
1

Granularity of Services
An economic analysis

Bernd Heinrich, Alexander Krammer, Matthias Henneberger, Florian Lautenbacher

The choice of an adequate granularity of services also represents an economic problem.
Realizing the functions of a process by implementing a large number of fine-grained services
leads to reduced development and maintenance efforts. Additionally, a higher reuse potential
of the services can be achieved. However, at the same time the composition costs of the
(many) services increase. The paper deals with this granularity issue. For this purpose, three
different metrics to measure granularity will be introduced. Furthermore an economic model
for service granularity optimization will be introduced, which extends existing approaches
focusing purely on a domain analysis.

Service-oriented architectures are widely discussed as a design principle for application and
enterprise architectures. Nevertheless, an adequate granularity of services from an economic
perspective has not yet been researched sufficiently. The finer the granularity to realize the
functions of a process, the higher is the number of services and the more effort has to be
spent to compose them. In contrast, very coarse-grained services bear the disadvantages of
higher implementation costs and lower reuse potential (e.g., in different processes). The de-
cision model proposed in this paper is to determine an adequate granularity of services from
an economical perspective. Thus, degrees of freedom, which often exist for the choice of
granularity after a domain analysis, can be leveraged to realize a cost-efficient solution. We
illustrate the applicability and practical benefits of the decision model with an example in the
context of a financial services provider.

Service-oriented architecture, Granularity, Metrics, Value-based software engineering

1 Problem Definition
Although service-oriented architectures (SOA) have been discussed for quite some time

now, the question of an appropriate granularity of services in economic terms has not yet

been answered satisfactorily. While it is often required that services should be more coarse-

grained than objects or components and at the same time should be designed from a func-

tional point of view (Henning 2007; Krafzig et al. 2005; Richter et al. 2005), such statements

offer a large individual freedom regarding design alternatives. This is critical since the signifi-

cance of the granularity question is emphasized in many contributions (see previous

sources) and is sometimes even labeled as the crucial question (Melzer et al. 2007, S. 33).

The advantages and disadvantages of coarse- resp. fine-grained services can basically be

balanced as follows (cf. Aier 2006; Erl 2005, S. 557; Melzer et al. 2007, S. 33): The more

fine-grained the service, the higher the number of services to realize the functions of a pro-

cess and the more effort has to be spent to compose the (multitude of) services for process

execution. In contrast, coarse-grained services bear, for example, the disadvantage that the

potential for reusing services in various processes decreases (cf. also Joachim et al. 2011,

2

S. 450). This poses the risk of redundancy and a high number of variants, as several ser-

vices may realize the same or similar functions of different processes. Although services are

still characterized by platform independence, usage of standards, loose coupling, etc. (Buhl

et al. 2008; Papazoglou 2003; Papazoglou et al. 2006), a significant advantage vanishes: If,

in extreme cases, services have a similar (coarse) granularity as monolithic application sys-

tems, the often stated advantage of modular software artifacts that can "simply" be reused

and composed to new or modified processes is lost.

So far the question of service granularity has been discussed in literature primarily from a

functional view (e.g., Albani et al. 2008; Fiege 2009; Winkler 2007; Winter 2003). However,

this question also describes an economic problem: How granular should services be devel-

oped so that the effort for the development, composition, and maintenance of services is

minimal? Such an economic approach requires appropriate metrics in order to be able to

measure granularity in a comprehensible way. This paper aims at contributing to both issues.

Therefore, it follows the growing insight that economic aspects for system and service design

(cf. Value-based Software-Engineering; e.g., Biffl et al. 2005) have to be considered to a

stronger extent than before.

The paper is organized as follows: In section 2 contributions will be discussed dealing with

the identification and design of services (and components). These approaches apply primari-

ly functional or technical criteria and thus constitute the starting point for a subsequent eco-

nomic analysis. In section 3, various metrics to measure service granularity are defined.

These metrics are prerequisites to make comprehensible statements, such as „realization

through fine- or coarse-grained services“. Afterwards, a model is developed which supports

the decision on the granularity of services based on economic criteria. The applicability of the

model will be demonstrated in section 4 through a case study of a financial service provider.

Section 5 summarizes the essential findings, analyzes them critically, and provides an out-

look on further research needs.

2 Literature review

A series of contributions about the identification and design of services, especially based on

functional criteria, can be found in the literature. Services can be understood as (software)

artifacts of a system landscape which encapsulate functions (Schelp and Winter 2008, p. 6)

and exhibit specific characteristics, such as modularity, loose coupling, and defined interfac-

es (Krafzig et al. 2005, p. 59; cf. e.g., Buhl et al. 2008, p.62; Erl 2005, p. 37 for the character-

istics of services). Often, a distinction is made between technical and business (or enter-

prise) services, whereas the latter realize composable functions of a business process (cf.

Melzer 2007, p. 32; Schelp and Winter 2008, p. 7). In the following, we restrict ourselves to

3

the latter as the question of reusability of business services in different processes is of par-

ticular interest. Therefore the question of a “proper” granularity is raised here in particular.

First, we define granularity, according to the literature, as the number or extent of functionali-

ties implemented by a service (Erl 2007; Galster and Bucherer 2008, p. 400; Thomas et al.

2010, p. 366). Papazoglou and van den Heuvel (2006, p. 423) write for instance: “Service

granularity refers to the scope of functionality exposed by a service”. According to Boerner

and Goeken (2009) granularity also describes the functional scope of a service. This short

discussion of the term granularity will be resumed in section 3.2 when we define granularity

metrics.

For our study, work dealing with the identification of components is relevant besides those

contributions dealing with the identification and design of services (for a review of approach-

es for component identification cf. Birkmeier and Overhage 2009; for service identification cf.

Birkmeier et al. 2008). Table 1 illustrates selected contributions of both domains, based part-

ly on the description of Birkmeier and Overhage (2009) as well as Birkmeier et al. (2008).

Subsequently, the contributions on component identification will be discussed followed by

approaches on service identification.

4

Table 1 Selected approaches for the identification of components and services

Authors Objective Method Subject
Definition of
Granularity

Guidelines defining the gran-
ularity of components resp.

services
Focus

Tool
Support

Type of Validation

Aier 2006

Identification of services as
an aggregation of associated
elements in an enterprise
architecture.

Automated clustering method
analyses relationships be-
tween the elements of an
event-driven process chain

Services

Number of the real-
ized functions im-
plemented by a
service (implicit)

Granularity depends on deter-
mining the parameter values of
the clustering method (no
optimization)

Functional Yes Illustration example

Albani et al.
2008

Identification of business
components which belong
together from a functional
perspective.

Refinement of domain mod-
els to components with the
help of heuristics (top down)

Components
No explicit definition
of granularity

Preferences to decomposition
and grouping rules

Functional Yes Real world case study

Arsanjani et al.
2008

Development of a service-
oriented architecture, taking
the complete service life
cycle into account.

Top down analysis of the
domain and business goals
(focus) with an additional
bottom-up analysis of existing
systems.

Services
No explicit definition
of granularity

No guidelines Functional No
Presentation of case
studies and collected
best practices

Beverungen et
al. 2008

Identification of services
based on models of business
processes.

Decomposition of business
processes, taking into ac-
count visibility issues regard-
ing business partners (top
down).

Services
No explicit definition
of granularity

Distinction between process
and basic services, but no
detailed specifications

Functional No Real world case study

Fiege 2009

Modeling a service-oriented
architecture by using Axio-
matic Design following the
architectural goals of loose
coupling, high autonomy, and
balanced granularity.

Axiomatic Design: structured
top-down method based on
business processes.

Services

Granularity describes
the scope and type
of the functions. The
functional complexity
is measured by the
sum of the data flows
of the service opera-
tions.

Decomposition rules and mod-
eling guidelines

Functional No
Three real world case
studies

Her et al. 2008
Identification of services
based on use cases.

Five-stage procedure for the
deduction of service specifi-
cations in use cases and
business processes.

Services
No explicit definition
of granularity

Granularity is already defined
for use cases. If these are
included in other applications, a
sub-process and then a so-
called composite service is
identified.

Functional No Case study

Kim and Chang
2004

Identification of components
with regard to cohesion and
coupling.

Clustering method on the
basis of use case diagrams
(bottom up).

Components
Number of realized
use cases (implicit)

Granularity depends on deter-
mining the parameter values of
the clustering method (no
optimization).

Functional,
partly tech-
nical

No

None (only discussion
and evaluation in
comparison to other
approaches)

Lee et al. 2001
Identification of components
with regard to cohesion and
coupling.

Clustering method on the
basis of use case diagrams
(bottom up).

Components
Number of classes
(implicit)

Granularity depends on the
cohesion and coupling of the
classes and on determining the
parameter values of the cluster-
ing method.

Functional
and tech-
nical

No, only
clustering-
algorithm

Real world case study

5

Offermann 2008
Design of software artifacts
based on a service-oriented
architecture.

Top-down analysis consoli-
dated with bottom-up analysis
of existing systems.

Services
No explicit definition
of granularity

No guidelines Functional

Yes
(but only for

service
modeling,

not for
granularity

optimization)

Real world case study
and laboratory experi-
ment

Wang et al.
2006

Identification of components
with a focus on the stability of
the business model.

Analysis based on the so-
called "Feature Tree", which
illustrates the features (of a
domain) and their dependen-
cies and differentiates them
by their stability.

Components
Number of features /
functions or imple-
mented entities

Optimization of the granularity
based on the "Feature Tree"

Functional
and eco-
nomic (cf.
also Wang
et al. 2005)

Declared as
"future work"

Qualitative comparison
with other identification
approaches and illus-
tration of this compari-
son by a simple exam-
ple

Winkler 2007
Identification of services with
a focus on reuse.

Functional analysis by gradu-
al decomposition of activities
in activity diagrams (top
down).

Services
Orientation on the
levels of decomposi-
tion (implicit)

Decomposition rules Functional No Real world case study

Winter 2003;
Schelp and
Winter 2008

Identification of services
which belong together from a
functional point of view.

Analysis of relationships
between data objects and
functions and their clustering
based on a matrix (multidi-
mensional).

Services
Functionality of a
service (implicit)

Decomposition and clustering
rules

Functional No
Real world case stud-
ies with four enterpris-
es

6

Approaches dealing with component identification

In their Business Component Identification approach Albani et al. (2008) identify (business)

components based on information objects, process models and the relationships between

them. By means of a clustering method, a partitioning of components is performed. In the

approach preferences are considered as well as the type and frequency of relationships be-

tween information objects and actions of the process model. Thereby, the design principles

of high cohesion and low coupling are taken into account.

The granularity question also constitutes an objective explicitly stated by other clustering

approaches (cf. Kim and Chang 2004; Lee et al. 2001). Those are based on mathematical-

statistical methods which measure the cohesion or coupling of a system’s discrete elements

– often classes in terms of object orientation. For instance, the number of reciprocal relation-

ships between these elements is derived and from that loosely coupled clusters are deduced

which hold a high cohesion each. Subsequently, these clusters constitute the searched com-

ponents. Depending on the determined parameter values of the clustering method, compo-

nents of different granularity are identified. However, the choice of parameter values, particu-

larly in economic terms, is not explicitly addressed in the contributions mentioned before.

Wang et al. (2006) develop their STCIM (Stability Based Component Identification Method)

approach with the objective to primarily identify the components with regard to different de-

grees of stability of (parts of) the business model. Stability as a parameter is defined as the

extent and the number of business-related changes, i.e. the fewer changes there are, the

more stable are the parts of the business model and the less must the associated compo-

nents be adjusted. Stability is therefore seen as an indicator for the design of coarse-grained

components and vice versa (e.g., Wang et al. 2006, p. 2). To achieve these objectives, Wang

et al. (2006) define a tree structure (so-called "Feature Tree") which reflects the result of a

domain analysis. This tree structure contains the features (in terms of functions) and their

relationships. This means that features are gradually refined in order to define the different

levels of the tree. Depending on what level of the tree a component is implemented at, com-

ponents of different granularity result.

In addition, the economic terms of composition resp. change costs, which are explicitly dis-

cussed by Wang et al. (2006, p. 6), are of particular interest. It is suggested that the more

coarse-grained components are, the less is the effort of the composition and vice versa. In

contrast, the change costs increase the more coarse-grained components are and vice ver-

sa. Both statements, however, are based on discussions; the exact functional relationship to

calculate, e.g., the composition costs, is not defined or executed.

Moreover, Wang et al. (2005, p. 231) present an optimization calculus for the identification

and design of components. Here, different objectives and their optimization rule (minimizing

7

or maximizing) are defined for a component c, such as Reusability (variable R(c)), Reuse

Costs (RC(c)) or Reuse efficiency (RE(c)). These objectives are then integrated into a single

objective function which has to be maximized for the set of all components c. Unfortunately,

no functional relationship for calculating the individual objectives are defined in Wang et al.

(2005, p. 231). In this respect it is hardly comprehensible what the properties and elements

of the economic calculus are or how it is to be used for accurate component identification. In

addition, it should be noted that the individual terms have different measurement units. For

example, the Reuse Costs (RC(c)) should be measured in monetary units, whereas varia-

bles, such as Cohesion(c) or Coupling(c), are defined as "semantic proximity" (without speci-

fying the measurement unit). Hence, it is unclear how the combination of the individual terms

in the presented objective function leads to an interpretable overall result.

Approaches dealing with service identification

As opposed to some approaches on component identification, Table 1 shows that service

identification focus almost exclusively on a domain analysis while precise rules for defining

the granularity of services are specified only partly.

For example, Aier (2006) suggests a clustering algorithm for a modularization of an applica-

tion system landscape from a functional view. Among other things, it is supposed to deter-

mine service granularity in this way. Winter (2003) draws upon IBM’s Business Systems

Planning approach (1984) and proposes three dimensions for the structuring of an applica-

tion system landscape (function, information object, performance/organization), which has

been also transferred to service identification in subsequent work (cf. Schelp and Winter

2008). In IBM’s SOMA (Service-Oriented Modeling Architecture) approach (Arsanjani et al.

2008) as well as in the work by Offermann (2008) services are identified and designed in

both ways: bottom up – starting with existing applications or components – and in a top down

manner, for example, starting from business process models or business objectives. Winkler

(2007) splits activity diagrams in several iterative steps into atomic basis functions or actions

in order to decide which of them should be implemented individually or integrated into a ser-

vice. This procedure is similar to the approach of Her et al. (2008) who also identify services

based on process models and use cases through iterative refinement. Beverungen et al.

(2008) additionally consider whether a process step is supposed to be visible for business

partners to identify services. Fiege (2009) conveys the so-called Axiomatic Design, a method

originating from industrial production, to service identification. Possible solutions for fulfilling

the pre-defined requirements are represented in the form of matrices which are refined in a

top down approach by assignment and decomposition. The indicated relationships between

functional requirements and design parameters are supposed to enable the identification and

design of services under the premise of loose coupling, high autonomy, and "balanced"

8

granularity.

The application of many approaches mentioned above offers degrees of freedom regarding

service identification. Depending on the extent to which, for example, activity diagrams are

refined or features are disaggregated, services of varying granularity can emerge. At this

point, the present work starts on the question of how these available degrees of freedom in

terms of service granularity can be used under economic aspects. Insofar the above men-

tioned work will be extended. This corresponds to a two-stage approach:

1. Applying a functionally-oriented approach for service identification leads to alternative

service candidates (representing degrees of freedom) which differ in service granular-

ity.

2. An economic optimization – which takes into account development and maintenance

costs as well as reuse potential – has to be performed to leverage the available de-

grees of freedom and finally determine the optimal service granularity.

Some approaches for modeling SOA already include an explicit step to consolidate alterna-

tive service candidates (e.g., Offermann, 2008, p. 467) which can be extended to include an

economic assessment. None of the previously investigated approaches, however, offers

such an economic optimization. This is also valid for the component domain. Although in

particular the work of Wang et al. (2005) presents already some economic calculus, these

discussions are hardly suited for answering the question of service granularity since objective

functions and functional relationships (e.g., to what extent do the costs of service implemen-

tation depend on the size of functions?) are not defined or substantiated. In the following we

therefore present an approach taking these issues into account.

3 Granularity of services – An economic analysis

The definition of a Functionality and Service Graph (FSG) in section 3.1 represents the start-

ing point for the presentation of granularity metrics (section 3.2) and the economic analysis in

section 3.3.

3.1 Functionality and Service Graph (FSG)

Some of the approaches presented above propose to identify services based on an aggrega-

tion or disaggregation of functions or functionality. This raises the question of how the results

of such an analysis can be represented in a suitable way for our purpose. Below, a graph –

the so-called FSG – is defined for the representation of these results. The FSG is supposed

to represent the disaggregation relationships between functions. Compared to, for example,

Wang et al. (2006) some enhancements are required for the identification of services:

1. To represent a multiple use of functionalities, we use a directed acyclic graph instead of a

9

tree. In Wang et al. (2006, p. 4), the "feature tree" has the typical characteristics of a tree

structure, i.e. a son functionality is restricted to have only one parent functionality.

2. Services can be composed to perform various processes. This requires that the graph is

able to contain more than one root (i.e. a source node with no incoming edges) which are

to be interpreted as processes. In Wang et al. (2006, p. 4) the "feature tree" is restricted

to have only one root, i.e. several processes can not be represented as different source

nodes.

The assumptions and definitions for the FSG are as follows:

(A1) The FSG is a directed acyclic graph G=(N, E). The functionalities m  M form a sub-

set of the set of nodes N (M  N). The disaggregation relationship between two func-

tionalities mi and mj is represented as a directed edge (mi, mj)  E. The disaggrega-

tion of a functionality mi into the functionalities mj, …, mj+n is defined as disjointly and

completely.

A directed edge (mi, mj) implies that “functionality mj is part of functionality mi”. In the FSG all

functionalities and disaggregation relationships of the considered domain are represented.

Every source node of the FSG, i.e. a node without incoming edges, is called a process (with

P as the set of all processes, P  M). Every sink node of the FSG, i.e. a node without any

outgoing edges, is called a basic functionality (with B as the set of all basic functionalities,

B  M). The inner nodes of a graph, i.e. functionalities, which are neither processes nor

basic functionalities, are referred to as preceding functionalities. V  M is the set of all pre-

ceding functionalities.

In addition, a sequence of nodes and edges m0, (m0, m1),…, (mn-1, mn), mn is referred to as a

path w(m0, mn) with the starting node m0 and the end node mn. If the starting node of a path

is a process (i.e. m0  P) and if the end node is a basic functionality (i.e. mn  B), this corre-

sponds to a complete path. The distance d(m0, mn) of a path w(m0, mn) is defined as the

number of edges of the path w in the acyclic FSG.

The disaggregation relationships between functionalities and therefore the paths can be de-

picted in form of an adjacency matrix IMM: M x M whereas 1, 
ji mmI is valid if (mi, mj)  E

exists. Otherwise, 0, 
ji mmI holds.

The result of our economic decision model is supposed to be shown in the FSG as well, i.e.

what functionalities concretely have to be realized by a service:

(A2) Every service si  S with S  N is allocated to exactly one functionality mj  V  B

through a directed edge (si, mj)  E. A service si fully implements the functionality mj,

including all functionalities mk for which there is a path w(mj, mk) and exposes exactly

this functionality via its interface.

A functionality mj for which $ (si, mj)  E applies is called implemented functionality. A multi-

10

ple implementation of a functionality occurs if a functionality is implemented by various ser-

vices either directly or indirectly (i.e. through preceding functionalities). The matrix ISM: S x M

represents the allocation of services, where 1, 
ji msI exactly applies if (si, mj)  E with si  S

and mj  V  B holds. Otherwise, 0, 
ji msI applies.

The above stated definitions are illustrated in Fig. 1 using a simple example. As a result of a

domain analysis the disaggregation of two processes m0 and m10 into the functionalities m1

and m4 resp. m11 etc. is depicted. The functionality m9 is required in both processes. A possi-

ble implementation of the functionalities by means of the services s1 to s5 is also shown. For

instance, the service s3 directly implements the functionality m6 and thus also realizes the

basic functionalities m8 and m9. Since the service s5 also implements the functionality m9

through the functionality m11, m9 is implemented twice in the example.

Fig. 1 An exemplary Functionality and Service Graph (FSG)

3.2 Granularity metrics

Existing approaches oftentimes make statements about granularity – such as coarse- vs.

fine-grained services – based on an implicit understanding of granularity; which means only

few authors define this term explicitly or mathematically (see Table 1). In the following, we

therefore propose three metrics of granularity to operationalize different perspectives and

discuss their advantages and disadvantages. With the help of such metrics the granularity of

different services can be measured and compared. For the metrics calculation we use the

definitions of the FSG. The starting point is a service si which implements a functionality mj

and the granularity of this service si has to be determined.

Distance-oriented metric

11

First, a distance-oriented metric is presented. Basically, it indicates the position of the service

si and thus of the implemented functionality mj within the FSG. However, a simple calculation

of the path distance starting from the process to the realized functionality is not sufficient.

This has two reasons: First, this value is not very meaningful. For example, the same granu-

larity for two services might result from the calculation of this value although one of the ser-

vices implements a basic functionality, while the other service implements a preceding func-

tionality with many subsequent functionalities. Second, the determination of the path distance

based on a graph – instead of a tree – is not clear if a functionality is included in several

paths. Both issues motivate the development of the following metric for operationalizing the

distance-oriented metric: The metric is based on the path distance from the process to the

implemented functionality in relation to the distance of the complete path. For an implement-

ed functionality mj, which is part of the complete path w(mp, mn), the metric is calculated as

follows:
]1,1max[

1




), md(m

), md(m
=z

np

jp
w . In the numerator as well as in the denominator we have to

subtract one, since the path distance is calculated in each case starting from the process mp

 P. The range of values of zw is normalized to the interval [0; 1]. Thus, the implementation

of a basic functionality (maximum fine-grained) leads to the value one, while the value zero

results from the realization of a functionality that follows directly after a process mp (maxi-

mum coarse-grained). The metric value zw is calculated for all paths which include the im-

plemented functionality mj. For those values, the arithmetic mean is taken. Let W be the set

of all paths w, which contain mj, then the following applies for the depth metric:

 
||W

z
sg Ww

w

iT


 . The metric is normalized to the range [0; 1].

Scope-oriented metric

The distance-oriented metric has disadvantages, for example, if an implemented functionality

has many directly and indirectly following functionalities. In this context, the scope-oriented

metric returns meaningful values. Here, a service is the more coarse-grained, the more func-

tionality it implements in total (direct and indirect).

This metric is operationalized by means of the number
jmn of directly or indirectly imple-

mented functionalities through a service. This value is divided by
amn , with ma as the func-

tionality directly following the process, and subtracted by one:

)1;1max(

1
1






a

j

m

m
w n

n
z . Anal-

ogously to the distance-oriented metric, the value range is normalized to [0, 1]. If a basic

functionality is implemented by a service, a value of one results (because)01
jmn . In the

12

case of implementing a functionality directly following the process, the values
jmn and

amn

correspond to each other. Hence, it follows that zw equals zero (except for a basic functionali-

ty). The normalization to the interval [0, 1] constitutes an advantage compared to the metrics

of Wang et al. (2006, p. 5-6) and to Haesen et al. (2008) and their "default functionality gran-

ularity". In both approaches a metric is proposed without normalization which limits the com-

parison of metric values for different services.

If a functionality mj is part of several paths starting from different source nodes mp or preced-

ing functionalities ma, the arithmetic mean gBT can – similar to above – be calculated based

on the values of these paths.

Although both metrics discussed so far are already more meaningful – compared for instance

to measurements by Wang et al. (2006) – they rely purely on the number of functionalities. In

other words, even if two services show an identical granularity for both metrics, they can still

differ significantly regarding the size of the implemented functionalities. This leads to a third

metric.

Size-oriented metric

The question of how the size of a functionality can be measured or estimated ex ante before

its implementation has already been studied in the literature about effort estimation. Here,

measurement units, such as lines of code (LOC) or Function Points, are used. LOC are used

in the COCOMO approach, which is a method for effort estimation of software development

projects, and indicate how many lines of source code for a program may need to be written

(cf. Boehm et al. 2000; Wehrmann and Gull 2006). In COCOMO, the calculation of the per-

son-months is founded on the LOC of the software artifact together with the costs dissemina-

tors, the scaling factors as well as the individual calibration factors. To determine the LOC

either historical data from other projects, experts estimates, or algorithmic procedures can be

used. Cost factors are then included in the calculation by multiplication whereas scale factors

are considered exponentially. In the case study illustrated below, LOC were chosen, while

other units can be used in both metric and in the decision model as well.

A prerequisite for this metric is the estimation of the func
m j

size (e.g., in LOC) for a basic func-

tionality mj. The size of the preceding functionalities then results from the size of the subse-

quent functionalities (disjoint and complete disaggregation according to (A1)) plus the

comp
m j

size of the composition logic (cf. also Erl 2007). The latter contains information for the

control, integration, and the subsequent invocation of functionalities. Hence, the sizemj
 of the

functionality mj is:

13

















VmsizeIsize

Bmsize
size

j

M

i
mmm

comp
m

j
func

m

m

iijj

j

j if

 if
||

1
,

For an implemented functionality mj, which is part of the complete path w(mp, mn) with mp,

(mp, ma),…, (mn-1, mn), mn, the size-oriented metric is defined as













a

j

m

m

w size

size
z 1 . If mj = ma

holds, which means a functionality ma directly following the process mp is implemented, then

zW is zero indicating a maximum coarse-grained service implementation. The value zW be-

comes larger when implementing a basic functionality. This provides a range of [0, 1[for zW.

If a functionality mj is part of several paths, again, the arithmetic mean gG can be calculated

by the values of those paths.

In addition to the first two metrics the size-oriented metric can provide an additional value

especially when the difference between the sizes of the implemented services differs strong-

ly. Table 2 summarizes the metrics.

Table 2 Granularity metrics

Metric Description and
Definition

Applicability / Restrictions for the appli-
cation

Illustration of the idea of the metric (examples)

Dis-
tance-
oriented
metric

The metric measures
service granularity
considering the position
of the implemented
functionality in the
FSG: distance of the
path from a process to
the implemented
functionality in relation
to the distance of the
complete path.

1. The metric refers to the paths of the
FSG and leads to results which are
easy to interpret if two or more imple-
mented functionalities contain (almost)
the same number of directly and indi-
rectly following functionalities.

2. The metric value may be hardly
meaningful if the implemented func-
tionalities differ strongly regarding
their size (e.g., LOC).

Due to the different distance of the complete paths, the
service s2 with gT(s2)=0.39 is more coarse-grained than
the service s1 with gT(s1)=1 according to the distance-
oriented metric. In contrast, a mere comparison of the
number of preceding functionalities would show the
same granularity in this example.

Scope-
oriented
metric

The metric measures
service granularity by
the number of directly
and indirectly following
functionalities.

1. The metric leads to results which are
easy to interpret if service implemen-
tations are compared which differ in
terms of their number of directly and
indirectly following functionalities.

2. The metric value may be hardly
meaningful if the implemented func-
tionalities differ strongly regarding
their size (e.g., LOC).

In this example, both services s1 and s2 show the same
granularity value according to the distance-oriented
metric (gT). Considering the scope-oriented metric,
however, there are comprehensible differences with
gBT(s1)=1/6 vs. gBT(s2)=1/3. That means that s1 is
significantly more coarse-grained compared to s2.

14

Size-
oriented
metric

The metric measures
the granularity of a
service by its size (e.g.,
measured in LOC)

1. The metric indicates the differences in
the size of the implemented functional-
ities in the FSG.

2. The metric value is meaningful if the
granularity is used as an indicator for
the implementation costs of a service
– as expressed for example in LOC.

According to both metrics above, the services s1 and s2
are equally granular. If however the implemented
functionalities m1 resp. m4 are different in terms of their
size, this becomes evident only through the size-
oriented metric.

The presented metrics systematize different (often implicit) understandings of granularity in

the literature. For instance, Winkler (2007) evaluates the decomposition relationships in the

course of her proposed procedure in a way similar to the distance-oriented metric. The un-

derstanding conceptualized by the scope-oriented metric can be similarly found, e.g., in Aier

(2006) and Fiege (2009). The latter explicitly discusses the number of implemented function-

alities (scope-oriented metric) in addition to the abstraction level of services (similar to the

distance-oriented metric). Clustering methods that aggregate elements such as classes to

components suggest an implementation-related granularity definition similar to the size-

oriented metric. However, this is not made explicit in most cases.

Based on these metrics we can not only measure the granularity of individual services. If we

aggregate the granularity value of all services throughout the entire FSG, we may specify a

metric value for entire service landscapes (see also the software tool presented in section 4).

In this way, different solutions resulting from applying the economic decision model can be

analyzed or compared regarding their service granularity value. That means that the metric

values are not used as input to apply the decision model. Instead, the resulting model output

is assessed by means of the metrics in terms of its granularity (for example, to evaluate

whether a solution is fine- or coarse-grained).

3.3 Economic Decision Model

In order to contribute to the research question of how granular services should be defined in

economic terms, it is important to identify the relevant cost factors. We deliberately limit our-

selves to the costs since the functionalities (which are supposed to lead to profits) are deter-

mined after the completion of the domain analysis and are represented in the FSG. Based on

this, we suggest to leverage the available degrees of freedom of the domain analysis for a

cost optimization.

Here, on the one hand the costs of the implementation of a service are relevant for decision-

making. Usually the implementation costs increase at a higher rate than the size of a service

due to the resulting increased complexity of the implementation (for instance side effects are

more complex to be handled for larger services). Also, testing is more cost-intensive with an

increasing size of services. On the other hand, the costs of service composition using lan-

15

guages such as WS-BPEL have to be included in the decision. Here, for example, the costs

for searching and integrating individual services, the creation costs for a WS-BPEL file, or the

preparation of a subsequent operation of the composition are included. Finally, it is important

to take maintenance costs into account which are influenced by the choice of service granu-

larity. For instance, if a functionality is implemented redundantly in several services multiple

maintenance costs occur.

On the contrary, one-time costs for establishing a service-oriented infrastructure are not con-

sidered relevant to our decision problem because the corresponding effort is independent of

the choice of service granularity: This aspect includes the introduction of service standards,

setting up and installing the infrastructure (e.g., engines, directory servers, enterprise service

bus), the installation and introduction of the development environment, etc.

Objective function

Our decision problem can be described as follows: A feasible solution (the criterion of feasi-

bility is described below) for the allocation of services to functionalities (as represented by

the matrix ISM) is supposed to be found which minimizes the total costs of the implementation

CR, the composition CK, and for maintenance and support CP:

  min!)()()( SMPSMKSMRSM ICICICIZ

Each cost factor CR, CK, and CP is described below.

Costs of service implementation

The starting point for estimating the implementation costs of a service is – as discussed

above – the size of the functionality to be implemented. The following assumption is made:

(A3) For realizing a service si, costs cR(si) arise which depend on the sizemj
 of the function-

ality to be implemented – e.g. quantified in LOC. We assume a cost rate cvar per LOC.

Furthermore costs increase more than proportionally (exponent b>1) to the size (for

reasons of complexity). In addition, costs cfix which are independent from the size may

occur for the service implementation (e.g., deployment costs, such as publication of a

service in the service directory).

The parameters cvar and b may, for example, be interpreted as linear and scaling factors

similar to the COCOMO approach. Based on (A3), the implementation costs of a service si

yield to:

100: with))(()(var

||

1
var,  



, b, ccsizeccIsc fix

M

j

b
mfixmsiR jji

Moreover, it should be pointed out that for different service types the values of the parame-

16

ters cvar and b can be varied. However, for reasons of a clear presentation, we abstained

from an additional indexation of these parameters that would be necessary in this case. The

prototypical software presented below allows for such an enhancement.

Thus, the total implementation costs of a service landscape results from summarizing the

implementation costs of all services:

 )(
|S|

1i



 iRSMR scIC

Costs of service composition

If a process is implemented through many services instead of a few services, the composi-

tion costs increase. Here, we use the previously defined size of compositional logic as the

starting point for our analysis:

(A4) The costs for service composition cK of a process depends on the size of the compo-

sition logic which has not been directly implemented through a service yet (at a cost

rate of compcvar). It is assumed that the costs increase more than proportionally (expo-

nent f>1) to the size of the composition logic (due to a higher complexity).

Assumption (A4) can easily be illustrated with the help of Fig. 1: For the implementation of

the process m0 the services s1, s2, s3 and s4 have to be composed. In addition, the functional-

ity m4 and therefore
comp
msize

4
 has to be considered for the composition logic (since the com-

position logic of m4 is not implemented by a service) as well as
comp
msize

0
 for the process m0

itself. Thus, the composition costs required for a process mp  P generally result in:

  1 ,0 :mit),()(varvar  fcmIcompsizecmc compf

pSM
comp
m

comp
pK p

Here, the values of the parameters compcvar and f may differ from the parameter values of cvar

and b due to different methods and languages used for the implementation of services and

for their composition respectively. With the help of),(pSM mIcomp , the size of the preceding

functionalities that have not already been implemented by a service (such as m4 in the ex-

ample) are determined through the paths from mp to the basic functionalities. The entire

composition costs are obtained by summarizing the composition costs over all processes.

Maintenance and support costs for multiple implementations

In addition, those maintenance and support costs are relevant for our decision problem which

can be avoided explicitly through the choice of service granularity. If a functionality needed in

several processes were implemented by different services, the functionality of each service

implementation has to be adapted with each necessary change. Even if this is contrary to the

17

basic idea of SOA, neglecting this case would be unrealistic. In this respect, it is proposed to

make those costs of maintenance and support to depend on the number and size of multiple

implemented functionalities. The reason for this is that with an increasing number and an

increasing size of a multiple implemented functionality, maintenance and support costs are

expected to increase, too, because of the rising complexity (cf. Keller 2007):

(A5) Any multiple, redundant implementation of a functionality creates additional costs of

maintenance and support which increase more than proportionally compared to the

size of functionality. Similar to above, we propose a value penvar > 0 for the variable

costs and an exponent h>1.

Based on (A5), we determine how often a functionality mi is implemented directly and indi-

rectly by different services. In Fig. 1, the number of implementations of the functionality m9

has to be determined with 2
9
mr . The additional maintenance and support costs cp for the

functionality mi result in:

1 ,0:)(]0),1max[()(varvar  hpenwithsizepenrmc h
mmip ii

The max-function assures that only multiple implemented functionalities are included. The

entire additional maintenance and support costs CP resulting from a multiple implementation

is calculated again by summarizing the costs cp(mi) over all functionalities.

Choice of service granularity from an economic perspective

Using the FSG and the above introduced objective function the service granularity can now

be optimized under economic aspects. Here, the basic functional relationships are consid-

ered: the more fine-grained a service is (e.g., according to the size-oriented metric), the more

probable it is that it can be re-used without having to realize the functionalities implemented

by this service multiple times. This reduces ceteris paribus the implementation costs. Fig. 1

shows an example: The functionality m9 is needed for two processes, but it is not directly

implemented. Hence it is necessary to consider the size of this functionality for the calcula-

tion of the implementation costs of two implemented functionalities (here m6 and m11). Thus,

the implementation costs arise twice for the services s3 and s5, whereas the implementation

costs for the functionality m9 would only arise once in case of a direct implementation. In ad-

dition, multiple implementations lead also to increased maintenance and support costs.

However, higher costs of composition occur in case of fine-grained services.

The determination of the optimal solution is not trivial. The adjacency matrix ISM has to be

specified in the way that the solution of the decision problem is feasible and minimizes the

total costs according to the objective function. To identify the solution with the minimal total

costs, an algorithm is implemented which gradually allocates services to the functionalities

18

starting with the basic functionalities. Subsequently, the services that implement basic func-

tionalities are substituted iteratively by services that implement preceding functionalities. For

each of the solutions we have to check its feasibility. An allocation of services to functionali-

ties in the FSG is feasible if it is possible to compose and execute all processes with the allo-

cated services. This means specifically that each complete path w(m0, mn) in the FSG must

contain at least one directly implemented functionality. This corresponds to the feasibility

criterion and is sufficient because a preceding functionality always directly or indirectly con-

tains the basic functionalities referenced by the disaggregation relationships (adjacency ma-

trix IMM). If a solution is not feasible, there is at least one basic functionality mn œ B of a com-

plete path that is not employable for the process mp œ P. Process mp would therefore not be

executable. These conditions for a feasible solution have been defined mathematically (see

Appendix 1) and realized in our prototypical software tool. Finally, the solution whose realiza-

tion leads to the minimal total costs is selected out of all feasible solutions.

For the calculation also the input parameters of the objective function have to be determined.

Here, we can draw upon known estimation procedures from the field of software develop-

ment. In the COCOMO approach, costs are estimated by using the formula

SFBsizeEMAPM  , with A and EM being linear factors and B and SF being scaling fac-

tors. Their values are to be determined project- and company-specific. COCOMO has al-

ready been used for service implementations by Tansey and Stroulia (2007). They illustrate

the general applicability but also point to the fact that it is often not possible to use large ex-

isting databases to estimate the linear and scaling factors. Here one has to – as the following

case study will also show – rely on company-internal estimates. Nevertheless, basic assump-

tions, such as the convex slope of the cost functions, appear reasonable. To analyze the

effects of imprecise estimates, a sensitivity analysis has been integrated in our prototypical

software tool which supports the investigation of the robustness of the results.

4 Prototypical implementation and case study

In the following we illustrate the implementation of the decision model in a software tool. Af-

terwards, the case study of a financial service provider is discussed.

4.1 Prototypical implementation

Our model was implemented as a plug-in for the open-source framework Eclipse. The im-

plementation was carried out in Java and is based on the Eclipse Modeling Framework. The

graphical input and output were realized using the Graphical Editing Framework. For creating

the FSG, a graphical editor is available in which the functionalities are drawn from a side

menu (see right part of Fig. 3) into the working area. The functionalities can be integrated in

the acyclic FSG using directed edges. Another screen allows to enter parameter values of

19

the cost functions and allows these functions to be changed individually for each company

(e.g., to use function points instead of LOC).

In the next step, the service implementation with minimal costs is determined based on this

data. The results are twofold: On the one hand, results are illustrated in the form of a table

that shows which functionalities should be realized as a service, the associated total costs of

the solution, and the values of the three granularity metrics. On the other hand, the minimal

cost solution is also illustrated graphically (see Fig. 3). Here, each functionality that has to be

implemented according to the determined solution is connected to a service (symbolized by a

yellow circle). This kind of presentation is especially useful for a quick comparison of alterna-

tive solutions. As discussed, the estimate of the parameter values can be imprecise. There-

fore, the software tool also provides a sensitivity analysis. For each parameter input fields

are available in order to specify an interval, which means a lower and upper limit. With these

inputs we can analyze whether a determined solution with minimal total costs changes when

taking these intervals into account. Using the sensitivity analysis it is also possible to auto-

matically conduct a gradually change of a single parameter value until a new optimal solution

is found. This also gives insights into the robustness of identified solutions, which turned out

to be of great value in the practical application.

4.2 Case study

The standardization of processes and IT applications is currently promoted for financial ser-

vice providers with the aim of reducing costs, among other. Here the replacement of mono-

lithic legacy systems through service-oriented application systems is also increasing in im-

portance (for more SOA objectives see Baskerville et al. 2010). Against this background, a

SOA has been introduced in the loan division of a major German financial service provider.

In a first step, a domain analysis has been carried out, which means functionalities have

been identified based on the processes that had to be implemented. However, this analysis

left open significant degrees of freedom in terms of alternative service candidates. In order to

avoid deciding only intuitively or according to rules of thumb, economic aspects had to be

included. As an example, a part of a loan process is considered (an excerpt from the loan

approval process “Offering private loans over the Internet"), which is illustrated in Fig. 2 in a

simplified form and anonymized for confidentiality reasons.

20

Fig. 2 Part of the FSG in the case study

The process “Offering private loans over the Internet“ is disaggregated into three functionali-

ties: “Check business partner” includes the functionalities for the identification and verification

of a partner. Below "Check bank account" the functionalities “Search Bank Identification

Code (BIC)” and “Query banking account” are located. The third functionality "Calculation

and check loan application" is disaggregated into "Perform scoring" and "Check application".

As shown in Fig. 2, some functionalities such as "Verification authorization data" and "Verifi-

cation legitimation data" are used twice.

In order to determine the size of the functionalities measured in LOC, already implemented

parts of the source code or existing documentation has been used. The size of non- or inad-

equately documented functionalities was estimated. This was based on the experience of

internal cost estimates of previous projects (e.g., based on the complexity of functionalities,

the processed data or the development processes used). Finally the LOC shown in Table 3

resulted for the above functionalities. Here, the LOC for the preceding functionalities only

include the composition logic and do not represent already aggregated values (the function-

alities are referenced by using the numbers introduced in Fig. 2):

Table 3 Size (LOC) of functionalities in the case study

No. of functionality LOC No. of
functionality

LOC No. of
functionality

LOC

1 200 2.1.2 600 2.2.2 2,000

1.1 1,500 2.1.3 1,500 2.2.3 800

1.2 1,000 2.1.2.1 1,600 2.2.4 200

2 400 2.1.2.2 200 2.2.4.1 1,700

21

2.1 1,000 2.1.2.3 1,400 3 400

2.2 450 2.1.2.2.1 400 3.1 1,000

2.1.1 1,400 2.2.1 1,000 3.2 1,400

In addition, the values for the input parameters of the objective function had to be estimated.

This was done with reference to the existing COCOMO cost estimation procedure of the fi-

nancial service provider (in general this can be problematic for several reasons; for the spe-

cial case of the financial service provider, this appeared quite reasonable). After a thorough

discussion, no individual values were defined for the input parameters. Instead, an interval

was determined for each input parameter to account for the inherent uncertainty of esti-

mates. Table 4 shows these intervals:

Table 4 Estimate of the intervals for the input parameters of the objective function in the case study

Input parameters for
service implementation

Interval Input parameters for
service composition

Interval

cvar [2.75 - 3.25] compcvar [2.75 - 3.25]

b [1.05 - 1.1] f [1.15 - 1.2]

cfix [80 - 100]

Background for the determination of the input parameters is the classification of the consid-

ered project as a project with an average complexity according to the COCOMO approach

(referred to as "semi-detached mode"). This classification was mainly based on an analysis

of the experience of the project members with an implementation of SOA and related tech-

nologies, the project scope, the quality of the existing requirement specification, the docu-

mented interfaces, and the timeframe planned for project implementation. According to CO-

COMO, a project in semi-detached mode receives a linear factor of 3.0, whereas a project

with lower complexity receives 2.4 and a complex project 3.6. The scaling factor of a project

in semi-detached mode is 1.12, for a project with lower complexity 1.05, and for a complex

project 1.2. The intervals of the cost parameters cvar and compcvar (linear factors) were specified

with [2.75 to 3.25]. It initially appeared reasonable to set the values for the parameter compcvar

higher (compared to the values of the cost parameter cvar) since the implementation of the

basic functionalities appeared less complex compared to the composition logic. However, the

financial services provider decided to choose the same interval for the cost parameters cvar

and compcvar based on the experience in previous projects. Also in the case of the exponents b

and f (scaling factors), the parameter values of COCOMO were used. Here, the intervals

were determined with b  [1.05 – 1.1] and f  [1.15 – 1.2]. By defining these intervals it was

possible to analyze whether a service implementation determined as feasible solution is less

robust even for small estimation errors. The financial service provider initially refrained from

22

considering additional maintenance and support costs required for multiple implementations.

4.3 Results

Fig. 3 shows the solution with the minimal total costs for the FSG in Fig. 2. The services s1 to

s8 (yellow circles) are assigned to the implemented functionalities (green rectangles).

Fig. 3 Assignment of the services in the case study

The above solution, which has total costs of 129,493 MU (monetary units) is relatively fine-

grained. The distance-oriented metric shows a value of 0.79, the scope-oriented metric was

calculated with a value of 0.81, whereas the size-oriented metric shows a value of 0.67 (for

the calculation of these metric values and the total costs see Appendix 2). The functionalities

"Perform scoring" (2.1) and "Check bank account" (3) were implemented with one service

each. This leads, for instance, to a multiple implementation of the basic functionality „Query

banking account”. In this example it is easy to see that it is necessary to conduct an individu-

al analysis of the existing FSG. A rule of thumb in terms of a basically coarse- or fine-grained

service implementation would not have led to the best economic result since the two "adja-

cent" functionalities "Perform scoring" (2.1) and "Check application" (2.2), for example, are

implemented fundamentally different. There is one more interesting aspect: If we repeat the

optimization several thousand times by means of the software tool, with the values for the

input parameters being randomly drawn from the defined intervals, we obtain the following

result: The above presented solution remains the minimal cost solution in more than 85% of

all runs. In the other 15%, this solution is either the second or third best solution. However,

the better solutions differ in a change of one service allocation at the most. Together with the

experience-based parameter estimation, this analysis reduces the risk of determining a less

robust solution in the case study.

23

5 Summary and Further Research

In this paper, a decision model was presented that supports the choice of an adequate ser-

vice granularity from an economic perspective. Such an economic optimization can extend a

previous domain analysis. Both, the variety of possible service candidates and the complex

cost effects regarding the choice of an adequate service granularity make a manual optimiza-

tion very difficult or even impossible. Therefore, a software tool has been developed and its

benefit has been demonstrated by means of a case study. Furthermore, this case study has

demonstrated that rules of thumb for service granularity often propagated in practice (e.g.,

Helbig and Scherdin 2008) must be seen critically. For example, a rule to design mostly

coarse- or fine-grained services can lead to economically bad solutions. Reasons for this can

be seen in disproportionately high implementation costs and possibly necessary multiple

implementations of functionalities by different services. For an economic decision, it is nec-

essary to analyze the given functionality graph and then to determine the adequate service

granularity based on this specific graph. Hence, it may well be reasonable to implement the

functionalities realizing a process by services with different granularities (see also the exam-

ple in Fig. 3). The decision model and the software tool provide instruments to examine the

economic effects. Furthermore, three mathematically defined metrics were presented and

discussed that allow a comprehensible granularity assessment.

The economic analysis extends the domain analysis approaches to identify services. The

compatibility to these approaches is primarily provided if the basic structure of the functionali-

ty graph can be derived from these approaches: For instance, Winkler (2007) suggests de-

composing activity diagrams into functionalities and then arranging them so that functionali-

ties which occur multiple times in different processes can be grouped. The result is a directed

graph which is similar to our functionality graph presented. The decision about which func-

tionalities should be implemented in a service is made argumentatively based on various

assumptions in the approach by Winkler. Here, our model can explicate economic effects

and provide additional decision support. Other approaches also conduct an analysis of the

functionalities of a domain or a decomposition of functionalities as a basis for service identifi-

cation (e.g., Fiege 2009; Offermann 2008). In these approaches, service candidates with

different granularity can result according to the decomposition rule applied. Consequently,

also in this context the presented decision model can be used after adapting it to the con-

crete approach.

Besides, some critical issues have to be discussed that define the need for further research:

First, for the application of the decision model it is necessary to create a functionality graph

which in turn is the result of a domain analysis – as illustrated in the case study of the finan-

cial services provider. This raises the question of whether and how, if necessary, a robust

24

solution in terms of an adequate service granularity under economic aspects can be deter-

mined with an incomplete functionality graph (e.g., only a part of the functionality graph is

modeled). This means that the solution identified should not change fundamentally in the

course of an adjustment or completion of the functionality graph. However, it is obvious that a

accurate model input has to be available for a well-founded decision making process. This

holds also true concerning the input parameters of the objective function. Here again we

must rely on quality-assured estimates. However, such a basis is also necessary without

using a decision model if we want to make a serious estimation of the implementation costs

of the project. Further research is needed here, which means the procedure for determining

the linear and scaling factors has to be adapted especially for service development. Moreo-

ver, the sensitivity analysis – which focuses on imprecise estimates – needs to be enhanced.

To be able to apply the decision model even with an incomplete functionality graph, further

extensions appear helpful. For example, existing estimation methods might be adapted and

integrated into the prototypical software tool and standard values for input parameters might

be provided. In addition, future situations in which the current Functionality and Service

Graph will be possibly modified have to be considered. Here, it is necessary, for instance, to

determine probabilities for process or functionality changes (i.e., scenarios) and store them in

the graph. Thus, future changes could be represented in a systematic way and for each sce-

nario identified, for example, the expected value of the implementation costs can be calculat-

ed. These can in turn influence the choice of service granularity. The presented approach

provides an appropriate starting point for all of these purposes.

References

Cf. German Version

25

Appendix 1: Verification of the feasibility of a solution

The following conditions for the feasibility of a solution have to be verified:

1) Every functionality mj (with mj  V  B) must at least be assigned to one higher function-

ality or process (must be checked only once for the entire FSG)

jII
i

mjp
i

mjm ii
  1,,

2) For each solution that has been identified by a combinatory allocation, the following must

hold: Select randomly a process p’. Then check every path starting with the edge {p’, m’}

 E whether {s, m’}  E holds for functionality m’.

a) If this is the case, continue to the next path, i.e. edge {p’, m’’}  E etc. If there is no

such edge, carry out the same procedure for every other process p’’.

b) If this is not the case, check for every path starting with edge {m’, m’’’}  E whether

{s, m’’’}  E holds for functionality m’’’. If this is the case, check the next path with the

edge {m’, m’’’’}  E. If this is not the case, check all paths with the edge {m’’’, m’’’’} 

E etc.

 If for a complete path {p’, m’} {m’, m’’}, …, {m’’’, m’’’’} E applies that {s, m’}, {s,

m’’}, …, {s, m’’’}, {s, m’’’’}  E, then the considered solution is not a feasible solu-

tion.

For every process p’ it must be valid that all basic functionalities included in the process (the-

se can be determined through the edges {p’, m}, {m, m’}  E) are directly or indirectly imple-

mented by services.

26

Appendix 2: Calculation of the total costs and the metric
values in the example

For the service implementation shown in Fig. 3, the total costs of the implementation and the

composition can be calculated as follows (maintenance and support costs are neglected in

this example). It holds:
)()()(SMKSMRSM ICICIZ 

with matrix ISM: S x M =

001000000000000000000

000100000000000000000

000001000000000000000

000000100000000000000

000000010000000000000

000000000000000010000

000000000000000000100

000000000000000000010

:

8

7

6

5

4

3

2

1

2.31.331.4.2.24.2.23.2.22.2.21.2.22.21.2.2.1.23.2.1.22.2.1.21.2.1.23.1.22.1.21.1.21.222.11.11

S

S

S

S

S

S

S

S

mmmmmmmmmmmmmmmmmmmmm

I SxM 

as service allocation (with 1, 
ji msI if functionality mj is implemented as service si, otherwise

0, 
ji msI holds). The following costs in MU result for implementing the services s1 to s8 based

on the parameter values cvar = 3.0, cfix = 90 and b = 1.075 using the term





||

1
var,))(()(

M

j

b
mfixmsiR jji

sizeccIsc :

Service s1 s2 s3 s4 s5 s6 s7 s8

Costs
cR(si)

7,877.88 5,126.41 56,736.64 5,126.41 10,700.32 4,052.26 8,999.51 15,324.08

For example the costs cR(s1) for implementing the service s1 are calculated as follows:

MUsizeccIsc b
mfixmsR 88.877,7)500,1390(1))(()(075.1

var,1 1.11.11


Therefore, the implementation costs for all services s1 to s8 result to 113,943.51 MU.

Furthermore, the costs cK for the service composition of the process „Offering private loans

over the Internet“ has to be determined. This effort includes the size of the compositional

logic that has not already been implemented by a service. As shown in Fig. 3, the composi-

tion logic of the functionalities m1, m2, m2.2 and m2.2.4 together with the process composition

logic of 200 LOC is not implemented directly or indirectly by a service. Thus, the composition

logic yields to a total of 1450 LOC. The composition costs for the process in the case study

are calculated with the parameter values compc var = 3.0 and f = 1.175:

  MUmIcompsizecmc
f

pSM
comp
m

comp
pK p

15,549.94)450,1(3),()(175.1
var 

27

Summing up the costs for service implementation and composition, the solution shown in the

above matrix ISM have minimal total costs of 129,493 MU.

For the functionality and service graph presented in the case study (Fig. 3), the values for

the three metrics can be calculated and interpreted as well. The following metric values for

the distance-oriented metric, the scope-oriented metric, and the size-oriented metric result

for the services s1 to s8:

Service s1 s2 s3 s4 s5 s6 s7 s8 Total

Distance-oriented metric 1 1 0.36 1 1 1 1 0 0.79

Scope-oriented metric 1 1 0.5 1 1 1 1 0 0.81

Size-oriented metric 0.44 0.79 0.44 0.94 0.88 0.95 0.90 0 0.67

As the table shows, the value of 0.79 for the distance-oriented metric and the value of 0.81

for the scope-oriented metric are very similar. This is because six of eight services implement

basic functionalities and thus hold a granularity of one (maximum fine-grained). Only service

s3 shows differences: Here, a value of 0.36 of the distance-oriented metric indicates that the

service is implemented after approximately 1/3 of all paths between the process "Offering

private loans over the Internet" and those basic functionalities which are indirectly imple-

mented by service s3. In contrast, the scope-oriented metric shows a value of 0.5. This

means that service s3 implements 50% of all functionalities that are part of the sub-graph

(with the edge (mp, m2)). This means that if service s3 would implement the preceding func-

tionality m2 "Calculation and check loan application" instead of functionality m2.1 "Perform

scoring", then the service doubles its scope of implemented functionalities and thus it would

be maximum coarse-grained.

Additionally, also the values of the size-oriented metric are shown. They refer to the size of

the functionalities measured in LOC. Overall, its value is slightly below the metric values of

the other two metrics with 0.67. The reason is that with service s1 a relatively large basic

functionality "Identify partners" (in relation to the sub-graph with the edge (mp, m1)) is imple-

mented.

