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Abstract. This paper presents a high speed implementation of an optical flow al-

gorithm which computes planar velocity fields in an experimental flow. Real-time

computation of the flow velocity field allows the experimentalist to have instantaneous

access to quantitative features of the flow. This can be very useful in many situations:

fast evaluation of the performances and characteristics of a new setup, design optimiza-

tion, easier and faster parametric studies, etc. It can also be a valuable measurement

tool for closed-loop flow control experiments where fast estimation of the state of the

flow is needed. The algorithm is implemented on a Graphics Processor Unit (GPU).

The accuracy of the computation is shown. Computation speed and scalability of the

processing are highlighted along with guidelines for further improvements. The sys-

tem architecture is flexible, scalable and can be adapted on the fly in order to process

higher resolutions or achieve higher precision. The set-up is applied on a Backward-

Facing Step (BFS) flow in a hydrodynamic channel. For validation purposes, classical

Particle Image Velocimetry (PIV) is used to compare with instantaneous optical flow

measurements. The important flow characteristics, like the dynamics of the recircula-

tion bubble computed in real-time, are well recovered. Accuracy of real-time optical

flow measurements is comparable to off-line PIV computations.
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1. Introduction

Optical measurements of 2D-velocity fields in fluid mechanics have been widely used

in industrial and academics laboratories for the past thirty years. They allow for the

thorough investigation of flow physics through non intrusive means and are an invaluable

tool for understanding the dynamics of complex flows. The classical measurement

technique is the standard 2D2C PIV (measurements of the 2-Components of the velocity

field in a 2D plane) [1]. It consists in illuminating the seeded flow with a plane laser sheet

(typically generated by a pulsed YaG laser) and acquiring two images of the illuminated

particles field at two successive time steps using 15 Hz double-frame cameras or fast

cameras for time-resolved (1 kHz) measurements. Usually, a few hundreds pairs of

images are acquired. In these standard PIV setups, data are transferred or stored on

the computer and post-processed off-line because the computations to obtain a well

defined velocity field with a good spatial resolution (typically a 16×16 cross-correlation

window) are time-consuming.

The development of reliable, flexible, accurate and low-cost systems capable of

computing flow velocity fields in real-time would be a great step forward for the fluid

mechanics community. In addition to saving a lot of time and resources, it would al-

low academics and industrial researchers to visualize the flow velocity field directly and

make adjustments to their experiments on the fly. Accurately targeted measurement

campaigns would become feasible even for flows exhibiting high frequency behaviors,

like flows downstream a bluff body [2, 3], a cylinder [4], or a wing [5].

Furthermore such systems would open new perspectives for closed-loop flow control

experiments based on visual informations instead of wall-pressure or skin friction

measurements. For instance, [6] used 4 × 15 microphones in parallel rows to measure
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pressure fluctuations downstream of a step. Using quantitative visual informations

would be equivalent to mapping the flow with as many captors as the image size divided

by the spatial resolution the 2D velocity field. Visual servoing in flow control has

already been suggested and successfully implemented in numerical simulations [7]. One

can find experimental demonstrations on improvement of the aerodynamic properties

of micro air vehicles [8], or control of the flow behind a flap [9]. Achieving increased

performances would allow for additional means of control, such as vortex tracking or

slope-seeking [10]. Several approaches have been suggested to achieve real-time PIV. For

instance, a bare bones PIV algorithm has been implemented by [8] on a single processor,

obtaining engaging performances, while [9] implements a basic PIV algorithm on a

GPU. However these approaches led to velocity fields from small images at relatively

low frame rates (less than 20 fps). Direct cross-correlation PIV, and particle tracking

velocimetry (PTV) algorithms have been programmed into Field Programmable Gate

Arrays (FPGA) [11, 12, 13]. However a specific Hardware Description Language (HDL)

is required to successfully operate them, which is a strong limitation. The spectacular

increase in computing power of GPUs (the peak GFLOPS performance roughly doubles

every year) allows for an alternative means of achieving real-time processing. Indeed,

the processing power of graphics cards has risen at a rate superior to that of Central

Processing Units (CPU, doubles every two years). Until recently, it was difficult for the

layman to access that power for something other than specific applications. With the

introduction of GPU extensions for mainstream computing languages (C/C++, Fortran,

Python, Matlab) implementing GPU code in a flexible manner has become accessible

to the general public.

In the present experimental study, a dense optical flow algorithm developed by [14]

was used. Its characteristics and performances in comparison to PIV algorithms are
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comprehensively detailed in [15] and [16]. One the advantages of this algorithm is its

scalability. Performance of the algorithm increases hand in hand with GPU computing

power. While optical flow algorithms have been used before to compute flow velocity

fields they have never, to our knowledge, been implemented in a real time setup. A

comprehensive overview of the algorithms used to compute flow velocity fields can be

found in [17].

Furthermore a traditional PIV setup can be cheaply upgraded to a real time PIV

setup. In addition to the efficiency of this algorithm, one should also emphasize its

robustness: it can be applied on various active or passive scalar fields, like thermal or

dye scalar field. It is then much more flexible and can be applied in much more various

experimental situations than standard PIV measurements restricted to particle tracking.

To demonstrate the efficiency and quality of real-time velocity computations, it has been

tested on a backward-facing step flow. Boundary layer separation and reattachment

occur in many natural and industrial systems, such as diffusors, combustors or external

aerodynamics of ground or air vehicles. The backward-facing step is the simplest

geometry to study a separated flow. Though the geometry is simple, the complexity of

separated flows is recovered as shown in figure 1. In this case, the separation is imposed

by a sharp edge, allowing for the separation-reattachment process to be examined by

itself. A dominant, global feature of the flow is the creation of a large recirculation

bubble downstream the step edge, as shown in figure 1. This flow has been extensively

studied through experimental and numerical investigations, see [18, 19, 20, 21, 22].

As the objective of the present paper is exclusively the experimental demonstration

of high-speed, efficient and reliable real-time velocity measurements, the BFS flow

characteristics will not be discussed thoroughly but solely used as valuable benchmark

for this experimental technique.
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Figure 1: Sketch of the backwards facing step flow

2. Experimental Setup

2.1. Water tunnel

Experiments were carried out in a hydrodynamic channel in which the flow is driven by

gravity. The walls are made of Altuglas for easy optical access from any direction. The

flow is stabilized by divergent and convergent sections separated by honeycombs. The

test section is 80 cm long with a rectangular cross section 15 cm wide and 10 cm high.

The mean free stream velocity U∞ ranges between 1.38 to 22 cm.s−1. The quality of

the main stream can be quantified in terms of flow uniformity and turbulence intensity.

The standard deviation σ is computed for the highest free stream velocity featured in

our experimental set-up. We obtain σ = 0.059 cm.s−1 which corresponds to turbulence

levels σ
U∞

= 0.0023.

2.2. Optical flow measurement set-up

The flow is seeded with 20 µm polyamid seeding particles. The vertical middle plane of

the test section is illuminated from above (figure 2) by a laser sheet created by a 2W

continuous CW laser operating at a wavelength λ = 532 nm.

The pictures of the illuminated particles are recorded using a relatively low cost

(compared to double-fame or high-speed cameras traditionally used for PIV), Basler
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acA 2000-340km 8bit CMOS camera,with a maximum bandwith of 680 Mb/s. Its

resolution is 2048 × 1088 pixels. The maximum frame rate for full-frame acquisition

is Facq = 340 Hz. The camera is controlled by a camera-link NI PCIe 1433 frame

grabber allowing for real-time acquisition and processing. It should be noted that CPU

performance is irrelevant with regards to the performance of the optical flow algorithm

which runs entirely on the GPU. In our set-up, a NVIDIA Gforce 580 GTX GPU card,

with 520 processing cores clocked at 800 Mhz, has been used. A complete description

of this GPU’s architecture can be found in [23]. The data flow for the acquisition

apparatus is detailed in figure 2. The images can either be written to a solid state drive

or computed in real-time on the GPU. Usually no data is written during visualization of

velocity fields to improve performance and frequency rate of the computation. The

optical flow algorithm and camera acquisition software are integrated into a single

interface using LabView. It is important to emphasize the only requirement to upgrade

a classic PIV setup featuring a camera streaming images to an acquisition computer, to

a setup capable of real-time flow velocity computations is adding a graphics card to the

acquisition computer. Therefore this can be done cheaply and with minimal effort.

2.3. Backward-facing step geometry

The backward-facing step geometry is shown in figure 2. A specific leading-edge profile

is used to smoothly start the boundary layer which then grows downstream along the flat

plate, before reaching the edge of the BFS. The boundary layer has a shape factor H ≈ 2.

Step height h is 15mm allowing for a range of Reynolds numbers 0 < Reh = U∞h
ν

< 3000,

ν being the kinematic viscosity.



Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU7

Figure 2: Sketch of the backward-facing step and data flow for the acquisition apparatus

2.4. Optical flow algorithm

Optical flow is related to the domain of image motion or optical flow estimation in

computer vision. This particular algorithm called FOLKI was written in C++/CUDA.

It was developed, implemented and rigorously validated by [15] at ONERA. To achieve

optimal performances further improvements were made by improving memory transfers

and enhancing kernel concurrency. A guide on CUDA programming is available at

[24]. This algorithm was used by [25], [26], and [27]. It is a local iterative gradient-

based cross-correlation optimization algorithm which yields dense velocity fields, i.e. one

vector per pixel. It belongs to the Lucas-Kanade family of optical flow algorithms [28].

It should be noted the dense nature of the output is intrinsically tied to the nature of

the algorithm. The spatial resolution however is tied to the window size, like any other

window based PIV technique. However the dense output is advantageous since it allows
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the sampling of the vector field very close to obstacles, yielding good results near walls,

as shown in [15]. Computing dense fields allows for a highly parallel algorithm which

can take full advantage of the GPU architecture. The interrogation window radius

r = 10 pixels was chosen, following the guidelines given by [15]. It should be noted

similar performances would be achieved using other programming languages, such as

OpenCL in conjunction any GPU’s , though the algorithm would need to be tweaked

for the specific GPU architecture. Because the algorithm is based on light intensity

displacement between two images, it should be noted that unlike PIV algorithms this

algorithm does not require a seeded flow to compute actionable data. For instance, the

same setup could be used to measure velocity fields of flows presenting passive scalar

(like fluorescent dyes) concentration gradients or even variations in refractive index due

to thermal or density variations.

The principle of the featured optical flow algorithm is as follows. The original

images are reduced in size by a factor of 4 iteratively until intensity displacement in

the reduced image is close to 0. This gives a pyramid of images, described in figure 3.

Displacement is computed in the top image with an initial guess of zero displacement

using an iterative Gauss-Newton scheme to minimize a sum of squared difference

criterion. This displacement is then used as an initial estimate for the same scheme

in the next pair of images in the pyramid. And so on until the base of the pyramid,

corresponding to the initial images is reached, thus giving the final displacement.

The optical setup is tuned for the displacement of the particles to be small enough

for the optical flow algorithm to converge. Thus there are two inputs to the algorithm,

besides image size, that have a major impact on performance: the number of levels

in the pyramid nlev, and the number of iterations per level niter required to achieve

convergence of the velocity field. Computing speed is a function of these two integers.
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Figure 3: Sketch of the computation pyramid.

If (δx)max is the maximum displacement, as a general rule nlev must verify equation 1

from [15]:

(δx)lmax/2
nlev−1 < 3 pixels (1)

One can see that choosing the time step between images defines the value of nlev.

One must then choose niter. A low value will give higher performances with slightly lower

result quality. When working in real-time a low value (1 or 2) of niter is recommended.

However for off-line computations the value should be raised to ensure full convergence.

Performances should still be greater than with commercial PIV software.

While a number of pre and post-processing options are usually used to enhance

the computed velocity fields, these operations have a computational cost. Therefore a

balance must be found between obtaining actionable data and processing speed.

Raw images are pre-processed using a standard local equalization algorithm. This

step is implemented on the GPU for increased performance. We have found this step to
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be mandatory for experimental images processing. Without, the computation does not

yield usable data.

Original image intensity is normalized following equation 2:

∀(x, y) ∈ I, Ĩ(x, y) =
I(x, y)− Ī(x, y)√
Ī2(x, y)− I2(x, y)

(2)

where Ī is a local mean for a given radius. We choose a radius of 5 pixels. This zero

normalized sum of square differences (ZNSSD) is common for PIV pre-filtering. The aim

is to eliminate the influence of illumination inhomogeneities. For each pixel the mean

intensity value is subtracted (zero mean) and divided by the local intensity standard

deviation (normalized).

The nature of the algorithm is such that computed velocity fields are naturally smooth.

Thus there is no post processing required to cull spurious vectors.

For our setup, only a fraction of the camera resolution is used (the region of interest

(ROI) = 1792× 384). It is enough to capture the whole recirculation bubble downstream

the BFS, while ensuring good computing performances. Reducing the time step δt

between two pictures acquisitions allows lower values of nlev and higher performances.

nlev can be lowered to 0 with a small enough displacement. Decreasing nlev shifts the

burden of performance to the camera. niter should be raised until the computed velocity

field does not vary, with niter ≥ 1. niter ≥ 10 is seldom needed. With current hardware

it is difficult to achieve satisfactory performances with a high number of iterations

(niter > 4). niter can be brought down as low as 1 and still yield actionable quantitative

information on the flow, with a significant improvement in computing times.

Concerning latency, depending on GPU performances and camera acquisition

frequency different computing schemes are implemented for optimal performances as

show in figure 4.

The first scheme is used when computation is fast enough to keep up with the



Real-time planar flow velocity measurements using an optical flow algorithm implemented on GPU11

Figure 4: Different computing schemes

camera. This is the fastest scheme by far since each field computation requires only one

image to be processed. The second is used when the first cannot and pre-processing time

is lower than camera exposure. Finally when preprocessing takes too long, preprocessing

on the second image starts while preprocessing on the first image is finishing. Latency

varies depending on the scheme but is upper bounded by exposure time plus the time

required to preprocess one image and compute the corresponding field. Post-processing

can also be hidden during copy from the camera to the GPU, a period during which

the GPU is iddle. Post-processing here refers to the computation of integral quantities

from the data.

2.5. PIV computations

To validate the optical flow measurements standard PIV algorithms were used off-line.

The Davis software from LaVision was used, using a PIV multi-pass cross-correlation

algorithm with a final 16×16 pixel interrogation window with 50 % overlap, thus leading
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(a) (b)

Figure 5: Vector plots of the instantaneous velocity field downstream the BFS for

Reh = 2500, colored by vorticity, and computed by PIV (a) and by optical flow (b).

to PIV fields with a 8 × 8 pixel grid resolution.

3. Results

3.1. Real-time computation of instantaneous 2D velocity fields

Figure 5a shows an instantaneous vector plot colored by vorticity for Reh = 2500

obtained with a PIV algorithm. Figure 5b shows the same velocity fields but computed

with our optical flow algorithm. One can see that spanwise Kelvin-Helmholtz vortices

are well captured. Differences between the two velocity fields are mainly due to poorer

results of the PIV algorithm near the edges of the acquisition window and near the

walls.

3.2. Comparison of the real-time optical flow measurements with off-line PIV

computations

The accuracy of the algorithm has been demonstrated off-line for numerical and

experimental data by [15]. In this section we will focus on the computation of an

integral scalar value derived in real-time from the instantaneous velocity fields. The
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objective is twofold: illustrate the real-time computation of a global quantity extracted

from instantaneous velocity fields in real-time and evaluate the accuracy of the optical

flow computations compared to standard PIV computations.

There are a number of pertinent integral values which can be used to characterize

the separated flow. In this experiments we choose to compute the surface of the

recirculation bubble in the instantaneous 2D velocity field. It is straightforward and

quick to compute while remaining a good way of evaluating the state of the flow. The

recirculation bubble surface is defined as the percentage of velocities below a given

threshold Tv relative to the total number of available velocity vectors in the whole

velocity field on image I. The threshold is chosen as the median between the lowest

and highest longitudinal velocity for the mean velocity field. The recirculation bubble

surface Sbubble is defined by equation 3:

Sbubble =

∑
I vx(x, y) ≤ Tv∑

I vx(x, y)
(3)

with Tv = 1
2
[min v̄x(x, y) + max v̄x(x, y)].

Figure 6 shows the values below the threshold for an instantaneous velocity field.

One can see that the white area gives a good estimate of the instantaneous recirculation

bubble. Sbubble is the area of the white region given as a percentage of the total velocity

field area. Such computations are carried out for both optical flow and PIV velocity

fields. The recirculation bubble surface can be correlated to the reattachment length

LR usually used to characterize the BFS flow [18, 22]. Such an integral value could, for

example, be used as an input in a feedback loop.
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Figure 6: Visualization of the recirculation bubble area (white region) defined by a

velocity threshold applied on the instantaneous velocity field. In this case, Sbubble=21%

is computed in real-time.

Figure 7: Comparison of time series of recirculation bubble surface Sbubble computed

using PIV (black full line) and optical flow (grey dotted line) for a time-resolved velocity

measurement.

Figure 7 shows time series of instantaneous Sbubble computed with optical flow and

with PIV for a time-resolved series computed off-line. Data featured in figure 7 are for

Reh = 2500 and with an acquisition rate of 60 image pairs per second. One can see that

there is a good agreement between the two time-series. Differences can be explained

by the fact some images do not contain enough particles in the recirculation region.

The optical flow and PIV algorithms converge in slightly different ways. Because of

the dense nature of the optical flow output, more information is available near the walls

[15]. The computed recirculation bubble is more clearly defined and is subject to greater
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variations as shown in figure 7.

Figure 8a shows a comparison of the surface of the mean recirculation bubble as

a function of Reynolds number computed by PIV or optical flow. Figure 8b shows

the relative difference between results obtained with both algorithms. Agreement is

good with a relative difference always lower than 3%. It shows that the optical flow

computations is robust over a wide range of Reynolds numbers corresponding to complex

instantaneous flows.

(a) Comparison of mean Sbubble computed with

PIV (× and full line) and optical flow (◦ and dotted

line) algorithms.

(b) Relative error on recirculation bubble surface

between PIV and optical flow

Figure 8

3.3. Optimizing the computation frequency

nIter

1 2 3 4 5 6 7

nlev

3
4.80% 2.12% 1.45% 1.14% 1.00% 0.99 % 0.2 %

224.0 fps 148.0 fps 112.0 fps 89.3 fps 73.5 fps 63.0 fps 55.7 fps

4
3.65% 2.12% 1.45% 1.14% 1.00% 0.93% 0%

220.0 fps 147.0 fps 110.1 fps 87.2 fps 72.4 fps 62.0 fps 55.6 fps

Table 1: Error and fields per second (fps) as a function of computing parameters.

This setup allows for accurate computations of the 2D velocity fields in real-time.

If the aim of the user is real time visualizations and/or quick computations of flow

properties for a feedback loop, constraints on the algorithm can be relaxed. Indeed,
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some compromise can be found if increased computations speed is called for. If the aim

is the computation of accurate velocity fields, constraints should be increased to achieve

maximum accuracy, while still retaining fast computing times in real time.

Table 1 shows how one can drastically improve computation speed, by lowering the

number of levels and iterations while still retaining a meaningful integral information

from the flow.

A video is linked to this article showing flow images and real-time computed fields

as well as Sbubble history. Higher fields per second can be achieved by shortening the

time step between two images in order to bring down maximum displacement and thus

allowing nlev → 0. This translates into a maximum of 350 fps at this resolution. Higher

speeds can be achieved by reducing the field of view, for example by focusing on an

area where fluctuations are most present or using masks to avoid computations over

obstacles or side walls.

The aforementioned performances are achieved with a given hardware. The scalability

of the algorithm ensures greater performance with better GPUs. Moreover since

the computation of a velocity field is independent of all other computations, adding

additional graphic cards to the setup would allow for a proportional increase in

computation speed. The only limit to the achievable frame rate are the acquisition

rate of the camera image quality. For very high acquisition frequencies, a more powerful

CW laser, a pulsed YaG laser and/or a more sensitive camera are required.

4. Conclusion and perspectives

We have shown how a simple and relatively low cost setup can be configured to achieve

high speed real-time computations of a flow velocity field and computation of relevant

values from this velocity field. The key feature of the setup is the use of an optical
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flow algorithm which takes advantage of the massively parallel processing capabilities

of GPUs. This work is of use to experimentalists who wish to observe flow properties

in real-time as well as those who wish to use high frequency flow data to implement a

feedback-loop in flow control experiments. We have demonstrated the accuracy of the

method by comparing our results with results obtained by the more widely used PIV

approach, computed off-line. Finally, ways of improving computing speed and reaching

higher frame rates are discussed.
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