
RESEARCH PAPER

SWEL: A Domain-Specific Language for Modeling Data-Intensive
Workflows

Rubén Salado-Cid • Antonio Vallecillo • Kamram Munir • José Raúl Romero

Received: 4 April 2022 / Accepted: 20 June 2023 / Published online: 6 August 2023

� The Author(s) 2023

Abstract Data-intensive applications aim at discovering

valuable knowledge from large amounts of data coming

from real-world sources. Typically, workflow languages

are used to specify these applications, and their associated

engines enable the execution of the specifications. How-

ever, as these applications become commonplace, new

challenges arise. Existing workflow languages are normally

platform-specific, which severely hinders their interoper-

ability with other languages and execution engines. This

also limits their reusability outside the platforms for which

they were originally defined. Following the Design Science

Research methodology, the paper presents SWEL (Scien-

tific Workflow Execution Language). SWEL is a domain-

specific modeling language for the specification of data-

intensive workflows that follow the model-driven engi-

neering principles, covering the high-level definition of

tasks, information sources, platform requirements, and

mappings to the target technologies. SWEL is platform-

independent, enables collaboration among data scientists

across multiple domains and facilitates interoperability.

The evaluation results show that SWEL is suitable enough

to represent the concepts and mechanisms of commonly

used data-intensive workflows. Moreover, SWEL

facilitates the development of related technologies such as

editors, tools for exchanging knowledge assets between

workflow management systems, and tools for collaborative

workflow development.

Keywords Model-driven engineering � Domain-specific

modeling � Conceptual modeling � Data-intensive
applications � Data-driven workflows � Data science

1 Introduction

The amount of data collected by companies and organi-

zations is growing exponentially (Szalay and Gray 2006;

Buhl et al. 2013), as they want to make the most of it by

extracting useful new knowledge. In this context, the so-

called data-intensive (DI) applications (Chen and Zhang

2014) aim at discovering valuable knowledge from huge

amounts of data coming from real-world sources. These

applications are becoming common in many domains

including, e.g., e-commerce, financial markets, manufac-

turing, marketing, education, or social sciences (Tera Allas

et al. 2018). The scientific sector is particularly interested

in DI applications (van der Aalst and Damiani 2015;

Demchenko et al. 2013) because many research areas have

become highly data-driven, such as bioinformatics,

astronomy, or healthcare (Chen and Zhang 2014).

Regardless of the field of application, the data man-

agement and knowledge discovery processes of any DI

application are normally formulated as a pipeline. Here, the

pipeline contains sequences of individual tasks that must be

completed to obtain meaningful and comprehensive results.

These tasks typically include, among others, data acquisi-

tion, cleansing and preparation, information analysis, and

data visualization. The representation of such pipelines as

Accepted after 2 revisions by Pnina Soffer.

R. Salado-Cid � J. R. Romero (&)

Department of Computer Science and Numerical Analysis,

University of Córdoba, Córdoba, Spain

e-mail: jrromero@uco.es

A. Vallecillo

ITIS Software, Universidad de Málaga, Málaga, Spain

K. Munir

FET - Computer Science and Creative Technologies, University

of the West of England, Bristol, UK

123

Bus Inf Syst Eng 66(2):137–160 (2024)

https://doi.org/10.1007/s12599-023-00826-7

http://crossmark.crossref.org/dialog/?doi=10.1007/s12599-023-00826-7&domain=pdf
https://doi.org/10.1007/s12599-023-00826-7

data-intensive workflows (DIW), a.k.a. scientific work-

flows (Coleman et al. 2022), enables high-level definition

of these processes. It also improves the understanding of

the DI tasks by those professionals who are not skilled in

data science but are experts in their respective

domains (Salado-Cid et al. 2018). In essence, DIW bridges

between data scientists, domain specialists, and the target

computing infrastructure (Sethi and Gil 2017).

General-purpose programming languages like Python or

statistical frameworks like R have been traditional solu-

tions to code pipelines in data science, but they require

high computing skills. In turn, existing DIW languages

allow defining the specific sequence of tasks to be com-

pleted (what), but not where these tasks should be exe-

cuted, nor how the associated resources should be arranged.

Examples of such languages include DAX for Pega-

sus (Deelman 2015), SCUFL for Taverna (Oinn et al.

2004), MoML for Kepler (Altintas et al. 2004), or AGWL

for ASKALON (Fahringer et al. 2004). Moreover, they are

often tied to specific DIW management sys-

tems (WfMS) (Yu and Buyya 2006), something that

hampers their interoperability with other workflow lan-

guages and execution engines. This limits the reusability of

their artifacts outside the platforms which they were

defined for, thereby hindering collaboration among data

scientists (Coleman et al. 2022).

To address these limitations, a few platform-indepen-

dent language proposals in this field attempt to provide a

complete set of components and elements, so that any tool

can make use of their constructs to define workflows. A

first proposal was the Abstract Grid Workflow Language

(AGWL) (Fahringer et al. 2004), which is an XML-based

notation for describing grid workflow applications inde-

pendent of implementation details. More recently, the

Common Workflow Language (CWL) (Amstutz et al.

2020) enables a complete, multi-vendor specification of

DIW, which fully describes the data and execution

pipelines, and is supported by several JSON-based utilities

and tools. Nevertheless, both initiatives are still technol-

ogy-dependent and rely on the definition of a concrete,

parseable syntax. This restricts their applicability to only

those tools that meet their technological and language

requirements.

To tackle these issues, this paper presents SWEL (Sci-

entific Workflow Execution Language), a domain-specific

modeling language (DSML) (Bucchiarone et al. 2021) for

the abstract specification of data, execution, and experi-

mentation pipelines. SWEL is independent of any tool or

platform, it enables collaboration among data scientists by

reusing the knowledge across domains and facilitates

interoperability between tools. SWEL covers the whole

DIW specification, from the high-level definition of the

problem in terms of the DI tasks to be performed, the

sources of information, the platform requirements, and the

mappings to the target execution technologies.

The methodological approach used in this work is

Design Science Research (DSR) (Johannesson and Perjons

2014). SWEL is the main artifact developed resulted from

a cycle of activities leading to solving the real-world

problem posed above. The problem addressed in this paper

originated in the context of the software company where

one of the authors works. The company develops scientific

workflows for user data analysis using different languages.

There was a real need for a suitable and generic platform-

independent workflow language that would allow the reuse

of previous developments made in other languages.

To achieve its purpose, SWEL is built according to the

precepts of model-driven engineering (MDE) (Brambilla

et al. 2017). Its concepts and components are formally

modeled by means of metamodels that describe the lan-

guage elements, the relations among them, and their con-

straints and governing rules. These metamodels are not tied

to any concrete syntax or technological platform, but

bridges to them can be easily defined and implemented

using model transformations and current MDE tools. In this

paper, we illustrate the use of model transformations to

achieve interoperability between DIW tools, and show the

applicability and suitability of the language to enable col-

laboration across multiple DI domains. Moreover, SWEL

can be extended to capture certain domain-specific con-

cepts when needed.

The rest of the paper is organized in accordance with the

DSR methodology. Section 2 defines the state of the art,

including some background on DIW and DSML, and

introduces key related work on DIW languages. Section 3

explains the DSR methodology and outlines the contribu-

tion requirements. The design and overall architecture of

SWEL, as well as the precise metamodels of the main

resulting artifact (SWEL) are presented in Sect. 4. Sec-

tion 5 demonstrates how SWEL can be used to develop

practicable toolkits: a JSON concrete syntax validator and

an editing tool for creating workflows using a graphical

notation. As part of the DSR cycle, a case study has been

developed to validate SWEL and illustrate its applicability.

This is discussed in Sect. 6. Section 7 evaluates SWEL as a

pivot language for achieving interoperability of existing

workflow languages, including a discussion on the threats

to the validity. Finally, Sect. 8 draws important conclu-

sions and outlines future extensions to this work.

2 State of the Art

This section reviews the fundamentals of DSMLs and

DIWs, the two main areas of knowledge required for the

123

138 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

understanding and development of SWEL. Then, it dives

into the current forms of DIW-specific languages.

2.1 Domain-Specific Modeling Languages

Domain-specific languages (DSL) allow practitioners to

represent their reality with language constructs that they

perceive as closer to their domain. The goal is to improve

productivity and communication among domain special-

ists, who can focus on what a task should do, instead of

how it should be performed (Fowler 2010). In general,

DSL is a term encompassing both domain-specific ‘‘pro-

gramming’’ languages, i.e., those that are defined at the

implementation level according to a given grammar or

structure, and DSMLs. For example, WfMS can serialise

workflows to their respective workflow languages (Buc-

chiarone et al. 2021), i.e., some DSL formalizing the set of

elements required to specify tasks, links, constraints and

resources of the workflow-based pipeline for that particular

tool. In contrast, a DSML is a particular type of DSL whose

definition is given in terms of models which are closer to

the problem domain than to the implementation domain.

This makes the language independent of specific platforms

or technologies and, consequently, abstracts away imple-

mentation detail, thus avoiding adding accidental com-

plexity (Brambilla et al. 2017).

A DSML consists of three main components (Buc-

chiarone et al. 2021): (1) the abstract syntax is a model

(called metamodel) defining the language concepts and

their relationships, as well as the governing rules that

constrain the domain; (2) the concrete syntax (or notation)

enables the realisation of the language elements in terms of

textual or graphical symbols; and (3) the semantics refers

to the meaning of the language elements, consistently and

precisely expressed. Examples of DSMLs include iCon-

tractML (Hamdaqa et al. 2020) for modeling and deploy-

ing smart contracts, BoSDL (Schlauderer and Overhage

2018) for describing business-oriented software services,

Model4CEP (Boubeta-Puig et al. 2015) for the definition

of complex event processing, or DSML4CSR (Campos and

Grangel 2018) for corporate social responsibility.

A recurrent issue with DSLs refers to language inter-

operability, that is, the ability of a certain tool to interact

with external input–output formats. In other technological

solutions like XML- or JSON-based languages, program-

matic converters would be required. In contrast, DSMLs

could be mapped at a higher level of abstraction by

declaring and running transformation techniques (Anjorin

et al. 2020; Burgueño et al. 2016; Brunelière et al. 2014).

Model transformations are not only useful to create map-

pings between models, but also to increase or decrease the

level of abstraction of artifacts (model or code). Specific

transformation languages like QVT (Query/View/

Transformation) by OMG (Gerpheide et al. 2016), ATL1

(ATLAS transformation language) or ETL2 (Epsilon

transformation language) can be used to implement these

mappings.

2.2 Data-Intensive Workflows

Pipelines in DI applications are multi-step processes where

different tasks collaborate in order to meet a particular

computationally intensive goal. These pipelines are usually

formulated in terms of workflows. Workflows were con-

ceived to be used in business and industrial contexts before

their application to DI environments (WFMC 1999).

Therefore, business workflows represent a common

understanding of the business processes within organiza-

tions at a high level of abstraction, coordinating human

activities and simple computing tasks. These types of

process-centric workflows are designed to be automated, in

a routine fashion, and according to well-established busi-

ness rules that define the order in which tasks are executed.

This is to say they are control-driven workflows, which

means that they are focused on the control-flow perspective

of business processes (vom Brocke et al. 2021).

In contrast, DIWs – or scientific workflows – that coor-

dinate computationally intensive tasks, must deal with huge

amounts of data and stringent performance requirements.

Their execution order is implicitly derived from their data

dependencies, i.e., they are typically data-driven (Curcin

and Ghanem 2008), and must be fully automatable on an

underlying computational infrastructure (Atkinson et al.

2017). As an example, Fig. 1 depicts a simple workflow for

finding potential diseases from a set of input keywords.

Rounded rectangles represent tasks, and square shapes

represent data inputs and outputs (R stands for in-memory

stored data and F for data stored in external files). Arrows

represent data dependencies.

DIWs have been adopted in a large number of compu-

tational intensive areas, such as life science (Fillbrunn

et al. 2017), astronomy (Ruiz 2014) or bioinformat-

ics (Mullis et al. 2014). They have shown to provide

numerous benefits in terms of reproducibility and valida-

tion. They also efficiently optimise the order and

scheduling of executions, enable knowledge reuse, and

improve data management, e.g., including data security or

governance (Atkinson et al. 2017).

1 ATL: https://www.eclipse.org/atl (last update: 18 Oct 2021;

accessed 18 Mar 2022).
2 ETL: https://www.eclipse.org/epsilon (last update: 6 Mar 2022;

accessed 18 Mar 2022).

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 139

https://www.eclipse.org/atl
https://www.eclipse.org/epsilon

2.3 Data-Intensive Workflow Languages

DI applications have traditionally been implemented using

general-purpose programming languages such as C, Java or

Python, which now have extensions or libraries to support

them. Other languages and frameworks such as R (Kohl

2015), Julia (Bezanson et al. 2012) or Swift (Zhao et al.

2007) have been developed to support scientific program-

ming implementations. However, these languages require

advanced programming skills, which prevents their wide

use by domain experts with no specific computational

knowledge.

WfMS try to mitigate the gap between programming and

domain experts by providing functional elements, usually

through graphical user interfaces that hide the difficulty of

operating, optimising and managing computational

resources. Traditionally, WfMS make use of their own

language definitions, such as Triana3 or LONI Pipeline,4

oriented to scientific domains, and KNIME5 (Konstanz

Information Miner) to define data mining applications.

However, these languages are tightly coupled to their

corresponding WfMS and their specifications are not

publicly open.

As an attempt to open their specifications, other WfMS

have defined their workflow languages by means of XML

schemas. SCUFL (Simple Conceptual Unified Flow Lan-

guage) (Oinn et al. 2004) that was proposed by Taverna,6

MoML (Modeling Markup Language) that was specifically

designed for Kepler7 and DAX (Directed Acyclic Graph in

XML) that was developed for Pegasus,8 are representative

examples. While their specifications are publicly available

in form of XML schemas, these languages are still intended

to take advantage of the particular features provided by

their WfMS. Some other platform-specific workflow lan-

guages were conceived to be executed on specific infras-

tructures. This is the case of GridAnt (Amin et al. 2004),

which was proposed to describe pipelines for grid com-

puting. Another example is the GridBus workflow enact-

ment engine (Yu and Buyya 2009), which is based on

xWFL, an XML-based language for the representation of

quality of service requirements.

Two key limitations of these platform-specific workflow

languages are: (1) their reduced interoperability with other

workflow languages and execution engines, and (2) their

limited reusability outside the platforms they were defined

for (Deelman et al. 2009; de la Garza 2016). To address

these problems, several workflow languages were defined

in a more abstract and tool-independent manner. AGWL,

IWIR and CWL are the best-known examples of these

types of languages.

AGWL (Abstract Grid Workflow Language) (Fahringer

et al. 2004) was the first attempt to create a platform-ag-

nostic workflow language, even though it was originally

created in the context of the tool ASKALON (Fahringer

et al. 2007). Later, IWIR (Interoperable Workflow Inter-

mediate Representation) (Plankensteiner et al. 2013) was

designed to facilitate portability and interoperability

between workflow-specific languages by decoupling the

workflow logic from data and processors. More recently,

CWL (Common Workflow Language) (Amstutz et al.

2020) is a language that can be executed on different

software and hardware environments. CWL is based on

JSON-LD (JSON for Linked Data).9 Nevertheless, these

approaches are still technology-dependent, as long as they

depend on preset, parseable structures that conform to a

concrete syntax based on JSON or XML. Dependence with

these languages makes it difficult to capture the domain

semantics, linking the expert to these technologies against

changes in trends or language specifications (Brambilla

et al. 2017). Table 1 shows a summary of the characteris-

tics and limitations of each DIW-specific language.

General purpose business process modeling notations,

such as SPEM,10 BPMN,11 CMMN,12 or UML activity

diagrams13 could a priori be suitable candidates to specify

DI processes. They possess the advantage that they are

standard notations supported by many editors and other

generic modeling tools such as MetaEdit? (Kelly and

Tolvanen 2021) or JetBrains MPS (Bucchiarone et al.

2021). However, they would require a major effort to

implement extensions to describe the specific requirements

and concepts of the types of DI processes and tasks used in

the domain of interest. Moreover, effort would be required

to cover other key aspects such as the target technological

platforms or the data-driven execution engines that are not3 Triana:http://github.com/CSCSI/Triana (last update: 2014; accessed

10 Mar 2022).
4 LONI Pipeline: https://pipeline.loni.usc.edu (last update: 2020;

accessed 10 Mar 2022).
5 KNIME: https://www.knime.com/ (last update: 2022; accessed 10

Mar 2022).
6 Taverna: https://incubator.apache.org/projects/taverna.html (last

update: 2020; accessed 10 Mar 2022).
7 Kepler 2.5: https://kepler-project.org (last update: 2015; accessed

10 Mar 2022).
8 Pegasus 5.0 https://pegasus.isi.edu (last update: 2020; accessed 10

Mar 2022).

9 JSON-LD - JSON for Linked Data: https://json-ld.org/ (accessed 01

Mar 2022).
10 Software & Systems Process Engineering Metamodel (SPEM),

2.0: https://www.omg.org/spec/SPEM/ (accessed 13 April 2023).
11 Business process model and notation (BPMN), 2.0.2: https://www.

omg.org/spec/BPMN/ (accessed 13 April 2023).
12 Case management model and notation (CMMN), 1.1: https://www.

omg.org/spec/CMMN/ (accessed 13 April 2023).
13 Unified modeling language (UML), 2.5.1: https://www.omg.org/

spec/UML/2.5.1/ (accessed 13 April 2023).

123

140 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

http://github.com/CSCSI/Triana
https://pipeline.loni.usc.edu
https://www.knime.com/
https://incubator.apache.org/projects/taverna.html
https://kepler-project.org
https://pegasus.isi.edu
https://json-ld.org/
https://www.omg.org/spec/SPEM/
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/BPMN/
https://www.omg.org/spec/CMMN/
https://www.omg.org/spec/CMMN/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/UML/2.5.1/

supported by business process tools (Ludäscher et al.

2009). Our proposal uses a different approach because it

defines generic metamodels that are syntax-agnostic, and

could be used at the modeling level both to implement

DIW notations and to exchange information between

existing ones. At the execution level, our proposal can be

used to specify the requirements of target platforms and

workflow execution engines, and to connect to existing

ones using model transformations.

3 Research Methodology

3.1 Design Science Research

The aim of this paper is the modeling of a DIW specifi-

cation language (target primary artifact) according to the

Design Science (Johannesson and Perjons 2014) method-

ological paradigm. Here, an artifact is an object created

with the aim of solving a practical problem and can range

from a definition, a model, a method or an instantiation in

the form of a complete system. According to Hevner et al.

(2004), DSR allows making research using design as a

research method itself. In our problem, SWEL is the arti-

fact to be designed and modeled and, thus, DSR allows

ensuring that it is being built correctly (Dresch et al. 2015).

Essentially, a key property of DSR is that it allows building

our solution on exploiting specific problems, for example,

by iteratively inspecting platform-specific languages or

representation strategies.

The first activity of the DSR framework involves ex-

plicating the problem, as discussed in Sect. 3.2. Current

efforts generate solutions that are not sufficiently general-

izable and reusable. This is because e.g., (1) the rigidity of

the platforms for the development of DIW-based applica-

tions; (2) their lack of interoperability; (3) the immobility

of the knowledge generated; and (4) the high viscosity in a

highly changeable context such as data science. Therefore,

modeling an abstract language for high-level specification

of DIWs becomes a primary design goal of our research.

This solution should be independent of any tool or plat-

form, thus enabling collaboration between data scientists

by reusing fragments of cross-domain knowledge and

interoperability of tools. Then, a second activity consists of

outlining a solution to the problem by defining require-

ments for the solution artifact, as listed in Sect. 3.3.

Table 1 Summary of

characteristics and limits of

data-intensive workflow

languages

Language WfMS-coupled Specification Platform-specific Notation-dependent

Triana Yes Close No Yes

LONI Pipeline Yes Close No Yes

KNIME Yes Close No Yes

SCUFL Yes Open No Yes

MoML Yes Open No Yes

DAX Yes Open No Yes

GridAnt No Close Yes Yes

GridBus No Close Yes Yes

xWFL No Close Yes Yes

AGWL No Open No Yes

IWIR No Open No Yes

CWL No Open No Yes

SWEL No Open No No

Retrieve
documents

Extract proteins

Link proteins to
diseases

Count diseases per
protein

Fla�en and make
unique

F

F

F

F F

R R R R

Max number of
docs to retrieve Query string Search field

Document
index

Proteins

Documents

Diseases
per protein

Discovered
diseases

Number of diseases
per protein

Fig. 1 Data-intensive workflow in bioinformatics [extracted from -

Roure et al. (2008)]

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 141

The next activity is the design and development of the

artifact. In this paper, we create the SWEL language as the

primary artifact, the design of which is explained in

Sect. 4. The DSR framework then follows with the

demonstration of the developed artifact, i.e., the activity

where SWEL is used in a case study to show how it can

solve a practical problem instance. Section 5 shows how

SWEL supports the creation of tool support and Sect. 6

demonstrates its use in a case study.

The last activity in the cycle is to evaluate the artifact,

so as to validate the extent to which the artifact solution

solves the problem and satisfies the requirements (see

Sect. 7.1). Based on the nature of the SWEL artifact, we

have implemented an evaluation model grounded in con-

tinuous assessment. This approach has been consistently

applied throughout the iterative refinement process, which

has been informed by extensive feedback solicited from

practitioners and experts. During the last iteration, a met-

rics-based evaluation is conducted in Sect. 7.2 to verify the

suitability and adaptability of SWEL, using the evaluation

framework outlined by Guizzardi et al. (2005). To validate

the conclusions of specialists involved in the SWEL

assessment during its development, a survey evaluation is

performed in Sect. 7.3 with experts outside of the devel-

opment activity.

3.2 Problem Motivation and Explanation

3.2.1 Problem Statement

The reuse of knowledge captured by DIWs across different

tools with a similar purpose poses a challenge for experts in

various domains (Sethi and Gil 2017; Garijo et al. 2017).

This challenge was encountered first-hand by one of the

authors at his company, a product-oriented company with

over 25 million users. The company’s data exploitation

department created different DIWs using different tools at

different times, depending on the problem at hand and their

familiarity with the tool. The meaningful knowledge

extracted is used to improve their services and products.

Unfortunately, each DIW could only be executed by the

tool for which it was created, and reusing workflow frag-

ments required duplicating work. To address this issue, the

department conducted an analysis to identify a single

flexible tool for defining DIWs that could handle different

types of DI problems. However, manually rewriting all

DIWs in the new tool was not affordable in terms of time

and effort. Moreover, concentrating knowledge on a single

technology and requiring team members to learn a new tool

was not desirable. Hence, a solution was needed to allow

reuse and adaptation of knowledge captured by existing

DIWs, regardless of the tool used. The idea of having a

DSL that allowed this definition was only part of the

solution to the problem; the other part involved the reuse of

DIW knowledge across different underlying tools.

3.2.2 Identification of Core Elements

The DSML must facilitate the creation of platform-ag-

nostic and high-level DIWs that allow knowledge to be

shared. With this aim, actions were taken to identify the

basic elements common to DIWs, namely, the core ele-

ments of the DSML.

Initially, several meetings were conducted with different

company data scientists. These meetings allowed us to

identify the most commonly used tools for DIW design,

which were then supplemented with other similar tools

found in the literature. During this search, we discovered

that some of these tools were proprietary, and information

about their DIW implementation details was not openly

available. These solutions were not considered in the pro-

cess, although their reference manuals were consulted

when available for download. Next, we conducted a liter-

ature review on DIW languages used by these tools (see

Sect. 2.3). Finally, we relied on existing studies on com-

mon characteristics, frequently used execution models, and

the typical tasks required for creating a DIW (see Sect. 3).

As a result, we have identified the core elements of SWEL

that enable the definition of a wide range of DIWs. These

elements pertain to both the structure of the workflow and

its specification.

Workflow structure A workflow consists of intercon-

nected tasks that define their dependencies. Its structure

determines how these tasks and relationships are repre-

sented and executed. Generally, there are two types of

representations: those based on DAGs (Directed Acyclic

Graphs) and those based on DCGs (Directed Cyclic

Graphs). Both have traditionally been used to define DIWs,

although DAG-based representations are commonly used

in data-driven domains (Yu and Buyya 2006). However,

DCGs could be more appropriate for some business logic-

driven domains. Therefore, SWEL must support both types

to represent the widest range of DIWs possible and facil-

itate reuse across a greater number of tools.

Workflow specification The definition of various types of

tasks relies on the type of DIW language used. Abstract

languages describe tasks at a high level of abstraction that

does not reference specific platforms, computational

resources, or programming languages. Such workflows are

not directly executable but have to undergo a conversion

stage that associates them with specific computational

resources. The mapping responsibility usually falls on the

execution engine or tool. In contrast, concrete languages

contain specific tasks that take into account low-level

implementation details, making them directly executable.

Currently, there are more concrete languages than abstract

123

142 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

ones since most languages have been developed during the

creation of a WfMS like Taverna’s SCUFL or Kepler’s

MoML. Nevertheless, some platform-independent abstract

languages like CWL also exist (see Sect. 2.3).

SWEL should support both high-level abstraction tasks

and more specific tasks associated with low-level aspects

such as programming language, execution platform (cloud,

grid, etc.), or execution models (sequential, parallel, etc.).

Having high-level abstraction elements is essential for

knowledge reuse between tools. However, since most tools

use low-level definitions, it is necessary to provide ele-

ments that enable their definition, such as the invocation of

Web services or the execution of programs written in a

specific programming language, among others.

3.2.3 Identification of High-Level Tasks

The next step is to identify the tasks involved in a DIW. To

accomplish this, we conducted a search and review of

various publicly available DIW languages, which are

described in Sect. 2.3. We used these languages to identify

the primary computational and visualization tasks, control

structures, and commonly used input and output data pro-

viders. Since not all languages have a model-based speci-

fication, we also performed a reverse engineering process

by analyzing their textual serialization, which is usually

based on XML and JSON. We created several DIWs in

different tools with the support of the company specialists

and used a large number of DIWs from the public DIW

repository myExperiment.org.

During the high-level task identification phase, we dis-

covered that the core elements identified in the previous

phase were applicable to the analyzed workflows. We also

identified new elements that were not previously identified

and incorporated them into SWEL as core elements.

3.2.4 Identification of Extension Points

We observed a wide variety of tasks within the different

types of DIWs that were defined. In many cases, tasks

depend directly on the characteristics of the tools for which

the DIW was designed. A common example is tasks that

invoke programs written in Java or Python and access data

stored in external databases such as MySQL or MongoDB.

It is not feasible to cover such a diverse range of tasks in a

single language. However, by extending general elements,

we can provide support for more specific elements such as

those mentioned above, or those that depend on the plat-

form where they run. These elements are identified as

extension points, and they enable us to gather more specific

and corporate knowledge to facilitate its reuse and unify

terms.

3.2.5 Identification of Elements Describing Scientific

Experiments

In collaboration with the company experts, we recognized

the importance of including information about the project

or scientific experiment that served as motivation for cre-

ating a DIW. This information provides a wider context for

the design and objectives of the workflow, making it easier

to comprehend the outcomes after execution and facilitate

the transfer of knowledge between specialists.

This need arose while working with DIWs from repos-

itories like myExperiment.org. Most of them incorporate

this information in order to provide context for the work-

flows. However, it is worth noting that this information is

not directly linked to the DIW, but is simply metadata that

helps preserve the authors’ description of its behaviour

once the DIW is downloaded. In addition to external

repositories, we also considered the requirements of DIWs

developed by the company. To that end, we searched for

potential languages for defining scientific experiments in

DI (Parejo 2013), with the goal of adapting a representa-

tion that is compatible with other proposals in SWEL.

3.3 Design Requirements

Taking the primary design objective to be met (Sect. 3.1),

and in view of the detailed problem explanation (Sect. 3.2),

the following requirements are defined for the solution

artifact:

• REQ1: To provide a suitable workflow language able to

define DI applications at a high-level of abstraction.

The solution artifact must support the main features

provided by current WfMS, such as cyclic and acyclic

execution models, different workflow execution models

(sequential, concurrent or iterative), data access meth-

ods like memory, database or external storage (Ferreira

da Silva et al. 2017), data composition patterns (Mon-

tagnat et al. 2006), control flow structures (Curcin and

Ghanem 2008), workflow composition, and data prepa-

ration, operation and visualization tasks (Garijo et al.

2014).

• REQ2: To support the reuse of knowledge fragments

between different tools by providing a platform-inde-

pendent workflow language. A platform-independent

workflow language facilitates collaboration across

multiple domains (Sethi and Gil 2017) and decouples

the workflow definition from the lifecycle of a partic-

ular tool.

• REQ3: To provide a notation-independent workflow

language in terms of concrete syntax. This indepen-

dence requirement is aimed at enabling the best

representation of domain semantics (Brambilla et al.

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 143

2017). Thus, the workflows defined by the solution

artifact must be able to be represented in any notation,

both textual and graphical, according to the domain

requirements.

4 Design of SWEL

SWEL is an abstract, platform-independent DSML for the

formulation of DIW. Its elements enable the definition of

domain-specific concepts, constraints and interrelations

conforming to the domain rules involved in the definition

of DI pipelines. In this section, we first explain the overall

structure of the language metamodel, which is organized in

several packages. Then, each package is explained in

detail.

4.1 Overall Structure of SWEL

A DIW contains a large set of diverse information artifacts,

ranging from the computational execution specification to

the domain concepts or to the project that led to its cre-

ation. The structure of the DIW determines the sequence of

activities and dependencies between them as a DCG or

DAG. This type of representation enables the definition of

its execution efficiently by applying mechanisms such as

parallelism or data composition. It hides the complexity

about parallel or concurrent programming by providing

high-level constructs to get the benefits of using such

features. The structure of the DIW is defined according to

the domain concepts and knowledge that data scientists

consider relevant to meet the requirements of a particular

scientific DI experiment (Garijo et al. 2014; Curcin and

Ghanem 2008; Montagnat et al. 2006). Thus, the general

organization of the architecture of SWEL is as follows:

• The morphological layer contains those elements that

enable the low-level definition of a workflow. It is

represented as a DCG or DAG, where its vertexes

represent elements, and their arcs stand for dependen-

cies between them.

• The syntactic layer consists of a set of packages

enabling the representation of domain-specific require-

ments and workflow resources. At this level, elements

allow the declaration of control structures, data types,

fault-tolerant handlers, domain-specific tasks, and com-

putational resources.

• The specification layer describes different information

assets about the project, experiments and DI application

associated to the definition of the workflow.

Specific details of these layers and its elements are

omitted for space reasons, but the full specification is

available as a technical report from the paper companion

Website (Salado-Cid et al. 2023).

In Fig. 2, the overall structure of the language is rep-

resented as a UML package diagram, each package con-

taining a specific part of the SWEL metamodel. In the

following sections, the contents of each package are

described. They are specified as UML class diagrams

composed of metaclasses and their relationships. A meta-

class defines a language element and may have attributes.

Note that metaclasses are usually concrete, but they can be

abstract too (its name depicted in italics), meaning that they

cannot be directly instantiated to any language element.

Extension points have also been defined to indicate those

metamodel elements that are expected to be extended in the

future, enabling the scalability of SWEL so that it can be

adapted to different organizational and technological

contexts.

4.2 Morphological Layer

The Morphological layer contains the elements represent-

ing the internal graph-based structure of a workflow, and

consists of a single package, ExecutionGraph, depicted in

Fig. 3. At this level, SWEL defines a workflow as a par-

ticular type of graph, namely an execution graph (meta-

class ExecutionGraph), that is intended to define the set of

execution steps needed to perform a computational process.

An execution graph is made up of computational oper-

ations (metaclass Node) and dependencies between them,

represented as directed links (metaclass DirectedEdge).

These operations, or nodes, are uniquely identified by a

label and provide a set of connection points (metaclass

Endpoint) to determine the sort of dependency to be

established with the other nodes. On the one hand, a data

dependency requires receiving or sending data from/to

another node. Consequently, data connection points

(DataEndpoint) are associated to the corresponding type of

link, i.e., a data link (DataLine). On the other hand, there is

a control dependency when a node can only be executed

after another. This type of dependency is represented by

control connection points (ControlEndpoint), and nodes are

connected through control links (ControlLine). Moreover,

the appearance of unexpected issues while running the

workflow could trigger an alternative execution path with a

different order between operations, namely an error

dependency. Here, exception connection points (Excep-

tionEndpoint) are connected through an exception link

(ExceptionLine). The definition of which specific connec-

tion point is associated to a specific link is performed by a

linker (Linker).

123

144 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

4.3 Syntactic Layer

The syntactic layer provides the elements that capture the

knowledge extracted from domain experts. As shown in

Fig. 2, this layer is composed of seven packages. The

declaration of data and exception types is represented in

packages DataTypes and ExceptionTypes. From the defi-

nition of the graph structure at the morphological layer, the

package Workflow provides a set of adaptable building

blocks to define pipelines. These consist of computational

tasks (Activity), data providers (DataProvider) and control

structures (ControlStructure), as well as dependencies

between them. Finally, the package ComputationalSpeci-

fication contains the elements defining those specific

computational resources that should be used in some par-

ticular scenarios, such as networks with dedicated servers,

or cloud-based platforms. Note that this organization does

not affect the language, but it provides a readable way to

differentiate highly-coupled aspects of interest according to

the design principle of separation of concerns. For brevity,

we will focus only on those elements that are more relevant

to the understanding of SWEL– see the technical report

available at the paper companion Website for a full

ComputationalSpecification

ExperimentSpecification

ControlStructures

Syntactic
layer

Specification
layer

Morphological
layer

WFSpecification

ExecutionGraph

ExceptionTypes

DataProviders

Workflow

DataTypes

Activities

«import»

«import»

«import»

«import»

«import»

Fig. 2 Layers of the SWEL metamodel

+label : String
LabelledElement

ExceptionEndpoint
ExecutionGraph

ControlEndpointDirectedEdge

ExceptionLine

DataEndpoint

ControlLine EndpointDataLine

Node

Linker

+output 0..*

+outputOf
0..1

+sourceConnector 1

+in
1

+input 0..*

+inputOf
0..1

+catcher 0..*

+catcherOf
0..1

+endpoint 0..1+binder
0..1

+callee
0..*

+calleeOf 0..1

+caller 0..*

+callerOf 0..1

+vertex
0..*

+thrower 0..*

+throwerOf 0..1

+targetConnector 1

tuo+ 1

cra+ *..0

Fig. 3 Metamodel elements

within the Morphological layer:

package ExecutionGraph

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 145

description of packages and meta-elements (Salado-Cid

et al. 2023).

Regarding the packages DataTypes and ExceptionTypes,

two sorts of data types (DataType) are defined in SWEL in

order to classify the different data flows running through

the pipeline. Basic data types are related to the primitive

types of any programming language, such as integers, floats

or strings. Complex data types define the format of a par-

ticular file, such as picture, audio or video. As for the

exception elements (ExceptionType), they define alterna-

tive flows of execution (ExceptionPath) when an error

happens, e.g., bad parameters, full disk, or permission

denied. Note that an exception path is an exception end-

point, so exception elements are linked to particular nodes

of the workflow. An error may have associated a list of

actions (Action) to be performed. This could contain run-

ning a given task if the current activity fails, repeating its

execution for several times, or stopping the pipeline exe-

cution. Both exception elements and actions can be

extended to meet a wider range of values according to the

particular needs of each scenario. For example, when a

service is temporarily unreachable (Unreach-

ableCloudService) in a cloud-based scenario and involves

notifying the cloud supplier before finishing the workflow

execution (NotifyAndFinish).

As shown in Fig. 4, the package Workflow declares a

DIW (Workflow) as a set of computational assets (Con-

structor) and flows. Data flows focus on the handling of

data whose availability implicitly determines the execution

sequence (DataDrivenWorkflow). In certain cases, the

execution flow must be explicitly defined, regardless of

data availability (ControlDrivenWorkflow). Both approa-

ches can also be combined

(ControlledDataDrivenWorkflow). Having specific types

enables the validation of the workflow to reduce human

errors, such as adding a control structure to a data-driven

workflow. Nevertheless, since the Workflow metaclass is

not abstract, it could be directly instantiated, leaving the

validity checking to the modeling tool implementing

SWEL. Independently of the type of workflow, data flows

are conveyed through data endpoints (Port) that define the

type of data accepted by the computational asset.

In those cases where an explicit control of the pipeline

execution is required, SWEL defines some control struc-

tures that are similar to those defined by BPMN or UML.

The package ControlStructures provides different struc-

tures (ControlStructure) that enable the definition of both

the starting point (Begin) and the ending point (End) of the

workflow. Depending on the domain requirements, inter-

nally the execution flow can also be divided into parallel,

concurrent flows (Fork), which allow some computational

tasks to be executed simultaneously. Also, different exe-

cution paths can be joined either into a single flow that is

executed each time that a joined flow is individually fin-

ished (Merge), or into a single flow executed only when all

or part of the joined flows have ended (Synchronizer).

Moreover, conditional structures (Conditional) facilitate

the choice of the next asset or path to be executed. These

conditions are decomposed into one or two operands

(Operand) and an operator (Operator) that determines the

type of condition to evaluate, which can be logical (Logi-

calOperator), relational (RelationalOperator) or mathe-

matical (MathematicalOperator).

The definition of data-driven pipelines is the most

common practice for DIW. As formalized in package

DataProviders, data can be originated by different sources,

ControlledDataDrivenWorkflow

ControlDrivenWorkflowDataDrivenWorkflow «extensionPoint»
ExceptionType
(ExceptionTypes)

+note : String [0..*]
AnnotatedElement

ExceptionEndpoint
(ExecutionGraph)

ControlStructure

LabelledElement
(ExecutionGraph)

ExecutionGraph
(ExecutionGraph)

DataEndpoint
(ExecutionGraph)

Node
(ExecutionGraph)

«extensionPoint»
Action

DataProvider

ExceptionPath

Constructor

DataType
(DataTypes)

Workflow

Activity

Port

+executionUnit 1..*

+dataBinding 0..1

+dataUnit 0..*
{ordered}

+action
1..*+controlUnit 0..*

+cause 1..*

Fig. 4 Metamodel elements within the Syntactic layer: package Workflow

123

146 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

to which the workflow accesses through providers (Data-

Provider). Data providers enable the access to data

depending on their location, e.g., in memory (Record), a

file (File), a database (Database), or a data stream

(Stream). Note that the analysis of data streams in DI

applications, while possible, is not as common as that of

batch data (Alaasam et al. 2021; Kranjc et al. 2015). The

Stream element is designed to support the definition of data

stream sources, the processing mode of which will depend

specifically on the underlying workflow engine (Montagnat

et al. 2006).

The extracted data is then transformed by tasks of dif-

ferent nature (see package Activities in Fig. 5). Computa-

tional tasks (ComputationalTask) are executable tasks

performed without human interaction to transform inputs

into new output data. These tasks consist of either invoking

services (Service) – e.g., Web services (WebService)

including REST14 (RestClient) and SOAP15 (SoapClient) –

or processes (Process), such as Java processes (JavaPro-

cess) or a command-line interface program (CliProcess).

Note that both Service and Process are extension points.

This means that other types of tasks can be added to SWEL

if needed. For example, some tasks involving humans

might be needed in a few specific DI domains, but this is

not usual. Moreover, workflows can also be considered as

processes themselves in those cases where the definition of

nested workflows is considered.

Another type of activity refers to data visualization tasks

(DisplayTask), which facilitate the readability and under-

standing by the human being of data and other results. Two

main types of visualization tasks have been defined: those

that are integrated and configured within the pipeline

(EmbeddedDisplay); and those that show the result by

invoking some external visualisation tool

(DelegatedDisplay).

Finally, a few particular requirements on the pipeline

(e.g., security issues or platform-specific constraints) may

require an explicit specification of the execution environ-

ment and computational resources. Usually, this informa-

tion can be used for a particular WfMS to leverage the

underlying execution platform or specify the necessary

computational requirements. In package Computa-

tionalSpecification (see Fig. 6), these computational

resources (ComputationalResource) allow specifying both

the host location (Host), constraints on the platform and

operating system (OperatingSystem), and CPU and GPU

requirements (elements CPU and GPU, respectively). Note

that the definition of these computational resources is

extensible to define particular platform-specific

Fig. 5 Metamodel elements

within the Syntactic layer:

package Activities

14 REST - REpresentational State Transfer: https://www.w3.org/

2001/sw/wiki/REST (accessed 23 Feb 2022).
15 SOAP Specifications: https://www.w3.org/TR/soap/ (accessed 23

Feb 2022).

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 147

https://www.w3.org/2001/sw/wiki/REST
https://www.w3.org/2001/sw/wiki/REST
https://www.w3.org/TR/soap/

computational resources and compatible in its current form

with JSDL (Job Submission Description Language).16

4.4 Specification Layer

Raising the abstraction level, the package WFSpecification

(see Fig. 7a) declares the elements related to the meta-

information about the workflow. For example, a general

description, its terms and conditions of use, or the version

number. This is non-executable information that provides a

general description of the project (Project), such as its

name, license, or version. Information about the stake-

holders (Stakeholder) includes the description of the

organization (Organization) and participants (Person).

Furthermore, DIWs are usually designed in the context

of an experimentation or project, which is metamodeled by

package ExperimentSpecification (see Fig. 7b). SWEL

allows providing meta-information about a DI experiment

(Experiment), which can be formulated to validate or reject

a hypothesis (Hypothesis). This is frequently a computa-

tional experiment, which is configured by a set of proper-

ties (Configuration). Since there are different types of

scientific experiments and it is not within the scope of

SWEL to cover all of them, only an essential type of

experiment is provided (BasicExperiment). Nevertheless,

the inclusion of new types is allowed through the extension

point. Note that the concepts of this layer rely on those

already used by other languages specialized in the defini-

tion of scientific experiments, such as SEDL (Scientific

Experiments Description Language) (Parejo 2013).

5 Tool Support

The formalisation of the SWEL metamodel and the spec-

ification of concrete notations facilitate the development of

MDE-based tools. Even though SWEL is platform- and

notation-independent, graphical and textual syntaxes are

essential for making DIWs accessible to application

domain experts and workflow tools. This section presents

two examples of DIW specification and execution struc-

tures using graphical and JSON textual syntaxes, respec-

tively. Interested readers can download these notations and

tools from the paper companion Website (Salado-Cid et al.

2023).

5.1 Model-Based WfMS for Multiple DI Domains

User requirements led to the implementation of a WfMS to

facilitate DIW creation and execution across various

domains. The tool features domain-agnostic components

that can be customized for domain-specific workflows. As

depicted in Fig. 8, its architecture consists of a user-centric

graphical editor and a workflow engine, both of which are

highly customizable. The editor helps domain experts

define and represent domain-specific DI applications, while

the workflow engine executes workflow activities using

available computational resources in an effective way.

The graphical editor is a design- and end-user-oriented

environment that employs a SWEL-concrete syntax to

represent and monitor workflows. As an illustrative

example, Table 2 shows the subset of SWEL that will be

represented graphically. The column SWEL type indicates

the name of the abstract metaclass that groups related

concrete metaclasses. The column SWEL element shows

the name of the metaclass to be mapped to a particular

Graphical element. An example data-driven workflow

16 Job submission description language (JSDL) specification, 1.0:

http://www.ogf.org/documents/GFD.136.pdf (accessed 18 April

2023).

+architecture : ArchitectureType [0..1]
+alternativeArchitecture : String [0..1]
+CPUSpeed : Range [0..1]
+CPUTime : Range [0..1]
+CPUCount : Range [0..1]
+networkBandwith : Range [0..1]
+physicalMemory : Range [0..1]
+virtualMemory : Range [0..1]
+diskSpace : Range [0..1]

CPU

POWERPC

X86_32
X86_64

PARISC
SPARC

OTHER

ARM

MIPS
IA64

X86

«enumeration»
ArchitectureType

«extensionPoint»
ComputationalResource

+type : OSType [0..1]
+alternativeOS : String [0..1]
+version : String [0..1]

OperatingSystem

+clockSpeed : Range [0..1]
-GPUCount
+memory : Range [0..1]

GPU

WINDOWS
FREEBSD

SOLARIS
MACOSX

SUNOS

OTHER

LINUX

«enumeration»
OSType

+minimum : double [0..1]
+maximum : double [0..1]

«dataType»
Range

ComputationalTask
(Workflow.Activities)

+name : String [0..1]
+url : String [0..1]

Host

+computationalDescription0..*

+job 1..*

Fig. 6 Metamodel elements within the Syntactic layer: package ComputationalSpecification

123

148 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

http://www.ogf.org/documents/GFD.136.pdf

taken from a public repository (Roure et al. 2008) using

the graphical notation is shown in Fig. 9. This workflow

calculates the number of publications and citations per year

for a specific author using a biomedical information ser-

vice. The workflow includes searching for publications,

extracting citations and publication years, and displaying

the results using 2D histograms and a report. The workflow

engine uses data dependencies and input/output ports to

determine the execution order and data composition

patterns.

The graphical user interface provides data scientists with

the necessary elements to draw and configure a DIW,

including (1) a palette of available workflow components,

(2) a canvas area to insert and connect components and

their dependencies, and (3) a design assistance tool. The

graphical editor allows direct verification of conformance

between the concrete syntax and the language metamodel.

Here, users can work at different levels of abstraction for

the same workflow definition. The outputs will be pre-

sented by the data visualizer either graphically or in textual

form, depending on the configuration of the display com-

ponents. In addition, the workflow repository manages

storage, retrieval, exportation, and importation of DIWs.

The workflow execution manager enables management and

monitoring of the workflow execution, gathering execution

traces and data shown to users in the graphical editor.

The workflow execution engine interprets and executes

the activities defined in the workflow. The engine provides

all the features required for the invocation of services, local

execution of computing programs, and data management.

The engine consists of a scheduler, executor, and moni-

toring module. The scheduler analyses the high-level

workflow definition and generates the corresponding low-

level executable specification. This module coordinates and

optimizes the execution considering the computational

constraints and execution workload. The executor module

runs the corresponding computing programs or services. It

can integrate external tools and platforms for grid and

distributed computing, increasing the computational capa-

bilities and reducing the execution time. Finally, the

monitoring module logs the execution to provide infor-

mation related to time, available memory, and outcomes to

monitor how resources are managed and consumed, and

how resulting data are generated.

5.2 JSON Concrete Syntax Validator

It is also possible to use SWEL as a concrete textual

notation for the serialization of DIW models. JSON17 is an

IETF (Internet Engineering Task Force) standard language

widely used as a data exchange format on the Web via, e.g.,

REST APIs and services. Listing 1 shows a snippet of the

workflow represented graphically in Fig. 9, but using a

JSON-based textual notation for SWEL. This syntax

defines project meta-information (Specification package in

Sect. 4.4) and DIWs in the second level, which include

nodes (type, attributes, configuration, notes, etc.) and the

control or data links between them. In the example, the

JSON code defines a data-driven DIW (line 1) with two

nodes (line 2): a record (line 3) that is assigned a name

(line 4) and its respective value (line 5), and a Web service

(lines 6–8) with information about the particular required

operation (line 9). Both are linked by a data link (lines

11–13). The available complete JSON notation

scheme (Salado-Cid et al. 2023) enables the development

of SWEL-based data exchange and Web services.

6 Demonstration of SWEL

To demonstrate the applicability of the artifacts generated

and the modeling framework, we have used SWEL to

explore its suitability as a mechanism for the interoper-

ability between WfMSs. Knowledge in workflows

17 The JavaScript Object Notation (JSON) Data Interchange Format

(No. IETF RFC 8259). https://datatracker.ietf.org/doc/html/rfc7159.

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 149

https://datatracker.ietf.org/doc/html/rfc7159

frequently needs to be reused in or adapted to different

application domains, or even under the same domain but

having been created with different tools. For example, we

could assume a data scientist generating a pipeline using

the Taverna tool. If a fragment of that workflow needs to be

reused or shared for use in another WfMS such as Kepler, it

should be rendered again in the new tool. Here, in addition

to the costs, resources and time required, factors such as the

modeler interpretation and potential inaccuracies in the

representation of the original pipeline come into play. As

discussed in Sect. 2.1, interoperability is one of the inten-

ded benefits with the use of MDE techniques. More

specifically, the application of the horseshoe model (Kaz-

man et al. 1998) allows the reuse of pieces of content

generated using different tools, see Fig. 10. Workflows are

defined at different levels of abstraction in order to obtain

models of a source system artifact, to transform those

models into some target models, and to finally generate the

new system artifact.

Graphical Editor

Design Assistant

ExecutorScheduler Monitoring

Repository

Data Visualiser

EXECUTION ENGINE

WORKFLOW MANAGEMENT SYSTEM

GUI

Execution Manager

Data Scientists

Data Sources
Outputs

Fig. 8 Architecture of the model-based WfMS

Fig. 7 Metamodel elements within the Specification layer

123

150 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

In this case study, SWEL can serve as the pivot element

of the horseshoe process between the platform-specific

workflow languages SCUFL and MoML. Figure 10 shows

the implemented process. Starting from the source code

generated by Taverna in the SCUFL language, its repre-

sentation is extracted as a SCUFL model, in conformance

with the SCUFL metamodel. The abstract representation of

the user-generated pipeline is then converted into a SWEL

model by applying one-way model transformations. This

platform-agnostic SWEL model specification is subse-

quently transformed into MoML models (Kepler) and text

code. Since there are no formalized metamodels for

SCUFL and MoML, we have defined their corresponding

platform-specific metamodels, partially gathering the main

features required for showing this interoperability case

study. Note that the horseshoe model shown in Fig. 10

could be extended by incorporating other platform-specific

metamodels according to the specific interoperability

needs. In this case, new branches coming from or targeting

to another WfMS could be added.

To illustrate this particular case, Fig. 11 shows a

workflow in SCUFL to extract information about a par-

ticular gene from a nuclear protein database. We want to

Table 2 Partial examples of concrete syntax [extended in the sup-

plementary material Salado-Cid et al. (2023)]

SWEL type SWEL element Graphical element

DirectedEdge DataLine

ExceptionLine

Activity ComputationalTask

DisplayTask

DataProvider Record

File

Experiment BasicExperiment

T2
M

M2M
M2M

M
2T

conforms toconforms to

conforms to

Fig. 10 Horseshoe process using SWEL to achieve interoperability

build_query

searchPublica
tions_input

searchPublica
tions

extract_id getCitations
_input

getCitations

extract_citation
_pubYear

flatten_list

extract_pubYear generate_cita
tion_report

make_2D_his
togram

author
_name

articles_to
_retrieve

resultType
_lite

offset
_zero

PubMed_and
_MEDLINE

citing_articles_to_retrieve

citation
_report

2D
_histogram

Counts the number of publications and citations per year for one author from a particular biomedical information service

generate_cita
tion_report

make_2D_his
togram

Fig. 9 SWEL representation of a data-driven workflow

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 151

convert it into its corresponding workflow in MOML, see

Fig. 12. For this we follow the horseshoe process, as shown

in Fig. 10.

First, a text-to-model (T2M) transformation is defined to

transform the SCUFL source code into its model repre-

sentation. Since SCUFL is a XML-based language, the

standard language XSLT (eXtensible Stylesheet Language

for Transformations) is used. For example, Listing 2 shows

the XSLT template that transforms SCUFL data links

(Datalink) into their corresponding model representations.

Similar templates are used to transform the rest of the

SCUFL elements and structures such as workflows, data

inputs and outputs, and processors.

Then, model transformations declared in QVT define the

relations and dependencies between the SCUFL and the

SWEL models. Each relation is executed when its pre-

conditions are met, and defines a set of post-conditions to

determine the execution order of subsequent relations. A

first relation initiates the conversion into a SWEL work-

flow (Workflow) by transforming each SCUFL element into

SWEL, e.g., processors (Processor) into nodes (Node), data

links (Datalink) into data lines (Dataline), and input and

output endpoints (Endpoint) into input and output ports

(Port). As an example, the MapRetryDispatchLayer QVT

relation is depicted in Listing 3, mapping the dispatch layer

when retrying an execution after an error detection (Con-

figBeans::RetryConfig) from SCUFL (lines 4–6) into the

corresponding exception path in SWEL (Work-

flow::ExceptionPath) (lines 7–11).

The current workflow definition in SWEL is expected to

be transformable into any other metamodeled workflow

representation. Thus, following the horseshoe process, new

model-to-model (M2M) transformations are defined in

QVT to declare the mapping between the SWEL and

MoML model elements. An initial transformation converts

each SWEL workflow node and line into the corresponding

MoML entity (Entity), relation (Relation) and link (Link).

The QVT MapRecord relation is implemented in Listing 4,

123

152 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

which shows the transformation of a record in SWEL

(Workflow::DataProviders::Record) (lines 3–4) into the

corresponding MoML model element (Entity) (lines 5–18).

From this platform-specific MoML model, model-to-

text (M2T) transformations are declared in Acceleo18 to

generate the Kepler source code. Acceleo uses the MOF2T

(MOF model-to-text transformation language) standard.19

A first template initiates the generation of all elements by

invoking the GenerateEntity template (see Listing 5).

Here, MoML entities and their subentities, with a given

configuration and their connections, are created. The

Fig. 12 The Kepler-specific MoML workflow representation

18 Open-source template-based code generator Acceleo: http://www.

eclipse.org/acceleo (accessed 18 Mar 2022).
19 MOF model to text transformation language (MOFM2T), 1.0:

http://www.omg.org/spec/MOFM2T/1.0/ (accessed 13 April 2023).

Fig. 11 The source SCUFL workflow representation

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 153

http://www.eclipse.org/acceleo
http://www.eclipse.org/acceleo
http://www.omg.org/spec/MOFM2T/1.0/

resulting workflow is finally depicted in Fig. 12 following

the Kepler notation.

Note that all these model transformations between the

different languages are defined at the language level, and

not at the concrete application level. This means that they

only need to be defined once for each pair of languages,

and then simply executed for each application written in

the source language. In addition, the definition of the model

transformations has served to iterate and refine the SWEL

model to cover the main features of other existing lan-

guages. On the other hand, the lack of standardization in

defining DIWs can lead to incompatible functionalities in

existing WfMSs, which can hinder the intended

interoperability.

We have collected the definition of the metamodels, the

transformations used in this section, together with the tools

that have been developed to illustrate the entire transfor-

mation process. These, alongside a few videos illustrating

their usage are available at the SWEL companion Web-

site (Salado-Cid et al. 2023).

7 Evaluation of SWEL

7.1 Requirements Validation

In line with the DSR methodology, this section shows the

extent to which the artifact solution solves the problem and

satisfies the requirements described in Sect. 3. In order to

validate these requirements, a solution artifact, SWEL, and

multiple supporting products, which are considered as

prototypes, are generated (see Sects. 5 and 6). Prototyping

is a common and well-known validation technique, which

allows testing and experimenting with the presented model

to check if it meets their specified requirements. Another

technique used has been continuous requirements review,

where requirements are reviewed and contrasted to check

for any errors and ambiguity. Table 3 represents the main

research requirements, as well as the generated outputs that

have been used for validation. Both the primary and sup-

port artifacts generated [see the companion Website (Sal-

ado-Cid et al. 2023)] allow to cover all the research

requirements set for their validation. Two of the authors of

this paper are experts in the area of data science, and they

were the first ones to use and test all developed artifacts.

Furthermore, both the language and the associated tools

were continuously evaluated by the specialists from the

company where the problem was identified, to check that

the results helped solve their original problems. They

123

154 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

provided valuable feedback during the whole process,

ensuring that the results were useful and accurate according

to their needs.

7.2 Quantitative Evaluation

In order to evaluate the suitability and adaptability of

SWEL when defining DIWs, a quantitative analysis has

been conducted, using the framework proposed by Guiz-

zardi et al. (2005) as a reference. This framework evaluates

modeling languages based on four comparative metrics:

lucidity, soundness, laconicity and completeness. We have

conducted the comparison of SWEL against three DIW

languages, which we have considered to represent the most

important ones: SCUFL and MoML are the languages

defined by two popular workflow tools (Taverna and

Kepler, respectively); CWL is a recent approach aimed at

establishing an open standard. As such, note that the

evaluation results should be interpreted in this context,

particularly with regard to the completeness, expressive-

ness and conciseness of the language. Only those elements

of SWEL that are used in data-driven workflows have been

taken into account in order to make a fair comparison.

Furthermore, since SWEL is an extensible language, some

extension points of SWEL have been defined to support

specific elements of the compared languages. Particularly,

a list of extension points has been defined in SWEL to

meet all the required particular tasks required by SCUFL:

Process$SCUFLBeanShell defines those activities imple-

mented using BeanShell20 (a Java compatible scripting

language); Process$SCUFLRshell defines those activities

implemented using R programming language; Pro-

cess$SCUFLInteraction helps humans to define some basic

case-specific inputs; Process$SCUFLXPath defines

expressions to query or transform XML documents;

Process$SpreadsheetImport enables the read of spread-

sheet-like data; and Process$SCUFLLocalworker that

defines the information about Java programs. Moreover, an

extension point to define JavaScript code has been imple-

mented for CWL (Process$CWLExpressionTool).

The results of these metrics are shown in Table 4.

Lucidity measures the degree of clarity of SWEL in terms

of how many elements of the language have a unique

representation in the other languages. The values obtained

show that SWEL is highly expressive, concise and clear. In

the case of CWL, the low percentages are mainly because

this language is still in the definition phase and provides

few elements to specify DIWs. This fact also influences the

calculation of soundness, which determines the degree of

correspondence of SWEL elements with elements of other

languages. Laconicity measures how concise our language

is by considering the number of elements from other lan-

guages that correspond to each element in SWEL, and its

resulting values are close to the maximum in all cases.

Finally, completeness indicates the degree to which SWEL

is compatible with the other languages. Note that this

metric is crucial when determining the suitability of SWEL

to achieve interoperability between WfMS, and it is the

measure in which SWEL achieves the highest score. The

concrete mappings between the elements of SWEL and the

rest of the languages used to compute these metrics are

listed in Table 5. Note that these mappings can be one-to-

Table 3 Outcomes for research

requirements validation

REQ1: High-level workflow
language for DI applications;
REQ2: Knowledge reuse among
tools with platform-independent
workflow language; REQ3:
Notation-independent workflow
language in terms of concrete
syntax.

REQ1 REQ2 REQ3

SWEL:Morphological layer (Sect. 4.2) X

SWEL:Syntactic layer (Sect. 4.3) X

SWEL:Specification layer (Sect. 4.4) X

Concrete syntax for SWEL: graphical notation (Sect. 5.1) X X

Concrete syntax for SWEL: JSON-based notation (Sect. 5.2) X X

JSON concrete syntax validator (Sect. 5.2) X

SWEL WfMS: Graphical editor (Sect. 5.1) X

SWEL WfMS: Workflow repository (Sect. 5.1) X

SWEL WfMS: Workflow execution engine (Sect. 5.1) X

Case study: T2M and M2T (Sect. 6) X

Case study: M2M (Sect. 6) X

Interoperability tool: SCUFL, MoML, CWL (Sect. 6) X

Table 4 SWEL abstract syntax quantitative evaluation

Metrics SCUFL MoML CWL

Lucidity 13/18 (72.22%) 11/12 (91.67%) 3/13 (23.08%)

Soundness 13/18 (72.22%) 11/12 (91.67%) 7/13 (53.85%)

Laconicity 13/13 (100%) 11/11 (100%) 5/7 (71.43%)

Completeness 13/13 (100%) 11/11 (100%) 7/7 (100%)

20 BeanShell: https://beanshell.github.io/ (accessed 24 Sept 2022).

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 155

https://beanshell.github.io/

T
a
b
le

5
D
efi
n
ed

m
ap
p
in
g
s
b
et
w
ee
n
d
at
a-
d
ri
v
en

el
em

en
ts

o
f
S
W
E
L
an
d
th
e
la
n
g
u
ag
es

S
C
U
F
L
,
M
o
M
L
an
d
C
W
L

S
W
E
L

S
C
U
F
L

M
o
M
L

C
W
L

S
o
ap
C
li
en
t

A
ct
iv
it
y

[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
w
sd
l.
W
S
D
L
A
ct
iv
it
y
’’
]

E
n
ti
ty

[c
la
ss
=

‘‘
o
rg
.s
d
m
.s
p
a.
W
S
W
it
h
C
o
m
p
le
x
T
y
p
es
’’
]

-

R
es
tC
li
en
t

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
re
st
.R
E
S
T
A
ct
iv
it
y
’’
]

E
n
ti
ty

[c
la
ss
=

‘‘
o
rg
.k
ep
le
r.
ac
to
r.
re
st
.R
E
S
T
S
er
v
ic
e’
’’
]

-

C
li
P
ro
ce
ss

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
ex
te
rn
al
to
o
l.

E
x
te
rn
al
T
o
o
lA
ct
iv
it
y
’’
]

E
n
ti
ty

[c
la
ss
=
‘‘
p
to
le
m
y
.a
ct
o
r.
li
b
.E
x
ec
’’
]

C
o
m
m
an
d
L
in
eT

o
o
l

Ja
v
aP
ro
ce
ss

–
E
n
ti
ty

–

E
m
b
ed
d
ed
D
is
p
la
y

–
E
n
ti
ty
[c
la
ss
=
‘‘
p
to
le
m
y
.a
ct
o
r.
li
b
.g
u
i.
D
is
p
la
y
’’
]

–

W
o
rk
fl
o
w

W
o
rk
fl
o
w

W
o
rk
fl
o
w

P
o
rt

P
o
rt

P
o
rt

(1
)

W
o
rk
fl
o
w
S
te
p
In
p
u
tP
ar
am

et
er

(2
) W
o
rk
fl
o
w
S
te
p
O
u
tp
u
tP
ar
am

et
er

(3
)
In
p
u
tT
o
o
lP
ar
am

et
er

(4
)
O
u
tp
u
tT
o
o
lP
ar
am

et
er

R
ec
o
rd

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
st
ri
n
g
co
n
st
an
t.

S
tr
in
g
C
o
n
st
an
tA
ct
iv
it
y
’’
]

E
n
ti
ty
[c
la
ss
=
‘‘
p
to
le
m
y
.a
ct
o
r.
li
b
.S
tr
in
g
C
o
n
st
’’
]

–

F
il
e

–
E
n
ti
ty
[c
la
ss
=
‘‘
o
rg
.g
eo
n
.B
in
ar
y
F
il
eR

ea
d
er
’’
]

–

S
tr
ea
m

–
–

–

D
at
ab
as
e

–
E
n
ti
ty
[c
la
ss
=
‘‘
o
rg
.g
eo
n
.D
at
ab
as
eQ

u
er
y
’’
]

–

D
at
al
in
e

D
at
al
in
k

R
el
at
io
n

(1
)

W
o
rk
fl
o
w
S
te
p
In
p
u
tP
ar
am

et
er

(2
)
O
u
tp
u
tT
o
o
lP
ar
am

et
er

P
ro
ce
ss
$
S
C
U
F
L
B
ea
n
S
h
el
l

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
b
ea
n
sh
el
l.

B
ea
n
sh
el
lA
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
S
C
U
F
L
R
sh
el
l

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
rs
h
el
l.
R
sh
el
lA
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
S
C
U
F
L
In
te
ra
ct
io
n

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
in
te
ra
ct
io
n
.

In
te
ra
ct
io
n
A
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
S
C
U
F
L
X
P
at
h

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
x
p
at
h
.X
P
at
h
A
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
S
C
U
F
L
S
p
re
ad
sh
ee
tI
m
p
o
rt

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
sp
re
ad
sh
ee
t.

S
p
re
ad
sh
ee
tI
m
p
o
rt
A
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
S
C
U
F
L
L
o
ca
lw
o
rk
er

A
ct
iv
it
y
[c
la
ss
=
‘‘
n
et
.s
f.
ta
v
er
n
a.
t2
.a
ct
iv
it
ie
s.
lo
ca
lw
o
rk
er
.

L
o
ca
lw
o
rk
er
A
ct
iv
it
y
’’
]

N
/A

N
/A

P
ro
ce
ss
$
C
W
L
E
x
p
re
ss
io
n
T
o
o
l

N
/A

N
/A

E
x
p
re
ss
io
n
T
o
o
l

L
an
g
u
ag
e
el
em

en
ts
n
o
t
co
v
er
ed

b
y
o
th
er

la
n
g
u
ag
es

ar
e
in
d
ic
at
ed

b
y
a
d
as
h
.
‘‘
N
/A
’’
im

p
li
es

th
at
th
e
el
em

en
t
sh
o
u
ld

n
o
t
b
e
co
n
si
d
er
ed

in
th
e
ca
lc
u
la
ti
o
n
o
f
th
e
d
if
fe
re
n
t
m
et
ri
cs
,
si
n
ce

it
is
b
as
ed

o
n
an

ex
te
n
d
ed

el
em

en
t

123

156 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

one (1:1), one-to-many (1:N) when one SWEL element can

be mapped to several elements of the target language.

Alternatively, these mappings can be many-to-one (N:1)

when several SWEL elements can be mapped to the same

target language element.

7.3 Expert Evaluation

As detailed in Sect. 3.1, SWEL has undergone iterative

refinement through an incremental validation process,

using extensive feedback from practitioners and experts in

data science and DIWs. In this section, we present a

human-based survey evaluation to assess the adequacy of

SWEL as an intermediate model in the interoperability

process between the Taverna and Kepler tools. We also

analyze the suitability and comprehensibility of SWEL as a

representation language for DIWs. For this purpose, a team

of eleven experts, not involved in the prior design, devel-

opment, and evaluation of SWEL, was selected. Five of the

experts work in academia in diverse areas of data science,

while six are data scientists in industry. Both senior and

junior profiles have been considered in both cases. These

external experts have extensive knowledge of DI applica-

tions and were, therefore, well-suited to provide additional

insights. Note that these specialists may not necessarily be

experts in the DI tools that are the subject of this experi-

ment, although they are familiar with the use of WfMSs.

To complete the experiment, the experts used the

transformation tool presented in the case study in Sect. 6

and responded to a questionnaire on common criteria in

tool evaluation (Mijac 2019). The criteria chosen to for-

mulate the questions referred to the efficacy, usefulness,

accuracy, effectiveness, validity, and completeness of the

workflow conversion process between Taverna and Kepler.

They also analyzed the practicality and comprehensibility

of the SWEL model generated by the tool. The package

containing the Q &A of the experiment is available from

the companion Website (Salado-Cid et al. 2023).

The experiment consisted of three exercises: (1) a first

training transformation on a given workflow; (2) a trans-

formation of a workflow chosen by the expert and down-

loaded from a public repository; and (3) an analysis of the

adequacy and the comprehensibility of SWEL as a repre-

sentation model for DIWs, as well as its accuracy in

incorporating the concepts of the source (Taverna) and

target (Kepler) models. Each expert responded to a total of

18 questions, rated on a scale of 1 (lowest) to 10 (highest).

According to the survey results, the experts gave exer-

cise 2 (workflow transformation) an average valuation of

9.38. Therefore, we consider that the tool solves the

problem for which it has been formulated. We can also

conclude that the models by which it was inspired,

including the partial models extracted from SCUFL and

MoML, as well as those from SWEL, are suitable in this

particular scenario. With regard to exercise 3, it should be

noted that they are not experts in MDE. As a result, it was

challenging for them to differentiate the unfriendly XML

notation necessary for serialization and reading21 from the

abstraction of the metamodel. Nevertheless, the experts

gave an average valuation of 7.86 for comprehensibility

and practicability of the morphological level compared to

8.68 for the syntactic level. This difference is consistent

with the level of abstraction of the information represented.

In fact, we speculate that the morphological level was

expected to score lower as it is usually transparent to the

data scientist, and the workflow enactment subsystems

handle it. Finally, an average valuation of 8.73 supports the

relevance of including meta-information in the DIW itself.

Both the questionnaire and the disaggregated data obtained

from the survey experiment can be found at the companion

Website (Salado-Cid et al. 2023).

7.4 Threats to Validity

According to Wohlin et al. (2012), there are four basic

types of validity threats that can affect the validity of our

study. We cover each of these in the following.

External Validity These threats are related to the extent

to which it is possible to generalize the findings and con-

clusions of this study. First, the comparison evaluation has

been conducted with a selected set of DIW languages,

which we have considered to represent the most important

ones. However, there might be others, or new ones may

appear, that may challenge our results especially regarding

the conciseness, completeness and expressiveness of

SWEL. Its extension points were defined precisely to

address this issue, but we cannot foresee all the features

that might appear in the future. Anyway, SWEL could

evolve as new languages or important features appear.

Second, the specialists from the industry who confirmed

the validity of SWEL during its design and development

were employed within the same corporation, which may

result in biased views towards their needs and application

domain. To validate practicability of SWEL as an inter-

operability tool, and the suitability and comprehensibility

of the proposed metamodel, a survey experiment was

conducted with other eleven experts from up to five dif-

ferent corporations, as well as academia. However, further

experiments with a larger sample of users and industry

specialists are planned as future work.

Internal Validity These threats are related to the factors

that could affect the results of our evaluation. All

21 Intermediate SWEL models were generated using the standard

format XMI (XML Metadata Interchange): http://www.omg.org/spec/

XMI/ (accessed 18 April 2023).

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 157

http://www.omg.org/spec/XMI/
http://www.omg.org/spec/XMI/

developed tools and software artifacts (metamodels, model

transformations, etc.) have been double-checked for cor-

rectness and consistency to mitigate these threats. How-

ever, we would have to conduct further experiments to

reconfirm such claims. Also, to ensure that the semantics of

DIWs are preserved by the model transformations when

converting them across languages, this would be validated

formally. In practice, this is complex and would require an

extensive research work in a different direction.

Construct Validity These threats are concerned with the

relationship between theory and what is observed, and are

related with those issues that might arise during research

design. We have used a comparative framework between

our proposal and other DIW approaches. However, there

are two aspects that may pose a threat to the construct

validity. On the one hand, to the best of our knowledge,

SWEL is the only proposal formalized as a metamodel, but

it is being compared against non-metamodeled proposals.

For this purpose, we have partially metamodeled some

current technologies (SCUFL, MoML, CWL), using

reverse re-engineering. However, such metamodels might

not be accurate or complete. So far, our experiments con-

firm that they are appropriate and complete, but further

validations can be performed by conducting more inter-

operability experiments with all types of DIW applications,

which is planned future work. Moreover, SWEL is plat-

form-independent, so it does not focus on those features

specifically offered by any given tool. Again, the SWEL

extension mechanisms have been designed precisely to

address this issue. We think that these extensions will be

sufficient to cover all necessary features, but it may be the

case that a new feature or a certain property of a language

cannot be expressed with them. If this were the case, we

would have to evolve the language to take them into

account.

Conclusion Validity These threats are concerned with

the issues that affect the ability to draw correct conclusions

and whether the results can be repeated. First, to deal with

this threat we have made publicly available all the artifacts

developed and used in this work. Secondly, further

experiments with diverse external users and industry spe-

cialists can be carried out to evaluate SWEL. This would

confirm its properties in other environments, as well as

validating the suitability of SWEL in different situations.

8 Concluding Remarks

This paper presents SWEL, a DSML that provides an

extensible metamodel for the specification of scientific

workflows at different levels of abstraction, from the high-

level specification of the DI problem to the low-level

representation of the connected, executable graph. In

addition to the metamodel, its constraints and governing

rules, SWEL can be mapped to different concrete nota-

tions, both textual and graphical, allowing its adaptability

to diverse organizational contexts and tools. Both a JSON-

based validator and a graphical editor have been developed

using our proposal.

To the best of our knowledge, this is the only formally

metamodeled proposal so far. This offers a powerful

mechanism for defining model transformations that lever-

age the interoperability and adaptability of knowledge

assets. To this end, in this paper we have also validated the

proposal by presenting an exemplary application, a quan-

titative metric-based evaluation of SWEL against other

related proposals, as well as a survey evaluation with

external experts. The results show that, compared to other

languages, SWEL is a language suitable for defining DIWs

and enabling interoperability between tools. In addition,

the surveyed external experts have supported the benefits in

terms of comprehensibility and practicability that brings

the layered metamodel of SWEL.

We believe that MDE can live a second youth with the

expansion of no-code and low-code applications. In this

direction, we intend to explore SWEL as a future avenue of

research, to offer no-code technological solutions that are

interoperable and can be synchronized with other tech-

nology-dependent tools. In addition, MDE and SWEL

could facilitate the automated creation of domain-specific

tools, reusing imported knowledge assets from multiple

sources and repositories. Regarding our proposal, we plan

to conduct more experiments and validate SWEL with

additional case studies and the development of more

applications. This will include applications that require

deployment of specific technological ecosystems such as

cloud or grid platforms. This would expand the evaluation

of its extensiveness, expressiveness and interoperability

capabilities. We also plan to improve the SWEL toolkit,

including its usability by industrial practitioners for

developing DI applications, or the formal analysis of its

internal components by, e.g., checking that the model

transformations used by SWEL preserve the semantics of

the application semantics. Finally, we want to empirically

evaluate the usability of our proposal through further

experiments with more users and industry specialists, in

order to find possible improvements to our language that

can help broaden its use and value for the DI applications

community.

9 Additional Material

For the sake of transparency and replicability, we have

made available all the artifacts mentioned in the paper at

the SWEL companion Website (Salado-Cid et al. 2023): a

123

158 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

technical report with the formal specification of the SWEL

metamodel; the developed tools demonstrating its use,

namely the JSON validator and the graphical editor; the

validation artifacts described in Sect. 6, including the

metamodels extracted from SCUFL, MoML and CWL and

the model transformations used for the implementations of

the tools; and the responses from experts in the survey

experiment.

Acknowledgements Partially supported by the Spanish Ministry of

Science, grant PID2020-115832GB-I00 funded by MICIN/AEI/

10.13039/50110 0011033, and by the Spanish Government (FEDER/

Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación)

under projects PID2021-125527NB-I00 and TED2021-130523B-I00.

Funding Funding for open access publishing: Universidad de Cór-

doba/CBUA.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate

if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.

org/licenses/by/4.0/.

References

Alaasam ABA, Radchenko GI, Tchernykh AN (2021) Micro-work-

flows data stream processing model for industrial internet of

things. Supercomput Front Inn 8(1):82–98

Altintas I, Berkley C, Jaeger E, Jones M, Ludäscher B, Mock S (2004)

Kepler: an extensible system for design and execution of

scientific workflows. In: Proceedings of the international

conference on scientific and statistical database management

(SSDBM), vol 16, pp 423–424

Amin K, von Laszewski G, Hategan M, Zaluzec N, Hampton S, Rossi

A (2004) GridAnt: a client-controllable grid workflow system.

In: Proceedings of HICSS’04

Amstutz P, Crusoe MR, Tijanić N, Chapman B, Chilton J, Heuer M,

Kartashov A, Leehr D, Ménager H, Nedeljkovich M, Scales M,

Soiland-Reyes S, Stojanovic L (2020) Common workflow

language description, v1.2. https://w3id.org/cwl/v1.2/

Anjorin A, Buchmann T, Westfechtel B, Diskin Z, Ko HS, Eramo R,

Hinkel G, Samimi-Dehkordi L, Zündorf A (2020) Benchmarking

bidirectional transformations: theory, implementation, applica-

tion, and assessment. Softw Syst Model 19(3):647–691

Atkinson M, Gesing S, Montagnat J, Taylor I (2017) Scientific

workflows: past, present and future. Futur Gener Comput Syst

75:216–227

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: a fast

dynamic language for technical computing. CoRR arXiv: 1209.

5145

Boubeta-Puig J, Ortiz G, Medina-Bulo I (2015) ModeL4CEP:

graphical domain-specific modeling languages for CEP domains

and event patterns. Expert Syst Appl 42(21):8095–8110

Brambilla M, Cabot J, Wimmer M (2017) Model driven software

engineering in practice, 2nd edn. Morgan and Claypool,

Williston

Brunelière H, Cabot J, Dupé G, Madiot F (2014) Modisco: a model

driven reverse engineering framework. Inf Syst Technol

56(8):1012–1032

Bucchiarone A, Cicchetti A, Ciccozzi F, Pierantonio A (2021)

Domain-specific languages in practice: with JetBrains MPS.

Springer International, New York

Buhl HU, Röglinger M, Moser F, Heidemann J (2013) Big data. Bus

Inf Syst Eng 5(2):65–69

Burgueño L, Wimmer M, Vallecillo A (2016) A linda-based platform

for the parallel execution of out-place model transformations. Inf

Syst Technol 79:17–35

Campos C, Grangel R (2018) A domain-specific modelling language

for corporate social responsibility (CSR). Comput Ind 97:97–110

Chen CP, Zhang CY (2014) Data-intensive applications, challenges,

techniques and technologies: a survey on big data. Inf Sci

275(Supplement C):314–347

Coleman T, Casanova H, Pottier L, Kaushik M, Deelman E, Ferreira

da Silva R (2022) WfCommons: a framework for enabling

scientific workflow research and development. Futur Gener

Comput Syst 128:16–27

Curcin V, Ghanem M (2008) Scientific workflow systems—can one

size fit all? In: 2008 Cairo international biomedical engineering

conference (CIBEC’08), pp 1–9

de la Garza L et al (2016) From the desktop to the grid: scalable

bioinformatics via workflow conversion. BMC Bioinform

17:127

Deelman E, Gannon D, Shields M, Taylor I (2009) Workflows and

e-science: an overview of workflow system features and

capabilities. Futur Gener Comput Syst 25(5):528–540

Deelman E et al (2015) Pegasus, a workflow management system for

science automation. Futur Gener Comput Syst 46:17–35

Demchenko Y, Grosso P, de Laat C, Membrey P (2013) Addressing

big data issues in scientific data infrastructure. In: Proceedings of

CTS’13. IEEE, pp 48–55

Dresch A, Lacerda D, Valle Antunes Jr JA (2015) Design science

research: a method for science and technology advancement.

Springer, Cham

Fahringer T, Pllana S, Villazon A (2004) AGWL: abstract grid

workflow language. In: International conference on computa-

tional science. Springer, Heidelberg, pp 42–49

Fahringer T, Prodan R, Duan R, Hofer J, Nadeem F, Nerieri F,

Podlipnig S, Qin J, Siddiqui M, Truong HL, Villazon A,

Wieczorek M (2007) ASKALON: a development and grid

computing environment for scientific workflows. Springer,

Heidelberg, pp 450–471

Ferreira da Silva R, Filgueira R, Pietri I, Jiang M, Sakellariou R,

Deelman E (2017) A characterization of workflow management

systems for extreme-scale applications. Futur Gener Comput

Syst 75:228–238

Fillbrunn A, Dietz C, Pfeuffer J, Rahn R, Landrum GA, Berthold MR

(2017) Knime for reproducible cross-domain analysis of life

science data. J Biotechnol 261:149–156

Fowler M (2010) Domain specific languages, 1st edn. Addison-

Wesley, London

Garijo D, Alper P, Belhajjame K, Corcho O, Gil Y, Goble C (2014)

Common motifs in scientific workflows: an empirical analysis.

Futur Gener Comput Syst 36:338–351

Garijo D, Gil Y, Corcho O (2017) Abstract, link, publish, exploit: an
end to end framework for workflow sharing. Futur Gener

Comput Syst 75:271–283

123

R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024) 159

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://w3id.org/cwl/v1.2/
http://arxiv.org/abs/1209.5145
http://arxiv.org/abs/1209.5145

Gerpheide CM, Schiffelers RRH, Serebrenik A (2016) Assessing and

improving quality of QVTo model transformations. Softw Qual J

24(3):797–834

Guizzardi G, Ferreira Pires L, van Sinderen M (2005) An ontology-

based approach for evaluating the domain appropriateness and

comprehensibility appropriateness of modeling languages. In:

Proceedings of MODELS’05. Springer, Heidelberg, pp 691–705

Hamdaqa M, Met LAP, Qasse I (2022) iContractML 2.0: a domain-

specific language for modeling and deploying smart contracts

onto multiple blockchain platforms. Inf Softw Technol 144

Hevner AR, March ST, Park J, Ram S (2004) Design science in

information systems research. MIS Q 28:75–105

Johannesson P, Perjons E (2014) An introduction to design science.

Springer, Cham

Kazman R, Woods SS, Carrière SJ (1998) Requirements for

integrating software architecture and reengineering models:

CORUM II. In: Proceedings of WCRE’98, pp 154–163

Kelly S, Tolvanen J (2021) Collaborative modelling and metamod-

elling with MetaEdit?. In: Proceedings of MODELS’21 com-

panion. IEEE, pp 27–34

Kohl M (2015) Introduction to statistical data analysis with R. Ventus

Publishing ApS, London

Kranjc J, Smailovic J, Podpecan V, Grcar M, Znidarsic M, Lavrac N

(2015) Active learning for sentiment analysis on data streams:

methodology and workflow implementation in the clowdflows

platform. Inf Process Manag 51(2):187–203

Ludäscher B, Weske M, McPhillips T, Bowers S (2009) Scientific

workflows: business as usual? Springer, Heidelberg, pp 31–47

Mijac M (2019) Evaluation of design science instantiation artifacts in

software engineering research. In: Proceedings of CECIIS’19.

Springer, Heidelberg, pp 313–321

Montagnat J, Glatard T, Lingrand D (2006) Data composition patterns

in service-based workflows. In: 2006 workshop on workflows in

support of large-scale science (WORKS’06), pp 1–10

Mullis T, Liu M, Kalyanaraman A, Vaughan J, Tague C, Adam J

(2014) Design and implementation of Kepler workflows for

BioEarth. Procedia Comput Sci 29:1722–1732

Oinn T, Addis M, Ferris J, Marvin D, Senger M, Greenwood M,

Carver T, Glover K, Pocock M, Wipat A, Li P (2004) Taverna: a

tool for the composition and enactment of bioinformatics

workflows. Bioinformatics 20(17):3045–3054

Parejo JA (2013) Moses: a metaheuristic optimization software

ecosystem. applications to the automated analysis of software

product lines and service-based applications. Ph.D. thesis,

University of Sevilla, Sevilla

Plankensteiner K, Prodan R, Janetschek M, Fahringer T, Montagnat J,

Rogers D, Harvey I, Taylor I, Balaskó Á, Kacsuk P (2013) Fine-

grain interoperability of scientific workflows in distributed

computing infrastructures. J Grid Comput 11(3):429–455

Roure DD, Goble C, Bhagat J, Cruickshank D, Goderis A,

Michaelides D, Newman D (2008) myExperiment: defining the

social virtual research environment. In: 4th IEEE international

conference on e-science. IEEE Press, pp 182–189

Ruiz J et al (2014) Astrotaverna—building workflows with virtual

observatory services. Astron Comput 7–8:3–11

Salado-Cid R, Ramı́rez A, Romero JR (2018) On the need of opening

the big data landscape to everyone: challenges and new trends.

Springer, Heidelberg, pp 675–687

Salado-Cid R, Vallecillo A, Munir K, Romero JR (2023) SWEL

companion website. https://doi.org/10.5281/zenodo.8085894

Schlauderer S, Overhage S (2018) BoSDL: an approach to describe

the business logic of software services in domain-specific terms.

Bus Inf Syst Eng 60(5):393–413

Sethi RJ, Gil Y (2017) Scientific workflows in data analysis: bridging

expertise across multiple domains. Futur Generat Comput Syst

75:256–270

Szalay A, Gray J (2006) Science in an exponential world. Nature

440(2020 Computing):413–414

Tera Allas JB, Chui M, Dahlström P, Hazan E, Henke N,

Ramaswamy S, Trench M (2018) Artificial intelligence is

getting ready for business, but are businesses ready for AI? In:

Analytics comes of age, McKinsey Analytics, pp 18–34

van der Aalst W, Damiani E (2015) Processes meet big data:

connecting data science with process science. IEEE Transact

Serv Comput 8(6):810–819

vom Brocke J, Baier MS, Schmiedel T, Stelzl K, Röglinger M,

Wehking C (2021) Context-aware business process management.

Bus Inf Syst Eng 63(5):533–550

WFMC (1999) Terminology & glossary. Technical Report, WFMC-

TC-1011, Workflow Management Coalition

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A

(2012) Experimentation in software engineering. Springer,

Heidelberg

Yu J, Buyya R (2006) A taxonomy of workflow management systems

for grid computing. J Grid Comput 3(3):171–200

Yu J, Buyya R (2009) Gridbus workflow enactment engine. CRC

Press, Cambridge, pp 119–146

Zhao Y, Hategan M, Clifford B, Foster IT, von Laszewski G,

Nefedova V, Raicu I, Stef-Praun T, Wilde M (2007) Swift: fast,
reliable, loosely coupled parallel computation. In: Proceedings

of SCW’07. IEEE Computer Society, pp 199–206

123

160 R. Salado-Cid et al.: SWEL: A Domain-Specific Language for Modeling Data-Intensive, Bus Inf Syst Eng 66(2):137–160 (2024)

https://doi.org/10.5281/zenodo.8085894

	SWEL: A Domain-Specific Language for Modeling Data-Intensive Workflows
	Abstract
	Introduction
	State of the Art
	Domain-Specific Modeling Languages
	Data-Intensive Workflows
	Data-Intensive Workflow Languages

	Research Methodology
	Design Science Research
	Problem Motivation and Explanation
	Problem Statement
	Identification of Core Elements
	Identification of High-Level Tasks
	Identification of Extension Points
	Identification of Elements Describing Scientific Experiments

	Design Requirements

	Design of SWEL
	Overall Structure of SWEL
	Morphological Layer
	Syntactic Layer
	Specification Layer

	Tool Support
	Model-Based WfMS for Multiple DI Domains
	JSON Concrete Syntax Validator

	Demonstration of SWEL
	Evaluation of SWEL
	Requirements Validation
	Quantitative Evaluation
	Expert Evaluation
	Threats to Validity

	Concluding Remarks
	Additional Material
	Funding
	References

