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Measurement sensitivity and resolution
for background oriented schlieren during

image recording1

Ardian B. Gojani2 & Burim Kamishi3 & Shigeru Obayashi4

Abstract: Background oriented schlieren (BOS) visualization technique is
examined by means of optical geometry. Two most important results are
the calculation of the sensitivity and spatial resolution of a BOS system,
which allows for the determination of the experiment design space. A set of
relations that characterize the performance of a BOS measurement is given,
with emphasis on the design of background pattern and spatial placement
of optical components.

1 Introduction

Background oriented schlieren (BOS) is a flow visualization technique that

carries the promise of quantitative measurements, as introduced by Meier

(2002) and Richard and Raffel (2001). The physical principle on which BOS

relies is similar to that of the formation of mirages: a scene viewed through

a hot plume of air will appear distorted. The distortion is caused by the

bending of the light rays from the straight line propagation due to inhomo-

geneities in the medium, and it is described by the functional dependence of

the refractive index on space, n(r) (Hecht 2002). One can consider BOS as

an improvement and/or simplification of defocused grid schlieren (Vasil’ev

1971), white light speckle photography (Giglio et al 1980), moiré deflectom-

etry (Merzkirch 2007), and similar techniques. A large group of researchers
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acknowledges the support of GCOE program at Tohoku University.
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refer to BOS as synthetic schlieren, with the main difference between the two

being that BOS is more general in terms of the background, while synthetic

schlieren employs an optimized synthetically generated pattern as a back-

ground (Dalziel et al 1998). There are two fundamental differences between

BOS and standard (Toepler) schlieren techniques: in the latter, one records

the variation of illumination in the image plane, and also one intervenes on

the light path, usually with a knife-edge, modifying it in addition to the

modifications by the flow.

In BOS, a pattern is recorded at two different instances, once without

and once with the flow that is to be investigated, giving the reference and the

measurement images, respectively. The flow causes inhomogeneities in the

medium, which will influence the refractive index. Thus, when the reference

image is recorded, the refractive index of the medium is considered to be

constant. On the other hand, when the the measurement image is recorded,

the refractive index is a function of space in the domain defined as the test

section. Interrelationship between the refractive index and flow properties

– mainly density, as expressed by the Lorentz-Lorenz equation – allows for

determination of the state of the fluid.5 Based on this, BOS has found

many applications, as described in papers by Venkatakrishnan and Meier

(2004), Kinder et al (2007), Moisy et al (2009), Mizukaki (2010), Kirmse et

al (2011), Sourgen et al (2012), Glazyrin et al (2012), and Vinnichenko et

al (2012), to name a few.

BOS technique consists of two independent stages: image recording and

image evaluation. The first deals with the problems of designing the pat-

tern that is to be imaged, placement of the components in the optical setup,

and determining appropriate conditions for recording the images. The im-

age evaluation part deals with the problems of comparing reference and

measurement images, and data extractions from those comparisons. The

dominant method for data extraction in BOS relies on cross-correlation al-

gorithms that have been developed for speckle photography and particle

5Lorentz-Lorenz equation relates polarizability of an assembly of molecules to the re-
fractive index. For gases, this relation can be approximated by the Gladstone-Dale equa-
tion (Born and Wolf 2005).

2



w

st
so si

B

T

FF

B
ac
k
gr
ou

n
d

Test section

n(r)

Lens

Im
age

sen
sor

I

J

∆ij

α

ε

δe

δℓ

rb

ri

rt

Figure 1: Optical setup for background oriented schlieren.

image velocimetry. Alternative methods include optical flow (Atcheson et

al 2009), laser interferometric computed tomography (Ota et al 2011), and

recently some developments on single pixel correlation are being proposed

(Kähler et al 2012).

There have been several publications, including those by Elsinga et al

(2004), Goldhahn and Seume (2007), Yevtikhiyeva et al (2009), Ambrosini

et al (2012), and Gojani and Obayashi (2012), which assessed the sensitivity

and accuracy of BOS technique, mainly from the data processing and image

evaluation point of view, because these introduce the dominant measurement

uncertainties. Nevertheless, in order to determine the performance of a BOS

system, it is necessary to investigate the measurement uncertainties arising

from the optical setup, as well. This becomes more important in the cases

when experimentation is carried with instruments of modest specifications,

such as the case of high-speed imaging, limited by the relatively low pixel

count of the image sensor.
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2 Sensitivity

BOS measurement is able to quantify ray deviation, but only integrated

through the line of sight. This is illustrated in figure 1, which shows the

meridional plane of a typical BOS setup consisting of a structured back-

ground, the test section under investigation, (also referred to as the phase

object, transfer channel, density field, etc.), the objective lens with focal

length f (focal points F ), the image recording sensor, and the respective

distances. When the reference image is being recorded, a feature from the

background located at the point B is imaged in the point I. Introduction

of the fluid flow with variable refractive index n(r) will deflect the beam for

an angle ε, thus the imaged point now will be shifted for ∆ij to the point

J . A necessary condition for this effect to be observed is that the pattern

shift ∆ij be larger than the pixel linear dimension ℓpx. Thus, the detection

limit is determined based on the relation6

∆ij ≥ ℓpx. (1)

A consequence of the change of the ray direction is that the ray will

exit the test section at a different point, as compared to the ray during the

recording of the reference image. But, this difference, namely δe in figure 1,

is negligible for as long as δℓ, which is the distance between the entry points

of these rays in the lens, is much larger. Since δe/δℓ ≈ w/(so − st), this

condition is satisfied if
w

so − st
<< 1. (2)

This means that in the case of a BOS setup with dimensions much larger

than the width of the test section, one can assume that the fluid flow only

deflects the light ray, but does not displace it. Furthermore, similarly to the

thin lens which is described by the principal plane, the entire test section

can be approximated by a refractive plane.

6This equations holds for a ray of light that images a point from the physical space
into a point in image space. As it is known from image analysis, the determination of
pixel shifts with subpixel resolution is possible, but only over an area.
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The sensitivity S of a measurement setup is defined as the ratio of the

detected change - for the case at hand, the pattern shift ∆ij, - to the corre-

sponding change in the parameter being measured, - angle of deflection ε, -

that is,

S =
∆ij

ε
. (3)

Let the distance of a background point B from the optical axis be rb (in

the object space), as shown in figure 1. The lens with diameter of aperture

A forms the image of B at point I by collecting only rays emitted within

the range of angles α, for which

rb −A/2

so
≤ tanα ≤ rb +A/2

so
, (4)

where α is the angle of the direction of the ray with respect to the optical

axis, and so is the distance between the principal plane (the plane of lens

and aperture) and the background. In practice, A ≈ 1 − 50 × 10−3 m and

so ≈ 0.1 − 100 m.7 For the paraxial approximation to be applicable within

an accuracy of 1% (α < 15◦ ≈ 0.25 rad), the relationship between rb and so

is

rb < 0.25 so, (5)

which means that the dimensions of the field of view should not exceed the

quarter of the dimensions of the BOS setup.

In BOS, the thin lens relation 1/f = 1/si + 1/so holds, with the lens

being focused on the background. The image I is at a distance ri = M rb

from the optical axis (in the image space), where M = si/so is the optical

magnification of the system. Here, since BOS is basically a photographic

technique of real and inverted images, the magnification is taken to be pos-

itive, as is customary in photography. In the case of the deflected ray, the

image point J is at a distance rj = M [rt − (α + ε)st] = ri −M εst, where

rt = rb + αst is the distance of the deflecting point T from the optical axis,

st is the distance between the background and the test section (see figure

7There are examples of using BOS technique for visualizing open air blast waves with
so ≈ 400 m and st ≈ 100 m (Mizukaki et al 2012).
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1).

Since ∆ij = |ri − rj| = εM st, the sensitivity can be expressed as

S = M st =
si st
so

. (6)

3 Spatial resolution

In BOS measurements, reference and measurement images are taken under

the same lightning conditions of the field of view, which consists of a pattern

with highly varying brightness from point to point. Nevertheless, irrespec-

tive of the radiant exitance from a background point, it is the irradiance on

the pixel area - resulting in the image of the said point - that is actually

used for image evaluation and quantitative measurements. Thus, for a linear

proportionality between exitance and irradiance, it is the relative difference

in irradiance from point to point in the image space that determines the

pattern.

BOS imaging is done with charge-coupled device (CCD) or complemen-

tary metal-oxide semiconductor (CMOS) image sensors, which digitize the

output of the light falling onto the area of a pixel. Digitalization of the

image of the field of view leads to discretization in two domains: (i) in the

space domain, an operation referred to as sampling, and (ii) in the domain

of intensity values, an operation referred to as quantization. Quantization

is influenced by several noise sources in the image sensor, but the following

discussion will assume that the variation of irradiance due to imaged pattern

is much larger than the combined noise levels (dark frame and individual

pixel response). In a further simplification, it is assumed that the image is of

a binary type; hence, when the (relatively) high irradiation covers more than

half of the pixel, the pixel records light (pixel grayscale value 1), otherwise

it does not (pixel grayscale value 0).

Similarly to the previous section, let the image of the background point

B, i.e. point I, be at a distance ri from the optical axis, falling on the i− th

pixel (i = 1, 2, . . . , N , where N is the number of pixels of the sensor in one

6
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Figure 2: Cone of light creating the image in BOS.

direction). Because of sampling, all the other points that fall in the segment

(

i− 1

2

)

ℓpx ≤ ri ≤
(

i+
1

2

)

ℓpx (7)

are indistinguishable (for analysis in 2D, the factor multiplying the length

of a pixel should be i±1/
√
2, but this correction is insignificant in our case).

Furthermore, let ∆t = k ℓpx be the diameter of the circle of confusion (CoC),

with k a small integer (let us say, k = 1, 2, . . . , N/100 pixels). Based on the

properties of CoC, only irradiance variations that are at a distance larger

than this diameter can be resolved, therefore all points within the segment

ri ±∆t/2 are indistinguishable. Then, condition (7) is modified to

⌊

i− k + 1

2

⌉

≤ ri
ℓpx

≤
⌊

i+
k + 1

2

⌉

, (8)

where ⌊x⌉ designates the nearest integer function of x.

The cone of light collected by the aperture with diameter A, as it is

illustrated by the shaded area in figure 2, does not contain independent

information along its cross-section, because image sensor records the average

irradiance contained in it, thus it appears uniform. Backprojection of the
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segment defined by equation (8) through the lens into the background plane

determines the smallest distance that can be resolved, δb, which has the

value

δb =
k + 1

M

ℓpx
2

, (9)

and this defines the diameter of a dot in the background, i.e. the shortest

distance between pattern variations that are resolved. In practice, the dot is

made two or three times larger, so that image evaluation by cross-correlation

can yield an optimized result.

The spatial resolution of a BOS system at the deflection point T corre-

sponds to the diameter of the projection of the cone of light on the refractive

plane, and its value is

δt =
M

M + 1

st
f#

+
∆t

M

(

1− st
so

)

, (10)

where f# = f/A is the focal ratio (f-number) of the lens, and where st/so < 1

holds.

4 Discussion

In BOS, the test section is placed between the background and the objective

lens. This limits the values of st in the range 0 < st < so, and consequently

the sensitivity of the BOS setup is

0 < S < si. (11)

This results shows that the sensitivity of a BOS setup can be adjusted to any

desired level, limited only by the focal length of the lens. In practice, though,

sensitivity is adjusted by deciding on the spatial extent of the experimental

setup (adjustment of st, limited by the laboratory space and the field of

view) and the lenses and camera used (adjustment ofM). Older publications

that treated the sensitivity of BOS argued for the use of long focal length

lenses for increased sensitivity. While this is correct, the present paper gives

a more fundamental reason on why long focal length lenses are preferred:
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longer focal length lenses result in higher magnifications. Nevertheless, as

long as high magnification of the field of view (test section) is achieved, even

lenses with relatively short focal lengths can be used.

Spatial resolution of a BOS setup, which is a characterization of the

blurred out-of-focus imaging, is influenced by two terms composed of sev-

eral parameters, as given in equation (10): it can be said that ∆t and f#

are features of the camera and have a limited range of values, typically 5 –

50 µm for ∆t, and 5.6 – 32 for f#. For very low values of magnification,

such as in the cases of BOS applied in outdoor measurements (natural back-

grounds), the dominant term tends to be the second one. But, these cases

also involve large distances between the background and the phase object,

with st usually of the order of a few meters. Hence, both terms would be

accountable. For relatively large magnifications (M > 0.1), the second term

can be neglected, by virtue of having a very low value for ∆t. Furthermore,

when considering error propagation, even a small uncertainty in st, say 0.1%

(1 mm in a meter), would yield a larger uncertainty in δt than the value of

∆t/M itself. Thus, a good approximation of the spatial resolution in terms

of experimentally measured parameters can be expressed as

δt =
si

si + so

st
f#

. (12)

This result is to be interpreted as follows: the angle of deflection ε at the

point T is influenced by the variation of the refractive index n(r) along the

entire cone of light with the vertex at B and base diameter δt, i.e. r = rt±δt.

Standard schlieren techniques use the phase object as the imaging object, for

which st = 0. Hence, they have a superior spatial resolution as compared

to BOS, because only the term ∆t/M contributes to the uncertainty of

measuring the angle of deflection.

Equations (6) and (10) are the main equations that characterize a setup

for a BOS measurement, and their graphical presentation is given in figure

3. The surface plot for δt is shown for unit values of ∆t and f#, and where

st << so. This figure presents the BOS experiment design space, meaning

that once the acceptable range of values for resolution and sensitivity are

9
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Figure 3: BOS experiment design space.

decided, one can determine the distances between optical components when

setting an experiment.

This simple treatment of a BOS setup did not take into account several

other factors that influence the measurement, such as lens aberrations, de-

viations from paraxial approximation, sagittal rays, and alike. But, some

of these influences can be cancelled in the image evaluation stage, under

the condition that the recording of the reference and measurement images

is done with a fixed position of the camera and the test section relative to

each other. Also, the irradiation model was very simple and did not consider

the varying response of the image sensor. In addition, considering the small

size of a pixel in image sensor, the diffraction effects may play a crucial role

in imaging, especially if lasers are used for illumination.8 Nevertheless, the

obtained results are quite general and can be applied to several variations

of BOS setups. An important result is that neither S or δt depend on the

angle α (admittedly, as long as condition (4) is satisfied).

8In order to eliminate diffraction effects, equation (9) with k = 0 may serve as a
threshold for the coherence length of the light source.
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5 Conclusions

The present paper is a contribution in examining the performance of back-

ground oriented schlieren (BOS), and it supplements our previous work in

assessing BOS (Gojani and Obayashi 2012). Several guiding formulas for

setting a BOS system are presented:

• detection limit is given by formula (1),

• condition for no-displacement of ray at the exit of test section is given

by relation (2),

• dimensions of a field of view for a given spatial extent of a BOS setup

is limited by relation (5),

• system sensitivity can be estimated by equations (6),

• the minimal diameter for a dot in the background is given by equation

(9), and

• a fairly good approximation of spatial resolution from measurement

setup is calculated by equation (12).

These formulas should be used as a starting point in setting a BOS

system and determining the needed instrumentation, but they are not con-

clusive for the latter, because in this analysis, the quantum efficiency of the

image sensor and the temporal requirements of the experiment are not taken

into account. The emphasis of this study, instead, was on the spatial setting

of the instruments, so that desirable effects can be detected.
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