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Abstract
An aggregation operator of linguistic interval-valued intuitionistic fuzzy numbers (LIVIFNs) is an important tool for solving 
cognitively inspired decision-making problems with LIVIFNs. So far, many aggregation operators of LIVIFNs have been 
presented. Each of these operators works well in its specific context. But they are not always monotone because their opera-
tional rules are not always invariant and persistent. Dempster-Shafer evidence theory, a general framework for modelling 
epistemic uncertainty, was found to provide the capability for operational rules of fuzzy numbers to overcome these limita-
tions. In this paper, a weighted averaging operator of LIVIFNs based on Dempster-Shafer evidence theory for cognitively 
inspired decision-making is proposed. Firstly, Dempster-Shafer evidence theory is introduced into linguistic interval-valued 
intuitionistic fuzzy environment and a definition of LIVIFNs under this theory is given. Based on this, four novel operational 
rules of LIVIFNs are developed and proved to be always invariant and persistent. Using the developed operational rules, a 
new weighted averaging operator of LIVIFNs is constructed and proved to be always monotone. Based on the constructed 
operator, a method for solving cognitively inspired decision-making problems with LIVIFNs is presented. The application of 
the presented method is illustrated via a numerical example. The effectiveness and advantage of the method are demonstrated 
via quantitative comparisons with several existing methods. For the numerical example, the best alternative determined by 
the presented method is exactly the same as that determined by other comparison methods. For some specific problems, only 
the presented method can generate intuitive ranking results. The demonstration results suggest that the presented method is 
effective in solving cognitively inspired decision-making problems with LIVIFNs. Furthermore, the method will not produce 
counterintuitive ranking results since its operational rules are always invariant and persistent and its aggregation operator 
is always monotone.
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Introduction

Cognitively inspired decision-making (DM) is a cogni-
tive process of selecting the best alternative from a certain 
number of alternatives based on summary values of one or 
multiple criteria of all alternatives, in which the values of 
criteria are evaluated by one or a group of domain experts 
[1–3]. There are two critical steps in this process. The first 
is to quantify the evaluation results from domain experts, 
while the second is to generate a ranking of all alternatives 
via comprehensively considering all criteria.

For the quantification of evaluation results, the main chal-
lenge is to pinpoint cognition and judgments that are close 
to the human brain to improve DM quality. Cognitive com-
putation, a computing system that imitates human thought 
processes, has been presented to achieve computing that 
functions like the human brain [4]. In the era of big data, a 
variety of technological advancements is used in cognitive 
computation to handle the enormous volume of data with 
complicated structures [5, 6]. Since human thoughts are 
generally complex and vague, it is difficult to describe the 
data in form of crisp values. To effectively represent human 
cognitive process in DM, researchers proposed the use of 
fuzzy sets [7]. So far, over thirty different types of fuzzy 
sets have been presented [8]. Representative examples are 
fuzzy set [9], intuitionistic fuzzy set [10], interval-valued 
intuitionistic fuzzy set [11], linguistic intuitionistic fuzzy set 
[12], Pythagorean fuzzy set [13], generalised orthopair fuzzy 
set [14], and linguistic interval-valued intuitionistic fuzzy set 
(LIVIFS) [15, 16]. Using these fuzzy sets, many methods 
for solving cognitively inspired DM problems [17–34] have 
been proposed within academia.

LIVIFS, which was presented on the basis of interval-
valued intuitionistic fuzzy set, linguistic term set [35, 36], 
and linguistic intuitionistic fuzzy set, is one of the most 
important types of fuzzy sets for quantifying evalua-
tion results in cognitively inspired DM. An LIVIFS can 
be defined by an element and a membership degree and 
a non-membership degree of the element to the LIVIFS, 
where each degree is denoted by an interval of two lin-
guistic terms. A pair composed of a membership degree 
and a non-membership degree is usually called a linguis-
tic interval-valued intuitionistic fuzzy number (LIVIFN). 
Through such definition, an LIVIFS can effectively reflect 
the characteristics of human cognitive performance includ-
ing acceptance, rejection, and hesitation. Compared with 

fuzzy set, intuitionistic fuzzy set, interval-valued intuition-
istic fuzzy set, linguistic intuitionistic fuzzy set, Pythago-
rean fuzzy set, and generalised orthopair fuzzy set, LIVIFS 
provides stronger expressive capability and is more flexible 
for domain experts, since it allows them to give evaluation 
results using two intervals of linguistic terms (i.e. LIV-
IFNs). Because of these features, application of LIVIFS to 
express the evaluation results in cognitively inspired DM 
[15, 16, 27, 33, 34, 37–43] has received extensive attention 
and is still gaining importance and popularity.

For the generation of a ranking, there are usually two 
approaches. The first is to use traditional DM methods, such 
as analytic hierarchy process, TOPSIS method, ELECTRE 
method, PROMETHEE method, MABAC method, and 
MOORA method. The second is to adopt aggregation oper-
ators (AOs), such as weighted averaging (WA) operator, 
Heronian mean operator, Bonferroni mean operator, Maclau-
rin symmetric mean operator, and Muirhead mean operator. 
In general, an AO has better traceability when solving cogni-
tively inspired DM problems than a traditional DM method, 
since it can produce summary values of multiple criteria 
and a ranking of all alternatives, while a traditional DM 
method can only generate a ranking [44]. To date, there have 
been many AOs of LIVIFNs for cognitively inspired DM. 
Representative examples include: a prioritised weighted 
averaging operator, a prioritised weighted geometric opera-
tor, a prioritised ordered weighted averaging operator, and 
a prioritised ordered weighted geometric operator presented 
by [27]; a WA operator, a weighted geometric operator, an 
ordered weighted averaging operator, an ordered weighted 
geometric operator, a hybrid average operator, and a hybrid 
geometric operator presented by [16]; a weighted Maclaurin 
symmetric mean operator presented by [37]; an Archime-
dean power weighted Muirhead mean operator presented 
by [33]; an Archimedean prioritised ‘and’ operator and an 
Archimedean prioritised ‘or’ operator presented by [34]; a 
neutrosophic Dombi hybrid weighted geometric operator 
presented by [42]; a partitioned weighted Hamy mean opera-
tor presented by [41]; a copula weighted Heronian mean 
operator presented by [43]; a Hamacher weighted averag-
ing operator and a Hamacher weighted geometric operator 
presented by [40].

Most of the operators above use the operational rules 
(ORs) of LIVIFNs based on algebraic t-norm and t-conorm 
to perform their operations, while the remaining operators 
adopt the ORs based on other types of Archimedean t-norm 
and t-conorm. The ORs based on Archimedean t-norm and 
t-conorm make the operators general and flexible, but also 
make them produce counterintuitive ranking results for 
some cognitively inspired DM problems with LIVIFNs, 
because they are not always invariant and persistent and the 
AOs based on them are not always monotone. For example, 
assume a decision maker needs to select a proper additive 
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manufacturing machine from two alternative machines M1 
and M2 to build a part with certain material on the basis 
of the following conditions: the selection criteria include 
predicted strength ( C1 ) and predicted hardness ( C2 ) of the 
as-built part; the weight of C1 ( w1 ) and the weight of C2 
( w2 ) are respectively given as w1 = 0.4 and w2 = 0.6 ; the 
value of C1 of M1 ( �11 ), the value of C2 of M1 ( �12 ), the value 
of C1 of M2 ( �21 ), and the value of C2 of M2 ( �22 ) are all 
given by LIVIFNs under nine linguistic terms extremely 
small (0), very small (1), small (2), slightly small (3), 
medium (4), slightly large (5), large (6), very large (7), and 
extremely large (8): �11 = ([2, 4], [1, 2]) ; �21 = ([3, 4], [1, 3]) ; 
�12 = �22 = ([2, 4], [1, 3]) . According to these conditions, it 
is quite intuitive for the decision maker to choose M2 to build 
the part, because �11 is less than �21 according to the rules 
for comparing two LIVIFNs used in the operators above. 
However, a counterintuitive result “ M1 is better than M2 ” will 
be obtained if any of the operators above (denoted as o) is 
used to solve this problem, because o(�11, �12) is greater than 
o(�21, �22) is obtained after using the operator and compari-
son rules (The reason will be explained in detail in the second 
comparison in Sect. 'Comparisons with Existing Methods').

Based on the analysis above, the motivations of this paper 
are threefold: 

1.	 To overcome the limitation that the existing ORs of LIV-
IFNs are not always invariant and persistent, Dempster-
Shafer evidence theory (DSET) [45, 46] is introduced 
to develop novel ORs of LIVIFNs. DSET, also known 
as theory of belief functions, is a general framework 
for modelling epistemic uncertainty. In this framework, 
there are four fundamental components: a basic prob-
ability assignment that describes the occurrence rate of 
criteria in basic events; a belief function that expresses 
the belief of a focal element; a plausibility function that 
expresses the uncertainty of a focal element; a belief 
interval that consists of a belief function and a plausibil-
ity function. As demonstrated in [47–51], fuzzy numbers 
can be converted into belief intervals without loss of 
information, and the ORs of fuzzy numbers under DSET 
are always invariant and persistent [52–58]. Because of 
these characteristics, the developed novel ORs of LIV-
IFNs are always invariant and persistent;

2.	 To address the issue that the existing AOs of LIVIFNs 
are not always monotone and could generate counterin-
tuitive ranking results, the developed ORs are applied 
to construct a new WA operator of LIVIFNs. Benefit-
ing from the advantages of the ORs, the constructed 
AO is always monotone and therefore will not produce 
counterintuitive ranking results. For example, an intui-
tive result “ M2 is better than M1 ” will be obtained if the 
constructed AO is used to solve the problem above;

3.	 To solve cognitively inspired DM problems with LIV-
IFNs, a DM method based on the constructed AO is pre-
sented. This method has the advantages of the developed 
ORs and constructed AO.

The novelties of the paper lie in the following aspects:

1.	 The developed novel ORs. The existing ORs of LIVIFNs 
are based on Archimedean t-norm and t-conorm. They 
are general and flexible for performing operations. But 
they are found not to be always invariant and persistent. 
The developed novel ORs are based on DSET, which 
are proved to be always invariant and persistent. To the 
best of the knowledge, they are the first set of ORs of 
LIVIFNs based on DSET;

2.	 The constructed new WA operator. The existing AOs 
of LIVIFNs use the ORs of LIVIFNs based on Archi-
medean t-norm and t-conorm to perform operations. 
Each of them can work well under specific conditions. 
However, they are found to generate counterintuitive 
ranking results sometimes because they are not always 
monotone. The constructed new WA operator uses the 
ORs of LIVIFNs based on DSET to perform operations. 
It is proved to be always monotone. To the best of the 
knowledge, it is the first AO of LIVIFNs under DSET;

3.	 The proposed new DM method. The existing methods 
for solving DM problems with LIVIFNs are based on 
the existing ORs and AOs of LIVIFNs. These methods 
could produce counterintuitive DM results since they 
inherit the limitations mentioned in the first and second 
aspects. The proposed new DM method is based on the 
presented new ORs and AO. It will not generate coun-
terintuitive DM results because the presented ORs and 
AO are free of the limitations.

The remainder of the paper is organised as follows. Sec-
tion 'Preliminaries' gives a brief introduction of some pre-
requisites. Three limitations of the existing ORs and WA 
operator of LIVIFNs are discussed in Sect. 'Discussion of 
Limitations'. Section 'New ORs, WA Operator, and DM 
Method' presents four ORs of LIVIFNs under DSET, a WA 
operator of LIVIFNs under DSET, and a method to solve 
cognitively inspired DM problems with LIVIFNs. The appli-
cation, effectiveness, and advantage of the presented method 
are demonstrated in Sect. 'Application and Comparisons'. 
Section 'Conclusion' ends the paper with a conclusion.

Preliminaries

Brief Introduction of LIVIFS

An LIVIFS needs to be defined on a continuous linguistic 
term set, which is defined below:
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Definition 1  [35, 36] Let h be some fixed natural number. 
Then {0, 1, ..., h} is called a finite linguistic term set (which 
consists of h + 1 linguistic terms denoted by 0, 1, ..., h) and 
{i ∈ ℝ ∣ 0 ≤ i ≤ h} is called a continuous linguistic term set 
(if i ∈ {0, 1, ..., h} , then i is called an original linguistic term; 
otherwise, i is called a virtual linguistic term).

For the sake of clarity and convenience of descrip-
tion, the following conventions will be adopted in the 
whole paper: Every h has the same meaning, that is, the 
maximum index value of all linguistic terms in a finite 
linguistic term set {0, 1, ..., h} ; All LIVIFSs and all LIV-
IFNs are defined on a continuous linguistic term set 
{i ∈ ℝ ∣ 0 ≤ i ≤ h}.

A formal definition of LIVIFS is given below:

Definition 2  [16] An LIVIFS A over a finite universal set X  
is A =

{⟨
x,
[
�L(x),�U(x)

]
,
[
�L(x), �U(x)

]⟩
∣ x ∈ X

}
 , where  

�L(x),�U(x), �L(x), �U(x) ∈ [0, h] , �L(x) ≤ �U(x) , �L(x) ≤
�U(x) , and �U(x) + �U(x) ≤ h for any x ∈ X . 

[
�L(x),�U(x)

]
 is 

the linguistic membership degree of x to A. 
[
�L(x), �U(x)

]
 is the 

linguistic non-membership degree of x to A.

In an LIVIFS A, for some x in a finite universal set 
X, 

([
�L(x),�U(x)

]
,
[
�L(x), �U(x)

])
 is called an LIVIFN. An 

LIVIFN � is generally denoted as � =
([
�L
�
,�U

�

]
,
[
�L
�
, �U

�

])
 . 

To compare two LIVIFNs, the score and accuracy values 
of them are required. Two functions for respectively cal-
culating these values are defined as follows:

Definition 3  [16] Let � be an arbitrary LIVIFN. The score 
value of � with respect to h and the accuracy value of � are 
respectively calculated by the following two equations:

Based on the score and accuracy functions, rules for com-
paring two LIVIFNs are defined below:

Definition 4  [16] Let �1 and �2 be two arbitrary LIVIFNs. 
The following notations are used to express five relationships  
between two LIVIFNs: �1  �2 represents �1 is less than �2 ; 
�1  �2 represents �1 is greater than �2 ; �1  �2 represents �1 
is equal to �2 (  is an ordering, i.e. it is reflexive, symmetric, 
and transitive); �1  �2 represents �1 is less than or equal to 
�2 ; �1  �2 represents �1 is greater than or equal to �2 . The 
comparison rules are: If SVh(𝛼1) < SVh(𝛼2) , then �1  �2 ; 
If SVh(�1) = SVh(�2) and AV(𝛼1) < AV(𝛼2) , then �1  �2 ; 
If SVh(�1) = SVh(�2) and AV(�1) = AV(�2) , then �1  �2.

(1)SVh(�) = (2h + �L

�
+ �U

�
− �L

�
− �U

�
)∕4

(2)AV(�) = (�L

�
+ �U

�
+ �L

�
+ �U

�
)∕2

Existing ORs of LIVIFNs

Operations related to LIVIFNs can be performed using certain 
ORs of LIVIFNs. There are currently several sets of ORs of 
LIVIFNs. The most used one is based on algebraic t-norm and 
t-conorm, which is defined as follows:

Definition 5  [16] Let � , �1 , and �2 be three arbitrary LIV-
IFNs and � be an arbitrary positive number. The following 
notations are used to express two operations between �1 and 
�2 and two operations between � and � : 𝛼1 ⊕ 𝛼2 represents �1 
plus �2 ; 𝛼1 ⊗ 𝛼2 represents �1 times �2 ; �� represents � times 
� ; �� represents the � power of � . These operations can be 
performed using the following rules:

It is worth noting that �� will be equal to ([0, 0], [h, h]) and 
�� will be equal to ([h, h], [0, 0]) if � = 0 . The four operations 
in the ORs above satisfy the following algebraic laws [16]:

(3)

𝛼1 ⊕ 𝛼2 =

([
𝜇L

𝛼1
+ 𝜇L

𝛼2
− 𝜇L

𝛼1
𝜇L

𝛼2
∕h,𝜇U

𝛼1
+ 𝜇U

𝛼2
− 𝜇U

𝛼1
𝜇U

𝛼2
∕h

]
,

[
𝜈L
𝛼1
𝜈L
𝛼2
∕h, 𝜈U

𝛼1
𝜈U
𝛼2
∕h

])

(4)
𝛼1 ⊗ 𝛼2 =

([
𝜇L

𝛼1
𝜇L

𝛼2
∕h,𝜇U

𝛼1
𝜇U

𝛼2
∕h

]
,

[
𝜈L
𝛼1
+ 𝜈L

𝛼2
− 𝜈L

𝛼1
𝜈L
𝛼2
∕h, 𝜈U

𝛼1
+ 𝜈U

𝛼2
− 𝜈U

𝛼1
𝜈U
𝛼2
∕h

])

(5)
�� =

([
h − h(1 − �L

�
∕h)�, h − h(1 − �U

�
∕h)�

]
,

[
h(�L

�
∕h)�, h(�U

�
∕h)�

])

(6)
�� =

([
h(�L

�
∕h)�, h(�U

�
∕h)�

]
,

[
h − h(1 − �L

�
∕h)�, h − h(1 − �U

�
∕h)�

])

(7)𝛼1 ⊕ 𝛼2 = 𝛼2 ⊕ 𝛼1

(8)𝜆(𝛼1 ⊕ 𝛼2) = 𝜆𝛼1 ⊕ 𝜆𝛼2

(9)𝜆1𝛼 ⊕ 𝜆2𝛼 = (𝜆1 + 𝜆2)𝛼

(10)𝛼1 ⊗ 𝛼2 = 𝛼2 ⊗ 𝛼1

(11)(𝛼1 ⊗ 𝛼2)
𝜆 = 𝛼𝜆

1
⊗ 𝛼𝜆

2
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where �1 and �2 are two arbitrary positive numbers. Fur-
ther, there is yet no evidence that the four operations 
satisfy other algebraic laws, such as associativity of ⊕ : 
(𝛼1 ⊕ 𝛼2)⊕ 𝛼3 = 𝛼1 ⊕ (𝛼2 ⊕ 𝛼3) , associativity of ⊗ : 
(𝛼1 ⊗ 𝛼2)⊗ 𝛼3 = 𝛼1 ⊗ (𝛼2 ⊗ 𝛼3) , and distributive law of 
⊗ : (𝛼1 ⊕ 𝛼2)⊗ 𝛽 = (𝛼1 ⊗ 𝛽)⊕ (𝛼2 ⊗ 𝛽) , where �1 , �2 , �3 , 
and � are four arbitrary LIVIFNs.

Existing WA Operator of LIVIFNs

An AO is a function for grouping together two or more val-
ues to achieve a summary value. The most common AO 
for solving cognitively inspired DM problems is the WA 
operator. A WA operator of LIVIFNs based on the ORs of 
LIVIFNs in Definition 5 is defined below:

Definition 6  [16] Let �i (i ∈ {1, 2, ..., n}) be n arbitrary LIV-
IFNs, and wi be the weight of �i such that 0 ≤ wi ≤ 1 and 
Σn
i=1

wi = 1 . The aggregation function

is called the linguistic interval-valued intuitionistic fuzzy 
weighted averaging (LIVIFWA) operator.

The LIVIFWA operator above has the following proper-
ties [16]: 

1.	 Idempotency: Let � be an arbitrary LIVIFN. If �L
�i
= �L

�
 , 

�U
�i
= �U

�
 , �L

�i
= �L

�
 , and �U

�i
= �U

�
 for all i ∈ {1, 2, ..., n} , then 

LIVIFWA(�1, �2, ..., �n) =
([
�L
�
,�U

�

]
,
[
�L
�
, �U

�

])
= �;

2.	 Monotonicity: Let �i (i ∈ {1, 2, ..., n}) be n arbitrary LIV-
IFNs. If �L

�i
≤ �L

�i
 , �U

�i
≤ �U

�i
 , �L

�i
≥ �L

�i
 , and �U

�i
≥ �U

�i
 for all 

i ∈ {1, 2, ..., n} , then  LIVIFWA(�1, �2, ..., �n)  LIVI
FWA(�

1
, �

2
, ..., �

n
);

3.	 Boundedness: Let �− =
([
�L
−
,�U

−

]
,
[
�L
−
, �U

−

])
 and 

�+ =
([
�L
+
,�U

+

]
,
[
�L
+
, �U

+

])
 , where �L

−
= min{�L

�i
} , �U

−
= 

min{�U

�
i

} , �L
−
= max{�L

�i
} , �U

−
= max{�U

�i
} , �L

+
= max 

{�L

�
i

} , �U
+
= max{�U

�i
} , �L

+
= min{�L

�i
} , and �U

+
= min{�U

�i
} 

for all i ∈ {1, 2, ..., n} . Then �−  LIVIFWA(�1, �2, ..., 
�
n
)  �+.

(12)𝛼𝜆1 ⊗ 𝛼𝜆2 = 𝛼𝜆1+𝜆2

(13)

LIVIFWA(𝛼1, 𝛼2, ..., 𝛼n) = ⊕n
i=1

(wi𝛼i)

=

��
h − h

∏n

i=1
(1 − 𝜇L

𝛼i
∕h)wi , h − h

∏n

i=1
(1 − 𝜇U

𝛼i
∕h)wi

�
,

�
h
∏n

i=1
(𝜈L

𝛼i
∕h)wi , h

∏n

i=1
(𝜈U

𝛼i
∕h)wi

��

Discussion of Limitations

Limitations of Existing ORs of LIVIFNs

The ORs of LIVIFNs in Eqs. (3) and (5) are found to generate 
counterintuitive ranking results for some cognitively inspired 
DM problems with LIVIFNs due to the following limitations: 

1.	 The operation in the OR of LIVIFNs in Eq. (3) is not 
always invariant with respect to the score function 
in Eq. (1), the accuracy function in Eq. (2), and the 
comparison rules in Definition 4: For three arbitrary 
LIVIFNs �1 , �2 , and �3 , �1 �2 cannot always imply 
(𝛼1 ⊕ 𝛼3) (𝛼2 ⊕ 𝛼3);

2.	 The operation in the OR of LIVIFNs in Eq. (5) is not 
always persistent with respect to the score function in 
Eq. (1), the accuracy function in Eq. (2), and the com-
parison rules in Definition 4: For two arbitrary LIVIFNs 
�1 and �2 and an arbitrary positive number � , �1  �2 
cannot always imply ��1 ��2.

Two numerical examples for respectively illustrating the 
limitations above are given below:

Example 1  Assume h = 8 , �1 = ([4, 5], [2, 3]) , �
2
= ([3, 5],

[1, 2]) , and �3 = ([2, 4], [1, 3]) . According to the score function 
in Eq. (1), we have SVh(�1) = 5.0000 and SVh(�2) = 5.2500 . 
Since SVh(𝛼1) < SVh(𝛼2) , we obtain from the comparison 
rules in Definition 4 that �1 �2 . Using the OR of LIVIFNs in 
Eq. (3), we have

According to the score function in Eq. (1), we further 
have SVh(𝛼1 ⊕ 𝛼3) = 6.5313 and SVh(𝛼2 ⊕ 𝛼3) = 6.4688 . 
Since SVh(𝛼1 ⊕ 𝛼3) > SVh(𝛼2 ⊕ 𝛼3) , we obtain from the 
comparison rules in Definition 4 that (𝛼1 ⊕ 𝛼3)  (𝛼2 ⊕ 𝛼3).

Example 2  Assume h = 8 , �1 = ([2, 4], [1, 2]) , �
2
= ([3, 4],

[1, 3]) , and � = 0.6000 . According to the score function 
in Eq. (1) and the accuracy function in Eq. (2), we have 
SVh(�1) = 4.7500 , SVh(�2) = 4.7500 , AV(�1) = 4.5000 , 
and AV(�2) = 5.5000 .  Since SVh(�1) = SVh(�2) and 
AV(𝛼1) < AV(𝛼2) , we obtain from the comparison rules  
in Definition 4 that �1  �2 . Using the OR of LIVIFNs in 
Eq. (5), we have

𝛼1 ⊕ 𝛼3 = ([5.0000, 6.5000], [0.2500, 1.1250])

𝛼2 ⊕ 𝛼3 = ([4.2500, 6.5000], [0.1250, 0.7500])

��1 = ([1.2683, 2.7220], [2.2974, 3.4822])
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According to the score function in Eq. (1), we further 
have SVh(��1) = 3.5527 and SVh(��2) = 3.4873 . Since 
SVh(𝜆𝛼1) > SVh(𝜆𝛼2) , we obtain from the comparison 
rules in Definition 4 that ��1  ��2.

Limitation of Existing WA Operator of LIVIFNs

The LIVIFWA operator in Eq. (13) is found to produce 
counterintuitive ranking results for some cognitively 
inspired DM problems with LIVIFNs because of the fol-
lowing limitation:

The LIVIFWA operator in Eq. (13) is not always mono-
tone with respect to the score function in Eq. (1), the accu-
racy function in Eq. (2), and the comparison rules in Defi-
nition 4: For three arbitrary LIVIFNs �1 , �2 , and �3 and  
certain weights w1 and w2 , �1  �2 cannot always imply 
LIVIFWA(�1, �3)  LIVIFWA(�2, �3).

A numerical example for illustrating the limitation 
above is given as follows:

Example 3  Assume h = 8 , �1 = ([2, 4], [1, 2]) , �
2
= ([3, 4],

[1, 3]) , �3 = ([2, 4], [1, 3]) , w1 = 0.4000 , and w2 = 0.6000 . 
According to the score function in Eq. (1) and the accu-
racy function in Eq.  (2), we have SVh(�1) = 4.7500 , 
SVh(�2) = 4.7500 , AV(�1) = 4.5000 , and AV(�2) = 5.5000 . 
Since SVh(�1) = SVh(�2) and AV(𝛼1) < AV(𝛼2) , we obtain 
from the comparison rules in Definition 4 that �1  �2 . Using 
the LIVIFWA operator in Eq. (13), we have

According to the score function in Eq. (1), we further  
have SVh(LIVIFWA(�1, �3)) = 4.6123 and SV

h
(LIVIFWA 

(�
2
, �

3
)) = 4.6055 . Since SV

h
(LIVIFWA(𝛼

1
, 𝛼

3
)) > SV

h

(LIVIFWA(�
2
, �

3
)) , we obtain from the comparison rules in 

Definition 4 that LIVIFWA(�1, �3)  LIVIFWA(�2, �3).

New ORs, WA Operator, and DM Method

LIVIFS Based on DSET

Five fundamental concepts in DSET are frame of discern-
ment, basic probability assignment, belief function, plausi-
bility function, and belief interval, which are respectively 
defined as follows:

Definition 7  [45, 46] Let � = {H1,H2, ...,Hn} be a set 
of n hypotheses H1,H2, ...,Hn . If the probability of every 
two different hypotheses in � being true is zero (i.e. 

��2 = ([1.9658, 2.7220], [2.2974, 4.4413])

LIVIFWA(�1, �3) = ([2.0000, 4.0000], [1.0000, 2.5508])

LIVIFWA(�2, �3) = ([2.4220, 4.0000], [1.0000, 3.0000])

P(Hi ∩ Hj) = 0 for any i, j ∈ {1, 2, ..., n} and i ≠ j ) and the 
probability of at least one hypothesis in � being true is one 
(i.e. P(H1 ∪ H2 ∪ ... ∪ Hn) = 1 ), then � is called a frame  
of discernment.

Definition 8  [45, 46] Let � be a frame of discernment and 
2� be the power set of � . A basic probability assignment 
over � is a mapping f ∶ 2� → [0, 1] such that f(Ø) = 0 and 
ΣH∈2� f (H) = 1.

Definition 9  [45, 46] Let � be a frame of discernment, f be 
a basic probability assignment over � and f (𝛩) > 0 , and H 
be an element of the power set of � (i.e. H ∈ 2� ). A belief 
function of H with respect to f is BFf (H) = ΣH�⊆Hf (H

�).

Definition 10  [45, 46] Let � be a frame of discernment, f be 
a basic probability assignment over � , and H be an element 
of the power set of � (i.e. H ∈ 2� ). A plausibility function 
of H with respect to f is PFf (H) = ΣH�∩H≠Ø f (H�).

Definition 11  [45, 46] Let � be a frame of discernment, 
f be a basic probability assignment over � , H be an ele-
ment of the power set of � (i.e. H ∈ 2� ), BFf (H) be a belief 
function of H with respect to f, and PFf (H) be a plausibility 
function of H with respect to f. A belief interval over H 
with respect to f (denoted as BIf (H) ) is an interval whose 
lower bound is BFf (H) and upper bound is PFf (H) . That is, 
BIf (H) = [BFf (H), PFf (H)].

Based on the definitions above and the definition of 
interval-valued intuitionistic fuzzy set under DSET [51], the 
definition of LIVIFS in Definition 2 can be rewritten below:

Definition 12  Let A =
{⟨

x,
[
�L(x),�U(x)

]
,
[
�L(x), �U(x)

]⟩
∣ x ∈ X

}
 be an LIVIFS over a finite universal set X. Then A 

under DSET is defined as  = 
{⟨

x,
[
BI

L(x), BIU(x)
]⟩

∣ x ∈ X
}
 , 

where BIL(x) =
[
BF

L(x), PFL(x)
]
=
[
�L(x)∕h, 1 − �U(x)∕h

]
 

is called the linguistic lower belief interval of x to , and 
BI

U(x) =
[
BF

U(x), PFU(x)
]
=
[
�U(x)∕h, 1 − �L(x)∕h

]
 is called 

the linguistic upper belief interval of x to .

An LIVIFN �  under DSET is a =
[[
BF

L

a
, PF

L

a

]
,[

BF
U

a
, PF

U

a

]]
=
[[
�L

�
∕h, 1 − �U

�
∕h

]
,
[
�U

�
∕h, 1 − �L

�
∕h

]]
 .  To 

compare two LIVIFNs under DSET, the score and accuracy 
values of them are needed. Two functions for respectively 
calculating these values are defined as follows:

Definition 13  Let � be an arbitrary LIVIFN and a be � under 
DSET. The score and accuracy values of a with respect to h 
can be respectively calculated by the following two equations:

(14)
��h(a) = h

(
BF

L

a
+ BF

U

a
+ PF

L

a
+ PF

U

a

)
= 2h +

(
�L

�
+ �U

�
− �L

�
− �U

�

)
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Based on the score and accuracy functions, rules for com-
paring two LIVIFNs under DSET are defined below:

Definition 14  Let �1 and �2 be two arbitrary LIVIFNs and a1  
and a2 be respectively �1 and �2 under DSET. The following 
notations are used to express five relationships between two  
LIVIFNs under DSET: a1  a2 represents a1 is less than a2 ; 
a1  a2 represents a1 is greater than a2 ; a1  a2 represents a1 
is equal to a2 ; a1  a2 represents a1 is less than or equal to 
a2 ; a1  a2 represents a1 is greater than or equal to a2 . The 
comparison rules are: If ��h(a1) < ��h(a2) , then a1  a2 ; 
If ��h(a1) = ��h(a2) and ��h(a1) < ��h(a2) , then a1  a2 ; 
If ��h(a1) = ��h(a2) and ��h(a1) = ��h(a2) , then a1  a2.

ORs of LIVIFNs Based on DSET

To perform the operations related to LIVIFNs under DSET, 
a set of novel ORs of LIVIFNs under DSET is developed 
as follows:

Definition 15  Let � be an arbitrary LIVIFN, a be � under 
DSET, �i (i ∈ {1, 2, ..., n}) be n arbitrary LIVIFNs, ai be �i 
under DSET, and � be an arbitrary positive number. The fol-
lowing notations are used to express two operations between 
a1 and a2 and two operations between � and a: a1 ⊞ a2 repre-
sents a1 plus a2 ; a1 ⊠ a2 represents a1 times a2 ; �a represents 
� times a; a� represents the � power of a. These operations 
can be performed using the following rules:

(15)
��h(a) = h

(
PF

L

a
+ PF

U

a
− BF

L

a
− BF

U

a

)
= 2h −

(
�L

�
+ �U

�
+ �L

�
+ �U

�

)

(16)

⊞n
i=1

ai =

[[
1

n

n∑
i=1

BF
L

ai
,
1

n

n∑
i=1

PF
L

ai

]
,

[
1

n

n∑
i=1

BF
U

ai
,
1

n

n∑
i=1

PF
U

ai

]]

=

[[
1

n

n∑
i=1

(
𝜇L

𝛼i
∕h

)
,
1

n

n∑
i=1

(
1 − 𝜈U

𝛼i
∕h

)]
,

[
1

n

n∑
i=1

(
𝜇U

𝛼i
∕h

)
,

1

n

n∑
i=1

(
1 − 𝜈L

𝛼i
∕h

)]]

(17)

a1 ⊠ a2 =

[[
BF

L

a1
BF

L

a2
, PF

L

a1
PF

L

a2

]
,

[
BF

U

a1
BF

U

a2
, PF

U

a1
PF

U

a2

]]

=

[[(
𝜇L

𝛼1
𝜇L

𝛼2
∕h2

)
,
(
1 − 𝜈U

𝛼1
∕h

)(
1 − 𝜈U

𝛼2
∕h

)]
,

[(
𝜇U

𝛼1
𝜇U

𝛼2
∕h2

)
,
(
1 − 𝜈L

𝛼1
∕h

)(
1 − 𝜈L

𝛼2
∕h

)]]

(18)

�a =

[[
�BFL

a
, �PFL

a

]
,

[
�BFU

a
, �PFU

a

]]

=

[[
�
(
�L

�
∕h

)
, �
(
1 − �U

�
∕h

)]
,

[
�
(
�U

�
∕h

)
, �
(
1 − �L

�
∕h

)]]

It is easy to prove that the four operations in the ORs 
above satisfy the following algebraic laws:

where �1 and �2 are two arbitrary positive numbers.
The developed OR of LIVIFNs under DSET in Eq. (16) 

is free of the limitation of the OR of LIVIFNs in Eq. (3), 
as stated in the following theorem:

Theorem 1  The operation in the OR of LIVIFNs under DSET 
in Eq. (16) is always invariant with respect to the score func-
tion in Eq. (14), the accuracy function in Eq. (15), and the 
comparison rules in Definition 14: For three arbitrary LIV-
IFNs under DSET a1 , a2 , and a3 , a1  a2 can always imply 
(a1 ⊞ a3)  (a2 ⊞ a3).

Proof  Let a
k
=
[[
BF

L

a
k

, PF
L

a
k

]
,
[
BF

U

a
k

, PF
U

a
k

]]
=
[[
�L

�
k

∕h, 1−

�U
�
k

∕h
]
,
[
�U

�
k

∕h, 1 − �L
�
k

∕h
]]

 (k ∈ {1, 2, 3}) . According to the 
score function in Eq.  (14) and the accuracy function in 
Eq. (15), we have

(19)

a� =

[[(
BF

L

a

)�
,
(
PF

L

a

)�]
,

[(
BF

U

a

)�
,
(
PF

U

a

)�]]

=

[[(
�L

�
∕h

)�
,
(
1 − �U

�
∕h

)�]
,

[(
�U

�
∕h

)�
,
(
1 − �L

�
∕h

)�]]

(20)a1 ⊞ a2 = a2 ⊞ a1

(21)𝜆(a1 ⊞ a2) = 𝜆a1 ⊞ 𝜆a2

(22)𝜆1a⊞ 𝜆2a = (𝜆1 + 𝜆2)a

(23)a1 ⊠ a2 = a2 ⊠ a1

(24)(a1 ⊠ a2)
𝜆 = (a1)

𝜆 ⊠ (a2)
𝜆

(25)(a)𝜆1 ⊠ (a)𝜆2 = (a)𝜆1+𝜆2

��h(a1) = h
(
BF

L

a1
+ BF

U

a1
+ PF

L

a1
+ PF

U

a1

)

= 2h +
(
�L

�1
+ �U

�1
− �L

�1
− �U

�1

)

��h(a2) = h
(
BF

L

a2
+ BF

U

a2
+ PF

L

a2
+ PF

U

a2

)

= 2h +
(
�L

�2
+ �U

�2
− �L

�2
− �U

�2

)

��h(a1) = h
(
PF

L

a1
+ PF

U

a1
− BF

L

a1
− BF

U

a1

)

= 2h −
(
�L

�1
+ �U

�1
+ �L

�1
+ �U

�1

)

��h(a2) = h
(
PF

L

a2
+ PF

U

a2
− BF

L

a2
− BF

U

a2

)

= 2h −
(
�L

�2
+ �U

�2
+ �L

�2
+ �U

�2

)
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Using the OR of LIVIFNs under DSET in Eq. (16), we obtain

According to the score function in Eq. (14) and the accu-
racy function in Eq. (15), we have

There are two possible situations where a1  a2 on the 
basis of the comparison rules in Definition 14: 

1.	 ��h(a1) < ��h(a2) : According to the expressions of 
��h(a1) and ��h(a2) , we obtain 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

− 𝜈L
𝛼
1

− 𝜈U
𝛼
1

<

�L

�
2

+ �U

�
2

− �L
�
2

− �U
�
2

 . Based on this, we further obtain 
from the expressions of ��h(a1 ⊞ a3) and ��h(a2 ⊞ a3) 
that ��h(a1 ⊞ a3) < ��h(a2 ⊞ a3) . Therefore, we can 
obtain from the comparison rules in Definition 14 that 
(a1 ⊞ a3)  (a2 ⊞ a3);

2.	 ��h(a1) = ��h(a2) and ��h(a1) > ��h(a2) : According 
to the expressions of ��h(a1) , ��h(a2) , ��h(a1) , and 

a1 ⊞ a3 =

[[
1

2

(
BF

L

a1
+ BF

L

a3

)
,
1

2

(
PF

L

a1
+ PF

L

a3

)]
,

[
1

2

(
BF

U

a1
+ BF

U

a3

)
,
1

2

(
PF

U

a1
+ PF

U

a3

)]]

=

[[(
𝜇L

𝛼1
+ 𝜇L

𝛼3

)
∕(2h), 1 −

(
𝜈U
𝛼1
+ 𝜈U

𝛼3

)
∕(2h)

]
,

[(
𝜇U

𝛼1
+ 𝜇U

𝛼3

)
∕(2h), 1 −

(
𝜈L
𝛼1
+ 𝜈L

𝛼3

)
∕(2h)

]]

a2 ⊞ a3 =

[[
1

2

(
BF

L

a2
+ BF

L

a3

)
,
1

2

(
PF

L

a2
+ PF

L

a3

)]
,

[
1

2

(
BF

U

a2
+ BF

U

a3

)
,
1

2

(
PF

U

a2
+ PF

U

a3

)]]

=

[[(
𝜇L

𝛼2
+ 𝜇L

𝛼3

)
∕(2h), 1 −

(
𝜈U
𝛼2
+ 𝜈U

𝛼3

)
∕(2h)

]
,

[(
𝜇U

𝛼2
+ 𝜇U

𝛼3

)
∕(2h), 1 −

(
𝜈L
𝛼2
+ 𝜈L

𝛼3

)
∕(2h)

]]

��h(a1 ⊞ a3) = 2h +
(
𝜇L

𝛼1
+ 𝜇U

𝛼1
− 𝜈L

𝛼1
− 𝜈U

𝛼1

+ 𝜇L

𝛼3
+ 𝜇U

𝛼3
− 𝜈L

𝛼3
− 𝜈U

𝛼3

)
∕2

��h(a2 ⊞ a3) = 2h +
(
𝜇L

𝛼2
+ 𝜇U

𝛼2
− 𝜈L

𝛼2
− 𝜈U

𝛼2

+ 𝜇L

𝛼3
+ 𝜇U

𝛼3
− 𝜈L

𝛼3
− 𝜈U

𝛼3

)
∕2

��h(a1 ⊞ a3) = 2h −
(
𝜇L

𝛼1
+ 𝜇U

𝛼1
+ 𝜈L

𝛼1
+ 𝜈U

𝛼1

+ 𝜇L

𝛼3
+ 𝜇U

𝛼3
+ 𝜈L

𝛼3
+ 𝜈U

𝛼3

)
∕2

��h(a2 ⊞ a3) = 2h −
(
𝜇L

𝛼2
+ 𝜇U

𝛼2
+ 𝜈L

𝛼2
+ 𝜈U

𝛼2

+ 𝜇L

𝛼3
+ 𝜇U

𝛼3
+ 𝜈L

𝛼3
+ 𝜈U

𝛼3

)
∕2

��h(a2) , we obtain �L

�
1

+ �U

�
1

− �L
�
1

− �U
�
1

= �L

�
2

+ �U

�
2

−

�L
�
2

− �U
�
2

 and 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

+ 𝜈L
𝛼
1

+ 𝜈U
𝛼
1

< 𝜇L

𝛼
2

+ 𝜇U

𝛼
2

+ 𝜈L
𝛼
2

+�U
�
2

 . Based on this, we further obtain from the expres-
sions of ��h(a1 ⊞ a3) , ��h(a2 ⊞ a3) , ��h(a1 ⊞ a3) , and 
��h(a2 ⊞ a3) that ��h(a1 ⊞ a3) = ��h(a2 ⊞ a3) and 
��h(a1 ⊞ a3) > ��h(a2 ⊞ a3) . Therefore, we can obtain 
from the comparison rules in Definition  14 that 
(a1 ⊞ a3)  (a2 ⊞ a3).

On the basis of the two situations above, we can conclude 
that a1  a2 can always imply (a1 ⊞ a3)  (a2 ⊞ a3) . 	�  ◻

The developed OR of LIVIFNs under DSET in Eq. (18) 
is free of the limitation of the OR of LIVIFNs in Eq. (5), 
as stated in the following theorem:

Theorem 2  The operation in the OR of LIVIFNs under DSET 
in Eq. (18) is always persistent with respect to the score 
function in Eq. (14), the accuracy function in Eq. (15), and 
the comparison rules in Definition 14: For two arbitrary 
LIVIFNs under DSET a1 and a2 and an arbitrary positive 
number � , a1  a2 can always imply �a1  �a2.

Proof  Let a
k
=
[[
BF

L

a
k

, PF
L

a
k

]
,
[
BF

U

a
k

, PF
U

a
k

]]
=
[[
�L

�
k

∕h, 1−

�U
�
k

∕h
]
,
[
�U

�
k

∕h, 1 − �L
�
k

∕h
]]

 (k ∈ {1, 2}) . According to the 
score function in Eq.  (14) and the accuracy function in 
Eq. (15), we have

Using the OR of LIVIFNs under DSET in Eq. (18), we obtain

��h(a1) = h
(
BF

L

a1
+ BF

U

a1
+ PF

L

a1
+ PF

U

a1

)

= 2h +
(
�L

�1
+ �U

�1
− �L

�1
− �U

�1

)

��h(a2) = h
(
BF

L

a2
+ BF

U

a2
+ PF

L

a2
+ PF

U

a2

)

= 2h +
(
�L

�2
+ �U

�2
− �L

�2
− �U

�2

)

��h(a1) = h
(
PF

L

a1
+ PF

U

a1
− BF

L

a1
− BF

U

a1

)

= 2h −
(
�L

�1
+ �U

�1
+ �L

�1
+ �U

�1

)

��h(a2) = h
(
PF

L

a2
+ PF

U

a2
− BF

L

a2
− BF

U

a2

)

= 2h −
(
�L

�2
+ �U

�2
+ �L

�2
+ �U

�2

)

�a1 =

[[
�BFL

a1
, �PFL

a1

]
,

[
�BFU

a1
, �PFU

a1

]]

=

[[
�
(
�L

�1
∕h

)
, �
(
1 − �U

�1
∕h

)]
,

[
�
(
�U

�1
∕h

)
, �
(
1 − �L

�1
∕h

)]]
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According to the score function in Eq. (14) and the accu-
racy function in Eq. (15), we have

There are two possible situations where a1  a2 on the 
basis of the comparison rules in Definition 14: 

1.	 ��h(a1) < ��h(a2) : According to the expressions of 
��h(a1) and ��h(a2) , we obtain 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

− 𝜈L
𝛼
1

− 𝜈U
𝛼
1

<

�L

�
2

+ �U

�
2

− �L
�
2

− �U
�
2

 . Based on this, we further obtain 
from the expressions of ��h(�a1) and ��h(�a2) that 
��h(𝜆a1) < ��h(𝜆a2) . Therefore, we can obtain from the 
comparison rules in Definition 14 that �a1  �a2;

2.	 ��h(a1) = ��h(a2) and ��h(a1) > ��h(a2) : According 
to the expressions of ��h(a1) , ��h(a2) , ��h(a1) , and 
��h(a2) , we obtain �L

�
1

+ �U

�
1

− �L
�
1

− �U
�
1

= �L

�
2

+ �U

�
2

−�L
�
2

− �U
�
2

 and 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

+ 𝜈L
𝛼
1

+ 𝜈U
𝛼
1

< 𝜇L

𝛼
2

+ 𝜇U

𝛼
2

+ 𝜈L
𝛼
2

+�U
�
2

 . Based on this, we further obtain from the expres-
sions of ��h(�a1) , ��h(�a2) , ��h(�a1) , and ��h(�a2) 
that ��h(�a1) = ��h(�a2) and ��h(𝜆a1) > ��h(𝜆a2) . 
Therefore, we can obtain from the comparison rules in 
Definition 14 that �a1  �a2.

On the basis of the two situations above, we can conclude 
that a1  a2 can always imply �a1  �a2.	�  ◻

WA Operator of LIVIFNs Based on DSET

Based on the developed ORs of LIVIFNs under DSET, a 
WA operator of LIVIFNs under DSET is constructed below:

Definition 16  Let �i (i ∈ {1, 2, ..., n}) be n arbitrary LIV-
IFNs, ai be �i under DSET, and wi be the weight of ai such 
that 0 ≤ wi ≤ 1 and Σn

i=1
wi = 1 . The aggregation function

�a2 =

[[
�BFL

a2
, �PFL

a2

]
,

[
�BFU

a2
, �PFU

a2

]]

=

[[
�
(
�L

�2
∕h

)
, �
(
1 − �U

�2
∕h

)]
,

[
�
(
�U

�2
∕h

)
, �
(
1 − �L

�2
∕h

)]]

��h(�a1) = 2�h + �
(
�L

�1
+ �U

�1
− �L

�1
− �U

�1

)

��h(�a2) = 2�h + �
(
�L

�2
+ �U

�2
− �L

�2
− �U

�2

)

��h(�a1) = 2�h − �
(
�L

�1
+ �U

�1
+ �L

�1
+ �U

�1

)

��h(�a2) = 2�h − �
(
�L

�2
+ �U

�2
+ �L

�2
+ �U

�2

)

is called the LIVIFWA operator under DSET.

The LIVIFWA operator under DSET above has the prop-
erty of monotonicity, as stated in the following theorem:

Theorem 3  Let �i (i ∈ {1, 2, ..., n}) be n arbitrary LIVIFNs 
and bi be �i under DSET. If �L

�i
≤ �L

�i
 , �U

�i
≤ �U

�i
 , �L

�i
≥ �L

�i
 , and 

�U
�i
≥ �U

�i
 for all i ∈ {1, 2, ..., n} , then ��� ����(a1, a2, ..., an) 

 ��� ����(b1, b2, ..., bn).

Proof  According to the LIVIFWA operator under DSET in 
Eq. (26), we have

From �L
�i
≤ �L

�i
 and �U

�i
≤ �U

�i
 , we have 1

n

∑
n

i=1

�
w
i
�L

�
i

∕h
�

≤
1

n

∑
n

i=1

�
w
i
�L

�
i

∕h
�
 and 1

n

∑
n

i=1

�
w
i
�U

�
i

∕h
�
≤

1

n

∑
n

i=1

�
w
i
�U

�
i

∕h
)
 . From �U

�i
≥ �U

�i
 and �L

�i
≥ �L

�i
 , we have 1

n

∑
n

i=1

�
w
i
−

w
i
�U
�
i

∕h
�
≤

1

n

∑
n

i=1

�
w
i
− w

i
�U
�
i

∕h
�
 and 1

n

∑
n

i=1

�
w
i
− w

i
�L
�
i

∕h
�

≤
1

n

∑
n

i=1

�
w
i
− w

i
�L
�
i

∕h
�
 . Based on this, we can obtain from 

the score function in Eq. (14) and the accuracy function in 
Eq.  (15) that ��

h
(��� ����(a

1
, a

2
, ..., a

n
)) ≤ ��

h
(��� �

���(b
1
, b

2
, ..., b

n
)) and ��

h
(��� ����(a

1
, a

2
, ..., a

n
)) =

��
h
(��� ����(b

1
, b

2
, ..., b

n
)) if and only if ��

h
(��� ����

(a
1
, a

2
, ..., a

n
)) = ��

h
(��� ����(b

1
, b

2
, ..., b

n
)) . According 

to the comparison rules in Definition 14, we have ��� ����

(a
1
, a

2
, ..., a

n
)  ��� ����(b1, b2, ..., bn).	�  ◻

The constructed LIVIFWA operator under DSET does not 
have the properties of idempotency and boundedness. How-
ever, a small modification of its expression (multiplying by 
n, i.e. n��� ����(a1, a2, ..., an) ) can generate an LIVIFWA 
operator under DSET having idempotency and boundedness, 
as respectively stated in the following two theorems:

(26)

��� ����(a1, a2, ..., an) = ⊞n
i=1

(wiai)

=

[[
1

n

n∑
i=1

(
wiBF

L

ai

)
,
1

n

n∑
i=1

(
wiPF

L

ai

)]
,

[
1

n

n∑
i=1

(
wiBF

U

ai

)
,
1

n

n∑
i=1

(
wiPF

U

ai

)]]

=

[[
1

n

n∑
i=1

(
wi𝜇

L

𝛼i
∕h

)
,
1

n

n∑
i=1

(
wi − wi𝜈

U

𝛼i
∕h

)]
,

[
1

n

n∑
i=1

(
wi𝜇

U

𝛼i
∕h

)
,
1

n

n∑
i=1

(
wi − wi𝜈

L

𝛼i
∕h

)]]

��� ����(b1, b2, ..., bn)

=

[[
1

n

n∑
i=1

(
wi�

L

�i
∕h

)
,
1

n

n∑
i=1

(
wi − wi�

U

�i
∕h

)]
,

[
1

n

n∑
i=1

(
wi�

U

�i
∕h

)
,
1

n

n∑
i=1

(
wi − wi�

L

�i
∕h

)]]
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Theorem 4  Let � be an arbitrary LIVIFN and a be � under DSET. 
If BFL

ai
= BF

L

a
 , PFL

ai
= PF

L

a
 , BFU

ai
= BF

U

a
 , and PFU

ai
= PF

U

a
 for 

all i ∈ {1, 2, ..., n} , then n��� ����(a
1
, a

2
, ..., a

n
) =

[[
BF

L

a
,

PF
L

a

]
,
[
BF

U

a
, PF

U

a

]]
= a.

Proof  According to the LIVIFWA operator under DSET in 
Eq. (26), we have

From BFL
ai
= BF

L

a
 , PFL

ai
= PF

L

a
 , BFU

ai
= BF

U

a
 , and PFU

a
i

=

PF
U

a
 for all i ∈ {1, 2, ..., n} , we can obtain 

∑
n

i=1

�
w
i
�L

�
i

∕h
�
=

�L

�
∕h , 

∑n

i=1

�
wi − wi�

U
�i
∕h

�
= 1 − �U

�
∕h , 

∑
n

i=1

�
w
i
�U

�
i

∕h
�
=

�U

�
∕h , and 

∑n

i=1

�
wi − wi�

L
�i
∕h

�
= 1 − �L

�
∕h . Therefore, we 

have n��� ����(a
1
, a

2
, ..., a

n
) =

[[
�L

�
∕h, 1 − �U

�
∕h

]
,
[
�U

�

∕h, 1 − �L
�
∕h

]]
= a.	�  ◻

Theorem 5  Let �− =
([
�L
−
,�U

−

]
,
[
�L
−
, �U

−

])
 , �+ =

([
�L

+
,�U

+

]
,[

�L
+
, �U

+

])
 , a− =

[[
BF

L

−
, PF

L

−

]
,
[
BF

U

−
, PF

U

−

]]
=
[[
�L

−
∕h, 1 − �U

−

∕h
]
,
[
�U

−
∕h, 1 − �L

−
∕h

]]
 , and a+ =

[[
BF

L

+
, PF

L

+

]
,
[
BF

U

+
, PF

U

+

]]
=
[[
�L

+
∕h, 1 − �U

+
∕h

]
,
[
�U

+
∕h, 1 − �L

+
∕h

]]
 , where �L

−
= min

{�L

�
i

} ,  �U
−
= min{�U

�i
} ,  �L

−
= max{�L

�i
} ,  �U

−
= max{�U

�i
} , 

�L
+
= max{�L

�i
} , �U

+
= max{�U

�i
} , �L

+
= min{�L

�i
} , and �U

+
=

min{�U
�
i

} for all i ∈ {1, 2, ..., n} . Then a−  n��� ����

(a
1
, a

2
, ..., a

n
)  a+.

Proof  On the basis of the proof of Theorem 3, it is easy to 
prove that n��� ���� has the property of monotonicity. 
From �L

−
= min{�L

�i
} ,  �U

−
= min{�U

�i
} ,  �L

−
= max{�L

�i
} , 

�U
−
= max{�U

�i
} , �L

+
= max{�L

�i
} , �U

+
= max{�U

�i
} , �L

+
= min

{�L
�
i

} , and �U
+
= min{�U

�i
} , we can obtain �L

−
≤ �L

�i
≤ �L

+
 , 

�U
−
≤ �U

�i
≤ �U

+
 , �L

−
≥ �L

�i
≥ �L

+
 , and �U

−
≥ �U

�i
≥ �U

+
 . Based on 

this, we have n��� ����(a−, a−, ..., a−)  n��� ����(a
1
,

a
2
, ..., a

n
)  n��� ����(a+, a+, ..., a+) . According to Theo-

rem 4, we can obtain n��� ����(a−, a−, ..., a−) = a− and 
n��� ����(a+, a+, ..., a+) = a+ . Therefore, we have a−  
n��� ����(a1, a2, ..., an)  a+.	�  ◻

The constructed LIVIFWA operator under DSET in 
Eq. (26) is free of the limitation of the LIVIFWA operator in 
Eq. (13), as stated in the following theorem:

n��� ����(a1, a2, ..., an) = n⊞n
i=1

(wiai)

=

[[ n∑
i=1

(
wiBF

L

ai

)
,

n∑
i=1

(
wiPF

L

ai

)]
,

[ n∑
i=1

(
wiBF

U

ai

)
,

n∑
i=1

(
wiPF

U

ai

)]]

=

[[ n∑
i=1

(
wi𝜇

L

𝛼i
∕h

)
,

n∑
i=1

(
wi − wi𝜈

U

𝛼i
∕h

)]
,

[ n∑
i=1

(
wi𝜇

U

𝛼i
∕h

)
,

n∑
i=1

(
wi − wi𝜈

L

𝛼i
∕h

)]]

Theorem 6  The LIVIFWA operator under DSET in Eq. (26) 
is always monotone with respect to the score function in 
Eq. (14), the accuracy function in Eq. (15), and the com-
parison rules in Definition 14: For three arbitrary LIVIFNs 
under DSET a1 , a2 , and a3 and certain weights w1 and w2 , a1 

 a2 can always imply ��� ����(a1, a3)  ��� ����(a2, a3).

Proof  Let a
k
=
[[
BF

L

a
k

, PF
L

a
k

]
,
[
BF

U

a
k

, PF
U

a
k

]]
=
[[
�L

�
k

∕h, 1−

�U
�
k

∕h
]
,
[
�U

�
k

∕h, 1 − �L
�
k

∕h
]]

 (k ∈ {1, 2, 3}) . According to the 
score function in Eq.  (14) and the accuracy function in 
Eq. (15), we have

Using the LIVIFWA operator under DSET in Eq. (26), 
we obtain

According to the score function in Eq. (14) and the accu-
racy function in Eq. (15), we have

��h(a1) = h
(
BF

L

a1
+ BF

U

a1
+ PF

L

a1
+ PF

U

a1

)

= 2h +
(
�L

�1
+ �U

�1
− �L

�1
− �U

�1

)

��h(a2) = h
(
BF

L

a2
+ BF

U

a2
+ PF

L

a2
+ PF

U

a2

)

= 2h +
(
�L

�2
+ �U

�2
− �L

�2
− �U

�2

)

��h(a1) = h
(
PF

L

a1
+ PF

U

a1
− BF

L

a1
− BF

U

a1

)

= 2h −
(
�L

�1
+ �U

�1
+ �L

�1
+ �U

�1

)

��h(a2) = h
(
PF

L

a2
+ PF

U

a2
− BF

L

a2
− BF

U

a2

)

= 2h −
(
�L

�2
+ �U

�2
+ �L

�2
+ �U

�2

)

��� ����(a1, a3) =

[[
1

2

(
w1BF

L

a1
+ w2BF

L

a3

)
,
1

2

(
w1PF

L

a1
+ w2PF

L

a3

)]
,

[
1

2

(
w1BF

U

a1
+ w2BF

U

a3

)
,
1

2

(
w1PF

U

a1
+ w2PF

U

a3

)]]

=

[[
1

2h

(
w1�

L

�1
+ w2�

L

�3

)
,
1

2h

(
h − w1�

U

�1
− w2�

U

�3

)]
,

[
1

2h

(
w1�

U

�1
+ w2�

U

�3

)
,
1

2h

(
h − w1�

L

�1
− w2�

L

�3

)]]

��� ����(a2, a3) =

[[
1

2

(
w1BF

L

a2
+ w2BF

L

a3

)
,
1

2

(
w1PF

L

a2
+ w2PF

L

a3

)]
,

[
1

2

(
w1BF

U

a2
+ w2BF

U

a3

)
,
1

2

(
w1PF

U

a2
+ w2PF

U

a3

)]]

=

[[
1

2h

(
w1�

L

�2
+ w2�

L

�3

)
,
1

2h

(
h − w1�

U

�2
− w2�

U

�3

)]
,

[
1

2h

(
w1�

U

�2
+ w2�

U

�3

)
,
1

2h

(
h − w1�

L

�2
− w2�

L

�3

)]]

��h(��� ����(a1, a3)) = h +
w1

2

(
�L

�1
+ �U

�1
− �L

�1
− �U

�1

)

+
w2

2

(
�L

�3
+ �U

�3
− �L

�3
− �U

�3

)
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There are two possible situations where a1  a2 on the 
basis of the comparison rules in Definition 14: 

1.	 ��h(a1) < ��h(a2) : According to the expressions of 
��h(a1) and ��h(a2) , we obtain 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

− 𝜈L
𝛼
1

− 𝜈U
𝛼
1

<

�L

�
2

+ �U

�
2

− �L
�
2

− �U
�
2

 . Based on this, we further obtain 
from the expressions of ��h(��� ����(a1, a3)) and 
��h(��� ����(a2, a3)) that  ��

h
(��� ����(a

1
, a

3
))

< ��
h
(��� ����(a

2
, a

3
)) . Therefore, we can obtain 

from the comparison rules in Definition  14 that 
��� ����(a1, a3)  ��� ����(a2, a3);

2.	 ��h(a1) = ��h(a2) and ��h(a1) > ��h(a2) : According 
to the expressions of ��h(a1) , ��h(a2) , ��h(a1) , and 
��h(a2) , we obtain �L

�
1

+ �U

�
1

− �L
�
1

− �U
�
1

= �L

�
2

+ �U

�
2

−�L
�
2

− �U
�
2

 and 𝜇L

𝛼
1

+ 𝜇U

𝛼
1

+ 𝜈L
𝛼
1

+ 𝜈U
𝛼
1

< 𝜇L

𝛼
2

+ 𝜇U

𝛼
2

+ 𝜈L
𝛼
2

+�U
�
2

 . Based on this, we further obtain from the expres-
sions of ��h(��� ����(a1, a3)) , ��h(��� ����(a2, a3)) , 
��h(��� ����(a1, a3)) , and ��h(��� ����(a2, a3)) that 
��h(��� ����(a1, a3)) = ��h(��� ����(a2, a3)) and 
��h(��� ����(a1, a3)) > ��h(��� ����(a2, a3))   . 
Therefore, we can obtain from the comparison rules in  
Definition 14 that ��� ����(a1, a3)  ��� ����(a2, a3).

On the basis of the two situations above, we can con-
clude that a1  a2 can always imply ��� ����(a1, a3)  
��� ����(a2, a3).	�  ◻

DM Method Based on the New WA Operator

A cognitively inspired DM problem with LIVIFNs is gener-
ally described by m alternatives Ai (i ∈ {1, 2, ...,m}) , n cri-
teria Cj (j ∈ {1, 2, ..., n}) , a vector of weights of criteria 
(w1,w2, ...,wn) such that 0 ≤ wj ≤ 1 is the weight of Cj and 
Σn
j=1

wj = 1 , n′ experts (an expert refers to a person with spe-
cial knowledge, experience, or skills in the domain to which 
the DM problem belongs who provides evaluation values of 
criteria) Ek (k ∈ {1, 2, ..., n�}) , a vector of weights of experts 

��h(��� ����(a2, a3)) = h +
w1

2

(
�L

�2
+ �U

�2
− �L

�2
− �U

�2

)

+
w2

2

(
�L

�3
+ �U

�3
− �L

�3
− �U

�3

)

��h(��� ����(a1, a3)) = h −
w1

2

(
�L

�1
+ �U

�1
+ �L

�1
+ �U

�1

)

−
w2

2

(
�L

�3
+ �U

�3
+ �L

�3
+ �U

�3

)

��h(��� ����(a2, a3)) = h −
w1

2

(
�L

�2
+ �U

�2
+ �L

�2
+ �U

�2

)

−
w2

2

(
�L

�3
+ �U

�3
+ �L

�3
+ �U

�3

)

(w�
1
,w�

2
, ...,w�

n�
) such that 0 ≤ w′

k
≤ 1 is the weight of Ek and 

Σn�

k=1
w�
k
= 1 , h + 1 linguistic terms 0, 1, ..., h, and n′ decision 

matrices Mk = [�kij] =
[([

�L
�kij
,�U

�kij

]
,
[
�L
�kij
, �U

�kij

])]
 such that 

each �kij is an LIVIFN which represents the value of Cj of Ai 
evaluated by Ek . The aim of solving such a problem is to 
determine the best alternative from Ai on the basis of Mk , 
(w�

1
,w�

2
, ...,w�

n�
) , and (w1,w2, ...,wn) . Using a DM method 

based on the constructed WA operator of LIVIFNs under 
DSET, the problem can be solved via the following steps: 

1.	 Normalise the decision matrices Mk . There are two 
types of criteria in multi-criterion decision-making, 
which are benefit and cost criteria. A benefit criterion 
is a criterion that has positive effect on the decision-
making result (the larger its value, the more favour-
able the decision-making result), while a cost criterion 
is a criterion that affects the decision-making result 
adversely (the smaller its value, the more favourable 
the decision-making result). For example, total area and 
price belong to a benefit criterion and a cost criterion 
in selection of a house to buy, respectively, since the 
larger the total area and the lower the price, the more 
favourable the decision-making result. A DM problem 
may contain only benefit criteria, both benefit and cost 
criteria, or only cost criteria. When it contains cost cri-
teria, specific rules are generally applied to normalise 
the values of cost criteria to obtain normalised decision 
matrices. For the studied DM problem with LIVIFNs, 
the normalisation rules and normalised decision matri-
ces are expressed as follows: 

2.	 Convert the LIVIFNs in the normalised decision matri-
ces Nk into LIVIFNs under DSET to obtain the follow-
ing matrices: 

3.	 Calculate the summary values of akij using the LIVIFWA 
operator under DSET in Eq. (26) with the weight vector 
(w�

1
,w�

2
, ...,w�

n�
) : 

(27)

Nk =

���
pL
�kij
, pU

�kij

�
,
�
qL
�kij
, qU

�kij

���

=

⎧⎪⎨⎪⎩

���
�L

�kij
,�U

�kij

�
,
�
�L
�kij
, �U

�kij

���
if Cj is a benefit criterion

���
�L
�kij
, �U

�kij

�
,
�
�L

�kij
,�U

�kij

���
if Cj is a cost criterion

(28)
N

′

k =
[
akij

]
=

[[[
pL
�kij
∕h, 1 − qU

�kij
∕h

]
,

[
pU
�kij
∕h, 1 − qL

�kij
∕h

]]]

(29)
[
aij
]
=

[
��� ����(a1ij, a2ij, ..., an�ij)

]
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4.	 Calculate the summary values of aij using the LIVIFWA 
operator under DSET in Eq. (26) with the weight vector 
(w1,w2, ...,wn) : 

(30)
[
ai
]
=

[
��� ����(ai1, ai2, ..., ain)

]

5.	 Calculate the score values of ai using the score function 
in Eq. (14) and the accuracy values of ai using the accu-
racy function in Eq. (15).

6.	 Rank ai according to the comparison rules in Defini-
tion 14 and determine the best alternative based on the 
ranking results.

According to the steps above, the general flow of the pro-
posed DM method is depicted in Fig. 1.

Application and Comparisons

Application of the New DM Method

Additive manufacturing, commonly known as three- 
dimensional printing, is an emerging manufacturing technol-
ogy that builds three-dimensional objects via adding mate-
rial layer by layer. Compared to traditional manufacturing 
technologies, this technology has advantages in providing 
maximum design freedom, manufacturing objects with com-
plex geometries at no additional cost, generating less waste 
material, avoiding a lot of assembly, and producing custom-
ised products. Because of these advantages, the research and 
application of additive manufacturing technology are gain-
ing importance and popularity. To date, more than 1,700 
(data from Senvol Database) machines that are based on the 
technology have been identified in the market. For a practi-
cal application, how to select a proper additive manufactur-
ing machine from several alternatives is of great importance 
since this will directly affect the quality of the final product. 
To assist selection of additive manufacturing machines, sev-
eral different types of methods have been presented during 
the past two decades. A representative type of methods is 
multi-criterion decision-making method. This type of method  
determines a proper additive manufacturing machine from a 

Fig. 1   General flow of the proposed DM method

Table 1   Evaluation results of 
the three domain experts

Matrix Expert Machine C
1

C
2

C
3

C
4

M
1

E
1

M
1

([2, 4], [3, 4]) ([6, 6], [1, 2]) ([5, 6], [1, 1]) ([6, 6], [1, 1])
M

2
([3, 5], [2, 3]) ([5, 6], [1, 2]) ([4, 5], [1, 1]) ([4, 6], [1, 2])

M
3

([1, 1], [6, 7]) ([6, 6], [1, 2]) ([3, 4], [3, 3]) ([5, 6], [1, 2])
M

4
([1, 1], [7, 7]) ([3, 4], [2, 3]) ([3, 5], [2, 3]) ([2, 3], [3, 4])

M
2

E
2

M
1

([3, 4], [3, 4]) ([5, 6], [1, 2]) ([6, 6], [1, 2]) ([5, 6], [1, 2])
M

2
([3, 5], [1, 3]) ([6, 6], [1, 1]) ([5, 6], [1, 2]) ([3, 5], [1, 2])

M
3

([1, 2], [6, 6]) ([5, 6], [1, 1]) ([3, 5], [3, 3]) ([5, 6], [1, 2])
M

4
([1, 2], [6, 6]) ([3, 3], [3, 3]) ([3, 4], [2, 3]) ([3, 4], [3, 4])

M
3

E
3

M
1

([3, 3], [3, 4]) ([6, 6], [2, 2]) ([5, 6], [1, 1]) ([6, 7], [1, 1])
M

2
([3, 4], [2, 3]) ([6, 7], [1, 1]) ([5, 5], [1, 3]) ([5, 5], [1, 2])

M
3

([2, 3], [5, 5]) ([4, 5], [1, 2]) ([3, 4], [3, 4]) ([4, 5], [2, 2])
M

4
([1, 1], [6, 7]) ([3, 4], [2, 3]) ([3, 5], [1, 2]) ([4, 5], [3, 3])
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certain number of alternatives via comprehensively consider-
ing multiple criteria of the alternatives. The following is an 
additive manufacturing machine selection example [33] for 
illustrating the application of the proposed DM method.

In this example, a decision maker needs to select a proper 
additive manufacturing machine from four alternative 
machines M1 , M2 , M3 , and M4 to build a part with certain 
material. The decision maker invited three domain experts 
E1 , E2 , and E3 to evaluate the four alternative machines. The 
evaluation criteria include the predicted surface roughness 
( C1 ), predicted strength ( C2 ), predicted elongation ( C3 ), and 
predicted hardness ( C4 ) of the as-built part. The weights 
of the three experts are respectively 0.4, 0.3, and 0.3. The 
weights of the four criteria are respectively 0.1, 0.3, 0.3, and 
0.3. The three experts were asked to use LIVIFNs to express 
their evaluation results. There are nine available linguistic 
terms, which are extremely small (0), very small (1), small 
(2), slightly small (3), medium (4), slightly large (5), large 
(6), very large (7), and extremely large (8). The evaluation 
results are listed in Table 1.

Using the proposed DM method, the problem above is 
solved through the following steps: 

1.	 Since predicted surface roughness ( C1 ) is a cost crite-
rion and predicted strength ( C2 ), predicted elongation 
( C3 ), and predicted hardness ( C4 ) are three benefit cri-
teria, according to Eq. (27), the decision matrices Mk 
(k ∈ {1, 2, 3}) , whose elements are listed in Table 1, are 
normalised as Nk , whose elements are listed in Table 2.

2.	 According to Eq. (28), the LIVIFNs in the normalised 
decision matrices Nk are converted into LIVIFNs under 
DSET to obtain three matrices N′

k , whose elements are 
listed in Table 3.

3.	 According to Eq. (29) and the weight vector (0.4, 0.3, 0.3), 
the three matrices N′

k are aggregated into a single matrix 
N

′ , whose elements are listed in Table 4.
4.	 According to Eq. (30) and the weight vector (0.1, 0.3,  

0.3, 0.3), the elements in each row of the matrix N′ are 
aggregated into a single LIVIFN under DSET: 

Table 2   Elements of the 
normalised decision matrices

Matrix Expert Machine C
1

C
2

C
3

C
4

N
1

E
1

M
1

([3, 4], [2, 4]) ([6, 6], [1, 2]) ([5, 6], [1, 1]) ([6, 6], [1, 1])
M

2
([2, 3], [3, 5]) ([5, 6], [1, 2]) ([4, 5], [1, 1]) ([4, 6], [1, 2])

M
3

([6, 7], [1, 1]) ([6, 6], [1, 2]) ([3, 4], [3, 3]) ([5, 6], [1, 2])
M

4
([7, 7], [1, 1]) ([3, 4], [2, 3]) ([3, 5], [2, 3]) ([2, 3], [3, 4])

N
2

E
2

M
1

([3, 4], [3, 4]) ([5, 6], [1, 2]) ([6, 6], [1, 2]) ([5, 6], [1, 2])
M

2
([1, 3], [3, 5]) ([6, 6], [1, 1]) ([5, 6], [1, 2]) ([3, 5], [1, 2])

M
3

([6, 6], [1, 2]) ([5, 6], [1, 1]) ([3, 5], [3, 3]) ([5, 6], [1, 2])
M

4
([6, 6], [1, 2]) ([3, 3], [3, 3]) ([3, 4], [2, 3]) ([3, 4], [3, 4])

N
3

E
3

M
1

([3, 4], [3, 3]) ([6, 6], [2, 2]) ([5, 6], [1, 1]) ([6, 7], [1, 1])
M

2
([2, 3], [3, 4]) ([6, 7], [1, 1]) ([5, 5], [1, 3]) ([5, 5], [1, 2])

M
3

([5, 5], [2, 3]) ([4, 5], [1, 2]) ([3, 4], [3, 4]) ([4, 5], [2, 2])
M

4
([6, 7], [1, 1]) ([3, 4], [2, 3]) ([3, 5], [1, 2]) ([4, 5], [3, 3])

Table 3   Elements of the converted decision matrices

Matrix Expert Machine C
1

C
2

C
3

C
4

N
′

1
E
1

M
1

[[
3∕8, 4∕8

]
,
[
4∕8, 6∕8

]] [[
6∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
5∕8, 7∕8

]
,
[
6∕8, 7∕8

]] [[
6∕8, 7∕8

]
,
[
6∕8, 7∕8

]]
M

2

[[
2∕8, 3∕8

]
,
[
3∕8, 5∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
4∕8, 7∕8

]
,
[
5∕8, 7∕8

]] [[
4∕8, 6∕8

]
,
[
6∕8, 7∕8

]]
M

3

[[
6∕8, 7∕8

]
,
[
7∕8, 7∕8

]] [[
6∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
3∕8, 5∕8

]
,
[
4∕8, 5∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]]
M

4

[[
7∕8, 7∕8

]
,
[
7∕8, 7∕8

]] [[
3∕8, 5∕8

]
,
[
4∕8, 6∕8

]] [[
3∕8, 5∕8

]
,
[
5∕8, 6∕8

]] [[
2∕8, 4∕8

]
,
[
3∕8, 5∕8

]]
N

′

2
E
2

M
1

[[
3∕8, 4∕8

]
,
[
4∕8, 5∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
6∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]]
M

2

[[
1∕8, 3∕8

]
,
[
3∕8, 5∕8

]] [[
6∕8, 7∕8

]
,
[
6∕8, 7∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
3∕8, 6∕8

]
,
[
5∕8, 7∕8

]]
M

3

[[
6∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
5∕8, 7∕8

]
,
[
6∕8, 7∕8

]] [[
3∕8, 5∕8

]
,
[
5∕8, 5∕8

]] [[
5∕8, 6∕8

]
,
[
6∕8, 7∕8

]]
M

4

[[
6∕8, 6∕8

]
,
[
6∕8, 7∕8

]] [[
3∕8, 5∕8

]
,
[
3∕8, 5∕8

]] [[
3∕8, 5∕8

]
,
[
4∕8, 6∕8

]] [[
3∕8, 4∕8

]
,
[
4∕8, 5∕8

]]
N

′

3
E
3

M
1

[[
3∕8, 5∕8

]
,
[
4∕8, 5∕8

]] [[
6∕8, 6∕8

]
,
[
6∕8, 6∕8

]] [[
5∕8, 7∕8

]
,
[
6∕8, 7∕8

]] [[
6∕8, 7∕8

]
,
[
7∕8, 7∕8

]]
M

2

[[
2∕8, 4∕8

]
,
[
3∕8, 5∕8

]] [[
6∕8, 7∕8

]
,
[
7∕8, 7∕8

]] [[
5∕8, 5∕8

]
,
[
5∕8, 7∕8

]] [[
5∕8, 6∕8

]
,
[
5∕8, 7∕8

]]
M

3

[[
5∕8, 5∕8

]
,
[
5∕8, 6∕8

]] [[
4∕8, 6∕8

]
,
[
5∕8, 7∕8

]] [[
3∕8, 4∕8

]
,
[
4∕8, 5∕8

]] [[
4∕8, 6∕8

]
,
[
5∕8, 6∕8

]]
M

4

[[
6∕8, 7∕8

]
,
[
7∕8, 7∕8

]] [[
3∕8, 5∕8

]
,
[
4∕8, 6∕8

]] [[
3∕8, 6∕8

]
,
[
5∕8, 7∕8

]] [[
4∕8, 5∕8

]
,
[
5∕8, 5∕8

]]
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5.	 Using the score function in Eq. (14), the score values of 
ai (i ∈ {1, 2, 3, 4}) are calculated as follows: 

	   Using the accuracy function in Eq. (15), the accuracy 
values of ai are calculated as follows: 

a1 =
[[
0.0069, 0.2412

]
,
[
0.0081, 0.2423

]]

a2 =
[[
0.0058, 0.2411

]
,
[
0.0077, 0.2430

]]

a3 =
[[
0.0057, 0.2418

]
,
[
0.0074, 0.2431

]]

a4 =
[[
0.0043, 0.2424

]
,
[
0.0066, 0.2443

]]

��h(a1) = 3.9887

��h(a2) = 3.9809

��h(a3) = 3.9846

��h(a4) = 3.9812

6.	 According to the comparison rules in Definition 14, ai 
are ranked as a1  a3  a4  a2 . Therefore, the best addi-
tive manufacturing machine is M1.

Comparisons with Existing Methods

To verify the effectiveness of the proposed DM method, 
a comparison of the ranking results of the method and the 
DM methods with LIVIFNs presented by [16, 27, 37], 
and [33] is carried out. In this comparison, the problem in 
Sect. 5.1 is taken as a benchmark. The linguistic interval-
valued intuitionistic fuzzy prioritised weighted averaging 

��h(a1) = 3.7479

��h(a2) = 3.7649

��h(a3) = 3.7737

��h(a4) = 3.8071

Table 4   Elements of the aggregated decision matrix

Machine C
1

C
2

M
1

[[
0.1250, 0.1792

]
,
[
0.1667, 0.2250

]] [[
0.2375, 0.2500

]
,
[
0.2500, 0.2792

]]
M

2

[[
0.0708, 0.1375

]
,
[
0.1250, 0.2083

]] [[
0.2333, 0.2750

]
,
[
0.2625, 0.2917

]]
M

3

[[
0.2375, 0.2542

]
,
[
0.2542, 0.2792

]] [[
0.2125, 0.2625

]
,
[
0.2375, 0.2917

]]
M

4

[[
0.2667, 0.2792

]
,
[
0.2792, 0.2917

]] [[
0.1250, 0.2083

]
,
[
0.1542, 0.2375

]]

 Machine C
3

C
4

M
1

[[
0.2208, 0.2792

]
,
[
0.2500, 0.2917

]] [[
0.2375, 0.2792

]
,
[
0.2625, 0.2917

]]
M

2

[[
0.1917, 0.2542

]
,
[
0.2208, 0.2917

]] [[
0.1667, 0.2500

]
,
[
0.2250, 0.2917

]]
M

3

[[
0.1250, 0.1958

]
,
[
0.1792, 0.2083

]] [[
0.1958, 0.2500

]
,
[
0.2375, 0.2792

]]
M

4

[[
0.1250, 0.2208

]
,
[
0.1958, 0.2625

]] [[
0.1208, 0.1792

]
,
[
0.1625, 0.2083

]]

Table 5   Details and results of the first comparison

SV stands for score value; ≻ stands for ‘is followed by’; For the method of [37], k = 1 in the first aggregation by the LIVIFWMSM operator 
and k = 3 in the second aggregation by the LIVIFWMSM operator; For the method of [33], Q = (1, 0, 0) in the first aggregation by the LIVIFP-
WMM operator and Q = (1, 2, 3, 0) in the second aggregation by the LIVIFPWMM operator; The LIVIFPWA and LIVIFPWG operators respec-
tively reduce to the LIVIFWA and LIVIFWG operators, since the weights given in the DM problem are directly taken as their priority weights

DM method Used aggregation operators SV of M
1

SV of M
2

SV of M
3

SV of M
4

Generated ranking

[27] LIVIFPWA, LIVIFPWA 6.1654 5.8171 5.5985 4.8181 M
1
≻ M

2
≻ M

3
≻ M

4

[27] LIVIFPWG, LIVIFPWG 5.9921 5.5132 5.3441 4.5370 M
1
≻ M

2
≻ M

3
≻ M

4

[16] LIVIFWA, LIVIFWA 6.1654 5.8171 5.5985 4.8181 M
1
≻ M

2
≻ M

3
≻ M

4

[16] LIVIFWG, LIVIFWG 5.9921 5.5132 5.3441 4.5370 M
1
≻ M

2
≻ M

3
≻ M

4

[37] LIVIFWMSM, LIVIFWMSM 5.4523 5.0127 5.2577 4.7343 M
1
≻ M

3
≻ M

2
≻ M

4

[33] LIVIFPWMM, LIVIFPWMM 5.7674 5.4217 5.3606 4.7043 M
1
≻ M

2
≻ M

3
≻ M

4

The proposed method ��� ���� , ��� ���� 3.9887 3.9809 3.9846 3.9812 M
1
≻ M

3
≻ M

4
≻ M

2
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(LIVIFPWA) operator and the linguistic interval-valued 
intuitionistic fuzzy prioritised weighted geometric (LIVIF-
PWG) operator are respectively used in the method of [27]. 
The LIVIFWA operator and the linguistic interval-valued 
intuitionistic fuzzy weighted geometric (LIVIFWG) operator 
are respectively used in the method of [16]. The linguistic 
interval-valued intuitionistic fuzzy weighted Maclaurin sym-
metric mean (LIVIFWMSM) operator is used in the method 
of [37]. The linguistic interval-valued intuitionistic fuzzy 
power weighted Muirhead mean (LIVIFPWMM) operator 
is used in the method of [33]. To facilitate the comparison, 
the methods of [16, 27, 37], and [33] use the score function 
in Eq. (1), the accuracy function in Eq. (2), and the compari-
son rules in Definition 4 uniformly to generate the ranking 
results. The details and results of the comparison are listed 
in Table 5 and depicted in Fig. 2. It can be seen from Table 5 
and Fig. 2 that the best additive manufacturing machine 
determined by the proposed method is exactly the same as 
that determined by all other methods. This demonstrates the 

effectiveness of the proposed method in solving practical 
cognitively inspired DM problems with LIVIFNs.

The advantage of the proposed method is that the devel-
oped ORs of LIVIFNs under DSET are always invariant 
and persistent and the presented LIVIFWA operator under 
DSET is always monotone. This advantage has been proved 
in Theorem 1, Theorem 2, and Theorem 6. To show the 
advantage more intuitively and how it affects the DM results, 
another comparison of the ranking results of the DM meth-
ods in Table 5 is carried out. In this comparison, Example 3 
in Sect. 3.2 is taken as a benchmark. The AOs used in each 
method are the same as that in the first comparison. Further, 
the methods of [16, 27, 37], and [33] also use the score 
function in Eq. (1), the accuracy function in Eq. (2), and the 
comparison rules in Definition 4 uniformly to generate the 
ranking results. The results of the comparison are listed in 
Table 6 and depicted in Fig. 3. As can be seen from Table 6 
and Fig. 3, the proposed method can generate an intuitive 
ranking for Example 3, while other comparison methods 

Fig. 2   Graphical presentation of the results of the first comparison

Table 6   Details and results of the second comparison

o stands for the used operator; a
1
 , a

2
 , and a

3
 respectively stand for �

1
 , �

2
 , and �

3
 under DSET; For the method of [37], k = 2 in the aggregation 

by the LIVIFWMSM operator; For the method of [33], Q = (1, 2) in the aggregation by the LIVIFPWMM operator; The LIVIFPWA and LIV-
IFPWG operators respectively reduce to the LIVIFWA and LIVIFWG operators, since the weights given in Example 3 are directly taken as their 
priority weights

DM method Used operator SV
h
(o(�

1
, �

3
))

/��
h
(o(a

1
, a

3
))

SV
h
(o(�

2
, �

3
))

/��
h
(o(a

2
, a

3
))

AV(o(�
1
, �

3
))

/��
h
(o(a

1
, a

3
))

AV(o(�
2
, �

3
))

/��
h
(o(a

2
, a

3
))

Generated ranking

[27] LIVIFPWA 4.6123 4.6055 4.7754 5.2110 o(�
1
, �

3
)  o(�

2
, �

3
)

[27] LIVIFPWG 4.5946 4.5880 4.8109 5.1761 o(�
1
, �

3
)  o(�

2
, �

3
)

[16] LIVIFWA 4.6123 4.6055 4.7754 5.2110 o(�
1
, �

3
)  o(�

2
, �

3
)

[16] LIVIFWG 4.5946 4.5880 4.8109 5.1761 o(�
1
, �

3
)  o(�

2
, �

3
)

[37] LIVIFWMSM 4.5570 4.5369 4.7681 5.2683 o(�
1
, �

3
)  o(�

2
, �

3
)

[33] LIVIFPWMM 4.5664 4.5477 4.7742 5.2621 o(�
1
, �

3
)  o(�

2
, �

3
)

The proposed method ��� ���� 9.2000 9.2000 3.2000 2.8000 o(a
1
, a

3
)  o(a

2
, a

3
)
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produce a counterintuitive ranking. This is because the pro-
posed method uses the ORs of LIVIFNs under DSET that 
are always invariant and persistent, while all of other com-
parison methods use the ORs of LIVIFNs in Definition 5 
that do not have these properties.

Conclusion

In this paper, a WA operator of LIVIFNs under DSET 
is presented to solve cognitively inspired DM problems 
with LIVIFNs. Firstly, an interpretation of LIVIFS under 
DSET is given. Based on this interpretation, four novel 
ORs of LIVIFNs are then developed. The characteristics 
of these ORs are highlighted and proved. After that, a 
new WA operator of LIVIFNs, i.e. the LIVIFWA operator 
under DSET, is constructed using the developed ORs. The 
properties of this operator is explored and its advantage 
is highlighted and proved. Finally, a method for solving 
cognitively inspired DM problems with LIVIFNs based 
on the constructed operator is proposed. The paper also 
introduces a numerical example to illustrate the applica-
tion of the proposed method and documents quantitative 
comparisons with several existing methods to demonstrate 
the effectiveness and advantage of the method.

The main contributions of the paper are threefold: 

1.	 Four ORs of LIVIFNs based on DSET are developed. 
Compared to the existing most used ORs of LIVIFNs, 
the developed ones are always invariant and persistent 
with respect to the score function, accuracy function, 
and comparison rules of LIVIFNs under DSET;

2.	 A WA operator of LIVIFNs based on DSET is con-
structed. Compared to the existing WA operator of 

LIVIFNs, the constructed one is always monotone with 
respect to the score function, accuracy function, and 
comparison rules of LIVIFNs under DSET;

3.	 A new method to solve cognitively inspired DM prob-
lems with LIVIFNs is proposed. This method has the 
advantages of the developed ORs and constructed AO.

Future work will aim especially at improving the pro-
posed method to be capable to solve the cognitively inspired 
DM problems with LIVIFNs where the weights of criteria 
are expressed by LIVIFNs. In some cognitively inspired DM 
problems with LIVIFNs, decision makers may use LIVIFNs 
to describe the degrees of importance of the considered cri-
teria. The proposed method is applicable for the problems 
where the degrees of importance of criteria are expressed 
as decimals. It cannot be applied to the problems where the 
weights of criteria are in the form of LIVIFNs. To address 
this limitation, two rules for the power and division opera-
tions between two LIVIFNs under DSET would be devel-
oped and a new AO would be constructed using these rules. 
Further, it would be interesting to combine the developed 
novel ORs with the power average operator, Bonferroni 
mean operator, Maclaurin symmetric mean operator, and 
Muirhead mean operator under linguistic interval-valued 
intuitionistic fuzzy environment to construct some more 
powerful AOs of LIVIFNs. Last but not least, applications 
of the constructed AOs to solve more cognitively inspired 
DM problems would also be studied.
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