
High-quality Particle-based Volume Rendering
for Large-scale Unstructured Volume
Datasets
Naohisa Sakamoto, Naoya Maeda, Takuma Kawamura, Koji Koyamada1

Abstract In this article, we propose a technique for improving the image quality of particle-based
volume rendering (PBVR). A large-scale unstructured volume dataset often contains multiple sub-
volumes, which cannot be ordered by visibility. PBVR can handle this type of volume dataset.
Sampling misses often occur when the transfer function undergoes drastic changes, which can
result in poor image quality. To reduce sampling misses caused by the high-frequency transfer
function, we develop a new sampling technique called “layered sampling”. To confirm the
effectiveness of our technique, we apply the proposed technique to a large-scale unstructured
volume dataset subdivided into multiple sub-volumes.

Keywords large-scale unstructured volume datasets, layered sampling, volume rendering

1 Introduction

Developing a sorting-free technique for rendering unstructured volume datasets has been a major
challenge for the visualization community. Such datasets consist mainly of scalar data, defined as
collections of irregularly ordered cells with shapes that are not necessarily orthogonally cubic.
Roettger et al. (2003) noted that the memory bandwidth required for visibility sorting becomes the
limiting factor, and they proposed an algorithm that requires no visibility sorting for cells with
unstructured volumes. However, because their optical model considers only emissions, its
application is limited to visualizing gaseous phenomena. Csebfalvi (2004) proposed a sorting-free
volume rendering technique that can be categorized as an X-ray volume rendering approach,
though their optical model considers only absorption. Zhou et al. (2006) proposed a sorting-free
rendering technique that is implemented with additional terms to help provide enhanced depth cues
without visibility sorting. Though their technique has achieved 20 fps for 17.6 million tetrahedra,
their optical model does not consider absorption effects.

To solve the above problems of sorting-free volume rendering techniques, Sakamoto et al.
(2010b) returned to the density emitter model, and they presented a basic idea for this approach.
The proposed particle-based volume rendering (PBVR) technique represents the 3-dimensional
scalar field as a set of particles, and it considers both emission and absorption effects (Sakamoto et
al. 2010a). The particle density is derived from a user-specified transfer function and is utilized to
estimate the number of particles to be generated in a given volume dataset. Because the particles
can be considered fully opaque, no visibility sorting processing is required during the rendering
process. This is advantageous from a distributed processing perspective where we often face a
large-scale unstructured volume that is subdivided into multiple sub-volumes. When we visualize
such a large volume, a common approach is to generate sub-images from the sub-volumes and
compose sub-images in a visibility order into a final image. For the regular volume, the visibility
order becomes apparent. For an unstructured volume, however, the visibility order is difficult to
calculate because the shape of the sub-volume can be non-convex. Thus, a sorting-free volume
rendering is indispensable for processing multiple sub-volumes.

N.Sakamoto, K.Koyamada
Institute for the Promotion of Excellence in Higher Education, Kyoto University
Yoshida Nihonmatsu-cho, Sakyo-ku, Kyoto-shi, Kyoto 606-8501, Japan
E-mail: naohisas@viz.media.kyoto-u.ac.jp
Tel: +81-75-753-9372

N.Maeda
Graduate School of Engineering, Kyoto University
Kyoto daigaku tasura, Nishikyo-ku, Kyoto-shi, Kyoto 615-8530, Japan

T.Kawamura
Center for Computational Science and e-Systems, Japan Atomic Energy Agency
5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8587, Japan

1

The first proposed PBVR limits the locations where a set of particles is generated from an
unstructured volume dataset to the regular grids (Sakamoto et al. 2010a). This limitation results in
poor image quality. The second version introduces a more precise particle model to improve the
image quality (Sakamoto et al. 2010b). The current weakness of PBVR occurs while generating a
low-quality image due to an under-estimated number of particles when the distribution of the
transfer function has a peak in which the opacity value rises steeply in a narrow interval. Such
transfer function is often used to represent a given volume dataset as a set of semi-transparent
isosurfaces. The under-estimation is caused because the number of particles is evaluated by using
only the particle density at the center of the tetrahedral cell. To solve this problem, we develop a
layered sampling technique in which a volume cell is subdivided into a number of regions, which
are related to the intervals. This technique generates particles by evaluating the number of particles
at each interval of a volume cell.

2 Related works

High-performance parallel computers have recently created huge unstructured volumes subdivided
into multiple sub-volumes and preserved in each machine in a distributed computing environment.
Though several Parallel Volume Rendering (PVR) techniques for unstructured volumes exist
(Silva 1996; Chen et al. 2002), achieving an interactive frame rate remains difficult.

PVR for unstructured volumes requires traversal cell order, as the unstructured sub-volumes
are often non-convex, and the rendering thus cannot employ image composition. In a single
volume, several effective techniques are available. Meredith and Ma (2001) developed hardware-
assisted splats that manage tetrahedral cells using octrees. Muigg et al. (2007) proposed a hybrid
ray-casting technique for large unstructured volumes. Though this method can render various
unstructured meshes with region of interest (ROI) control by converting the non-interesting region
to a regular mesh, it cannot handle meshes containing deformed elements. Callahan et al. (2005)
developed an integrated visibility ordering technique, called Hardware Assisted Visibility Sorting
(HAVS), in which the centroids of the cell faces are first sorted to create a rough visibility
ordering. The pixel fragments generated from rasterized faces then increase the accuracy with a k-
buffer. However, integrating these methods into PVR is difficult because the communication
between machines during cell tracing creates a bottleneck.

The previous PBVR comprised three processes: particle generation, particle projection and
sub-pixel processing (Sakamoto et al. 2010b). In this technique, the required frame buffer size
becomes large depending on the sub-pixel level when performing sub-pixel processing. To solve
this problem, the ensemble average process was developed (Sakamoto et al. 2010; Kawamura et al.
2010). Repetition processing required for the ensemble averaging can reduce the memory cost but
requires more rendering time than sub-pixel processing. This technique was implemented using the
GPU, which improves PBVR performance, and outperformed HAVS in rendering speed and
scalability (Ding et al. 2010).

Sakamoto et al. developed a distributed PBVR implementation to visualize a large-scale
unstructured volume dataset generated from a distributed finite element method (FEM) simulation
(Sakamoto et al. 2010a). Because the computational mesh was too large for a single computational
node to handle, it was divided into multiple regions. The computational result thus contained
multiple unstructured volume datasets. Sakamoto et al. first applied the developed technique to the
FEM simulation results; other volume rendering techniques had never visualized such a large-scale
dataset. On the basis of the experimental results, they constructed a performance model as a
function of the number of CPU cores. They found that the overall performance time improved as
the number of CPU cores increased to 250.

3 Layered sampling

Metropolis sampling for PBVR (Kawamura et al. 2010) first calculates the particle density values
at each cell vertex and then interpolates for arbitrary positions in the volume cell. The density
values are smoothed even if they change drastically in the volume cell, which results in a low-
quality image. In layered sampling, we assume that the transfer function is described by a
piecewise linear function with respect to scalar values. The scalar values are evenly subdivided
into pieces, i.e., intervals. Particles are generated at each interval volume.

2

If we assume that we process a volume dataset composed of tetrahedral cells and employ a
linear interpolation within the cell, we can develop an efficient sampling technique. With that
assumption, the scalar gradient becomes constant in the tetrahedral cell, and the cell is segmented
into layer of the scalar interval. If we examine the cell along the gradient vector, the distribution
pattern is identical: the particle distribution becomes constant at each layer. This observation
provides a clue to creating an efficient sampling technique. This technique first prepares a cubic
box, hereafter called a regular box, sufficiently large to include the largest tetrahedral cell. The
technique then considered one of the axes to be the scalar data axis, and it calculates particle
density by referring to the transfer function. Finally, the technique generates particles in layers
vertical to the scalar axis with intersections identical to the endpoints of the scalar intervals (Figure
1).

After pre-generating particles in the regular box, we can improve the performance of the
generated particles in each tetrahedral cell. When we generate particles in a tetrahedral cell, we
apply an affine transformation to the cell so that the scalar gradient vector becomes parallel to the
scalar axis, and the cell is included in the regular box. After the transformation, we can specify the
particles to be generated inside the tetrahedral cell instead of actually generating them. Thus, we
expect that image-quality degradation can be suppressed because the density distribution can
reflect the transfer function even if its change becomes drastic.

This method employs three stages. The first stage is pre-generating the particles using the
density function calculated from the opacity function, and the second stage estimating the number
of particles according to the integral value of the density function. The last stage is generating
particles in each tetrahedral cell using the estimated number of particles from the pre-generated
particles.

3.1 Particle pre-generation

A sampling process in each tetrahedral cell determines pre-generated particles. Before the
sampling process, particles are generated in the regular box using the piecewise linear transfer
function (Figures 1 (c), (d)). In this regular box, the pre-generated particles are sampled at each
interval volume in a tetrahedral cell. Sampling the linear density field at each interval volume for
particle generation is easy. We employ the rejection method (Neumann 1951) for this sampling.
Before beginning the sampling, we assume the total number (N) of pre-generated particles, which
is a user-specified number. To estimate the number of particles at each interval volume, the density
field in the regular box must be integrated. The integration value determines the division ratio of
the total number of pre-generated particles.

Within the regular box, the coordinate axes are described as (t1, t2, s). The value of the s axis is
identical to the scalar value S (S = s), and the coordinate axes are normalized into the [0, 1] region.
The pre-generated particles are distributed as if they were slabs in which the particles are
uniformly distributed in the t1, t2 axes while stacked in the s axis. The coordinate (t1, t2, s) is
limited to the region [0, 1]3.

We assume a piecewise linear function of ρ(S) by calculating a density function value α(S). The
density function is calculated by substituting both ends of the opacity interval for the density
estimation. In an interval [Si, Si+1], the density is represented as:

()
ii

iiii

ii

ii

SS
SSS

SS
S

−

−
+

−

−
=

+

++

+

+

1

11

1

1 ρρρρ
ρ

,
 (1)

ρ

Fig. 1 Layered sampling overview.

(c) The piecewise linear
density function ρ(S)

(d) Pre-generated particles
in the regular box, which
includes the tetrahedral cell

1
smax

0
smin

S s

t1 0

1
Smax

Smin

z s
1

smax

o
x

y

gradient
vector

(a) A tetrahedral cell
in object coordinates

(b) Affine transformation
to the tetrahedral cell

t
0

smin

3

where Si and Si+1 are both ends of the scalar interval. ρi and ρi+1 are the corresponding density
values.

The following integral calculates the division ratio mi of the total pre-generated particles at the
interval [Si, Si+1]:

() ()()iiii

s

si SSdsSm i

i

−+==
++∫

+

112
11

ρρρ

.
 (2)

The ratio becomes mi /M, where M is total value of mi, and the number of particles in an interval is
calculated as N×mi /M.

3.2 Particle number estimation

The particle number estimation stage is a sequence of processes. First, we calculate an affine
transformation of the cell to the regular box (Transformation). The cell is inserted into the regular
box, and the inclusion of the pre-generated particles inside the tetrahedral cell is determined
(Insertion). The included particles are then utilized to calculate the number of generated particles
Ntet by the volume integration (Integration).

Each tetrahedral cell is fitted into the regular box via an affine transform to calculate volume
integration and generate particles. The affine transform contains matrices L and A. Matrix L
rotates the gradient vector of a cell, so it becomes parallel to the z direction of the object space
where particles are pre-generated. Matrix A is a scaling and translation matrix that fits the rotated
tetrahedral cell into the regular box, where the direction of the gradient vector is identical to the s
axis. Here, Tet indicates the original tetrahedral cell. Tet’ indicates the tetrahedral cell transformed
by matrix L, and Tet’’ indicates a tetrahedral cell in the regular box. Then, Tet’’ = A Tet’ = A L
Tet.

Matrix L is constructed from the normalized gradient vector g and vector u, which is an
arbitrary unit vector that is linearly independent of g. To determine u, the absolute value of each
component in g is compared with the other components, and the component with the smallest
absolute value becomes 1. The other components become zero. The orthogonal basis vectors are
calculated as

()guglgul ××=×= 21 , . (3)

Then matrix L is defined as follows:
Tgll









=

1000
021L

.
 (4)

Because the gradient vector is constant in a tetrahedral cell, the z coordinate of the new
coordinate system transformed by matrix L is identical to the scalar data value. Thus, matrix A,
which transforms the z coordinate into the scalar data value, is defined as follows:

























=

1000
00

00
00

33

22

11

ba
ba
ba

A (5)

min11
minmax

1
1 xab

xx
a ′−=

′−′
=

min22
minmax

2
1 yab

yy
a ′−=

′−′
=

minmin33
minmax

minmax
3 Szab

zz
SSa +′−=
′−′

−
=

Here, Smin and Smax are the minimum and maximum scalar values, respectively, in a tetrahedral cell.
(x’, y’, z’) denotes the coordinates of Tet’. The minimum and maximum coordinates of a bounding

4

box of Tet’ are x’min, x’max. y’min, y’max, z’min, and z’max, respectively. The scaling factors of matrix A
are determined, so each length of the bounding box of the tetrahedral cell is normalized to [0,1].

The volume integration of the density function estimates number of particles Ntet in each cell. In
layered sampling, Ntet is numerically obtained by counting the pre-generated particles in a
tetrahedral cell:

N
N

aaa
MN in

tet
321

1
= (6)

where Nin is the number of pre-generated particles included in the tetrahedral cell and M is the
integration value of the density function ρ(S).
In our implementation, Nin particles included within Tet’’ are first selected in the pre-generated
particles. Then, Equation 6 estimates Ntet. When the scalar value range represented by Smax-Smin is
smaller than δ, Nin becomes too small to serve as a reference, as Tet’’ becomes very thin in the
regular box. δ is a pre-defined small number between [0, 1] and is determined to be smaller than a
width of the sharp peak in the transfer function. In this case, we can therefore estimate the number
of particles by single point integration.

3.3 Particle generation

In the particle generation stage, when the scalar range is greater than δ, Ntet particles are randomly
selected from the Nin particles included in Tet’’ if Ntet does not exceed Nin (Selection). The selected
particles are inversely mapped to the object coordinate by multiplying L-1A-1 (Inverse
Transformation). If not, first the Nin particles are inversely mapped to the object coordinate, and
additional particles must be generated by using rejection sampling to compensate for the shortage
(Rejection Sampling). We cannot generate particles using the abovementioned sampling method
when the scalar value range in a tetrahedral cell is smaller than δ. In this case, we generate
particles using uniform sampling, because we can assume that the particles are uniformly
distributed in the cell. The implementation of the particle generation process is as follows:

if Smax - Smin > δ
Calculate the transformation matrices A and L (Transformation)
Determine the inclusion of the pre-generated particles in Tet’’ and obtain Nin (Insertion)
Estimate Ntet by Equation 6 (Integration)

if Ntet <= Nin

Select Ntet particles included in Tet’’ (Selection)
Transform the selected particles into Tet by multiplying L-1A-1 (Inverse
Transformation)

else
Transform the selected particles into Tet by multiplying L-1A-1 (Inverse
Transformation)
Generate Ntet - Nin particles by rejection sampling (Rejection Sampling)

else
Estimate Ntet by single point integration
Generate Ntet particles by rejection sampling

4 Experimental results and discussion

4.1 Layered sampling evaluation

We conducted two experiments to evaluate the effectiveness of the layered sampling technique.
One experiment is the performance and computational accuracy evaluation of our method by
comparing it with Monte Carlo integration. The other experiment is the image quality evaluation
when applying our proposed sampling method and the Metropolis sampling method (Kawamura et

5

al. 2010). We used a PC with an Intel Core2 Duo 2.4 GHz CPU and 2.9 GB of RAM for these
experimental evaluations.

4.1.1 Performance and computational accuracy

To calculate the analytical value, we used an unstructured volume data composed of a single
tetrahedral cell. Figure 2 (a) shows the integration value errors calculated using our proposed
method and Monte Carlo integration when changing the number of pre-generated particles and
sampling points, respectively. From this result, we can verify that the accuracy of the integration
value proportionally increases as the number of particles increases in the double logarithmic plot
graph, and the approximated curves of the error value can be expressed as follows:

513.07.64 −

= ll NE , (7)

. (8)

where El and Em represent the error values calculated by using our proposed sampling method and
Monte Carlo integration, respectively. Nl and Nm denote the number of pre-generated particles and
sampling points. Equations 7 and 8 show that the error of both methods can be assumed to be O(N-

1/2), and the accuracy of our method can be confirmed to be about 17 times higher than Monte
Carlo integration.
We also measured the averaged computational times of the integration value. Figure 2 (b) shows
the relationship between the computational time and integration value accuracy in the double
logarithmic plot graph. This figure confirms that the computation time of our proposed method
outperforms Monte Carlo integration by nearly ten times. We can also verify that our proposed
method estimates the number of particles for the particle generation stage with higher accuracy
and speed than the Monte Carlo integration, as shown in Figure 2 (c).

4.1.2 Image quality

As test data for evaluating image quality, we used a simple regular volume dataset (10x10x10). In
this experiment, we generated particles for test data using our proposed method and the metropolis
method according to the number of particles, which Equation 6 can estimate. We used a transfer
function with two opacity value peaks for particle generation. The particle generation times of our
method and the metropolis method were 153.0 and 127.7 seconds, respectively. Figure 3 shows the

515.00.1082 −

= mm NE

(a) Error value (b) Processing time

Fig. 2 Experimental results of computational accuracy and performance.

(c) Error value and processing time

6

test data rendering results. Though our method is about 20 % more costly than the metropolis
method, Figure 3 (b) eliminates the supposedly impermissible particles that appear in Figure 3 (a).

4.1.3 Comparison with previous PBVR

To evaluate the effectiveness of layered sampling, we applied it to the tetrahedral volumes “SPX”
(2,896 vertices, 12,936 cells) and “Aorta” (248,992 vertices, 1,386,882 cells). We used the transfer
functions for SPX and Aorta, as shown in Figures 4 and 5 (c), to visualize the isosurfaces because
they have a drastic change in opacity value as a single-peak function. We compared layered
sampling to previous PBVR sampling techniques in both performance and image quality.

To evaluate the image quality, we compared the rendering results using the two techniques, as
shown in Figures 4 and 5. In Figure 4 (b), which was generated by the previous technique, we can
observe a discontinuous pattern caused by insufficient sampling around the red-colored portion. In
Figure 4 (a), which was generated by layered sampling, we can confirm that the red-colored
surface was visualized. In Figure 5 (b), we can see the perforated white surface. In Figure 5 (a), we
can see an improved image quality. Table 1 shows statistics on the performance data. We confirm
that the sampling time of the previous technique outperformed layered sampling. For both layered
sampling and the previous technique (where the latter outperforms the former), the sampling time
increases in proportion to the number of cells.

 SPX Aorta
T1 T2 T1 T2

Pre-gen. time [msec] 703 N/A 750 N/A
Sampling time [sec] 5.6 1.1 290.7 4.7
Num. particles [M] 5.16 5.12 17.74 17.76
Frame-rate [fps] 18.6 18.8 7.6 7.6

Table 1 Performance comparison. The repeat level is 144, and the number of pre-generated particles is
100,000. ‘N/A’ means there is no corresponding process. T1 means layered sampling and T2 means the
previous technique.

(a) Metropolis method (b) Layered sampling method

Fig. 3 Rendering results of the test data by using the metropolis method and the layered sampling method.

Fig. 5 Rendering results of Aorta and employed
transfer function.

Fig. 4 Rendering results of SPX and employed
transfer function.

(a) Layered sampling (b) Previous technique (a) Layered sampling (b) Previous technique

(c) Transfer Function. (c) Transfer Function.

7

5.2 Application to large-scale volume dataset

The unstructured volume dataset “Pump” from a computational structural mechanics (CSM)
simulation is the result of an elastostatic weight analysis with one hundred million degrees of
freedom using a PC cluster. The Pump dataset contained 26,289,770 quadratic tetrahedral cells
with 36,728,129 nodes, and it was divided into 32 datasets as outputs generated from the
distributed CSM computation with a finite element method solver.

We applied layered sampling to the Pump dataset. Because the sampling technique assumes a
volume dataset composed of linear tetrahedral cells, we subdivided the quadratic tetrahedral cell
into eight linear cells. Thus, PBVR with layered sampling rendered 210,318,160 tetrahedral cell
volume datasets. For this experiment, we used a PC with an Intel Core2 Quad CPU running at 2.83
GHz with 8.0 GB of RAM and an NVIDIA GeForce GPX280 GPU with 1.5 GB VRAM. We
successfully tuned the layered sampling process with four threads. We handled the divided volume
data by making each thread process every four cells. Generating the particles took 1,162.9
seconds. Figure 6 shows the rendering results with and without the technique. In the rendering, we
employed a transfer function in which the opacity values change drastically at some scalar values.
A transfer function, as shown in Figure 6 (c), was referenced. Figure 6 shows the boundary surface
rendering of the Pump data, which was independently processed in layered sampling. The
boundary surface of Pump was converted to particles by uniform sampling on the polygon patch.
A total of 7.0 mega particles were generated on the boundary surface, and 9.8 mega particles were
generated with layered sampling. Table 2 shows the sampling time, generated particles, and
rendering performance. From Table 2, we can confirm that the number of particles generated by
layered sampling is larger than that generated by the previous technique. The previous technique
could not calculate the volume integration of the density field accurately because of sampling
misses for the isosurface region. We may conclude that the layered sampling technique can reveal
isosurfaces clearly.

Fig. 6 Rendering results of Pump and employed transfer function. The gray colored semi-transparent
surface is the boundary surface of Pump.

(a) Layered sampling (b) Previous technique

(c) Transfer Function

 Layered sampling Previous technique
Pre-gen. time [msec] 3.9
Num. particles [M] 9.8 5.2
Sampling time [sec] 1163.9 27.7
Frame-rate [fps] 7.9 10.2

Table 2 Performance comparison. The shared repeat level is 144, and the number of pre-generated
particles is 20,000.

8

5 Conclusion

We have proposed a high-quality PBVR technique that includes layered sampling. The previous
PBVR created low quality images when handling high-frequency transfer functions. Layered
sampling is applied to a tetrahedral mesh and can handle high-frequency transfer functions. To
confirm the scalability, we applied the proposed technique to the CSM simulation results of a size
never previously visualized using a volume rendering technique.

In layered sampling, particles are generated in the regular box space using the density function.
The volume integration and particle generation are performed using pre-generated particles. The
effectiveness of this technique was confirmed by comparing the pre-integrated volume rendering
in the quality of images generated by a transfer function in which the opacity values change
drastically. PBVR with layered sampling clearly rendered the isosurface-like interval volume,
which is difficult to render with any previous sampling technique. We confirmed that the previous
sampling technique is sufficient when the opacity function changes gradually. To improve the
sampling time, we plan to develop a hybrid technique that combines layered sampling and the
previous sampling with opacity function variation detection. The sampling time was strongly
influenced by the number of pre-generated particles. However, determining the optimal number is
difficult, and solving this problem is one for future work. We must reduce the pre-generation time
to apply the technique to larger unstructured volumes.

The current implementation supports a tetrahedral volume dataset. When we process other
types of volume datasets, subdividing the volume cell into multiple tetrahedral cells to optimize
our proposed technique is possible. In the future, we will develop a technique for pre-generating
particles for other cells.

Reference

Callahan SP, Ikits M, Comba JLD, Silva CT (2005) Hardware-Assisted Visibility Sorting for
Unstructured Volume Rendering, IEEE Trans. on Visualization and Computer Graphics,
11(3):285-295

Chen L, Fujishiro I, Nakajima K (2002) Parallel Performance Optimization of Large-scale
Unstructured Data Visualization for the Earth Simulator, In Proc. of the Fourth Eurographics
Workshop on Parallel Graphics and Visualization, pp. 133-140

Csebfalvi B (2004) Interactive Transfer Function Control for Monte Carlo Volume Rendering, In
Proc. of IEEE Symposium on Volume Visualization and Graphics 2004, pp. 33-38

Ding Z, Kawamura T, Sakamoto N, Koyamada K (2010) Particle-based Multiple Irregular Volume
Rendering on CUDA, Simulation Modelling Practice and Theory, 18(8):1172-1183

Kawamura T, Sakamoto N, Koyamada K (2010) A Level-of-Detail Rendering of a Large-Scale
Irregular Volume Dataset Using Particles, Journal of Computer Science and Technology,
25(5):905-915

Meredith J, Ma KL (2001) Multiresolution View-Dependent Splat-based Volume Rendering of
Large Irregular Data. In Proc. of IEEE Symposium on Parallel and Large-Data Visualization
and Graphics, pp. 93-155

Muigg P, Hadwiger M, Doleisch H, Hauser H (2007) Scalable Hybrid Unstructured and Structured
Grid Raycasting, IEEE Trans. on Visualization and Computer Graphics, 13(6): 1592-1599

Neumann J (1951) Various Technique used in Connection with Random digits, Journal of
Research of the National Bureau of Standards, Applied Mathematics Series, 12:36-38

Roettger S, Ertl T (2003) Cell Projection of Convex Polyhedra, In Proc. of Volume Graphics 2003,
pp. 103-107

Sakamoto N, Kawamura T, Koyamada K (2010) Improvement of Particle-based Volume
Rendering for Visualizing Irregular Volume Data Sets, Computers & Graphics, 34(1):34-42

Sakamoto N, Kuwano H, Kawamura T, Koyamada K, Nozaki K (2010) Visualization of Large-
scale CFD Simulation Results Using Distributed Particle-Based Volume Rendering,
International Journal of Emerging Multidisciplinary Fluid Sciences, 2(2):73-86

Silva CT, (1996) Parallel Volume Rendering of Irregular Grids. Ph.D. thesis, State University of
New York at Stony Brook

Zhou Y, Garland M (2006) Interactive Point-Based Rendering of Higher-Order Tetrahedral Data,
IEEE Trans. on Visualization and Computer Graphics, 12(5):1229-1236

9

