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The choice of an adequate granularity of services also represents an economic problem. 
Realizing the functions of a process by implementing a large number of fine-grained services 
leads to reduced development and maintenance efforts. Additionally, a higher reuse potential 
of the services can be achieved. However, at the same time the composition costs of the 
(many) services increase. The paper deals with this granularity issue. For this purpose, three 
different metrics to measure granularity will be introduced. Furthermore an economic model 
for service granularity optimization will be introduced, which extends existing approaches 
focusing purely on a domain analysis.  
 
 
Service-oriented architectures are widely discussed as a design principle for application and 
enterprise architectures. Nevertheless, an adequate granularity of services from an economic 
perspective has not yet been researched sufficiently. The finer the granularity to realize the 
functions of a process, the higher is the number of services and the more effort has to be 
spent to compose them. In contrast, very coarse-grained services bear the disadvantages of 
higher implementation costs and lower reuse potential (e.g., in different processes). The de-
cision model proposed in this paper is to determine an adequate granularity of services from 
an economical perspective. Thus, degrees of freedom, which often exist for the choice of 
granularity after a domain analysis, can be leveraged to realize a cost-efficient solution. We 
illustrate the applicability and practical benefits of the decision model with an example in the 
context of a financial services provider. 
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1 Problem Definition 
Although service-oriented architectures (SOA) have been discussed for quite some time 

now, the question of an appropriate granularity of services in economic terms has not yet 

been answered satisfactorily. While it is often required that services should be more coarse-

grained than objects or components and at the same time should be designed from a func-

tional point of view (Henning 2007; Krafzig et al. 2005; Richter et al. 2005), such statements 

offer a large individual freedom regarding design alternatives. This is critical since the signifi-

cance of the granularity question is emphasized in many contributions (see previous 

sources) and is sometimes even labeled as the crucial question (Melzer et al. 2007, S. 33). 

The advantages and disadvantages of coarse- resp. fine-grained services can basically be 

balanced as follows (cf. Aier 2006; Erl 2005, S. 557; Melzer et al. 2007, S. 33): The more 

fine-grained the service, the higher the number of services to realize the functions of a pro-

cess and the more effort has to be spent to compose the (multitude of) services for process 

execution. In contrast, coarse-grained services bear, for example, the disadvantage that the 

potential for reusing services in various processes decreases (cf. also Joachim et al. 2011, 
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S. 450). This poses the risk of redundancy and a high number of variants, as several ser-

vices may realize the same or similar functions of different processes. Although services are 

still characterized by platform independence, usage of standards, loose coupling, etc. (Buhl 

et al. 2008; Papazoglou 2003; Papazoglou et al. 2006), a significant advantage vanishes: If, 

in extreme cases, services have a similar (coarse) granularity as monolithic application sys-

tems, the often stated advantage of modular software artifacts that can "simply" be reused 

and composed to new or modified processes is lost. 

So far the question of service granularity has been discussed in literature primarily from a 

functional view (e.g., Albani et al. 2008; Fiege 2009; Winkler 2007; Winter 2003). However, 

this question also describes an economic problem: How granular should services be devel-

oped so that the effort for the development, composition, and maintenance of services is 

minimal? Such an economic approach requires appropriate metrics in order to be able to 

measure granularity in a comprehensible way. This paper aims at contributing to both issues. 

Therefore, it follows the growing insight that economic aspects for system and service design 

(cf. Value-based Software-Engineering; e.g., Biffl et al. 2005) have to be considered to a 

stronger extent than before. 

The paper is organized as follows: In section 2 contributions will be discussed dealing with 

the identification and design of services (and components). These approaches apply primari-

ly functional or technical criteria and thus constitute the starting point for a subsequent eco-

nomic analysis. In section 3, various metrics to measure service granularity are defined. 

These metrics are prerequisites to make comprehensible statements, such as „realization 

through fine- or coarse-grained services“. Afterwards, a model is developed which supports 

the decision on the granularity of services based on economic criteria. The applicability of the 

model will be demonstrated in section 4 through a case study of a financial service provider. 

Section 5 summarizes the essential findings, analyzes them critically, and provides an out-

look on further research needs. 

 

2 Literature review 

A series of contributions about the identification and design of services, especially based on 

functional criteria, can be found in the literature. Services can be understood as (software) 

artifacts of a system landscape which encapsulate functions (Schelp and Winter 2008, p. 6) 

and exhibit specific characteristics, such as modularity, loose coupling, and defined interfac-

es (Krafzig et al. 2005, p. 59; cf. e.g., Buhl et al. 2008, p.62; Erl 2005, p. 37 for the character-

istics of services). Often, a distinction is made between technical and business (or enter-

prise) services, whereas the latter realize composable functions of a business process (cf. 

Melzer 2007, p. 32; Schelp and Winter 2008, p. 7). In the following, we restrict ourselves to 
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the latter as the question of reusability of business services in different processes is of par-

ticular interest. Therefore the question of a “proper” granularity is raised here in particular. 

First, we define granularity, according to the literature, as the number or extent of functionali-

ties implemented by a service (Erl 2007; Galster and Bucherer 2008, p. 400; Thomas et al. 

2010, p. 366). Papazoglou and van den Heuvel (2006, p. 423) write for instance: “Service 

granularity refers to the scope of functionality exposed by a service”. According to Boerner 

and Goeken (2009) granularity also describes the functional scope of a service. This short 

discussion of the term granularity will be resumed in section 3.2 when we define granularity 

metrics. 

For our study, work dealing with the identification of components is relevant besides those 

contributions dealing with the identification and design of services (for a review of approach-

es for component identification cf. Birkmeier and Overhage 2009; for service identification cf. 

Birkmeier et al. 2008). Table 1 illustrates selected contributions of both domains, based part-

ly on the description of Birkmeier and Overhage (2009) as well as Birkmeier et al. (2008). 

Subsequently, the contributions on component identification will be discussed followed by 

approaches on service identification. 
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Table 1 Selected approaches for the identification of components and services  

Authors Objective  Method Subject 
Definition of 
Granularity 

Guidelines defining the gran-
ularity of components resp. 

services 
Focus 

Tool 
Support 

Type of Validation 

Aier 2006 

Identification of services as 
an aggregation of associated 
elements in an enterprise 
architecture. 

Automated clustering method 
analyses relationships be-
tween the elements of an 
event-driven process chain 

Services 

Number of the real-
ized functions im-
plemented by a 
service (implicit) 

Granularity depends on deter-
mining the parameter values of 
the clustering method (no 
optimization) 

Functional Yes Illustration example 

Albani et al. 
2008 

Identification of business 
components which belong 
together from a functional 
perspective. 

Refinement of domain mod-
els to components with the 
help of heuristics (top down) 

Components 
No explicit definition 
of granularity 

Preferences to decomposition 
and grouping rules 

Functional Yes Real world case study 

Arsanjani et al. 
2008 

Development of a service-
oriented architecture, taking 
the complete service life 
cycle into account. 

Top down analysis of the 
domain and business goals 
(focus) with an additional 
bottom-up analysis of existing 
systems. 

Services 
No explicit definition 
of granularity 

No guidelines Functional No 
Presentation of case 
studies and collected 
best practices 

Beverungen et 
al. 2008 

Identification of services 
based on models of business 
processes. 

Decomposition of business 
processes, taking into ac-
count visibility issues regard-
ing business partners (top 
down). 

Services 
No explicit definition 
of granularity 

Distinction between process 
and basic services, but no 
detailed specifications 

Functional No Real world case study 

Fiege 2009 

Modeling a service-oriented 
architecture by using Axio-
matic Design following the 
architectural goals of loose 
coupling, high autonomy, and 
balanced granularity. 

Axiomatic Design: structured 
top-down method based on 
business processes. 

Services 

Granularity describes 
the scope and type 
of the functions. The 
functional complexity 
is measured by the 
sum of the data flows 
of the service opera-
tions. 

Decomposition rules and mod-
eling guidelines 

Functional No 
Three real world case 
studies 

Her et al. 2008 
Identification of services 
based on use cases. 

Five-stage procedure for the 
deduction of service specifi-
cations in use cases and 
business processes. 

Services 
No explicit definition 
of granularity 

Granularity is already defined 
for use cases. If these are 
included in other applications, a 
sub-process and then a so-
called composite service is 
identified. 

Functional No Case study 

Kim and Chang 
2004 

Identification of components 
with regard to cohesion and 
coupling. 

Clustering method on the 
basis of use case diagrams 
(bottom up). 

Components 
Number of realized 
use cases (implicit) 

Granularity depends on deter-
mining the parameter values of 
the clustering method (no 
optimization). 

Functional, 
partly tech-
nical 

No 

None (only discussion 
and evaluation in 
comparison to other 
approaches) 

Lee et al. 2001 
Identification of components 
with regard to cohesion and 
coupling. 

Clustering method on the 
basis of use case diagrams 
(bottom up). 

Components 
Number of classes 
(implicit) 

Granularity depends on the 
cohesion and coupling of the 
classes and on determining the 
parameter values of the cluster-
ing method. 

Functional 
and tech-
nical 

No, only 
clustering-
algorithm 

Real world case study 
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Offermann 2008
Design of software artifacts 
based on a service-oriented 
architecture. 

Top-down analysis consoli-
dated with bottom-up analysis 
of existing systems. 

Services 
No explicit definition 
of granularity 

No guidelines Functional 

Yes 
(but only for 

service 
modeling, 

not for 
granularity 

optimization)

 
Real world case study 
and laboratory experi-
ment 

Wang et al. 
2006 

Identification of components 
with a focus on the stability of 
the business model. 

Analysis based on the so-
called "Feature Tree", which 
illustrates the features (of a 
domain) and their dependen-
cies and differentiates them 
by their stability. 

Components 
Number of features / 
functions or imple-
mented entities  

Optimization of the granularity 
based on the "Feature Tree" 

Functional 
and eco-
nomic (cf. 
also Wang 
et al. 2005) 

Declared as 
"future work" 

Qualitative comparison 
with other identification 
approaches and illus-
tration of this compari-
son by a simple exam-
ple 

Winkler 2007 
Identification of services with 
a focus on reuse. 

Functional analysis by gradu-
al decomposition of activities 
in activity diagrams (top 
down). 

Services 
Orientation on the 
levels of decomposi-
tion (implicit) 

Decomposition rules Functional No Real world case study 

Winter 2003; 
Schelp and 
Winter 2008 

Identification of services 
which belong together from a 
functional point of view.  

Analysis of relationships 
between data objects and 
functions and their clustering 
based on a matrix (multidi-
mensional). 

Services 
Functionality of a 
service (implicit) 

Decomposition and clustering 
rules 

Functional No 
Real world case stud-
ies with four enterpris-
es 
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Approaches dealing with component identification 

In their Business Component Identification approach Albani et al. (2008) identify (business) 

components based on information objects, process models and the relationships between 

them. By means of a clustering method, a partitioning of components is performed. In the 

approach preferences are considered as well as the type and frequency of relationships be-

tween information objects and actions of the process model. Thereby, the design principles 

of high cohesion and low coupling are taken into account. 

The granularity question also constitutes an objective explicitly stated by other clustering 

approaches (cf. Kim and Chang 2004; Lee et al. 2001). Those are based on mathematical-

statistical methods which measure the cohesion or coupling of a system’s discrete elements 

– often classes in terms of object orientation. For instance, the number of reciprocal relation-

ships between these elements is derived and from that loosely coupled clusters are deduced 

which hold a high cohesion each. Subsequently, these clusters constitute the searched com-

ponents. Depending on the determined parameter values of the clustering method, compo-

nents of different granularity are identified. However, the choice of parameter values, particu-

larly in economic terms, is not explicitly addressed in the contributions mentioned before. 

Wang et al. (2006) develop their STCIM (Stability Based Component Identification Method) 

approach with the objective to primarily identify the components with regard to different de-

grees of stability of (parts of) the business model. Stability as a parameter is defined as the 

extent and the number of business-related changes, i.e. the fewer changes there are, the 

more stable are the parts of the business model and the less must the associated compo-

nents be adjusted. Stability is therefore seen as an indicator for the design of coarse-grained 

components and vice versa (e.g., Wang et al. 2006, p. 2). To achieve these objectives, Wang 

et al. (2006) define a tree structure (so-called "Feature Tree") which reflects the result of a 

domain analysis. This tree structure contains the features (in terms of functions) and their 

relationships. This means that features are gradually refined in order to define the different 

levels of the tree. Depending on what level of the tree a component is implemented at, com-

ponents of different granularity result. 

In addition, the economic terms of composition resp. change costs, which are explicitly dis-

cussed by Wang et al. (2006, p. 6), are of particular interest. It is suggested that the more 

coarse-grained components are, the less is the effort of the composition and vice versa. In 

contrast, the change costs increase the more coarse-grained components are and vice ver-

sa. Both statements, however, are based on discussions; the exact functional relationship to 

calculate, e.g., the composition costs, is not defined or executed. 

Moreover, Wang et al. (2005, p. 231) present an optimization calculus for the identification 

and design of components. Here, different objectives and their optimization rule (minimizing 
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or maximizing) are defined for a component c, such as Reusability (variable R(c)), Reuse 

Costs (RC(c)) or Reuse efficiency (RE(c)). These objectives are then integrated into a single 

objective function which has to be maximized for the set of all components c. Unfortunately, 

no functional relationship for calculating the individual objectives are defined in Wang et al. 

(2005, p. 231). In this respect it is hardly comprehensible what the properties and elements 

of the economic calculus are or how it is to be used for accurate component identification. In 

addition, it should be noted that the individual terms have different measurement units. For 

example, the Reuse Costs (RC(c)) should be measured in monetary units, whereas varia-

bles, such as Cohesion(c) or Coupling(c), are defined as "semantic proximity" (without speci-

fying the measurement unit). Hence, it is unclear how the combination of the individual terms 

in the presented objective function leads to an interpretable overall result. 

Approaches dealing with service identification 

As opposed to some approaches on component identification, Table 1 shows that service 

identification focus almost exclusively on a domain analysis while precise rules for defining 

the granularity of services are specified only partly. 

For example, Aier (2006) suggests a clustering algorithm for a modularization of an applica-

tion system landscape from a functional view. Among other things, it is supposed to deter-

mine service granularity in this way. Winter (2003) draws upon IBM’s Business Systems 

Planning approach (1984) and proposes three dimensions for the structuring of an applica-

tion system landscape (function, information object, performance/organization), which has 

been also transferred to service identification in subsequent work (cf. Schelp and Winter 

2008). In IBM’s SOMA (Service-Oriented Modeling Architecture) approach (Arsanjani et al. 

2008) as well as in the work by Offermann (2008) services are identified and designed in 

both ways: bottom up – starting with existing applications or components – and in a top down 

manner, for example, starting from business process models or business objectives. Winkler 

(2007) splits activity diagrams in several iterative steps into atomic basis functions or actions 

in order to decide which of them should be implemented individually or integrated into a ser-

vice. This procedure is similar to the approach of Her et al. (2008) who also identify services 

based on process models and use cases through iterative refinement. Beverungen et al. 

(2008) additionally consider whether a process step is supposed to be visible for business 

partners to identify services. Fiege (2009) conveys the so-called Axiomatic Design, a method 

originating from industrial production, to service identification. Possible solutions for fulfilling 

the pre-defined requirements are represented in the form of matrices which are refined in a 

top down approach by assignment and decomposition. The indicated relationships between 

functional requirements and design parameters are supposed to enable the identification and 

design of services under the premise of loose coupling, high autonomy, and "balanced" 
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granularity. 

The application of many approaches mentioned above offers degrees of freedom regarding 

service identification. Depending on the extent to which, for example, activity diagrams are 

refined or features are disaggregated, services of varying granularity can emerge. At this 

point, the present work starts on the question of how these available degrees of freedom in 

terms of service granularity can be used under economic aspects. Insofar the above men-

tioned work will be extended. This corresponds to a two-stage approach: 

1. Applying a functionally-oriented approach for service identification leads to alternative 

service candidates (representing degrees of freedom) which differ in service granular-

ity. 

2. An economic optimization – which takes into account development and maintenance 

costs as well as reuse potential – has to be performed to leverage the available de-

grees of freedom and finally determine the optimal service granularity.  

Some approaches for modeling SOA already include an explicit step to consolidate alterna-

tive service candidates (e.g., Offermann, 2008, p. 467) which can be extended to include an 

economic assessment. None of the previously investigated approaches, however, offers 

such an economic optimization. This is also valid for the component domain. Although in 

particular the work of Wang et al. (2005) presents already some economic calculus, these 

discussions are hardly suited for answering the question of service granularity since objective 

functions and functional relationships (e.g., to what extent do the costs of service implemen-

tation depend on the size of functions?) are not defined or substantiated. In the following we 

therefore present an approach taking these issues into account. 

 

3 Granularity of services – An economic analysis 

The definition of a Functionality and Service Graph (FSG) in section 3.1 represents the start-

ing point for the presentation of granularity metrics (section 3.2) and the economic analysis in 

section 3.3. 

 

3.1 Functionality and Service Graph (FSG) 

Some of the approaches presented above propose to identify services based on an aggrega-

tion or disaggregation of functions or functionality. This raises the question of how the results 

of such an analysis can be represented in a suitable way for our purpose. Below, a graph – 

the so-called FSG – is defined for the representation of these results. The FSG is supposed 

to represent the disaggregation relationships between functions. Compared to, for example, 

Wang et al. (2006) some enhancements are required for the identification of services: 

1. To represent a multiple use of functionalities, we use a directed acyclic graph instead of a 
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tree. In Wang et al. (2006, p. 4), the "feature tree" has the typical characteristics of a tree 

structure, i.e. a son functionality is restricted to have only one parent functionality. 

2. Services can be composed to perform various processes. This requires that the graph is 

able to contain more than one root (i.e. a source node with no incoming edges) which are 

to be interpreted as processes. In Wang et al. (2006, p. 4) the "feature tree" is restricted 

to have only one root, i.e. several processes can not be represented as different source 

nodes. 

The assumptions and definitions for the FSG are as follows: 

(A1)  The FSG is a directed acyclic graph G=(N, E). The functionalities m  M form a sub-

set of the set of nodes N (M  N). The disaggregation relationship between two func-

tionalities mi and mj is represented as a directed edge (mi, mj)  E. The disaggrega-

tion of a functionality mi into the functionalities mj, …, mj+n is defined as disjointly and 

completely. 

A directed edge (mi, mj) implies that “functionality mj is part of functionality mi”. In the FSG all 

functionalities and disaggregation relationships of the considered domain are represented. 

Every source node of the FSG, i.e. a node without incoming edges, is called a process (with 

P as the set of all processes, P  M). Every sink node of the FSG, i.e. a node without any 

outgoing edges, is called a basic functionality (with B as the set of all basic functionalities, 

B  M).  The inner nodes of a graph, i.e. functionalities, which are neither processes nor 

basic functionalities, are referred to as preceding functionalities. V  M is the set of all pre-

ceding functionalities. 

In addition, a sequence of nodes and edges m0, (m0, m1),…, (mn-1, mn), mn is referred to as a 

path w(m0, mn) with the starting node m0 and the end node mn. If the starting node of a path 

is a process (i.e. m0  P) and if the end node is a basic functionality (i.e. mn  B), this corre-

sponds to a complete path. The distance d(m0, mn) of a path w(m0, mn) is defined as the 

number of edges of the path w in the acyclic FSG. 

The disaggregation relationships between functionalities and therefore the paths can be de-

picted in form of an adjacency matrix IMM: M x M whereas 1, 
ji mmI   is valid if (mi, mj)  E 

exists. Otherwise, 0, 
ji mmI holds. 

The result of our economic decision model is supposed to be shown in the FSG as well, i.e. 

what functionalities concretely have to be realized by a service: 

(A2)  Every service si  S with S  N is allocated to exactly one functionality mj  V  B 

through a directed edge (si, mj)  E. A service si fully implements the functionality mj, 

including all functionalities mk for which there is a path w(mj, mk) and exposes exactly 

this functionality via its interface. 

A functionality mj for which $ (si, mj)  E applies is called implemented functionality. A multi-
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ple implementation of a functionality occurs if a functionality is implemented by various ser-

vices either directly or indirectly (i.e. through preceding functionalities). The matrix ISM: S x M 

represents the allocation of services, where  1, 
ji msI  exactly applies if (si, mj)  E with si  S 

and mj  V  B holds. Otherwise, 0, 
ji msI applies. 

The above stated definitions are illustrated in Fig. 1 using a simple example. As a result of a 

domain analysis the disaggregation of two processes m0 and m10 into the functionalities m1 

and m4 resp. m11 etc. is depicted. The functionality m9 is required in both processes. A possi-

ble implementation of the functionalities by means of the services s1 to s5 is also shown. For 

instance, the service s3 directly implements the functionality m6 and thus also realizes the 

basic functionalities m8 and m9. Since the service s5 also implements the functionality m9 

through the functionality m11, m9 is implemented twice in the example. 

 

Fig. 1 An exemplary Functionality and Service Graph (FSG) 

3.2 Granularity metrics 

Existing approaches oftentimes make statements about granularity – such as coarse- vs. 

fine-grained services – based on an implicit understanding of granularity; which means only 

few authors define this term explicitly or mathematically (see Table 1). In the following, we 

therefore propose three metrics of granularity to operationalize different perspectives and 

discuss their advantages and disadvantages. With the help of such metrics the granularity of 

different services can be measured and compared. For the metrics calculation we use the 

definitions of the FSG. The starting point is a service si which implements a functionality mj 

and the granularity of this service si has to be determined. 

Distance-oriented metric 
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First, a distance-oriented metric is presented. Basically, it indicates the position of the service 

si and thus of the implemented functionality mj within the FSG. However, a simple calculation 

of the path distance starting from the process to the realized functionality is not sufficient. 

This has two reasons: First, this value is not very meaningful. For example, the same granu-

larity for two services might result from the calculation of this value although one of the ser-

vices implements a basic functionality, while the other service implements a preceding func-

tionality with many subsequent functionalities. Second, the determination of the path distance 

based on a graph – instead of a tree – is not clear if a functionality is included in several 

paths. Both issues motivate the development of the following metric for operationalizing the 

distance-oriented metric: The metric is based on the path distance from the process to the 

implemented functionality in relation to the distance of the complete path. For an implement-

ed functionality mj, which is part of the complete path w(mp, mn), the metric is calculated as 

follows:
 ]1,1max[

1




), md(m

), md(m
=z

np

jp
w . In the numerator as well as in the denominator we have to 

subtract one, since the path distance is calculated in each case starting from the process mp 

 P. The range of values of zw is normalized to the interval [0; 1]. Thus, the implementation 

of a basic functionality (maximum fine-grained) leads to the value one, while the value zero 

results from the realization of a functionality that follows directly after a process mp (maxi-

mum coarse-grained). The metric value zw is calculated for all paths which include the im-

plemented functionality mj. For those values, the arithmetic mean is taken. Let W be the set 

of all paths w, which contain mj, then the following applies for the depth metric:
 

 
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z
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
 . The metric is normalized to the range [0; 1]. 

Scope-oriented metric 

The distance-oriented metric has disadvantages, for example, if an implemented functionality 

has many directly and indirectly following functionalities. In this context, the scope-oriented 

metric returns meaningful values. Here, a service is the more coarse-grained, the more func-

tionality it implements in total (direct and indirect). 

This metric is operationalized by means of the number 
jmn of directly or indirectly imple-

mented functionalities through a service. This value is divided by 
amn , with ma as the func-

tionality directly following the process, and subtracted by one:
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

a

j

m

m
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n
z . Anal-

ogously to the distance-oriented metric, the value range is normalized to [0, 1]. If a basic 

functionality is implemented by a service, a value of one results (because )01
jmn . In the 
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case of implementing a functionality directly following the process, the values 
jmn  and 

amn  

correspond to each other. Hence, it follows that zw equals zero (except for a basic functionali-

ty). The normalization to the interval [0, 1] constitutes an advantage compared to the metrics 

of Wang et al. (2006, p. 5-6) and to Haesen et al. (2008) and their "default functionality gran-

ularity". In both approaches a metric is proposed without normalization which limits the com-

parison of metric values for different services. 

If a functionality mj is part of several paths starting from different source nodes mp or preced-

ing functionalities ma, the arithmetic mean gBT can – similar to above – be calculated based 

on the values of these paths. 

Although both metrics discussed so far are already more meaningful – compared for instance 

to measurements by Wang et al. (2006) – they rely purely on the number of functionalities. In 

other words, even if two services show an identical granularity for both metrics, they can still 

differ significantly regarding the size of the implemented functionalities. This leads to a third 

metric. 

Size-oriented metric 

The question of how the size of a functionality can be measured or estimated ex ante before 

its implementation has already been studied in the literature about effort estimation. Here, 

measurement units, such as lines of code (LOC) or Function Points, are used. LOC are used 

in the COCOMO approach, which is a method for effort estimation of software development 

projects, and indicate how many lines of source code for a program may need to be written 

(cf. Boehm et al. 2000; Wehrmann and Gull 2006). In COCOMO, the calculation of the per-

son-months is founded on the LOC of the software artifact together with the costs dissemina-

tors, the scaling factors as well as the individual calibration factors. To determine the LOC 

either historical data from other projects, experts estimates, or algorithmic procedures can be 

used. Cost factors are then included in the calculation by multiplication whereas scale factors 

are considered exponentially. In the case study illustrated below, LOC were chosen, while 

other units can be used in both metric and in the decision model as well. 

A prerequisite for this metric is the estimation of the func
m j

size  (e.g., in LOC) for a basic func-

tionality mj. The size of the preceding functionalities then results from the size of the subse-

quent functionalities (disjoint and complete disaggregation according to (A1)) plus the 

comp
m j

size  of the composition logic (cf. also Erl 2007). The latter contains information for the 

control, integration, and the subsequent invocation of functionalities. Hence, the sizemj
 of the 

functionality mj is:  
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For an implemented functionality mj, which is part of the complete path w(mp, mn) with mp, 

(mp, ma),…, (mn-1, mn), mn, the size-oriented metric is defined as 

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w size
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z 1 . If mj = ma 

holds, which means a functionality ma directly following the process mp is implemented, then 

zW is zero indicating a maximum coarse-grained service implementation. The value zW be-

comes larger when implementing a basic functionality. This provides a range of [0, 1[ for zW. 

If a functionality mj is part of several paths, again, the arithmetic mean gG can be calculated 

by the values of those paths. 

In addition to the first two metrics the size-oriented metric can provide an additional value 

especially when the difference between the sizes of the implemented services differs strong-

ly. Table 2 summarizes the metrics. 

 

Table 2 Granularity metrics 

Metric Description and 
Definition 

Applicability / Restrictions for the appli-
cation 

Illustration of the idea of the metric (examples) 

Dis-
tance-
oriented 
metric  

The metric measures 
service granularity 
considering the position 
of the implemented 
functionality in the 
FSG: distance of the 
path from a process to 
the implemented 
functionality in relation 
to the distance of the 
complete path. 

1. The metric refers to the paths of the 
FSG and leads to results which are 
easy to interpret if two or more imple-
mented functionalities contain (almost) 
the same number of directly and indi-
rectly following functionalities.  

2. The metric value may be hardly 
meaningful if the implemented func-
tionalities differ strongly regarding 
their size (e.g., LOC).  

 
Due to the different distance of the complete paths, the 
service s2 with gT(s2)=0.39 is more coarse-grained than 
the service s1 with gT(s1)=1 according to the distance-
oriented metric. In contrast, a mere comparison of the 
number of preceding functionalities would show the 
same granularity in this example. 

Scope-
oriented 
metric  

The metric measures 
service granularity by 
the number of directly 
and indirectly following 
functionalities. 

1. The metric leads to results which are 
easy to interpret if service implemen-
tations are compared which differ in 
terms of their number of directly and 
indirectly following functionalities.  

2. The metric value may be hardly 
meaningful if the implemented func-
tionalities differ strongly regarding 
their size (e.g., LOC).  

 
In this example, both services s1 and s2 show the same 
granularity value according to the distance-oriented 
metric (gT). Considering the scope-oriented metric, 
however, there are comprehensible differences with 
gBT(s1)=1/6 vs. gBT(s2)=1/3. That means that s1 is 
significantly more coarse-grained compared to s2.  
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Size-
oriented 
metric  

The metric measures 
the granularity of a 
service by its size (e.g., 
measured in LOC) 

1. The metric indicates the differences in 
the size of the implemented functional-
ities in the FSG.  

2. The metric value is meaningful if the 
granularity is used as an indicator for 
the implementation costs of a service 
– as expressed for example in LOC.  

According to both metrics above, the services s1 and s2 
are equally granular. If however the implemented 
functionalities m1 resp. m4 are different in terms of their 
size, this becomes evident only through the size-
oriented metric. 

 

The presented metrics systematize different (often implicit) understandings of granularity in 

the literature. For instance, Winkler (2007) evaluates the decomposition relationships in the 

course of her proposed procedure in a way similar to the distance-oriented metric. The un-

derstanding conceptualized by the scope-oriented metric can be similarly found, e.g., in Aier 

(2006) and Fiege (2009). The latter explicitly discusses the number of implemented function-

alities (scope-oriented metric) in addition to the abstraction level of services (similar to the 

distance-oriented metric). Clustering methods that aggregate elements such as classes to 

components suggest an implementation-related granularity definition similar to the size-

oriented metric. However, this is not made explicit in most cases. 

Based on these metrics we can not only measure the granularity of individual services. If we 

aggregate the granularity value of all services throughout the entire FSG, we may specify a 

metric value for entire service landscapes (see also the software tool presented in section 4). 

In this way, different solutions resulting from applying the economic decision model can be 

analyzed or compared regarding their service granularity value. That means that the metric 

values are not used as input to apply the decision model. Instead, the resulting model output 

is assessed by means of the metrics in terms of its granularity (for example, to evaluate 

whether a solution is fine- or coarse-grained). 

 

3.3 Economic Decision Model 

In order to contribute to the research question of how granular services should be defined in 

economic terms, it is important to identify the relevant cost factors. We deliberately limit our-

selves to the costs since the functionalities (which are supposed to lead to profits) are deter-

mined after the completion of the domain analysis and are represented in the FSG. Based on 

this, we suggest to leverage the available degrees of freedom of the domain analysis for a 

cost optimization. 

Here, on the one hand the costs of the implementation of a service are relevant for decision-

making. Usually the implementation costs increase at a higher rate than the size of a service 

due to the resulting increased complexity of the implementation (for instance side effects are 

more complex to be handled for larger services). Also, testing is more cost-intensive with an 

increasing size of services. On the other hand, the costs of service composition using lan-
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guages such as WS-BPEL have to be included in the decision. Here, for example, the costs 

for searching and integrating individual services, the creation costs for a WS-BPEL file, or the 

preparation of a subsequent operation of the composition are included. Finally, it is important 

to take maintenance costs into account which are influenced by the choice of service granu-

larity. For instance, if a functionality is implemented redundantly in several services multiple 

maintenance costs occur. 

On the contrary, one-time costs for establishing a service-oriented infrastructure are not con-

sidered relevant to our decision problem because the corresponding effort is independent of 

the choice of service granularity: This aspect includes the introduction of service standards, 

setting up and installing the infrastructure (e.g., engines, directory servers, enterprise service 

bus), the installation and introduction of the development environment, etc. 

 

Objective function 

Our decision problem can be described as follows: A feasible solution (the criterion of feasi-

bility is described below) for the allocation of services to functionalities (as represented by 

the matrix ISM) is supposed to be found which minimizes the total costs of the implementation 

CR, the composition CK, and for maintenance and support CP: 

  min!)()()(  SMPSMKSMRSM ICICICIZ  

Each cost factor CR, CK, and CP is described below. 

 

Costs of service implementation 

The starting point for estimating the implementation costs of a service is – as discussed 

above – the size of the functionality to be implemented. The following assumption is made: 

(A3) For realizing a service si, costs cR(si) arise which depend on the sizemj
 of the function-

ality to be implemented – e.g. quantified in LOC. We assume a cost rate cvar per LOC. 

Furthermore costs increase more than proportionally (exponent b>1) to the size (for 

reasons of complexity). In addition, costs cfix which are independent from the size may 

occur for the service implementation (e.g., deployment costs, such as publication of a 

service in the service directory). 

The parameters cvar and b may, for example, be interpreted as linear and scaling factors 

similar to the COCOMO approach. Based on (A3), the implementation costs of a service si 

yield to:  
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Moreover, it should be pointed out that for different service types the values of the parame-
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ters cvar and b can be varied. However, for reasons of a clear presentation, we abstained 

from an additional indexation of these parameters that would be necessary in this case. The 

prototypical software presented below allows for such an enhancement. 

Thus, the total implementation costs of a service landscape results from summarizing the 

implementation costs of all services:
  

   )(
|S|

1i



 iRSMR scIC  

 

Costs of service composition 

If a process is implemented through many services instead of a few services, the composi-

tion costs increase. Here, we use the previously defined size of compositional logic as the 

starting point for our analysis: 

(A4) The costs for service composition cK of a process depends on the size of the compo-

sition logic which has not been directly implemented through a service yet (at a cost 

rate of compcvar ). It is assumed that the costs increase more than proportionally (expo-

nent f>1) to the size of the composition logic (due to a higher complexity). 

Assumption (A4) can easily be illustrated with the help of Fig. 1: For the implementation of 

the process m0 the services s1, s2, s3 and s4 have to be composed. In addition, the functional-

ity m4 and therefore 
comp
msize

4
 has to be considered for the composition logic (since the com-

position logic of m4 is not implemented by a service) as well as 
comp
msize

0
 for the process m0 

itself. Thus, the composition costs required for a process mp  P generally result in:
  

  1   ,0 :mit  ),()( varvar  fcmIcompsizecmc compf

pSM
comp
m

comp
pK p

 

Here, the values of the parameters compcvar  and f may differ from the parameter values of cvar 

and b due to different methods and languages used for the implementation of services and 

for their composition respectively. With the help of ),( pSM mIcomp , the size of the preceding 

functionalities that have not already been implemented by a service (such as m4 in the ex-

ample) are determined through the paths from mp to the basic functionalities. The entire 

composition costs are obtained by summarizing the composition costs over all processes. 

 

Maintenance and support costs for multiple implementations 

In addition, those maintenance and support costs are relevant for our decision problem which 

can be avoided explicitly through the choice of service granularity. If a functionality needed in 

several processes were implemented by different services, the functionality of each service 

implementation has to be adapted with each necessary change. Even if this is contrary to the 
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basic idea of SOA, neglecting this case would be unrealistic. In this respect, it is proposed to 

make those costs of maintenance and support to depend on the number and size of multiple 

implemented functionalities. The reason for this is that with an increasing number and an 

increasing size of a multiple implemented functionality, maintenance and support costs are 

expected to increase, too, because of the rising complexity (cf. Keller 2007): 

(A5) Any multiple, redundant implementation of a functionality creates additional costs of 

maintenance and support which increase more than proportionally compared to the 

size of functionality. Similar to above, we propose a value penvar > 0 for the variable 

costs and an exponent h>1. 

Based on (A5), we determine how often a functionality mi is implemented directly and indi-

rectly by different services. In Fig. 1, the number of implementations of the functionality m9 

has to be determined with 2
9
mr . The additional maintenance and support costs cp for the 

functionality mi result in:
 

1 ,0:)(]0),1max[()( varvar  hpenwithsizepenrmc h
mmip ii

 

The max-function assures that only multiple implemented functionalities are included. The 

entire additional maintenance and support costs CP resulting from a multiple implementation 

is calculated again by summarizing the costs cp(mi) over all functionalities. 

 

Choice of service granularity from an economic perspective 

Using the FSG and the above introduced objective function the service granularity can now 

be optimized under economic aspects. Here, the basic functional relationships are consid-

ered: the more fine-grained a service is (e.g., according to the size-oriented metric), the more 

probable it is that it can be re-used without having to realize the functionalities implemented 

by this service multiple times. This reduces ceteris paribus the implementation costs. Fig. 1 

shows an example: The functionality m9 is needed for two processes, but it is not directly 

implemented. Hence it is necessary to consider the size of this functionality for the calcula-

tion of the implementation costs of two implemented functionalities (here m6 and m11). Thus, 

the implementation costs arise twice for the services s3 and s5, whereas the implementation 

costs for the functionality m9 would only arise once in case of a direct implementation. In ad-

dition, multiple implementations lead also to increased maintenance and support costs. 

However, higher costs of composition occur in case of fine-grained services. 

The determination of the optimal solution is not trivial. The adjacency matrix ISM has to be 

specified in the way that the solution of the decision problem is feasible and minimizes the 

total costs according to the objective function. To identify the solution with the minimal total 

costs, an algorithm is implemented which gradually allocates services to the functionalities 
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starting with the basic functionalities. Subsequently, the services that implement basic func-

tionalities are substituted iteratively by services that implement preceding functionalities. For 

each of the solutions we have to check its feasibility. An allocation of services to functionali-

ties in the FSG is feasible if it is possible to compose and execute all processes with the allo-

cated services. This means specifically that each complete path w(m0, mn) in the FSG must 

contain at least one directly implemented functionality. This corresponds to the feasibility 

criterion and is sufficient because a preceding functionality always directly or indirectly con-

tains the basic functionalities referenced by the disaggregation relationships (adjacency ma-

trix IMM). If a solution is not feasible, there is at least one basic functionality mn œ B of a com-

plete path that is not employable for the process mp œ P. Process mp would therefore not be 

executable. These conditions for a feasible solution have been defined mathematically (see 

Appendix 1) and realized in our prototypical software tool. Finally, the solution whose realiza-

tion leads to the minimal total costs is selected out of all feasible solutions. 

For the calculation also the input parameters of the objective function have to be determined. 

Here, we can draw upon known estimation procedures from the field of software develop-

ment. In the COCOMO approach, costs are estimated by using the formula 

SFBsizeEMAPM  , with A and EM being linear factors and B and SF being scaling fac-

tors. Their values are to be determined project- and company-specific. COCOMO has al-

ready been used for service implementations by Tansey and Stroulia (2007). They illustrate 

the general applicability but also point to the fact that it is often not possible to use large ex-

isting databases to estimate the linear and scaling factors. Here one has to – as the following 

case study will also show – rely on company-internal estimates. Nevertheless, basic assump-

tions, such as the convex slope of the cost functions, appear reasonable. To analyze the 

effects of imprecise estimates, a sensitivity analysis has been integrated in our prototypical 

software tool which supports the investigation of the robustness of the results.  

 

4 Prototypical implementation and case study 

In the following we illustrate the implementation of the decision model in a software tool. Af-

terwards, the case study of a financial service provider is discussed. 

4.1 Prototypical implementation 

Our model was implemented as a plug-in for the open-source framework Eclipse. The im-

plementation was carried out in Java and is based on the Eclipse Modeling Framework. The 

graphical input and output were realized using the Graphical Editing Framework. For creating 

the FSG, a graphical editor is available in which the functionalities are drawn from a side 

menu (see right part of Fig. 3) into the working area. The functionalities can be integrated in 

the acyclic FSG using directed edges. Another screen allows to enter  parameter values of 
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the cost functions and allows these functions to be changed individually for each company 

(e.g., to use function points instead of LOC). 

In the next step, the service implementation with minimal costs is determined based on this 

data. The results are twofold: On the one hand, results are illustrated in the form of a table 

that shows which functionalities should be realized as a service, the associated total costs of 

the solution, and the values of the three granularity metrics. On the other hand, the minimal 

cost solution is also illustrated graphically (see Fig. 3). Here, each functionality that has to be 

implemented according to the determined solution is connected to a service (symbolized by a 

yellow circle). This kind of presentation is especially useful for a quick comparison of alterna-

tive solutions. As discussed, the estimate of the parameter values can be imprecise. There-

fore, the software tool also provides a sensitivity analysis. For each parameter input fields 

are available in order to specify an interval, which means a lower and upper limit. With these 

inputs we can analyze whether a determined solution with minimal total costs changes when 

taking these intervals into account. Using the sensitivity analysis it is also possible to auto-

matically conduct a gradually change of a single parameter value until a new optimal solution 

is found. This also gives insights into the robustness of identified solutions, which turned out 

to be of great value in the practical application. 

4.2 Case study 

The standardization of processes and IT applications is currently promoted for financial ser-

vice providers with the aim of reducing costs, among other. Here the replacement of mono-

lithic legacy systems through service-oriented application systems is also increasing in im-

portance (for more SOA objectives see Baskerville et al. 2010). Against this background, a 

SOA has been introduced in the loan division of a major German financial service provider. 

In a first step, a domain analysis has been carried out, which means functionalities have 

been identified based on the processes that had to be implemented. However, this analysis 

left open significant degrees of freedom in terms of alternative service candidates. In order to 

avoid deciding only intuitively or according to rules of thumb, economic aspects had to be 

included. As an example, a part of a loan process is considered (an excerpt from the loan 

approval process “Offering private loans over the Internet"), which is illustrated in Fig. 2 in a 

simplified form and anonymized for confidentiality reasons. 
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Fig. 2 Part of the FSG in the case study 

 

The process “Offering private loans over the Internet“ is disaggregated into three functionali-

ties: “Check business partner” includes the functionalities for the identification and verification 

of a partner. Below "Check bank account" the functionalities “Search Bank Identification 

Code (BIC)” and “Query banking account” are located. The third functionality "Calculation 

and check loan application" is disaggregated into "Perform scoring" and "Check application". 

As shown in Fig. 2, some functionalities such as "Verification authorization data" and "Verifi-

cation legitimation data" are used twice. 

In order to determine the size of the functionalities measured in LOC, already implemented 

parts of the source code or existing documentation has been used. The size of non- or inad-

equately documented functionalities was estimated. This was based on the experience of 

internal cost estimates of previous projects (e.g., based on the complexity of functionalities, 

the processed data or the development processes used). Finally the LOC shown in Table 3 

resulted for the above functionalities. Here, the LOC for the preceding functionalities only 

include the composition logic and do not represent already aggregated values (the function-

alities are referenced by using the numbers introduced in Fig. 2):  

 

Table 3 Size (LOC) of functionalities in the case study 

No. of functionality  LOC No. of 
functionality 

LOC No. of 
functionality 

LOC 

1 200 2.1.2 600 2.2.2 2,000 

1.1 1,500 2.1.3 1,500 2.2.3 800 

1.2 1,000 2.1.2.1 1,600 2.2.4 200 

2 400 2.1.2.2 200 2.2.4.1 1,700 
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2.1 1,000 2.1.2.3 1,400 3 400 

2.2 450 2.1.2.2.1 400 3.1 1,000 

2.1.1 1,400 2.2.1 1,000 3.2 1,400 

In addition, the values for the input parameters of the objective function had to be estimated. 

This was done with reference to the existing COCOMO cost estimation procedure of the fi-

nancial service provider (in general this can be problematic for several reasons; for the spe-

cial case of the financial service provider, this appeared quite reasonable). After a thorough 

discussion, no individual values were defined for the input parameters. Instead, an interval 

was determined for each input parameter to account for the inherent uncertainty of esti-

mates. Table 4 shows these intervals: 

 

Table 4 Estimate of the intervals for the input parameters of the objective function in the case study 

Input parameters for 
service implementation 

Interval Input parameters for 
service composition 

Interval 

cvar [2.75 - 3.25] compcvar  [2.75 - 3.25] 

b [1.05 - 1.1] f [1.15 - 1.2] 

cfix [80 - 100]   

Background for the determination of the input parameters is the classification of the consid-

ered project as a project with an average complexity according to the COCOMO approach 

(referred to as "semi-detached mode"). This classification was mainly based on an analysis 

of the experience of the project members with an implementation of SOA and related tech-

nologies, the project scope, the quality of the existing requirement specification, the docu-

mented interfaces, and the timeframe planned for project implementation. According to CO-

COMO, a project in semi-detached mode receives a linear factor of 3.0, whereas a project 

with lower complexity receives 2.4 and a complex project 3.6. The scaling factor of a project 

in semi-detached mode is 1.12, for a project with lower complexity 1.05, and for a complex 

project 1.2. The intervals of the cost parameters cvar and compcvar  (linear factors) were specified 

with [2.75 to 3.25]. It initially appeared reasonable to set the values for the parameter compcvar  

higher (compared to the values of the cost parameter cvar) since the implementation of the 

basic functionalities appeared less complex compared to the composition logic. However, the 

financial services provider decided to choose the same interval for the cost parameters cvar 

and compcvar  based on the experience in previous projects. Also in the case of the exponents b 

and f (scaling factors), the parameter values of COCOMO were used. Here, the intervals 

were determined with b  [1.05 – 1.1] and f  [1.15 – 1.2]. By defining these intervals it was 

possible to analyze whether a service implementation determined as feasible solution is less 

robust even for small estimation errors. The financial service provider initially refrained from 
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considering additional maintenance and support costs required for multiple implementations. 

4.3 Results 

Fig. 3 shows the solution with the minimal total costs for the FSG in Fig. 2. The services s1 to 

s8 (yellow circles) are assigned to the implemented functionalities (green rectangles). 

 

Fig. 3 Assignment of the services in the case study 

The above solution, which has total costs of 129,493 MU (monetary units) is relatively fine-

grained. The distance-oriented metric shows a value of 0.79, the scope-oriented metric was 

calculated with a value of 0.81, whereas the size-oriented metric shows a value of 0.67 (for 

the calculation of these metric values and the total costs see Appendix 2). The functionalities 

"Perform scoring" (2.1) and "Check bank account" (3) were implemented with one service 

each. This leads, for instance, to a multiple implementation of the basic functionality „Query 

banking account”. In this example it is easy to see that it is necessary to conduct an individu-

al analysis of the existing FSG. A rule of thumb in terms of a basically coarse- or fine-grained 

service implementation would not have led to the best economic result since the two "adja-

cent" functionalities "Perform scoring" (2.1) and "Check application" (2.2), for example, are 

implemented fundamentally different. There is one more interesting aspect: If we repeat the 

optimization several thousand times by means of the software tool, with the values for the 

input parameters being randomly drawn from the defined intervals, we obtain the following 

result: The above presented solution remains the minimal cost solution in more than 85% of 

all runs. In the other 15%, this solution is either the second or third best solution. However, 

the better solutions differ in a change of one service allocation at the most. Together with the 

experience-based parameter estimation, this analysis reduces the risk of determining a less 

robust solution in the case study. 
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5 Summary and Further Research 

In this paper, a decision model was presented that supports the choice of an adequate ser-

vice granularity from an economic perspective. Such an economic optimization can extend a 

previous domain analysis. Both, the variety of possible service candidates and the complex 

cost effects regarding the choice of an adequate service granularity make a manual optimiza-

tion very difficult or even impossible. Therefore, a software tool has been developed and its 

benefit has been demonstrated by means of a case study. Furthermore, this case study has 

demonstrated that rules of thumb for service granularity often propagated in practice (e.g., 

Helbig and Scherdin 2008) must be seen critically. For example, a rule to design mostly 

coarse- or fine-grained services can lead to economically bad solutions. Reasons for this can 

be seen in disproportionately high implementation costs and possibly necessary multiple 

implementations of functionalities by different services. For an economic decision, it is nec-

essary to analyze the given functionality graph and then to determine the adequate service 

granularity based on this specific graph. Hence, it may well be reasonable to implement the 

functionalities realizing a process by services with different granularities (see also the exam-

ple in Fig. 3). The decision model and the software tool provide instruments to examine the 

economic effects. Furthermore, three mathematically defined metrics were presented and 

discussed that allow a comprehensible granularity assessment. 

The economic analysis extends the domain analysis approaches to identify services. The 

compatibility to these approaches is primarily provided if the basic structure of the functionali-

ty graph can be derived from these approaches: For instance, Winkler (2007) suggests de-

composing activity diagrams into functionalities and then arranging them so that functionali-

ties which occur multiple times in different processes can be grouped. The result is a directed 

graph which is similar to our functionality graph presented. The decision about which func-

tionalities should be implemented in a service is made argumentatively based on various 

assumptions in the approach by Winkler. Here, our model can explicate economic effects 

and provide additional decision support. Other approaches also conduct an analysis of the 

functionalities of a domain or a decomposition of functionalities as a basis for service identifi-

cation (e.g., Fiege 2009; Offermann 2008). In these approaches, service candidates with 

different granularity can result according to the decomposition rule applied. Consequently, 

also in this context the presented decision model can be used after adapting it to the con-

crete approach. 

Besides, some critical issues have to be discussed that define the need for further research: 

First, for the application of the decision model it is necessary to create a functionality graph 

which in turn is the result of a domain analysis – as illustrated in the case study of the finan-

cial services provider. This raises the question of whether and how, if necessary, a robust 
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solution in terms of an adequate service granularity under economic aspects can be deter-

mined with an incomplete functionality graph (e.g., only a part of the functionality graph is 

modeled). This means that the solution identified should not change fundamentally in the 

course of an adjustment or completion of the functionality graph. However, it is obvious that a 

accurate model input has to be available for a well-founded decision making process. This 

holds also true concerning the input parameters of the objective function. Here again we 

must rely on quality-assured estimates. However, such a basis is also necessary without 

using a decision model if we want to make a serious estimation of the implementation costs 

of the project. Further research is needed here, which means the procedure for determining 

the linear and scaling factors has to be adapted especially for service development. Moreo-

ver, the sensitivity analysis – which focuses on imprecise estimates – needs to be enhanced. 

To be able to apply the decision model even with an incomplete functionality graph, further 

extensions appear helpful. For example, existing estimation methods might be adapted and 

integrated into the prototypical software tool and standard values for input parameters might 

be provided. In addition, future situations in which the current Functionality and Service 

Graph will be possibly modified have to be considered. Here, it is necessary, for instance, to 

determine probabilities for process or functionality changes (i.e., scenarios) and store them in 

the graph. Thus, future changes could be represented in a systematic way and for each sce-

nario identified, for example, the expected value of the implementation costs can be calculat-

ed. These can in turn influence the choice of service granularity. The presented approach 

provides an appropriate starting point for all of these purposes. 
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Appendix 1: Verification of the feasibility of a solution 
 

The following conditions for the feasibility of a solution have to be verified: 

1) Every functionality mj (with mj  V  B) must at least be assigned to one higher function-

ality or process (must be checked only once for the entire FSG) 

jII
i

mjp
i

mjm ii
  1,,

 

2) For each solution that has been identified by a combinatory allocation, the following must 

hold: Select randomly a process p’. Then check every path starting with the edge {p’, m’} 

 E whether {s, m’}  E holds for functionality m’. 

a) If this is the case, continue to the next path, i.e. edge {p’, m’’}  E etc. If there is no 

such edge, carry out the same procedure for every other process p’’. 

b) If this is not the case, check for every path starting with edge {m’, m’’’}  E whether 

{s, m’’’}  E holds for functionality m’’’. If this is the case, check the next path with the 

edge {m’, m’’’’}  E. If this is not the case, check all paths with the edge {m’’’, m’’’’}  

E etc. 

 If for a complete path {p’, m’} {m’, m’’}, …, {m’’’, m’’’’} E applies that {s, m’}, {s, 

m’’}, …, {s, m’’’}, {s, m’’’’}  E, then the considered solution is not a feasible solu-

tion. 

For every process p’ it must be valid that all basic functionalities included in the process (the-

se can be determined through the edges {p’, m}, {m, m’}  E) are directly or indirectly imple-

mented by services. 
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Appendix 2: Calculation of the total costs and the metric 
values in the example 
 

For the service implementation shown in Fig. 3, the total costs of the implementation and the 

composition can be calculated as follows (maintenance and support costs are neglected in 

this example). It holds:  
)()()( SMKSMRSM ICICIZ   
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as service allocation (with 1, 
ji msI  if functionality mj is implemented as service si, otherwise 

0, 
ji msI holds). The following costs in MU result for implementing the services s1 to s8 based 

on the parameter values cvar = 3.0, cfix = 90 and b = 1.075 using the term 





||

1
var, ))(()(

M

j

b
mfixmsiR jji

sizeccIsc : 

Service s1 s2 s3 s4 s5 s6 s7 s8 

Costs 
cR(si) 

7,877.88 5,126.41 56,736.64 5,126.41 10,700.32 4,052.26 8,999.51 15,324.08

 

For example the costs cR(s1) for implementing the service s1 are calculated as follows: 

MUsizeccIsc b
mfixmsR 88.877,7)500,1390(1))(()( 075.1

var,1 1.11.11


 

Therefore, the implementation costs for all services s1 to s8 result to 113,943.51 MU. 

Furthermore, the costs cK for the service composition of the process „Offering private loans 

over the Internet“ has to be determined. This effort includes the size of the compositional 

logic that has not already been implemented by a service. As shown in Fig. 3, the composi-

tion logic of the functionalities m1, m2, m2.2 and m2.2.4 together with the process composition 

logic of 200 LOC is not implemented directly or indirectly by a service. Thus, the composition 

logic yields to a total of 1450 LOC. The composition costs for the process in the case study 

are calculated with the parameter values compc var  = 3.0 and f = 1.175: 

  MUmIcompsizecmc
f

pSM
comp
m
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Summing up the costs for service implementation and composition, the solution shown in the 

above matrix ISM have minimal total costs of 129,493 MU. 

 

For the functionality and service graph presented in the case study (Fig. 3), the values for 

the three metrics can be calculated and interpreted as well. The following metric values for 

the distance-oriented metric, the scope-oriented metric, and the size-oriented metric result 

for the services s1 to s8: 

Service s1 s2 s3 s4 s5 s6 s7 s8 Total 

Distance-oriented metric 1 1 0.36 1 1 1 1 0 0.79

Scope-oriented metric 1 1 0.5 1 1 1 1 0 0.81

Size-oriented metric 0.44 0.79 0.44 0.94 0.88 0.95 0.90 0 0.67

 

As the table shows, the value of 0.79 for the distance-oriented metric and the value of 0.81 

for the scope-oriented metric are very similar. This is because six of eight services implement 

basic functionalities and thus hold a granularity of one (maximum fine-grained). Only service 

s3 shows differences: Here, a value of 0.36 of the distance-oriented metric indicates that the 

service is implemented after approximately 1/3 of all paths between the process "Offering 

private loans over the Internet" and those basic functionalities which are indirectly imple-

mented by service s3. In contrast, the scope-oriented metric shows a value of 0.5. This 

means that service s3 implements 50% of all functionalities that are part of the sub-graph 

(with the edge (mp, m2)). This means that if service s3 would implement the preceding func-

tionality m2 "Calculation and check loan application" instead of functionality m2.1 "Perform 

scoring", then the service doubles its scope of implemented functionalities and thus it would 

be maximum coarse-grained. 

Additionally, also the values of the size-oriented metric are shown. They refer to the size of 

the functionalities measured in LOC. Overall, its value is slightly below the metric values of 

the other two metrics with 0.67. The reason is that with service s1 a relatively large basic 

functionality "Identify partners" (in relation to the sub-graph with the edge (mp, m1)) is imple-

mented. 


