 0.0508 0.0488 0.0563 0.0593 0.0444 0.0398 0.0470 0.0564 0.0558

Lymphography AV 0.6541 0.5263 0.6368 0.4850 0.4678 0.4644 0.6351 0.7109 0.6299
SD 0.4712 0.5011 0.4262 0.4370 0.4217 0.4200 0.1329 0.1093 0.1989

Parkinsons AV 0.9075 0.9240 0.9532 0.9536 0.9418 0.9397 0.9202 0.9018 0.9152
SD 0.0578 0.0482 0.0327 0.0384 0.0514 0.0549 0.0468 0.0304 0.0415

ParkinsonC AV 0.8823 0.9007 0.8829 0.8753 0.8941 0.8786 0.8228 0.8692 0.8325
SD 0.0282 0.0345 0.0310 0.0265 0.0254 0.0405 0.0588 0.0488 0.0320

SPECT AV 0.5953 0.5814 0.5240 0.5479 0.5370 0.5332 0.5868 0.6298 0.5478
SD 0.1186 0.1094 0.1500 0.1135 0.1160 0.1149 0.0932 0.1735 0.0550

Cleveland AV 0.1779 0.1735 0.1532 0.1423 0.1361 0.1076 0.6028 0.6554 0.6196
SD 0.0828 0.1428 0.1304 0.1482 0.1159 0.0845 0.0358 0.0609 0.0524

HeartEW AV 0.8788 0.8547 0.8115 0.8458 0.7613 0.7134 0.7699 0.9172 0.8189
SD 0.0652 0.0673 0.0776 0.0789 0.1014 0.1084 0.0571 0.0400 0.0548

Hepatitis AV 0.3337 0.2586 0.3428 0.4067 0.3428 0.2613 0.8155 0.8997 0.8795
SD 0.3451 0.3351 0.3961 0.3533 0.3857 0.3748 0.4183 0.3419 0.2236

Saheart AV 0.2964 0.2798 0.2988 0.2959 0.3094 0.3151 0.7174 0.7461 0.7296
SD 0.0797 0.0761 0.0687 0.0740 0.0841 0.1016 0.1262 0.1126 0.1299

Spectfheart AV 0.8723 0.8701 0.8686 0.8516 0.8573 0.8541 0.8622 0.8520 0.8661
SD 0.0499 0.0543 0.0661 0.0640 0.0507 0.0676 0.0610 0.0650 0.0683

Thyroid AV 0.6909 0.7042 0.7313 0.7663 0.6516 0.5339 0.9264 0.9594 0.9508
SD 0.0926 0.1003 0.0987 0.1167 0.2175 0.2018 0.0490 0.0500 0.0491

Heart AV 0.9280 0.9396 0.9161 0.9210 0.7931 0.6613 0.7336 0.7908 0.8146
SD 0.0478 0.0462 0.0643 0.0531 0.1258 0.1071 0.0578 0.0361 0.0692

PimaDiabetes AV 0.4973 0.4791 0.5713 0.5385 0.4867 0.5499 0.7224 0.7524 0.7467
SD 0.0630 0.0550 0.0648 0.0760 0.1191 0.0768 0.0856 0.0504 0.0633

Leukemia AV 0.7610 0.6932 0.6652 0.6947 0.7117 0.6912 0.8719 0.9514 0.9459
SD 0.1685 0.2449 0.2172 0.1998 0.2443 0.2167 0.1404 0.2191 0.2453

Colon AV 0.5633 0.5972 0.5695 0.6211 0.5490 0.6391 0.8284 0.8349 0.8284
SD 0.2570 0.2216 0.2815 0.2605 0.2224 0.2160 0.3140 0.2033 0.1394

ProstateGE AV 0.8216 0.8305 0.8947 0.8704 0.8365 0.8605 0.8497 0.8845 0.8793
SD 0.1309 0.1214 0.1002 0.1351 0.1433 0.1080 0.0806 0.1019 0.0966

COVID-19 AV 0.5997 0.6161 0.6514 0.5871 0.4837 0.3857 0.9074 0.9227 0.9188
SD 0.0928 0.1144 0.1293 0.1872 0.2492 0.2147 0.1080 0.0241 0.0959
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proposed BECSA ranked fourth although it has the best 
sensitivity results in 6 datasets. BBBO and BMFO came in 
fifth and sixth places with the best sensitivity results only 
in 2 and 1 datasets, respectively. Finally, BAFT, BPSO, 
and BTLBO did not report any distinct sensitivity result 
in any of the datasets, where they were in seventh, eighth, 
and ninth places among all other competing algorithms. 
Regarding the standard deviation values of the proposed 
BECSA, they are small, indicating that the stability of 
BECSA is entrenched.

Similarly, the average and standard deviations of the spec-
ificity results for BECSA, BCSA, and all other comparative 
methods are summarized in Table 14.

Reading the specificity results listed in 14, one can notice 
that BCSA and BECSA ranked first and second, where each 
having exclusively the highest specificity values in a total 
of 4 datasets out of 24. BHBA placed third by getting the 
best specificity results in 3 datasets. BLSHADE, BTLBO, 
BAFT, and BBBO exclusively got the highest specificity 
values in 6, 3, 2, and 2 datasets, respectively. BMFO and 
BPSO did not achieved any highest specificity results in any 
of the datasets, but their obtained results are reasonable and 
better than other competing algorithms such as BTLBO and 
BAFT. In terms of standard deviation results, the proposed 
BECSA has very small SD values in most of the test datasets 
in comparison to other rivals. These findings confirm that 
the superiority of BECSA is stable.

The number of selected features is also considered to 
study the performance of the proposed BECSA against 
BCSA and other methods available in the literature as shown 
in Table 15.

The amount of features selected during the classifica-
tion process is as important as the classification accuracy 
in assessing any feature selection algorithm. When compar-
ing the proposed algorithm to the eight rival algorithms, 
Table 15 reveals a wide variety in the results. According 
to the results in the average number of features, the nine 
competing algorithms can be split as follows: BCSA outper-
formed the other rivals by exclusively acquiring the fewest 
number of selected features in a total of in 11 out of 24 data-
sets. BECSA ranked second with the exclusive minimum 
number of features in 4 datasets, and shared the minimum 
number of features for the Sahear dataset with BHBA, which 
exclusively received the minimum number of features in the 
Coimbra, SPECT, and Hepatitis datasets. BMFO had the 
lowest number of features in the Breast, ILPD, Lymphog-
raphy, and Heart datasets, while BPSO reduced the number 
of features only in PimaDiabetes dataset. The BLSHADE, 
BAFT, BBBO, and BTLBO algorithms did not reach any 
minimum number of features in any dataset considered. It 
may be deduced from a second reading of the findings in 
Table 15 that the BECSA performed more robustly than 
its rivals because it achieved the lowest SD results in 10 

out of 24 datasets. This implies that by carrying out the 
algorithm 30 independent times, BECSA was able to reach 
around the same amount of selected features.

The results shown in Tables 11, 12, 13, 14, and 15 reveal 
the robustness of the proposed BECSA in comparison with 
other state-of-the-art feature selection algorithms available 
in the literature. By taking a closer look at these results 
and observing the margin differences between BECSA and 
other competing algorithms, one can see that the algorithms 
such as BTLBO, BBBO, and BPSO lag far behind BECSA. 
Moreover, in regards to the standard divisions of the pro-
posed BECSA, they are tiny and inferior to those of other 
competing algorithms. This confirms that the superiority of 
this proposed algorithm is solid. The key factors for the rea-
sonable degree of performance of BECSA is the sought-after 
balance between exploration and exploitation features of this 
algorithm on account of the use of the proposed cognitive 
and social models for the velocities of capuchins as well as 
the proposed mathematical model of this algorithm. This 
mathematical model of BECSA assisted the capuchins to 
explore and exploit each promising area in the search space, 
thus reviving a sensible balance between exploitation and 
exploration. In this respect, if the capuchins become stuck 
in local optimums, they have a chance to leave their local 
neighborhood.

Statistical Test

For further evaluation of the proposed methods, a non-
parametric Friedman’s statistical test was used to highlight 
the algorithm that has superior results compared to other 
comparative algorithms. Table 16 shows the average ranking 
results of the statistical evaluation of BECSA, BCSA, and 
other comparative methods using Friedman’s test based on 
classification accuracy, fitness value, sensitivity, specificity, 
and number of selected features.

As can be inferred from Table 16, the lowest ranking 
value reflects better performance. The p-value was calcu-
lated using Friedman’s test as shown in Table 16, where 
all p-values were below the significance level � = 0.5. This 
leads to the rejection of the null hypothesis and the accept-
ance of the alternative hypothesis. The null hypothesis states 
that all the compared algorithms have the same performance 
behavior when used to solve an optimization problem, while 
the alternative hypothesis means that there is a difference 
between the performance behaviors of the algorithms when 
they are used to solve an optimization problem. According 
to the statistical results presented in Table 16, BECSA is sta-
tistically significant and is the most effectual method among 
all other methods. In this, it can be seen that the proposed 
BECSA ranked first in classification accuracy, first in fitness 
value, and first in specificity, while BECSA ranked fourth 
in sensitivity and second in number of selected features. 
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Table 14  Comparison results between the proposed BECSA and other methods based on specificity results

Dataset Measure BCSA BECSA BBBO BMFO BPSO BTLBO BAFT BLSHADE BHBA

Diagnostic AV 0.9625 0.9703 0.9685 0.9515 0.9279 0.9233 0.9288 0.9257 0.9361
SD 0.0223 0.0260 0.0251 0.0453 0.0652 0.0538 0.0209 0.0259 0.0147

Breast AV 0.9988 0.9934 0.9792 0.9070 0.8194 0.6768 0.9485 0.9649 0.9578
SD 0.0045 0.0083 0.0168 0.1493 0.2046 0.2120 0.0153 0.0083 0.0078

Prognostic AV 0.8932 0.9207 0.8936 0.9132 0.9144 0.9145 0.8736 0.8739 0.8879
SD 0.0692 0.0489 0.0629 0.0613 0.0545 0.0461 0.0472 0.0652 0.0718

Coimbra AV 0.7923 0.8202 0.7138 0.6919 0.6906 0.6575 0.7918 0.7942 0.7355
SD 0.1066 0.0979 0.1458 0.1589 0.1546 0.1644 0.0708 0.2436 0.0517

BreastEW AV 0.9220 0.9323 0.9309 0.9293 0.9203 0.9366 0.8967 0.8902 0.9071
SD 0.0408 0.0457 0.0422 0.0366 0.0376 0.0436 0.0298 0.0468 0.0104

Retinopathy AV 0.6828 0.6961 0.7056 0.7036 0.6521 0.6562 0.6886 0.7106 0.7210
SD 0.0467 0.0495 0.0507 0.0446 0.0767 0.0466 0.0236 0.0241 0.0570

Dermatology AV 0.9073 0.9399 0.9484 0.8861 0.8554 0.8166 0.9281 0.8982 0.8950
SD 0.0482 0.0456 0.0327 0.0859 0.0762 0.1058 0.0272 0.0207 0.0489

ILPD AV 0.3097 0.2757 0.3159 0.3018 0.3173 0.3084 0.7084 0.7518 0.7307
SD 0.0991 0.0774 0.0807 0.0951 0.0781 0.0849 0.0739 0.0887 0.0659

Lymphography AV 0.8771 0.8663 0.7888 0.7302 0.7244 0.7021 0.5795 0.6132 0.6111
SD 0.0729 0.0711 0.0606 0.0739 0.0917 0.0863 0.1025 0.0357 0.1065

Parkinsons AV 0.5785 0.5812 0.6713 0.7042 0.5804 0.5687 0.9243 0.9353 0.9313
SD 0.1538 0.1931 0.1233 0.1438 0.1764 0.1812 0.2560 0.1006 0.1495

ParkinsonC AV 0.3262 0.4038 0.2928 0.2861 0.2457 0.2878 0.7138 0.7569 0.7399
SD 0.1219 0.0847 0.0729 0.0710 0.0697 0.0734 0.0829 0.0819 0.0455

SPECT AV 0.7408 0.7537 0.7533 0.7093 0.7328 0.7322 0.7794 0.8036 0.7645
SD 0.1183 0.0983 0.1296 0.1181 0.1362 0.1270 0.0494 0.0186 0.1047

Cleveland AV 0.6516 0.6642 0.6235 0.6421 0.5891 0.5693 0.6164 0.6433 0.6258
SD 0.0587 0.0715 0.0841 0.0575 0.0944 0.0685 0.0307 0.0722 0.0508

HeartEW AV 0.7139 0.7481 0.7012 0.7096 0.6334 0.5675 0.7831 0.8037 0.7867
SD 0.1234 0.0964 0.0847 0.1002 0.1465 0.0897 0.0797 0.0764 0.0847

Hepatitis AV 0.9583 0.9535 0.9582 0.9060 0.9168 0.9039 0.7960 0.7480 0.7932
SD 0.0529 0.1029 0.0497 0.1989 0.1876 0.2496 0.0654 0.2000 0.0000

Saheart AV 0.7623 0.7833 0.8285 0.8205 0.7908 0.7817 0.9269 0.9243 0.9126
SD 0.0516 0.0471 0.0595 0.0576 0.0612 0.0527 0.0747 0.0579 0.0544

Spectfheart AV 0.4145 0.4380 0.3894 0.4133 0.3614 0.3972 0.7921 0.8238 0.8448
SD 0.1639 0.1685 0.1665 0.1698 0.1359 0.1965 0.1433 0.2457 0.1828

Thyroid AV 0.9876 0.9872 0.9821 0.9769 0.9614 0.9493 0.9513 0.9617 0.9621
SD 0.0031 0.0036 0.0049 0.0170 0.0188 0.0126 0.0054 0.0055 0.0028

Heart AV 0.6416 0.6238 0.6317 0.5990 0.5956 0.5728 0.7662 0.7615 0.7524
SD 0.1307 0.1143 0.1095 0.1788 0.1342 0.0971 0.2024 0.0612 0.1418

PimaDiabetes AV 0.8008 0.8203 0.8223 0.8233 0.8015 0.8087 0.7843 0.8148 0.7796
SD 0.0318 0.0314 0.0456 0.0326 0.0477 0.0489 0.0824 0.0526 0.0431

Leukemia AV 0.9735 0.9782 0.9776 0.9661 0.9459 0.9880 0.9546 0.9665 0.9653
SD 0.0449 0.0452 0.0458 0.0491 0.0736 0.0368 0.0373 0.0994 0.0000

Colon AV 0.8640 0.8328 0.8553 0.8610 0.8504 0.8956 0.8657 0.9168 0.8478
SD 0.1201 0.1669 0.1472 0.1281 0.1323 0.1210 0.1087 0.0786 0.1337

ProstateGE AV 0.8198 0.8487 0.8273 0.8556 0.8287 0.8385 0.8659 0.8643 0.8683
SD 0.1264 0.1178 0.0966 0.0991 0.1323 0.1061 0.1251 0.1911 0.1218

COVID-19 AV 0.9794 0.9788 0.9754 0.9788 0.9788 0.9827 0.9425 0.9542 0.9484
SD 0.0108 0.0109 0.0124 0.0113 0.0143 0.0117 0.0134 0.0135 0.0144
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Table 15  Comparison results between the proposed BECSA and other methods based on the average number of selected features

Dataset Measure BCSA BECSA BBBO BMFO BPSO BTLBO BAFT BLSHADE BHBA

Diagnostic AV 5.30 8.47 15.70 11.03 11.00 19.43 17.40 17.40 13.00
SD 3.42 1.74 3.80 1.61 2.42 2.93 3.21 2.51 1.22

Breast AV 5.00 5.00 4.07 3.17 4.17 6.23 4.20 4.80 3.40
SD 0.00 0.00 0.78 0.91 1.18 1.52 1.31 1.30 0.55

Prognostic AV 9.47 11.67 17.17 14.53 13.90 21.63 18.40 16.00 12.80
SD 4.01 1.65 2.96 2.21 2.80 2.13 2.88 1.41 1.92

Coimbra AV 4.27 4.00 4.27 3.67 4.37 5.77 6.40 6.80 3.60
SD 0.45 0.00 0.74 0.76 1.27 1.41 0.89 0.84 1.34

BreastEW AV 13.43 12.20 18.67 16.53 15.27 18.83 18.60 16.40 16.40
SD 3.35 1.30 2.26 2.24 2.48 2.25 1.82 1.67 2.61

Retinopathy AV 7.80 7.50 10.83 7.73 8.03 12.77 10.00 9.80 9.40
SD 2.44 2.22 2.60 1.31 2.14 1.94 2.65 1.30 1.14

Dermatology AV 14.50 16.07 19.87 15.33 16.07 21.83 24.40 20.6 17.20
SD 4.51 3.19 2.79 1.75 2.77 2.49 2.30 2.51 3.96

ILPD AV 3.37 3.00 4.87 2.93 4.47 6.10 4 4.20 3.00
SD 0.67 0.00 1.43 0.78 1.07 1.69 1.41 1.30 0.00

Lymphography AV 8.73 8.93 9.73 6.60 7.17 11.43 10.20 8.40 9.20
SD 1.86 1.96 1.72 1.35 2.07 1.79 2.28 0.55 1.30

Parkinsons AV 1.43 3.90 11.67 7.50 8.00 13.87 11.20 9.20 5.80
SD 1.04 2.23 2.43 1.36 1.98 1.93 1.10 2.17 1.30

ParkinsonC AV 177.47 367.17 409.03 413.43 365.07 490.30 471.20 439.80 379.00
SD 64.22 15.01 57.48 14.45 14.21 14.24 13.86 64.52 34.38

SPECT AV 9.30 9.47 13.07 10.70 10.80 13.67 13.60 12.60 9.20
SD 2.51 1.76 1.46 2.35 2.52 2.71 1.95 2.30 2.28

Cleveland AV 4.73 3.33 6.67 4.73 5.90 8.90 7.60 6.20 4.00
SD 2.30 0.96 1.75 1.14 1.58 1.47 1.52 1.92 1.00

HeartEW AV 4.30 4.87 5.53 5.23 5.30 8.17 6.00 5.40 5.80
SD 1.12 0.51 1.41 1.52 1.49 2.05 9.80 6.20 6.80

Hepatitis AV 2.30 3.50 6.87 4.60 6.47 12.27 1.73 0.89 0.84
SD 1.06 1.68 1.33 1.00 2.75 2.53 0.84 1.30 1.64

Saheart AV 3.03 3.00 5.90 4.63 4.70 5.80 4.40 3.60 3.00
SD 0.18 0.00 0.71 0.72 1.18 1.06 0.89 1.82 0.00

Spectfheart AV 19.80 18.27 24.80 22.70 20.67 28.73 29.00 22.40 27.40
SD 5.54 2.92 4.15 3.21 2.40 3.06 1.41 7.70 2.79

Thyroid AV 4.87 6.47 10.53 8.10 8.27 13.37 12.40 10.20 8.40
SD 0.57 1.11 1.96 1.60 2.05 1.71 1.95 1.79 0.55

Heart AV 4.90 5.33 5.70 4.03 5.73 8.57 8.00 7.80 6.00
SD 1.09 0.96 1.49 0.96 1.36 1.77 1.58 3.27 0.00

PimaDiabetes AV 4.00 4.00 4.40 3.63 3.60 5.03 5.60 4.20 4.00
SD 0.00 0.00 0.56 0.96 1.07 1.40 0.89 0.45 0.00

Leukemia AV 878.53 3347.43 3789.33 3898.57 3462.80 4588.53 4487.20 3500.00 2899.80
SD 170.66 13.62 487.92 35.00 40.27 52.02 49.09 17.68 1157.29

Colon AV 206.10 902.07 1064.47 1119.33 971.37 1300.20 1249.40 985.00 1051.80
SD 27.16 6.50 140.25 26.95 20.16 20.23 11.72 23.72 98.62

ProstateGE AV 841.50 2842.37 3195.90 3267.93 2935.20 3889.83 3728.00 2904.40 1512.20
SD 106.92 10.29 390.89 59.76 33.83 26.71 19.66 7.37 23.73

COVID-19 AV 3.30 3.43 7.60 5.23 6.30 9.07 8.20 7.40 5.60
SD 0.79 0.94 1.28 1.01 1.47 2.10 0.84 1.14 0.55
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Furthermore, BCSA ranked first in number of selected fea-
tures, second in classification accuracy, second in fitness, 
second in sensitivity, and fourth in sensitivity. These out-
comes denote the robustness of the proposed BECSA and 
BCSA among other rivals. Finally, it is clear that BLSHADE 
obtained the first rank in respect of the sensitivity, where it 
got a rank of 3.5416 which is the lowest of all other ranks 
that the other algorithms have.

Holm’s test was then utilized as post-hoc approach to 
show the significant difference between the control algo-
rithm and the other competitors. In view of this, the algo-
rithm with the first rank in each assessment measure using 
Friedman’s test is the control algorithm. The statistical 
results got by Holm’s procedure are presented in Table 17. 
In Table 17, R0 is the Friedman’s rank assigned to the control 
algorithm, Ri is the Friedman’s rank assigned to algorithm i, 
ES is the effect size of the control method on method i, and 
z represents the statistical difference between two methods.

A comparison of BECSA with other FS methods was con-
ducted by applying Holm’s test as presented in Table 17, 
where this test discards hypotheses with p-values ≤ 0.02500 , 
≤ 0.01666 , ≤ 0.00833 , ≤ 0.00833 , and ≤ 0.01250 in classi-
fication accuracy, fitness value, sensitivity, specificity, and 
number of selected features, respectively. Reading the results 
given in Table 17, one can conclude that there is a signifi-
cant difference between BECSA and BBBO, BLSHADE, 
BMFO, BAFT, BPSO, and BTLBO in terms of classification 
accuracy, while there is no significant difference between 
BECSA and the remaining two algorithms (i.e., BCSA 
and BHBA). As per the statistical fitness results computed 
according to Friedman’s and Holm’s test, there is no sig-
nificant difference between BECSA and two other compet-
ing algorithms (i.e., BCSA and BHBA). However, there is 
a notable difference between BECSA and the other remain-
ing algorithms (i.e., BTLBO, BLSHADE, BBBO, BAFT, 

BMFO, and BPSO). According to the specificity results, 
there is a significant difference between BECSA and three 
other algorithms (i.e., BMFO, BTLBO, and BPSO), while 
there is no significant difference between BECSA and the 
other competing algorithms including BLSHADE, BBBO, 
BCSA, BHBA, and BAFT. On the other hand, regarding the 
sensitivity results, there is no significant difference between 
BECSA and the control algorithm (i.e., BLSHADE). Simi-
larly, in terms of the number of selected features, there is not 
much difference between BECSA and the control algorithm 
(i.e., BCSA). As can be realized from the results in Tables 16 
and 17, BECSA and BCSA are effective FS method in get-
ting promising results for the datasets under study, and they 
are much better than the other competing methods.

One important conclusion drawn from the statistical analy-
sis results discussed above is that, on average, BECSA sur-
passed other state-of-the-art FS techniques mentioned in the 
literature, including BLSHADE, BHBA, BPSO, and BMFO. 
This highlights the strong performance of BECSA and shows 
that this algorithm can effectively explore the search space 
whether there are a single or many optimums present, or if the 
feature selection problems are low, medium, or high dimen-
sional. Additionally, the average ranking of the algorithms 
in terms of sensitivity results divulges that the performance 
score of BECSA is not far behind that of BLSHADE and 
BHBA, whereas the performance of BECSA, BLSHADE, and 
BHBA is far from all other rivals such as BPSO and BMFO. 
Specifically, we may infer that the excellent superiority of 
BECSA in addressing feature selection problems is due to its 
thoughtful mathematical model. In conclusion, the results of 
this statistical study show that BECSA is a good and trust-
worthy method with reasonable exploration and exploitation 
aspects. These conclusions offer positive reasons to utilize 
the proposed method to address more challenging real-world 
applications in the field of healthcare.

Table 16  Average rankings of 
all competitor algorithms using 
Friedman’s test

Algorithm Accuracy Fitness Sensitivity Specificity Features

BCSA 2.8750 2.9791 4.2916 4.5000 2.3541
BECSA 2.3541 2.5625 4.4166 3.7083 2.7083
BBBO 4.4374 5.3125 4.6458 4.4583 6.5208
BMFO 5.8124 6.7499 4.9583 5.2916 3.8125
BPSO 7.7083 8.5833 6.5208 6.8333 4.2291
BTLBO 8.5000 4.2916 7.1249 6.5000 8.7500
BAFT 5.8125 6.4166 5.1041 5.0833 7.3958
BLSHADE 4.4583 4.9166 3.5416 3.9166 5.5416
BHBA 3.0416 3.1875 4.3958 4.7083 3.6875
p-value 7.2019E-11 4.7321E-11 6.2589E-05 2.7460E-04 9.7105E-11
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Conclusion and Future Works

In this paper, three enhanced binary cognitive computation 
methods based on capuchin search algorithm (CSA) are pro-
posed for feature selection (FS) problems in medical diagnostic 
applications. These methods are referred to as binary exponen-
tial CSA (BECSA), binary power CSA (BPCSA), and binary 
S-shaped CSA (BSCSA). Each version utilizes a different 
growth function to update the values of the cognitive and social 
parameters during the iterative process. The goals of these FS 
algorithms include creating simple and comprehensive models, 
enhancing data-mining performance, and helping prepare clear 
and non-redundant data. In the meantime, these proposed meth-
ods could be successfully used to reduce the dimensionality 
of data for machine learning tasks. The performance of these 
methods was assessed on 24 datasets using several assessment 
criteria. Initially, the results produced by the three proposed 
versions of CSA are compared together in addition to those 
produced by the native version of the binary CSA. For com-
parative evaluations, the proposed BECSA and basic binary 
CSA are compared with other well-established algorithms. 
Evaluation based on Friedman’s and Holm’s tests showed that 
BECSA is able to rank first in terms of classification accuracy, 
fitness value, and specificity. As the proposed binary versions 
of CSA revealed attractive performance in handling FS prob-
lems, further extensions of these versions could be made for 
future research. For example, these methods might potentially 
be used by researches working on multi-objective optimization 
problems. Gene selection, as a high-dimensional dataset, could 
also be used to further validate the suitability of these methods. 
Other transfer functions such as U-shape, V-shape, and X-shape 
could be used to check the effect of these transfer functions on 
the performance of the proposed methods. Due to the differ-
ences in accuracy between the classes since some of them come 
from different datasets. This can help convolutional neural net-
works (CNN) enrich the features according to the properties of 
each dataset, even with the ensemble methods’ presence.

Data Availability The datasets in the current study are available in the 
UCI, KEEL, and Kaggle repositories and at https://jundongl.github.io/
scikit-feature/datasets.html.
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Table 17  Holm’s test results between the control algorithm and all 
other comparative methods

i Algorithm
z =

(R
0
−Ri)

SE

p-value � ÷ i Hypothesis

Classification accuracy (BECSA is the control algorithm)
8 BTLBO 7.7739 7.60E-15 0.0062 Reject
7 BPSO 6.7725 1.26E-11 0.0071 Reject
6 BAFT 4.3744 1.21E-05 0.0083 Reject
5 BMFO 4.3744 1.21E-05 0.0100 Reject
4 BLSHADE 2.6615 0.0078 0.0125 Reject
3 BBBO 2.6352 0.0084 0.0167 Reject
2 BHBA 0.8696 0.3845 0.0250 Not reject
1 BCSA 0.6588 0.5100 0.0500 Not reject
Fitness (BECSA is the control algorithm)
8 BPSO 7.6158 2.62E-14 0.0062 Reject
7 BMFO 5.2968 1.18E-07 0.0071 Reject
6 BAFT 4.8752 1.09E-06 0.0083 Reject
5 BBBO 3.4785 5.04E-04 0.0100 Reject
4 BLSHADE 2.9778 0.0029 0.0125 Reject
3 BTLBO 2.1872 0.0287 0.0167 Reject
2 BHBA 0.7906 0.4292 0.0250 Not reject
1 BCSA 0.5270 0.5982 0.0500 Not reject
Sensitivity (BLSHADE is the control algorithm)
8 BTLBO 4.5326 5.83E-06 0.0062 Reject
7 BPSO 3.7684 1.64E-04 0.0071 Reject
6 BAFT 1.9764 0.0481 0.0083 Reject
5 BMFO 1.7919 0.0731 0.0100 Not reject
4 BBBO 1.3967 0.1625 0.0125 Not reject
3 BECSA 1.1068 0.2684 0.0167 Not reject
2 BHBA 1.0804 0.2799 0.0250 Not reject
1 BCSA 0.9487 0.3428 0.0500 Not reject
Specificity (BECSA is the control algorithm)
8 BPSO 3.9528 7.72E-05 0.0062 Reject
7 BTLBO 3.5312 4.14E-04 0.0071 Reject
6 BMFO 2.0028 0.0452 0.0083 Reject
5 BAFT 1.7393 0.0819 0.0100 Not reject
4 BHBA 1.2649 0.2059 0.0125 Not reject
3 BCSA 1.0014 0.3166 0.0167 Not reject
2 BBBO 0.9487 0.3428 0.0250 Not reject
1 BLSHADE 0.26352 0.7921 0.0500 Not reject
Features (BCSA is the control algorithm)
8 BTLBO 8.0901 5.96E-16 0.0062 Reject
7 BAFT 6.3773 1.80E-10 0.0071 Reject
6 BBBO 5.2705 1.36E-07 0.0083 Reject
5 BLSHADE 4.0319 5.53E-05 0.0100 Reject
4 BPSO 2.3717 0.0177 0.0125 Reject
3 BMFO 1.8447 0.0651 0.0167 Not reject
2 BHBA 1.6865 0.0917 0.0250 Not reject
1 BECSA 0.4479 0.6542 0.0500 Not reject
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