
Vol.:(0123456789)

The Review of Socionetwork Strategies (2023) 17:319–340
https://doi.org/10.1007/s12626-023-00149-9

1 3

ARTICLE

Modeling a GDPR Compliant Data Wallet Application
in Prova and AspectOWL

Theodoros Mitsikas1,2 · Ralph Schäfermeier3 · Adrian Paschke2,4

Received: 4 March 2023 / Accepted: 1 August 2023 / Published online: 26 September 2023
© The Author(s) 2023

Abstract
We present a GDPR-compliant data privacy and access use case of a distributed data
wallet and we explore its modeling using two options, AspectOWL and Prova. This
use case requires a representation capable of expressing the dynamicity and inter-
action between parties. While both approaches provide the expressiveness of non-
monotonic states and fluent state transitions, their scope and semantics are vastly
different. AspectOWL is a monotonic contextualized ontology language, able to
represent dynamic state transitions and knowledge retention by wrapping parts of
the ontology in isolated contexts, called aspects, while Prova can handle state transi-
tions at runtime using non-monotonic state transition semantics. We present the two
implementations and we discuss the similarities, advantages, and differences of the
two approaches.

Keywords GDPR · Knowledge Representation · Prova · AspectOWL · Legal
Reasoning

Mathematics Subject Classification 68T30 · 68T42 · 68T27

 * Theodoros Mitsikas
 mitsikas@central.ntua.gr

 Ralph Schäfermeier
 ralph.schafermeier@gmail.com

 Adrian Paschke
 adrian.paschke@fokus.fraunhofer.de

1 National Technical University of Athens, Athens, Greece
2 Institut für Angewandte Informatik, Leipzig, Germany
3 Leipzig University, Leipzig, Germany
4 Fraunhofer FOKUS, Berlin, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12626-023-00149-9&domain=pdf
http://orcid.org/0000-0002-7570-3603
http://orcid.org/0000-0002-4349-6726
http://orcid.org/0000-0003-3156-9040

320 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

1 Introduction

In the wake of the introduction of the European GDPR (General Data Protection
Regulation) in 2016 and its effective enforcement since 2018 businesses world-
wide were obliged to review and adapt their data privacy policies if they desired
to continue offering their online services to EU citizens [6]. The complexity of
regulatory works such as the GDPR and the large amount of parties affected, has
led to an increased interest in research on the problem of automatic legal and
ethical compliance checking. The foundation of such systems is an adequate for-
malization and Knowledge Representation (KR) of the normative rules under
consideration. This paper studies and compares two different (rule-based and
ontology-based) KR approaches, in a concrete application use case for GDPR.

A key GDPR concept is the concept of consent, meaning that the data control-
ler, before initiating any data processing, is required to make an informed consent
request to the user (data subject). The user is then free either to provide consent
or to deny and disallow any data processing [6, Article 6]. Moreover, the user has
the rights to receive the collected personal data in a machine-readable format, and
to transmit them to another controller (right to data portability) [6, Article 20].

Personal data wallet infrastructures are of particular interest in this context as
their principle design goal is to provide a privacy and data security aware envi-
ronment for exchanging personal data. Adhering to the above principles, efforts
and projects such as W3C Solid [12] aim to give users more control over their
personal data. Solid uses Semantic Web technologies to decouple user data
from the applications that use them by utilizing data wallets, in which users can
store their data, while keeping the data under the user’s ownership. This enables
users to easily switch between applications that use the same data, and to switch
between storage providers that host them, while having access control over them.

A typical architecture of a data wallet ecosystem such as Solid has different
components, each having a specific role: an Identity Provider (IDP) manages the
user identity information and also provides authentication services, a Data Wallet
Provider (DWP) stores user data, and Relaying Parties are applications that can
access and process the data. Decoupling user data from the applications requires
data to be stored in a structured way, compatible across the DWPs, and provides
the user with control over their data, as consent must provided to allow applica-
tions to access and process the data [12].

To this end, we present a set of related use cases addressing a generic distrib-
uted data wallet scenario, with consent being a central concept both for access
control (sharing a picture to other users) and for personal data processing (using
personal data for a personalized Web search). We provide two KR implementa-
tions using two formalisms that are both sufficiently expressive: AspectOWL [23],
a version of OWL extended by means for expressing context-sensitive knowledge,
which allows the representation of dynamic and deontic aspects of the domain,
and the logic-programming based rule engine Prova [10], which supports non-
monotonic scoped reasoning with constructive modular views on the Knowledge
Base (KB) using a meta-data annotation language and guard conditions.

321

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

The main contribution of this work consists in two proof-of-concept implemen-
tations that take into account the dynamicity of the state of affairs and transitions
between different states (for example, giving and subsequently retracting consent to
process data) with the principal research question being to what extent the selected
implementation languages AspectOWL and Prova are adequate for modeling the
scenario, and what are the advantages and disadvantages.

The remainder of this paper is organized as follows. Section 2 discusses the
related work. The use cases are described in Sect. 3. Section 4 introduces the lan-
guages Prova and AspectOWL, while Sect. 5 discusses the implementation in
AspectOWL and Prova. Section 6 evaluates and compares the two approaches and
finally, Sect. 7 concludes the paper and proposes future work.

2 Related Work

Palmirani et al. [14] introduce PrOnto, an ontology modeling the core GDPR con-
cepts such as data types and documents, agents and roles, processing purposes, legal
bases, processing operations, and deontic operations or modeling rights and duties.
By integrating deontic logic, is allows for legal reasoning. Another GDPR-related
ontology, emphasizing on consent is presented by Pandit et al. [15]. In addition to
an OWL2-DL ontology for representation of consent and its associated information
such as provenance, it also presents the methodology used in the creation and vali-
dation of the ontology as well as an example use-case demonstrating its applicabil-
ity. Kurteva et al. [11] provide a survey of existing formal accounts (in terms of
representational formalism) of the concept of consent. The survey includes PrOnto,
and we opted for re-using PrOnto’s conceptualization of consent in our work since
it is the most comprehensive in terms of how the concept is related to other GDPR-
related concepts. In [2], data usage policies, the consent of data subjects, and
selected fragments of the GDPR are encoded in a fragment of OWL2 called PL
(policy language); compliance checking and policy validation are reduced to sub-
sumption checking and concept consistency checking. It proposes a tradeoff between
the expressiveness requirements on PL posed by the modeling of the GDPR and its
scalability requirements that dictate real-time compliance checking, achieved by a
specialized reasoner.

Robaldo et al. [21] model the GDPR using LegalRuleML [13]. It is based on [14],
and extends it by adding additional constraints in the form of if-then rules formal-
ized in reified Input/Output logic [20], referring either to first order logic implica-
tions or to deontic statements. Robaldo [19] provides an executable implementation
of the previous work by translating the rules into SHACL constraints.

A common characteristic of all abovementioned work is that it focuses on compli-
ance checking in static situations and does not emphasize on modeling of a chang-
ing environment or transitions on the state of affairs, for example giving and revok-
ing consent. Such a state transition is handled from an external resource which then
resorts to the above systems for the compliance checking.

De Montety et al. [3] present a model of a core subset of the GDPR in Prolog
and propose an architecture for a deontic-based compliance checker using rules that

322 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

model both technique-oriented levels (modeled as state machines) and legal-ori-
ented levels (modeled as property definitions). While their work is similar to ours,
our work differentiates itself from it by providing two running proof-of-concept
implementations.

Another work that also considers dynamic state transitions is De Vos et al. [4],
the authors of which model the GDPR aspect using an ODRL template and then
map it to answer set programming for (closed-world) semantics and reasoning. State
transitions are represented in the form of fluents using the domain-specific action
language InstAL.

3 Use Cases

In this section, we describe two data wallet use cases in terms of interaction
sequences and data exchange between the different parties involved. The use cases
revolve around data wallet owners that share personal data using relaying parties
that provide specialized applications (a search application and a picture sharing
application).

Use Case 1: Personalized Search (Fig. 1)

• Alice opens an account with an Identity Provider IdPAlice . She provides consent
for the IdP to store her OpenID and her login credentials for the purpose of con-
firming her identity towards third parties.

• Now Alice opens an account with a Data Wallet Provider DWPAlice . She pro-
vides consent for the DWP to store data she uploads to the DWP along with her
WebID document, which represents her online identity and contains a link to her
OpenID (managed by her IdP).

• Alice seeks some information at the third-party app SearchApp (relying party,
RP). She launches SearchApp and enters a search query. The app requests per-
sonal data about her previous search history from Alice’s personal data wallet for
personalization of the current search. The app also asks if Alice’s data might be
used for data analytics by SearchApp.

• Alice expresses her consent for both purposes by giving read permission for the
requested data to SearchApp (identified by its WebID). SearchApp reads and
stores the data for which Alice gave permission and derives an anonymized data
set for data analytics purposes.

• Later Alice withdraws her consent to use the data for data analytics and person-
alization purposes by revoking the read permission.

• SearchApp may continue to use the derived (anonymized) data, but must delete
the personal data it has obtained from Alice’s data wallet. SearchApp is now
denied to get updates from Alice’s search history data from her data wallet.

Use Case 2: Sharing Pictured via a Wallet-Enabled Sharing App (Fig. 2)

• Alice decides to share a personal picture with her friends Bob and Cesar using
PictureApp (relying party 2, RP2). She provides consent for PictureApp (identi-

323

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

fied by its WebID) to retrieve the picture from her data wallet and to make the
picture available to her friends Bob and Cesar, both identified by their WebIDs.

• Later, Alice withdraws her consent to share the picture with Cesar by revoking
read permission for Cesar. PictureApp is still permitted to store a copy of Alice’s
image, but has the obligation to deny Cesar access to the image.

4 AspectOWL and Prova Basics

This section provides an introduction into the two formalisms used for modeling the
use cases presented in Sect. 3, focusing on the features that enable the implementa-
tion of the use cases.

Alice

Alice

SearchApp

SearchApp

DWPAlice

DWPAlice

IdPAlice

IdPAlice

IdPDWP

IdPDWP

/createAccount?user=alice&pw=secret;
consent(credentials, store, service provision);
consent(OpenID, store, service provision)

OpenID

/createAccount?id=OpenID

/checkIdentity?id=OpenID

request credentials

/login?user=alice&pw=secret

auth_token

/confirmIdentity?id=OpenID&auth=auth_token

WebIDAlice

consent(WebIDAlice & personal, storage & transmission, service provision)

/store?data=<alice's personal data>

/search?query=text

request_consent(personal, collect & store, personalization)

consent(personal, collect & store, personalization)

request_consent(personal, derive, analytics)

consent(personal, derive, analytics)

/get/alice/data?requester=WebIDDWP

HTTP redirect to IdPDWP

request_authentication(DWP)

auth_token

/get/alice/data?auth=auth_token

personal

derive

analysis_result

revoke_consent(personal, storage, analytics & personalization)

delete(personal)

Fig. 1 First part of the use case: Alice creates an account with a DWP, provides consent for sharing per-
sonal data for the purposes of personalization and analysis, later revokes her consent for the purpose of
analysis

324 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

4.1 AspectOWL

AspectOWL [23] is an extension of the W3C OWL 2 ontology language1 which
permits the representation of contextualized knowledge by adding formal con-
text descriptions (called aspects) to TBox, RBox, and ABox axioms of an OWL
ontology.

AspectOWL is an instance of a general KR approach to the formalization of con-
text, named Aspect-Oriented Ontology Development (AOOD) [22]. AOOD, in turn,
is inspired by the Aspect-Oriented Programming paradigm [7], from which it lends
most of its basic concepts and accompanying terminology.

Applied to KR formalisms, aspects can be used to convey context (e.g., temporal
information) that restricts axiom validity. For this purpose, Aspect OWL introduces
a new axiom type called aspect assertion axiom. An aspect assertion is a binary
relation between an OWL axiom and an advice class expression (the context of the
axiom). Syntactically, aspect assertion axioms resemble annotation assertion axi-
oms. They differ from the latter in that they have a defined model theoretic seman-
tics, which makes use of combined interpretations, which we call a SROIQKripke
interpretation.

Definition 1 A SROIQKripke interpretation is a tuple J ∶= (W,R, L, ⋅J,Δ, (⋅Iw)w∈W)
with W being a nonempty set, called possible worlds, and L a Kripke interpretation,

Alice

Alice

DWPAlice

DWPAlice

IdPCesar

IdPCesar

PictureApp

PictureApp

Cesar

Cesar

store?data=picture;
consent(picture & WebIDAlice, storage & transmission, service provision)

consent(picture & WebIDAlice, read(Bob, Cesar), service provision)

/get/alice/picture

HTTP redirect to IdP_Cesar

request_authentication?webId=cesar&rp=PictureApp)

auth_token

/get/alice/picture?auth=auth_token

picture

picture

revoke_consent(picture, read(Cesar), service provision)

/get/alice/picture?auth=auth_token

/get/alice/picture?auth=auth_token

access denied

access denied

Fig. 2 Second part of the use case: Alice shares a picture from her data wallet with Bob and Cesar. Cesar
accesses her picture using a wallet-enabled sharing app. Later, Alice revokes permission from Cesar to
access her picture. He and the sharing app can no longer access the picture

1 https:// www. w3. org/ TR/ owl2- overv iew/.

https://www.w3.org/TR/owl2-overview/

325

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

assigning truth values to propositional symbols in each world w ∈ W . For every
A ⊆ W , IA is a DL interpretation.

The semantics of an aspect of an axiom is then defined as follows:

Definition 2 Let J ∶= (W,R, L, ⋅J,Δ, (⋅Iw)w∈W) be a possible-world DL inter-
pretation. We interpret an aspect under which an axiom � holds as follows:
(𝗁𝖺𝗌𝖠𝗌𝗉𝖾𝖼𝗍(𝛼,A))J → AJ ⊆ CJ ∶= {w ∈ W ∣ Iw ⊧ 𝛼} . Because of the correspond-
ence between Description Logics and Modal Logics [24] we can set W = CJ , such
that on the semantic level, each individual corresponds to a possible world. Further-
more, we set L such that L(�)J ∶= AJ .

The modal part(s) of the multi-dimensional interpretation may be used to repre-
sent context of different modalities. For example, it permits to put an OWL axiom
into a temporal or a deontic context (meaning that the axiom is valid only at a par-
ticular time or that the proposition represented by the axiom is, for example, obliga-
tory). The kind of modality can be determined by the choosing the appropriate
modal logic, which in turn is determined by the presence or absence of modal axi-
oms. These in turn can be selected by altering the characteristics of the accessibility
relation [1].

For a full description of the features and semantics of AspectOWL 2, see Schäfer-
meier and Paschke [23].2

4.2 Prova

Prova is both a (Semantic) Web rule language and a distributed (Semantic) Web rule
engine. It supports reaction rule based workflows, event processing, and reactive
agent programming. It integrates Java scripting with derivation and reaction rules,
and message exchange with various communication frameworks [8, 10, 16].

Syntactically, Prova builds upon the ISO Prolog syntax and extends it, nota-
bly with the integration of Java objects, typed variables, F-Logic-style slots, and
SPARQL and SQL queries [16]. Slotted terms in Prova are implemented using the
arrow expression syntax ‘->’ as in RIF and RuleML, and can be used as sole argu-
ments of predicates. They correspond to a Java HashMap, with the keys limited to
Stings [9, 16].

Semantically, Prova provides the expressiveness of serial Horn logic with a linear
resolution for extended logic programs (SLE resolution) [17], extending the linear
SLDNF resolution with goal memoization and loop prevention. Negation as failure
support in the rule body can be added to a KB by implementing it using the cut-fail
test as follows:

2 For an overview over the complete abstract syntax of Aspect OWL 2, see http:// www. aspec towl. xyz/
syntax/.

http://www.aspectowl.xyz/syntax/
http://www.aspectowl.xyz/syntax/

326 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

Notice the Prova syntax for fail that requires parentheses, as well as the built-
in meta-predicate derive that allows to define (sub) goals dynamically with the
predicate symbol unknown until run-time [16].

Prova’s reactive agents are instances of a running rulebases that include mes-
sage passing primitives. These built-in primitives are the predicates sendMsg/5,
rcvMsg/5, as well as their variants sendMsgSync/5, rcvMult/5. The posi-
tion-based arguments for the above predicates are [9]: (1) XID — conversation id of
the message, (2) Protocol — name of the message passing protocol, (3) Destination
or Sender — the agent name of the receiver/sender, (4) Performative — the message
type characterizing the meaning of the message, and (5) Payload — a Prova list con-
taining the actual content of the message.

Prova defines the Java interface ProvaService and its default implementa-
tion ProvaServiceImpl that allows for a runner Java class — depending on the
modularization (mapping each agent to a separate bundle vs. multiple agents in a
bundle) — to embed one or more agents communicating with each other via mes-
saging. The fundamental method is the method send, as follows:

send (St r ing xid , S t r ing de s t i na t i on , S t r ing sender ,
S t r ing per format ive , Object payload , EPService c a l l b a ck)

The arguments have a direct correspondence with the message passing primi-
tives, while EPService is a superclass of the ProvaService interface. Also,
the message passing protocol is selected automatically.

Prova implements an inference extension called literal guards, specified using
brackets. Using guards, we can ensure that during unification, even if the target
rule matches the source literal, further evaluation is delayed unless a guard condi-
tion evaluates to true. Guards can include arbitrary lists of Prova literals including
Java calls, arithmetic expressions, relations, and even the cut operator. Prova guards
play even a more important role in message and event processing as they allow the
received messages to be examined before they are irrevocably accepted. The guards
are tested right after pattern matching but before a message is fully accepted, so that
the net effect of the guard is to serve as an extension of pattern matching for literals
[9].

5 Implementation

This section discusses the implementation of the use cases presented in Sect. 3 using
the two formalisms introduced in Sect. 4. For AspectOWL, we emphasize the con-
ceptualization of the legal domain and the representation of deontic context and state

327

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

transitions following events with a temporal extension, while for Prova, we empha-
size the different parties’ interaction and the subsequent knowledge base updates.

5.1 AspectOWL

As OWL is a monotonic, declarative knowledge representation formalism it is suited
for representing the static aspects of the domain under consideration. With Aspec-
tOWL, however, it is also possible to represent dynamic behavior: Different states of
the universe may be represented by different contexts (in the form of OWL aspects)
in which certain axioms hold respectively. The transition between states may be rep-
resented in terms of events that happen at a certain point in time with the contexts
representing two subsequent states having a temporal extension either before or after
the point in time.

Furthermore, AspectOWL permits the application of deontic modalities to OWL
axioms. Since nesting of aspects is also allowed, it is possible to combine the two
and represent dynamic change of deontic modalities.

The goal of the implementation is to model the GDPR-related actions and states
of affair (and the transition between states) that can occur in our use cases. A signifi-
cant amount of GDPR-related concepts could be imported from the current publicly
available version of the PrOnto ontology [14], which was selected as it is, at the time
of writing this article, the most comprehensive formal representation of the GDPR
in OWL. PrOnto makes extensive use of ontology design patterns (ODPs), and so
did we whenever applicable. Links to ODPs used in this work are provided in the
footnotes.

Static Part
Data Data is the central concept of the GDPR domain around which everything

else revolves. We reuse the data concept hierarchy from the PrOnto ontology [14],
which makes Data a subclass of InformationObject, which in turn is a subclass of
the class FRBRWork from the Functional Requirements for Bibliographic Records
(FRBR) vocabulary.

1. ���� ⊑ �����������������

2. ����������������� ⊑ ��� ∶ �������3

3. ��� ∶ �������� ⊑ ��� ∶ �����

Ownership of Data The GDPR is concerned about usage of data by different
agents. Agents may either be human persons or non-human organizations.

4. ������(���)

5. �������(���������,���)

3 {akn: {Akoma Ntoso XML for parliamentary, legislative \& judiciary documents (OASIS)} FRBR:
{Functional Requirements for Bibliographic Records (IFLA)}}.

328 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

Agent Roles Agents, i.e., both persons and organizations, may assume roles as
defined by the GDPR, namely the role of the data subject, the data controller, and
the data processor. The same agent may assume several of these roles at the same
time, e.g., a company may be both data controller and data processor.

6. ∃�������.�����������(���)

7. ∃�������.����������(��������)

8. ∃�������.���������(��������)

Providing Consent The concept of concent is re-used from the PrOnto ontology,
which models Concent as as subclass of Contract. We additionally add a concept
of an action (ConcentAction) that creates such a contract. The action of creating a
consent contract involves two participants, namely the data subject (the entity that
gives consent) and the organization acting as the data controller/processor.

 9. ������������� ⊑ �� ∶ ������4

 10. �������������(��)

 11. ��� ∶ ��������(��, ��)5

 12. ��� ∶ ��������(��, ��),�������(��),������� ⊑ ��������

 13. ������������(��, ��)

 14. ��� ∶ ��������������������(��, ���)6

 15. ����������(��, ����)

Data Processing Purpose As mandated by the GDPR, user consent for the process-
ing of personal data must be explicitly given for a specific purpose and is only valid
for that particular purpose.

 16. ������� ⊑ ��� ∶ �����

 17. ����������� ⊑ �������

 18. ��������� ⊑ �������

 19. ������������ ⊑ �������

 20. �������������� ⊑ ��� ∶ �����������������

 21. ��������������(���������, �����������)

Data Processing Action For the conceptualization of data processing actions we re-
use the existing concept Action from the PrOnto ontology along with a number of
ontology design patterns. PrOnto defines actions as parts of workflows and relies
on the Basic Plan Execution design pattern for doing so. The latter distinguishes
between abstract workflow descriptions (which are abstract plans) and their concrete
executions. Consequently, a workflow description may have arbitrarily many work-
flow execution instantiations, which in turn may involve arbitrarily many actions.

4 http:// www. ontol ogyde signp atter ns. org/ cp/ owl/ taske xecut ion. owl.
5 http:// purl. org/ spar/ pwo/.
6 http:// www. ontol ogyde signp atter ns. org/ cp/ owl/ basic plane xecut ion. owl.

http://www.ontologydesignpatterns.org/cp/owl/taskexecution.owl
http://purl.org/spar/pwo/
http://www.ontologydesignpatterns.org/cp/owl/basicplanexecution.owl

329

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

 22. �������� ⊑ ��������������

 23. �������������� ⊑ ����� ���

 24. ����� ��� ⊑ ����

 25. ���� ⊑ �����������

 26. ����� ��� ⊑ ∀�������� �����.��� ∶ ����
�	�����7

A concrete execution of an abstract workflow is represented as follows:

 27. ��� ∶ ����� ������������ ⊑ ��� ∶ ������������

 28. ��� ∶ ����� ������������ ⊑ ��� ∶ ����������
���	����8

 29. ��� ∶ ������������� ⊑ ��� ∶ ���������

 30. ��� ∶ �������������������� ⊑ ��� ∶ ���������

And finally, an action is part of a workflow execution:

 31. ��� ∶ ����� ������������ ⊑ ∃��� ∶ �������������.(��� ∶ ����� ⊓ ∃�� ∶

������������.��� ∶ ����)

Dynamic Part
In this section, we demonstrate how dynamic processes (in terms of transitions

between different states of the universe over time, usually in succession of an event)
can be represented using AspectOWL. Providing consent for the processing of data
by a third party leads to a transition between two states; from one in which the pro-
cessing is not permitted to one where it is. It is possible to represent the two differ-
ent states using two OWL aspects, each representing one state. As the transition is
triggered by an event that happened at a certain point in time T_DC_1 the states
may also be represented as temporal contexts, the boundaries of both of which coin-
cide at T_DC_1.

 32. ������������ ⊑ ��� ∶ �������������� ⊓ ���� ∶ ������.{�_�_�}9

 33. ������������ ⊑ ��� ∶ �������������� ⊓ ({�_��_�} ⊔ ���� ∶ ����.{�_��_�})

As it is not possible for the same thing to be permitted and prohibited at the same
time, it must be made sure that the two aspects representing the states are disjoint.

 34. ������������ ⊓ ������������ ⊑ ��� ∶ �������

The action that is allowed in the state after providing consent is represented by a
simple object property assertion:

7 http:// www. ontol ogyde signp atter ns. org/ cp/ owl/ timei ndexe dsitu ation. owl.
8 http:// www. ontol ogyde signp atter ns. org/ cp/ owl/ situa tion. owl.
9 https:// ontol ogy. aspec towl. xyz/ tempo ral#.

http://www.ontologydesignpatterns.org/cp/owl/timeindexedsituation.owl
http://www.ontologydesignpatterns.org/cp/owl/situation.owl
https://ontology.aspectowl.xyz/temporal

330 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

 35. �������������(��, ����) , where
 36. ������������(��) ∧ ����(����)

However, the aspect cannot be directly applied to the above assertion axiom since
this would mean that starting from time point T_DC_1 the organization o1 pro-
cesses data, while what we want to represent is the fact that o1 is permitted to pro-
cess data starting at T_DC_1.

Representing the permission involves the creation of a further aspect of the type
deontic aspect.

 37. ���������������� ⊑ ��� ∶ ������������� ⊓ ∃��� ∶ ��������������.��� ∶ ������10

Application of the deontic aspect to the assertion and the nesting of the resulting
aspect assertion into the temporal aspect StateAspect2 yield the representation of
the statement that o1 is allowed to process data starting at T_DC_1.

 38. ������(������������,������(����������������, �������������(��, ����)))

To derive statements of this kind automatically when an assertion of consent is
encountered in the KB, the following SWRL rule can be employed.

-:
ProvideConsent(?ca), pwo:happened(?ca, ?t1),
actedBy(?ca, ?ds), pwo:produces(?ca, ?co),
Consent(?co), allowsAction(?co, ?ac),
bpe:actionHasParticipant(?ac, ?org),
hasSubject(?ac, ?data),
aspectswrl:createOPA(collectsDataFrom, ?org, ?ds, ?a),
aspectswrl:temporal(?a, time:after, ?t1, true),
aspectswrl:deontic(?perm, legallyAccepts, aod:Reality),
aspectswrl:nest(?perm, ?a)

It uses multiple AspectSWRL built-ins, namely, aspectswrl:createOPA,
which creates the OWL object property assertion and wraps it in an aspect bound
to variable ?a, and aspectswrl:temporal which creates the temporal aspect.
The first parameter binds the resulting aspect to ?a. The second parameter deter-
mines the accessibility relation used, in this case time:after. The third parameter
determines the time individual used in conjunction with the accessibility relation,
which we set to the value of the variable ?t1 and which corresponds to the object
in the pso:happened predicate. The fourth parameter is a Boolean determining
whether the individual should be included in the interval defining the aspect or
not. In this case, we want ?t1 to be included in the interval. aspectswrl:deontic
works similarly with the parameters being the variable to which the resulting aspect
should be bound, the accessibility relation, and the individual representing reality.

10 https:// ontol ogy. aspec towl. xyz/ deont ic#.

https://ontology.aspectowl.xyz/deontic

331

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

aspectswrl:nest takes two aspects as parameters and results in a nesting of the first
into the second.

When the user revokes their consent, an instance of the class RevokeConsent
is created, having the same properties as the ProvideConsent instance. A second
SWRL rule, similar to the one above, with the exception that it contains Revoke-
Consent instead of ProvideConsent in the antecedent and legallyProhibits instead
of legallyAccepts then creates the new temporal context in which the former
modality of permission of the data processing is replaced by a prohibition modality.
Figure 3 provides an overview of the ontology and the aspects created.11

5.2 Prova

The Prova implementation12 uses the message passing primitives mentioned in
Sect. 4. All parties are represented as agents that communicate via message passing.
All actions of the workflow are initiated by messages sent by the Java runner class to
the appropriate agent.

To demonstrate the Prova implementation, we focus on the first part of the use
case presented in Sect. 3, where Alice (represented by the agent alice) performs a
web search. The SearchApp (represented by the agent searchApp) requests con-
sent for personal data access and delivers a personalized search result if the con-
sent was provided, or a non-personalized result otherwise. Delivering a personalized
search also requires prior login.

Fig. 3 An excerpt from the RECOMP AspectOWL ontology

11 The ontology files are available at https:// github. com/ Ralph Bln/ recomp- use- cases.
12 The Prova implementation is available at https:// github. com/ tmitsi/ recomp- useca ses.

https://github.com/RalphBln/recomp-use-cases
https://github.com/tmitsi/recomp-usecases

332 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

The actions of alice are controlled from Java, essentially creating a script with the
messages that alice receives, which in turn are forwarded to other agents. Therefore,
initially we pass the following message to alice from Java:

payload . put (” agent ” , ” searchApp”) ;
payload . put (” opera t i on ” , ” search ”) ;
payload . put (”webID” , ” a l i c e . example . com”) ;
payload . put (”query” , ” t r a v e l s ugg e s t i on s ”) ;
payload . put (”dwp” , ”dwp”) ;
s e r v i c e . send (” xid ” , ” a l i c e ” , ” javaRunner” , ” r eque s t ” , payload , this) ;

 where payload is a Java HashMap, with its elements corresponding to the slot
names and fillers. These are the agent performing the search, the operation, alice’s
WebID, the search query, and the agent serving as a data wallet provider. The above
message is captured by the following inline reaction rule [9]:

This rule instructs that upon receiving a message of this pattern, alice will send a
message to the appropriate agent (e.g., to the agent searchApp) requesting a specific
operation (e.g., search). The searchApp side is implemented using Prova guards.
The message is captured by variants of the inline reaction rule that correspond to dif-
ferent possible states. For example, if the user is already logged-in and has provided
consent, the rule is as follows:

The top-level searchApp() first captures messages having the payload pattern
operation->search, webID->W, query->Q, dwp->D, and accepts

them if the guard [loggedIn(From,W,D), consent(W,personal,perso
nalization)] succeeds. If a message is accepted, Prova proceeds with the evalua-
tion of searchHelper binding the results of the search to the variable Result, and
then messages these results back to alice.

If the user is already logged in but did not provided consent to share personal data
for personalized results, the following rule is selected instead:

333

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

Notice that both the above rules are capturing the same payload pattern, but
differ depending on the current state, i.e., if the guard succeeds or not. In both of
the above variants, the use of guards [loggedIn(F,W,D),...] is straight-
forward. However, modeling the state where the user logged in but has not been
asked yet for the consent choice reveals interesting properties when using guards
in message processing:

This case involves capturing the same payload pattern, messaging back to
alice, asserting her choice, and calling the searchHelper predicate that
either performs an non-personalized search or a personalized search (possibly
also asserting the user’s consent).

Notice the absence of the cut operator after the assertion. Without using guards
in message processing, the assertion would make alreadyAsked/3 and possi-
bly consent/3 evaluate to true, enabling the evaluation of either the previous
cases as the payload pattern is the same for all three cases. To prevent this, the
usage of cut operator after each assertion would be necessary. Such an implemen-
tation could be as follows:

334 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

All similar cuts would be “red cuts”, as their removal would affect the execution
and results [25]. Using guards, which act as additional pre-conditional constraints
on the literal [18], we avoid red cuts as the messages are fully accepted only if the
guard evaluates to true, effectively creating an early selection of which messages are
to be accepted, thus eliminating the need of cuts.

A similar rule exists to cover the case where the user is not logged in, where
searchApp performs an non-personalized search and informs the user that by
logging-in personalized results can be shown. Finally, the evaluation of the helper
predicate searchHelper(WebID,Q,From,Result,DWP,In) binds a mock-
up of the search results in the variable Result, while taking into account the con-
sent (or, the lack of it) of the user.

6 Evaluation and Comparison of KR Approaches

In what follows, we give a requirements-based evaluation of the two approaches
described in the previous sections. We evaluate and compare the two approaches
within the requirements framework established in [5]. The choice of this particular
evaluation framework was guided by the fact that it has been applied for the evalua-
tion of LegalRuleML, which is the most comprehensive legal modeling language. It
defines five evaluation criteria for legal rule systems that are also applicable to more
general KR-based systems for the legal domain related to GDPR knowledge repre-
sentation. We omit the last criterion (“the approach must be scalable and have the
capability to handle any type of document”), as the use cases pertain to a restricted
subset of the legislation.

C1: The representation must be both human and machine-readable and
manageable independently from any system that uses the representation

AspectOWL ontologies can be read and edited by humans using the Protégé
ontology editor13 with the AspectOWL14 and AspectSWRL15 plug-ins installed.

13 https:// prote ge. stanf ord. edu.
14 https:// github. com/ Ralph Bln/ aspect- owl- prote ge.
15 https:// github. com/ Ralph Bln/ aspect- swrl- built ins.

https://protege.stanford.edu
https://github.com/RalphBln/aspect-owl-protege
https://github.com/RalphBln/aspect-swrl-builtins

335

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

They can be exported to various machine-readable formats, including the Aspec-
tOWL Functional-Style Syntax,16 an extension of the OWL Functional-Style Syn-
tax17 and every existing RDF18 serialization format that supports RDF statement
reification. The Functional-Style Syntax is sufficiently human-readable and can be
manually edited in a simple text editor. The various RDF serialization formats can
be processed in RDF editors as well as simple text editors. Additionally, Aspec-
tOWL inherits the identifier paradigm from OWL, which means that every Aspec-
tOWL ontology (as well as every entity defined in it) has a unique identifier in the
form of an Internationalized Resource Identifier (IRI).

Prova is a high-level language and in addition Prova programs can be considered
executable specifications as it is syntactically based on ISO Prolog [25].

Since all AspectOWL ontologies (independently of the serialization format) and
Prova code are stored in plain text files, all file management paradigms are applica-
ble, such as naming, storing in folders, and versioning.

C2: There must be a close link between the digital model and the paper-
based source document to enable automatic version control. This also main-
tains user familiarity with the structure and literal content of the source docu-
ment, which is important to promote its adoption in the conventional practice

Both implementations revolve around the concepts of consent, the right to data
portability, and access control. While these concepts are basic on GDPR, the pre-
sented use-cases are not exclusive to GDPR and can be compliant with other current
data-privacy regulations that utilize these concepts.

However, version control in AspectOWL is available on the syntactic level by the
OWL ontology version IRI (which gives each version of an ontology its own spe-
cific IRI). AspectOWL extends the simple syntactic versioning facility on the ontol-
ogy level by semantic versioning on the axiom level. Since aspects as a syntactic
primitive of the AspectOWL language are also entities they also carry an IRI as
their identifier and can thereby be linked to from external systems, such as version-
ing systems. The Prova implementation could be extended to include IRIs as names-
paces to facilitate such version control by encoding a particular source document
version in the namespace.

C3: Availability of practical authoring tools to support the development
work An authoring tool suite in the form of plug-ins for the popular Protégé ontol-
ogy editor is available for AspectOWL. The extension allows users to create aspects,
edit their properties and attach them directly to axioms. It also provides several ways
to define sets of axioms (using different pointcut languages based on either DL-
Queries, SPARQL queries, signature definitions or AspectSWRL rules) and attach
aspects to the entire axiom set at once. A variety of import and export options from
and to standard formats exist. A special AspectOWL reasoner is also part of the
AspectOWL plug-in, which allows for ad-hoc inference checking under the Aspec-
tOWL semantics during the authoring process.

16 https:// aspec towl. xyz/ syntax/ index. xhtml.
17 https:// www. w3. org/ TR/ owl2- syntax/.
18 https:// www. w3. org/ TR/ rdf11- conce pts/.

https://aspectowl.xyz/syntax/index.xhtml
https://www.w3.org/TR/owl2-syntax/
https://www.w3.org/TR/rdf11-concepts/

336 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

The development of the Prova implementation can be supported by various Java-
targeting IDEs that can also support Prova’s Prolog-based syntax. As Prova is avail-
able as a library in public repositories (e.g., Maven), integrating and executing Prova
is possible from within a modern Java-targeting IDE.

C4: The representation must be based on an open standard technology that
promotes interoperability, and supports open standard query languages

AspectOWL is an extension of OWL 2, which is a W3C standard.19 AspectOWL
can be serialized to standard formats, such as the various serialization formats of
RDF. The resulting RDF graphs can be queried using standard RDF query lan-
guages, such as SPARQL.20 Pointcut selection (the selection of sets of axioms to
which an aspect is supposed to be applied) can be performed using SPARQL que-
ries, among others.

Prova is open-source (Java also has open-source implementations) and syntacti-
cally is based on ISO Prolog. Prova code could be translated to the open-standard
Reaction RuleML, a rule interchange format tailored for agents running as distrib-
uted inference services and supporting distributed event/action processing. Prova
also provides built-ins for rule-based data access such as XML (DOM), SQL, RDF,
XQuery and SPARQL [18].

In general, the two approaches used in this paper differ in their intended applica-
tion scopes and hence their syntax, semantics, and expressiveness. However, inter-
estingly, both could be used to represent a significant part of the presented use case.

The agent-based Prova implementation with the message passing primitives, and
reactive rules combined with assertions and retractions were adequate to model was
able to model all key workflow elements. Moreover, it was possible to simulate real-
world practices such as storing hashed passwords instead of plain-text, and session
cookies to facilitate logins.

This is out of the scope of static knowledge-representation formalisms such as
OWL, as the latter lacks the necessary interaction primitives with the outside world,
such as reaction rules or data stream processing facilities. It is, however, conceivable
to employ some sort of dynamically updating ABox and let our AspectSWRL rules
run on new ABox axioms as they are added to the KB.

An obvious difference between Prova and OWL is that the latter operates in a
strictly monotonic fashion without any notion of knowledge retraction. AspectOWL
is able to circumvent this to a certain extent since its ability to create contexts which
restrict the validity of exiting axioms introduces a way of mimicking non-monoto-
nicity. However, AspectOWL is still a monotonic formalism, and while knowledge
may be retracted from the global scope by restricting it to a local context, the context
itself (containing the knowledge) can never be retracted. In other words, the history
of emerging and disappearing knowledge can never be erased in AspectOWL. This
can be regarded either as an advantage or as a disadvantage, depending on the appli-
cation requirements.

19 https:// www. w3. org/ TR/ owl2- overv iew/.
20 https:// www. w3. org/ TR/ sparq l11- query/.

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/sparql11-query/

337

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

Prova, OWL, and AspectOWL permit the choice of the level of expressiveness
and the selection of semantics. OWL 2, for example, introduced different profiles,
such as OWL 2 DL, OWL 2 EL, OWL 2 RL, and OWL 2 QL. OWL 2 semantics
correspond to the semantics of description logics and the set of language primitives
used determines the particular description logic in which an OWL ontology can be
expressed. Prova and AspectOWL permit the selection of semantic profiles, which,
in the case of AspectOWL, determines the model-theoretic semantics under which
a theory is interpreted. These choices lead to different computational properties of
each of the formalisms.

AspectOWL, being a static KR formalism, requires recomputation of all infer-
ences as facts are added to the KB. Incremental reasoning has not been implemented
but might be in the future. In the case of the use cases presented in this paper,
the resulting AspectOWL ontology has an expressiveness that corresponds to the
description logic ALCROIQ , which means that the problems of concept satisfiabil-
ity and consistency checking are NExpTime-hard. Description logics are by design
decidable, but AspectOWL, the semantics of which divert from pure DLs, are not
guaranteed to be decidable. The non-decidability comes from the multi-dimensional
interpretation. Since, however, in the underlying use case there is no interaction
between the different context levels (the object and the temporal level have both
access to the time individual T_DC_1, but this individual is rigid, i.e., its interpreta-
tion is context-independent), the ontology is decidable even under the AspectOWL
full semantics. Prova is a combination of rule and scripting language. The seman-
tics of the rule language correspond to Prolog, which makes Prova generally unde-
cidable. Prova extends the declarative rule language by procedural attachments, a
mechanism for making calls to procedures written in an imperative language, such
as Java, which makes it impossible to make a generalized statement about the com-
putational properties of the Prova system as a whole. Prova’s messaging system, of
which we primarily make use in the context of this research, is pattern-based with
selectable inference regimes, such as DL reasoning. Moreover, the use of guards
in message processing which act as additional pre-conditional constraints reduces
the need for red cuts after positive (assertions) or negative (retractions) KB updates.
This also helps to clearly distinguish the different contexts under which a KB update
is allowed.

A clear advantage of AspectOWL is its full backwards-compatibility with OWL
2 and the resulting ability to import and reuse existing knowledge from the many
OWL ontologies that are publicly available as we did with PrOnto and the ontology
design patterns, while the Prova implementation was basically built from scratch. In
the context of the data wallet scenario existing standards such as Solid use RDF as
their data model and are thereby directly compatible with AspectOWL.

7 Conclusions and Future Work

We described a GDPR-related use case for a distributed data wallet. The use case
defines all typical stakeholders, namely an Identity Provider, a Data Wallet Provider,
Relaying Parties as applications (a PictureApp and a SearchApp), and users. The

338 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

main concepts of the use case are data access (from Relaying Parties or from users),
and consent-giving actions that enable this data sharing. Depending on providing
consent or consent revoking actions, different possible states can emerge, rendering
the use case non-monotonic.

We provided two KR implementations, one in AspectOWL, one in Prova. Both
approaches were able to result in a representation of the problem domain which is
sufficiently adequate for GDPR-related inference tasks, especially state transitions
resulting from actions such as a user providing consent. Prova with its reaction rule
messaging system and procedural attachments is directly capable of implementing
the workflow of our given use cases.

Specifically, the Prova implementation is able to model the interaction of all par-
ties (represented as agents) in real-time. The reactive messaging capabilities, the
Java object support and the non-monotonic state transition semantics can model
all key states of the use case. The AspectOWL implementation provides both the
ontology with types and description of the domain concepts, and the state transi-
tion modeling required by the use case. However, since AspectOWL is a monotonic
formalism the representation of non-monotonic states using contexts may lead to an
indefinite growth of the KB.

While AspectOWL proved to be a suitable approach for the specification of the
ontological domain model Prova is the more practical approach for a real-world
application including the interaction between involved parties and the state transi-
tion workflows. Therefore, the two implementations are complementing each other.

Future work may consist in combining the two approaches, by integrating and
reusing the existing AspectOWL ontology in Prova, combining the strengths of the
two systems. This combined system may serve as a real-world back-end of an eco-
system of a distributed data wallet and applications.

It would also be interesting to implement the use cases using different approaches,
for example the SHACL-based approach by Robaldo [19].

Funding Open access funding provided by HEAL-Link Greece. This work has been partially funded
by the German Federal Ministry of Education and Research (BMBF) through the project Panqura
(03COV3F) and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project
RECOMP (DFG-GZ: PA 1820/5-1).

Data availability We do not analyse or generate any data sets. The source code of the implementation
can be obtained from https:// github. com/ tmitsi/ recomp- useca ses and https:// github. com/ Ralph Bln/
recomp- use- cases.

Declarations

Conflict of Interest On behalf of all authors, the corresponding author states that there is no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is

https://github.com/tmitsi/recomp-usecases
https://github.com/RalphBln/recomp-use-cases
https://github.com/RalphBln/recomp-use-cases

339

1 3

The Review of Socionetwork Strategies (2023) 17:319–340

not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

 1. Blackburn, P., Benthem, J., & Wolter, F. (2006). Handbook of modal logic. In: Studies in logic and
practical reasoning, vol 3. New York: Elsevier Science Inc.

 2. Bonatti, P. A., Ioffredo, L., Petrova, I. M., Sauro, L., & Siahaan, I. R. (2020). Real-time reasoning in
OWL2 for GDPR compliance. Artificial Intelligence, 289, 103389. https:// doi. org/ 10. 1016/j. artint.
2020. 103389.

 3. De Montety, C., Antignac, T., & Slim, C. (2019). GDPR modelling for log-based compliance check-
ing. In: Trust Management XIII: 13th IFIP WG 11.11 International Conference, IFIPTM 2019,
Copenhagen, Denmark, July 17–19, 2019, Proceedings 13, Springer, pp 1–18.

 4. De Vos, M., Kirrane, S., Padget, J., & Satoh, K. (2019). ODRL policy modelling and compliance
checking. In P. Fodor, M. Montali, D. Calvanese, & D. Roman (Eds.), Rules and reasoning (pp.
36–51). Cham: Springer International Publishing.

 5. Dimyadi, J., Governatori, G., & Amor, R. (2017). Evaluating LegalDocML and LegalRuleML as
a standard for sharing normative Information in the AEC/FM Domain. In: Lean and Computing
in Construction Congress—Volume 1: Proceedings of the Joint Conference on Computing in Con-
struction, Heriot-Watt University, Heraklion, Crete, Greece, pp. 637–644. https:// doi. org/ 10. 24928/
JC3- 2017/ 0012.

 6. European Commission. (2016). Regulation (EU) 2016/679 of the European Parliament and of the
Council. http:// data. europa. eu/ eli/ reg/ 2016/ 679/ oj.

 7. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J. M., & Irwin, J. (1997).
Aspect-oriented programming. In M. Aksit & S. Matsuoka (Eds.), Lecture Notes in Computer Sci-
ence, ECOOP’97—object-oriented programming (Vol. 1241, pp. 220–242). Berlin: Springer.

 8. Kober, G., Robaldo, L., & Paschke, A. (2022). Modeling medical guidelines by Prova and SHACL
accessing FHIR/RDF. Use case: the medical ABCDE approach. In: dHealth 2022, IOS Press, pp
59–66.

 9. Kozlenkov, A. (2010). Prova rule language version 3.0 user’s guide. https:// github. com/ prova/ prova/
tree/ master/ doc.

 10. Kozlenkov, A., Penaloza, R., Nigam, V., Royer, L., Dawelbait, G., & Schroeder, M. (2006). Prova:
rule-based Java scripting for distributed web applications: a case study in bioinformatics. In T.
Grust, H. Höpfner, A. Illarramendi, S. Jablonski, M. Mesiti, S. Müller, P. L. Patranjan, K. U. Sat-
tler, M. Spiliopoulou, & J. Wijsen (Eds.), Current trends in database technology—EDBT 2006 (pp.
899–908). Heidelberg: Springer.

 11. Kurteva, A., Chhetri, T.R., Pandit, H.J., & Fensel, A. (2021). Consent through the lens of semantics:
state of the art survey and best practices. Semantic Web Preprint, pp. 1–27. https:// doi. org/ 10. 3233/
SW- 210438.

 12. Mansour, E., Sambra, A.V., Hawke, S., Zereba, M., Capadisli, S., Ghanem, A., Aboulnaga, A., &
Berners-Lee, T. (2016). A demonstration of the Solid platform for social web applications. In: Pro-
ceedings of the 25th International Conference Companion on World Wide Web, International World
Wide Web Conferences Steering Committee, Republic and Canton of Geneva, CHE, WWW ’16
Companion, pp. 223–226. https:// doi. org/ 10. 1145/ 28725 18. 28905 29.

 13. Palmirani, M., Governatori, G., Rotolo, A., Tabet, S., Boley, H., & Paschke, A. (2011). Legal-
RuleML: XML-based rules and norms. In F. Olken, M. Palmirani, & D. Sottara (Eds.), Rule-based
modeling and computing on the semantic web (pp. 298–312). Heidelberg: Springer.

 14. Palmirani, M., Martoni, M., Rossi, A., Bartolini, C., & Robaldo, L. (2018). PrOnto: privacy ontol-
ogy for legal reasoning. In A. Kő & E. Francesconi (Eds.), Electronic government and the informa-
tion systems perspective (pp. 139–152). Cham: Springer International Publishing.

 15. Pandit, H. J., Debruyne, C., O’Sullivan, D., & Lewis, D. (2019). GConsent—a consent ontology
based on the GDPR. In P. Hitzler, M. Fernández, K. Janowicz, A. Zaveri, A. J. Gray, V. Lopez,
A. Haller, & K. Hammar (Eds.), The semantic web (pp. 270–282). Cham: Springer International
Publishing.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.artint.2020.103389
https://doi.org/10.1016/j.artint.2020.103389
https://doi.org/10.24928/JC3-2017/0012
https://doi.org/10.24928/JC3-2017/0012
http://data.europa.eu/eli/reg/2016/679/oj
https://github.com/prova/prova/tree/master/doc
https://github.com/prova/prova/tree/master/doc
https://doi.org/10.3233/SW-210438
https://doi.org/10.3233/SW-210438
https://doi.org/10.1145/2872518.2890529

340 The Review of Socionetwork Strategies (2023) 17:319–340

1 3

 16. Paschke, A. (2011). Rules and logic programming for the web. Springer: Berlin , pp. 326–381.
https:// doi. org/ 10. 1007/ 978-3- 642- 23032-5_6.

 17. Paschke, A., & Bichler, M. (2008). Knowledge representation concepts for automated SLA manage-
ment. Decision Support Systems, 46(1), 187–205. https:// doi. org/ 10. 1016/j. dss. 2008. 06. 008.

 18. Paschke, A., & Boley, H. (2014). Reaction RuleML 1.0 for distributed rule-based agents in rule
responder. In: Proceedings of the RuleML 2014 Challenge and the RuleML 2014 Doctoral Consor-
tium, hosted by the 8th International Web Rule Symposium (RuleML 2014), CEUR.org.

 19. Robaldo, L. (2021). Towards compliance checking in reified I/O logic via SHACL. In: Maranhão,
J., Wyner, A.Z. (Eds.) ICAIL ’21: Eighteenth International Conference for Artificial Intelligence
and Law, São Paulo Brazil, June 21–25, 2021, ACM, pp 215–219. https:// doi. org/ 10. 1145/ 34627 57.
34660 65.

 20. Robaldo, L., & Sun, X. (2017). Reified input/output logic: combining input/output logic and reifica-
tion to represent norms coming from existing legislation. Journal of Logic and Computation, 27(8),
2471–2503.

 21. Robaldo, L., Bartolini, C., Palmirani, M., Rossi, A., Martoni, M., & Lenzini, G. (2020). Formalizing
GDPR provisions in reified I/O logic: the DAPRECO knowledge base. Journal of Logic, Language
and Information, 29, 401–449.

 22. Schäfermeier, R., & Paschke, A. (2014). Aspect-oriented ontologies: dynamic modularization using
ontological metamodeling. In: Garbacz, P., Kutz, O. (Eds.) Proceedings of the 8th International
Conference on Formal Ontology in Information Systems (FOIS 2014). IOS Press, Frontiers in Artifi-
cial Intelligence and Applications, vol 267, pp. 199–212.

 23. Schäfermeier, R., & Paschke, A. (2018). Aspect-oriented ontology development. In: Nalepa, G.J.,
Baumeister, J. (Eds.) Synergies between knowledge engineering and software engineering, advances
in intelligent systems and computing, vol 626, Springer, Berlin, pp. 3–30. https:// doi. org/ 10. 1007/
978-3- 319- 64161-4_1.

 24. Schild, K. (1991). A correspondence theory for terminological logics: preliminary report. In: Mylo-
poulos, J., Reiter, R. (Eds.) Proceedings of the 12th International Joint Conference on Artificial
Intelligence. Sydney, Australia, August 24–30, 1991, Morgan Kaufmann, pp. 466–471.

 25. Sterling, L., & Shapiro, E. Y. (1994). The art of Prolog: advanced programming techniques. Cam-
bridge: MIT Press.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1007/978-3-642-23032-5_6
https://doi.org/10.1016/j.dss.2008.06.008
https://doi.org/10.1145/3462757.3466065
https://doi.org/10.1145/3462757.3466065
https://doi.org/10.1007/978-3-319-64161-4_1
https://doi.org/10.1007/978-3-319-64161-4_1

	Modeling a GDPR Compliant Data Wallet Application in Prova and AspectOWL
	Abstract
	1 Introduction
	2 Related Work
	3 Use Cases
	4 AspectOWL and Prova Basics
	4.1 AspectOWL
	4.2 Prova

	5 Implementation
	5.1 AspectOWL
	5.2 Prova

	6 Evaluation and Comparison of KR Approaches
	7 Conclusions and Future Work
	References

