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Abstract In this article, we propose a technique for improving the image quality of particle-based 
volume rendering (PBVR). A large-scale unstructured volume dataset often contains multiple sub-
volumes, which cannot be ordered by visibility. PBVR can handle this type of volume dataset. 
Sampling misses often occur when the transfer function undergoes drastic changes, which can 
result in poor image quality. To reduce sampling misses caused by the high-frequency transfer 
function, we develop a new sampling technique called “layered sampling”. To confirm the 
effectiveness of our technique, we apply the proposed technique to a large-scale unstructured 
volume dataset subdivided into multiple sub-volumes. 
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1 Introduction 

Developing a sorting-free technique for rendering unstructured volume datasets has been a major 
challenge for the visualization community. Such datasets consist mainly of scalar data, defined as 
collections of irregularly ordered cells with shapes that are not necessarily orthogonally cubic. 
Roettger et al. (2003) noted that the memory bandwidth required for visibility sorting becomes the 
limiting factor, and they proposed an algorithm that requires no visibility sorting for cells with 
unstructured volumes. However, because their optical model considers only emissions, its 
application is limited to visualizing gaseous phenomena. Csebfalvi (2004) proposed a sorting-free 
volume rendering technique that can be categorized as an X-ray volume rendering approach, 
though their optical model considers only absorption. Zhou et al. (2006) proposed a sorting-free 
rendering technique that is implemented with additional terms to help provide enhanced depth cues 
without visibility sorting. Though their technique has achieved 20 fps for 17.6 million tetrahedra, 
their optical model does not consider absorption effects. 

To solve the above problems of sorting-free volume rendering techniques, Sakamoto et al. 
(2010b) returned to the density emitter model, and they presented a basic idea for this approach. 
The proposed particle-based volume rendering (PBVR) technique represents the 3-dimensional 
scalar field as a set of particles, and it considers both emission and absorption effects (Sakamoto et 
al. 2010a). The particle density is derived from a user-specified transfer function and is utilized to 
estimate the number of particles to be generated in a given volume dataset. Because the particles 
can be considered fully opaque, no visibility sorting processing is required during the rendering 
process. This is advantageous from a distributed processing perspective where we often face a 
large-scale unstructured volume that is subdivided into multiple sub-volumes. When we visualize 
such a large volume, a common approach is to generate sub-images from the sub-volumes and 
compose sub-images in a visibility order into a final image. For the regular volume, the visibility 
order becomes apparent. For an unstructured volume, however, the visibility order is difficult to 
calculate because the shape of the sub-volume can be non-convex. Thus, a sorting-free volume 
rendering is indispensable for processing multiple sub-volumes. 
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The first proposed PBVR limits the locations where a set of particles is generated from an 
unstructured volume dataset to the regular grids (Sakamoto et al. 2010a). This limitation results in 
poor image quality. The second version introduces a more precise particle model to improve the 
image quality (Sakamoto et al. 2010b). The current weakness of PBVR occurs while generating a 
low-quality image due to an under-estimated number of particles when the distribution of the 
transfer function has a peak in which the opacity value rises steeply in a narrow interval. Such 
transfer function is often used to represent a given volume dataset as a set of semi-transparent 
isosurfaces. The under-estimation is caused because the number of particles is evaluated by using 
only the particle density at the center of the tetrahedral cell. To solve this problem, we develop a 
layered sampling technique in which a volume cell is subdivided into a number of regions, which 
are related to the intervals. This technique generates particles by evaluating the number of particles 
at each interval of a volume cell. 
 

2 Related works 

High-performance parallel computers have recently created huge unstructured volumes subdivided 
into multiple sub-volumes and preserved in each machine in a distributed computing environment. 
Though several Parallel Volume Rendering (PVR) techniques for unstructured volumes exist 
(Silva 1996; Chen et al. 2002), achieving an interactive frame rate remains difficult. 

PVR for unstructured volumes requires traversal cell order, as the unstructured sub-volumes 
are often non-convex, and the rendering thus cannot employ image composition. In a single 
volume, several effective techniques are available. Meredith and Ma (2001) developed hardware-
assisted splats that manage tetrahedral cells using octrees. Muigg et al. (2007) proposed a hybrid 
ray-casting technique for large unstructured volumes. Though this method can render various 
unstructured meshes with region of interest (ROI) control by converting the non-interesting region 
to a regular mesh, it cannot handle meshes containing deformed elements. Callahan et al. (2005) 
developed an integrated visibility ordering technique, called Hardware Assisted Visibility Sorting 
(HAVS), in which the centroids of the cell faces are first sorted to create a rough visibility 
ordering. The pixel fragments generated from rasterized faces then increase the accuracy with a k-
buffer. However, integrating these methods into PVR is difficult because the communication 
between machines during cell tracing creates a bottleneck. 

The previous PBVR comprised three processes: particle generation, particle projection and 
sub-pixel processing (Sakamoto et al. 2010b). In this technique, the required frame buffer size 
becomes large depending on the sub-pixel level when performing sub-pixel processing. To solve 
this problem, the ensemble average process was developed (Sakamoto et al. 2010; Kawamura et al. 
2010). Repetition processing required for the ensemble averaging can reduce the memory cost but 
requires more rendering time than sub-pixel processing. This technique was implemented using the 
GPU, which improves PBVR performance, and outperformed HAVS in rendering speed and 
scalability (Ding et al. 2010). 

Sakamoto et al. developed a distributed PBVR implementation to visualize a large-scale 
unstructured volume dataset generated from a distributed finite element method (FEM) simulation 
(Sakamoto et al. 2010a). Because the computational mesh was too large for a single computational 
node to handle, it was divided into multiple regions. The computational result thus contained 
multiple unstructured volume datasets. Sakamoto et al. first applied the developed technique to the 
FEM simulation results; other volume rendering techniques had never visualized such a large-scale 
dataset. On the basis of the experimental results, they constructed a performance model as a 
function of the number of CPU cores. They found that the overall performance time improved as 
the number of CPU cores increased to 250. 

3 Layered sampling 

Metropolis sampling for PBVR (Kawamura et al. 2010) first calculates the particle density values 
at each cell vertex and then interpolates for arbitrary positions in the volume cell. The density 
values are smoothed even if they change drastically in the volume cell, which results in a low-
quality image. In layered sampling, we assume that the transfer function is described by a 
piecewise linear function with respect to scalar values. The scalar values are evenly subdivided 
into pieces, i.e., intervals. Particles are generated at each interval volume. 
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If we assume that we process a volume dataset composed of tetrahedral cells and employ a 
linear interpolation within the cell, we can develop an efficient sampling technique. With that 
assumption, the scalar gradient becomes constant in the tetrahedral cell, and the cell is segmented 
into layer of the scalar interval. If we examine the cell along the gradient vector, the distribution 
pattern is identical: the particle distribution becomes constant at each layer. This observation 
provides a clue to creating an efficient sampling technique. This technique first prepares a cubic 
box, hereafter called a regular box, sufficiently large to include the largest tetrahedral cell. The 
technique then considered one of the axes to be the scalar data axis, and it calculates particle 
density by referring to the transfer function. Finally, the technique generates particles in layers 
vertical to the scalar axis with intersections identical to the endpoints of the scalar intervals (Figure 
1). 

After pre-generating particles in the regular box, we can improve the performance of the 
generated particles in each tetrahedral cell. When we generate particles in a tetrahedral cell, we 
apply an affine transformation to the cell so that the scalar gradient vector becomes parallel to the 
scalar axis, and the cell is included in the regular box. After the transformation, we can specify the 
particles to be generated inside the tetrahedral cell instead of actually generating them. Thus, we 
expect that image-quality degradation can be suppressed because the density distribution can 
reflect the transfer function even if its change becomes drastic. 

This method employs three stages. The first stage is pre-generating the particles using the 
density function calculated from the opacity function, and the second stage estimating the number 
of particles according to the integral value of the density function. The last stage is generating 
particles in each tetrahedral cell using the estimated number of particles from the pre-generated 
particles. 

3.1 Particle pre-generation 

A sampling process in each tetrahedral cell determines pre-generated particles. Before the 
sampling process, particles are generated in the regular box using the piecewise linear transfer 
function (Figures 1 (c), (d)). In this regular box, the pre-generated particles are sampled at each 
interval volume in a tetrahedral cell. Sampling the linear density field at each interval volume for 
particle generation is easy. We employ the rejection method (Neumann 1951) for this sampling. 
Before beginning the sampling, we assume the total number (N) of pre-generated particles, which 
is a user-specified number. To estimate the number of particles at each interval volume, the density 
field in the regular box must be integrated. The integration value determines the division ratio of 
the total number of pre-generated particles. 

Within the regular box, the coordinate axes are described as (t1, t2, s). The value of the s axis is 
identical to the scalar value S (S = s), and the coordinate axes are normalized into the [0, 1] region. 
The pre-generated particles are distributed as if they were slabs in which the particles are 
uniformly distributed in the t1, t2 axes while stacked in the s axis. The coordinate (t1, t2, s) is 
limited to the region [0, 1]3. 

We assume a piecewise linear function of ρ(S) by calculating a density function value α(S). The 
density function is calculated by substituting both ends of the opacity interval for the density 
estimation. In an interval [Si, Si+1], the density is represented as: 
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Fig. 1 Layered sampling overview. 

(c) The piecewise linear 
density function ρ(S) 

(d) Pre-generated particles 
in the regular box, which 
includes the tetrahedral cell 
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where Si and Si+1 are both ends of the scalar interval. ρi and ρi+1 are the corresponding density 
values. 

The following integral calculates the division ratio mi of the total pre-generated particles at the 
interval [Si, Si+1]: 
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The ratio becomes mi /M, where M is total value of mi, and the number of particles in an interval is 
calculated as N×mi /M. 

3.2 Particle number estimation 

The particle number estimation stage is a sequence of processes. First, we calculate an affine 
transformation of the cell to the regular box (Transformation). The cell is inserted into the regular 
box, and the inclusion of the pre-generated particles inside the tetrahedral cell is determined 
(Insertion). The included particles are then utilized to calculate the number of generated particles 
Ntet by the volume integration (Integration). 

Each tetrahedral cell is fitted into the regular box via an affine transform to calculate volume 
integration and generate particles. The affine transform contains matrices L and A. Matrix L 
rotates the gradient vector of a cell, so it becomes parallel to the z direction of the object space 
where particles are pre-generated. Matrix A is a scaling and translation matrix that fits the rotated 
tetrahedral cell into the regular box, where the direction of the gradient vector is identical to the s 
axis. Here, Tet indicates the original tetrahedral cell. Tet’ indicates the tetrahedral cell transformed 
by matrix L, and Tet’’ indicates a tetrahedral cell in the regular box. Then, Tet’’ = A Tet’ = A L 
Tet. 

Matrix L is constructed from the normalized gradient vector g and vector u, which is an 
arbitrary unit vector that is linearly independent of g. To determine u, the absolute value of each 
component in g is compared with the other components, and the component with the smallest 
absolute value becomes 1. The other components become zero. The orthogonal basis vectors are 
calculated as 

( )guglgul ××=×= 21 , . (3) 

Then matrix L is defined as follows: 
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Because the gradient vector is constant in a tetrahedral cell, the z coordinate of the new 
coordinate system transformed by matrix L is identical to the scalar data value. Thus, matrix A, 
which transforms the z coordinate into the scalar data value, is defined as follows: 
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Here, Smin and Smax are the minimum and maximum scalar values, respectively, in a tetrahedral cell. 
(x’, y’, z’) denotes the coordinates of Tet’. The minimum and maximum coordinates of a bounding 
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box of Tet’ are x’min, x’max. y’min, y’max, z’min, and z’max, respectively. The scaling factors of matrix A 
are determined, so each length of the bounding box of the tetrahedral cell is normalized to [0,1]. 

The volume integration of the density function estimates number of particles Ntet in each cell. In 
layered sampling, Ntet is numerically obtained by counting the pre-generated particles in a 
tetrahedral cell: 

N
N

aaa
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321
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=  (6) 

where Nin is the number of pre-generated particles included in the tetrahedral cell and M is the 
integration value of the density function ρ(S). 
In our implementation, Nin particles included within Tet’’ are first selected in the pre-generated 
particles. Then, Equation 6 estimates Ntet. When the scalar value range represented by Smax-Smin is 
smaller than δ, Nin becomes too small to serve as a reference, as Tet’’ becomes very thin in the 
regular box. δ is a pre-defined small number between [0, 1] and is determined to be smaller than a 
width of the sharp peak in the transfer function. In this case, we can therefore estimate the number 
of particles by single point integration. 

3.3 Particle generation 

In the particle generation stage, when the scalar range is greater than δ, Ntet particles are randomly 
selected from the Nin particles included in Tet’’ if Ntet does not exceed Nin (Selection). The selected 
particles are inversely mapped to the object coordinate by multiplying L-1A-1 (Inverse 
Transformation). If not, first the Nin particles are inversely mapped to the object coordinate, and 
additional particles must be generated by using rejection sampling to compensate for the shortage 
(Rejection Sampling). We cannot generate particles using the abovementioned sampling method 
when the scalar value range in a tetrahedral cell is smaller than δ. In this case, we generate 
particles using uniform sampling, because we can assume that the particles are uniformly 
distributed in the cell. The implementation of the particle generation process is as follows: 

if  Smax - Smin > δ 
Calculate the transformation matrices A and L (Transformation) 
Determine the inclusion of the pre-generated particles in Tet’’ and obtain Nin (Insertion) 
Estimate Ntet by Equation 6 (Integration) 
 
if  Ntet <= Nin 

Select Ntet particles included in Tet’’ (Selection) 
Transform the selected particles into Tet by multiplying L-1A-1 (Inverse 
Transformation) 

else 
Transform the selected particles into Tet by multiplying L-1A-1 (Inverse 
Transformation) 
Generate Ntet - Nin particles by rejection sampling (Rejection Sampling) 

else 
Estimate Ntet by single point integration 
Generate Ntet particles by rejection sampling 

4 Experimental results and discussion 

4.1 Layered sampling evaluation 

We conducted two experiments to evaluate the effectiveness of the layered sampling technique. 
One experiment is the performance and computational accuracy evaluation of our method by 
comparing it with Monte Carlo integration. The other experiment is the image quality evaluation 
when applying our proposed sampling method and the Metropolis sampling method (Kawamura et 
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al. 2010). We used a PC with an Intel Core2 Duo 2.4 GHz CPU and 2.9 GB of RAM for these 
experimental evaluations. 

4.1.1 Performance and computational accuracy 

To calculate the analytical value, we used an unstructured volume data composed of a single 
tetrahedral cell. Figure 2 (a) shows the integration value errors calculated using our proposed 
method and Monte Carlo integration when changing the number of pre-generated particles and 
sampling points, respectively. From this result, we can verify that the accuracy of the integration 
value proportionally increases as the number of particles increases in the double logarithmic plot 
graph, and the approximated curves of the error value can be expressed as follows: 

513.07.64 −

= ll NE , (7) 

. (8) 

where El and Em represent the error values calculated by using our proposed sampling method and 
Monte Carlo integration, respectively. Nl and Nm denote the number of pre-generated particles and 
sampling points. Equations 7 and 8 show that the error of both methods can be assumed to be O(N-

1/2), and the accuracy of our method can be confirmed to be about 17 times higher than Monte 
Carlo integration. 
We also measured the averaged computational times of the integration value. Figure 2 (b) shows 
the relationship between the computational time and integration value accuracy in the double 
logarithmic plot graph. This figure confirms that the computation time of our proposed method 
outperforms Monte Carlo integration by nearly ten times. We can also verify that our proposed 
method estimates the number of particles for the particle generation stage with higher accuracy 
and speed than the Monte Carlo integration, as shown in Figure 2 (c). 

4.1.2 Image quality 

As test data for evaluating image quality, we used a simple regular volume dataset (10x10x10). In 
this experiment, we generated particles for test data using our proposed method and the metropolis 
method according to the number of particles, which Equation 6 can estimate. We used a transfer 
function with two opacity value peaks for particle generation. The particle generation times of our 
method and the metropolis method were 153.0 and 127.7 seconds, respectively. Figure 3 shows the 

515.00.1082 −

= mm NE

(a) Error value (b) Processing time 

Fig. 2 Experimental results of computational accuracy and performance. 

(c) Error value and processing time 
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test data rendering results. Though our method is about 20 % more costly than the metropolis 
method, Figure 3 (b) eliminates the supposedly impermissible particles that appear in Figure 3 (a). 

4.1.3 Comparison with previous PBVR 

To evaluate the effectiveness of layered sampling, we applied it to the tetrahedral volumes “SPX” 
(2,896 vertices, 12,936 cells) and “Aorta” (248,992 vertices, 1,386,882 cells). We used the transfer 
functions for SPX and Aorta, as shown in Figures 4 and 5 (c), to visualize the isosurfaces because 
they have a drastic change in opacity value as a single-peak function. We compared layered 
sampling to previous PBVR sampling techniques in both performance and image quality. 

To evaluate the image quality, we compared the rendering results using the two techniques, as 
shown in Figures 4 and 5. In Figure 4 (b), which was generated by the previous technique, we can 
observe a discontinuous pattern caused by insufficient sampling around the red-colored portion. In 
Figure 4 (a), which was generated by layered sampling, we can confirm that the red-colored 
surface was visualized. In Figure 5 (b), we can see the perforated white surface. In Figure 5 (a), we 
can see an improved image quality. Table 1 shows statistics on the performance data. We confirm 
that the sampling time of the previous technique outperformed layered sampling. For both layered 
sampling and the previous technique (where the latter outperforms the former), the sampling time 
increases in proportion to the number of cells. 

 SPX Aorta 
T1 T2 T1 T2 

Pre-gen. time [msec] 703 N/A 750 N/A 
Sampling time [sec] 5.6 1.1 290.7 4.7 
Num. particles [M] 5.16 5.12 17.74 17.76 
Frame-rate [fps] 18.6 18.8 7.6 7.6 
 

Table 1 Performance comparison. The repeat level is 144, and the number of pre-generated particles is 
100,000. ‘N/A’ means there is no corresponding process. T1 means layered sampling and T2 means the 
previous technique. 

(a) Metropolis method (b) Layered sampling method 

Fig. 3 Rendering results of the test data by using the metropolis method and the layered sampling method. 

Fig. 5 Rendering results of Aorta and employed 
transfer function. 

Fig. 4 Rendering results of SPX and employed 
transfer function. 

(a) Layered sampling (b) Previous technique (a) Layered sampling (b) Previous technique 

(c) Transfer Function. (c) Transfer Function. 
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5.2 Application to large-scale volume dataset 

The unstructured volume dataset “Pump” from a computational structural mechanics (CSM) 
simulation is the result of an elastostatic weight analysis with one hundred million degrees of 
freedom using a PC cluster. The Pump dataset contained 26,289,770 quadratic tetrahedral cells 
with 36,728,129 nodes, and it was divided into 32 datasets as outputs generated from the 
distributed CSM computation with a finite element method solver. 

We applied layered sampling to the Pump dataset. Because the sampling technique assumes a 
volume dataset composed of linear tetrahedral cells, we subdivided the quadratic tetrahedral cell 
into eight linear cells. Thus, PBVR with layered sampling rendered 210,318,160 tetrahedral cell 
volume datasets. For this experiment, we used a PC with an Intel Core2 Quad CPU running at 2.83 
GHz with 8.0 GB of RAM and an NVIDIA GeForce GPX280 GPU with 1.5 GB VRAM. We 
successfully tuned the layered sampling process with four threads. We handled the divided volume 
data by making each thread process every four cells. Generating the particles took 1,162.9 
seconds. Figure 6 shows the rendering results with and without the technique. In the rendering, we 
employed a transfer function in which the opacity values change drastically at some scalar values. 
A transfer function, as shown in Figure 6 (c), was referenced. Figure 6 shows the boundary surface 
rendering of the Pump data, which was independently processed in layered sampling. The 
boundary surface of Pump was converted to particles by uniform sampling on the polygon patch. 
A total of 7.0 mega particles were generated on the boundary surface, and 9.8 mega particles were 
generated with layered sampling. Table 2 shows the sampling time, generated particles, and 
rendering performance. From Table 2, we can confirm that the number of particles generated by 
layered sampling is larger than that generated by the previous technique. The previous technique 
could not calculate the volume integration of the density field accurately because of sampling 
misses for the isosurface region. We may conclude that the layered sampling technique can reveal 
isosurfaces clearly. 

Fig. 6 Rendering results of Pump and employed transfer function. The gray colored semi-transparent 
surface is the boundary surface of Pump. 

(a) Layered sampling (b) Previous technique 

(c) Transfer Function 

 Layered sampling Previous technique 
Pre-gen. time [msec] 3.9  
Num. particles [M] 9.8 5.2 
Sampling time [sec] 1163.9 27.7 
Frame-rate [fps] 7.9 10.2 

 

Table 2 Performance comparison. The shared repeat level is 144, and the number of pre-generated 
particles is 20,000. 
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5 Conclusion 

We have proposed a high-quality PBVR technique that includes layered sampling. The previous 
PBVR created low quality images when handling high-frequency transfer functions. Layered 
sampling is applied to a tetrahedral mesh and can handle high-frequency transfer functions. To 
confirm the scalability, we applied the proposed technique to the CSM simulation results of a size 
never previously visualized using a volume rendering technique. 

In layered sampling, particles are generated in the regular box space using the density function. 
The volume integration and particle generation are performed using pre-generated particles. The 
effectiveness of this technique was confirmed by comparing the pre-integrated volume rendering 
in the quality of images generated by a transfer function in which the opacity values change 
drastically. PBVR with layered sampling clearly rendered the isosurface-like interval volume, 
which is difficult to render with any previous sampling technique. We confirmed that the previous 
sampling technique is sufficient when the opacity function changes gradually. To improve the 
sampling time, we plan to develop a hybrid technique that combines layered sampling and the 
previous sampling with opacity function variation detection. The sampling time was strongly 
influenced by the number of pre-generated particles. However, determining the optimal number is 
difficult, and solving this problem is one for future work. We must reduce the pre-generation time 
to apply the technique to larger unstructured volumes. 

The current implementation supports a tetrahedral volume dataset. When we process other 
types of volume datasets, subdividing the volume cell into multiple tetrahedral cells to optimize 
our proposed technique is possible. In the future, we will develop a technique for pre-generating 
particles for other cells. 
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