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ABSTRACT

Abstract:

Hydrodynamic features are very important to find an optimal reactor design for the
hydroformylation of long-chain alkenes. For this purpose, and for the validation of
theoretical reactor concepts, velocity measurements in a model reactor system are necessary.
Due to the difficult reaction conditions found in reality (toxic thermomorphic organic solvent
system, high pressure, high temperature, limited fields of view in typically used model
reactors) such measurements are not an easy task. In this work, comparative Particle-Image-
Velocimetry (PIV) measurements have been used to find out if 1) the substitution of the solvent
with water, and 2) reducing operation pressure still lead to similar results. For this purpose, PIV
measurements have been performed in a stirred tank reactor under reaction conditions
(organic solvents, high pressure, high temperature), but also with water at reduced pressure
levels. It is found that pressure (as expected), and also the employed solvents do not have a
significant influence on the observed flow structures, although density and viscosity are
rather different. Therefore, further systematic experiments are now carried out in a model
reactor, completely built out of glass, with water filling, and at atmospheric pressure. A
complete hydrodynamic characterization is thus possible, opening the door for optimization
of the resulting hydrodynamic field and for detailed comparisons with theoretical reactor

design as well as numerical predictions.
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1. Introduction

On the way towards a generic, model-based design for multi-phase chemical
reactors, a continuous reactor allowing the hydroformylation of 1-dodecen to
tridecanal has been retained as relevant application example (Kaiser et al. 2016;
Kéamper et al. 2016; Zagajewski et al. 2014; Zagajewski et al. 2016). To optimize the
corresponding process, the hydrodynamic features of this reactor are particularly
important and must be characterized in detail, if necessary in the real geometry and
under real operating conditions. Dead zones have to be avoided and the re-dosing
positions for consumed educts and gasses (Syngas) have to be optimized in order to
maximize reaction yield (Hentschel et al. 2015). To support this process, in-situ flow
tfield measurements are needed. Since probe-based measurements impact the
hydrodynamic features, non-intrusive optical measurements shall be preferred
whenever possible. In order to obtain information concerning velocity fields, Laser-
Doppler Anemometry (LDA) and Particle-Image-Velocimetry (PIV) are mostly
employed. PIV has been retained for this project, since it delivers information for a
macroscopic field of view, and not only at a single point, as is the case for LDA.

There are uncountable publications describing Particle-Image-Velocimetry (PIV)
measurements. Most consider aerodynamic applications, but many PIV

measurements have been documented for chemical engineering applications
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involving a liquid bulk phase in stirred tank reactors; for instance in (Deen et al. 2002;
Kim et al. 2001; Pan et al. 2008; Sharp and Adrian 2001; Yoon et al. 2005), to analyze
the velocity field near Rushton turbines under different conditions; or in (Baldi and
Yianneskis 2003; Kilander and Rasmuson 2005; Sharp et al. 1999; Sheng et al. 2000;
Sheng et al. 1998; Sudiyo et al. 2003), where turbulence features have been analysed
in stirred tank reactors and used in particular to validate numerical modelling
approaches (Sheng et al. 1998; Yoon et al. 2001). The impact of a secondary gas flow
on hydrodynamics has been considered, e.g., in (Deen and Hjertager 2002; Hall et al.
2005; Montante et al. 2013).

Still, the continuous liquid phase used in all these studies is almost always water,
sometimes glycerol-water mixtures. To the knowledge of the authors, no
hydrodynamic study based on PIV measurements in organic solvent systems has
been published yet.

Additionally, most published works relying on PIV to characterize hydrodynamic
features of chemical reactors have taken place under atmospheric pressure and
ambient temperature. Therefore, the connection between such mostly academic PIV
studies and real process engineering applications is sometimes not straightforward.
In the present case, a thermomorphic organic solvent system (TMS) is used (figure 1).
Depending on its temperature, the mixture can be in a two-phase state (left column
of figure 1) or in a single-phase state (right column of figure 1). Such a system is
extremely useful in practice, since it delivers excellent conditions both for 1) chemical

reactions in a single-phase liquid, followed by 2) an easy separation of the catalyst-
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solution from the product in the two-phase state, simply by switching between two
different temperature values (Dreimann et al. 2016; McBride et al. 2016).
Unfortunately, the hydrodynamic behaviour of such complex solvent systems has

not been characterized up to now.

Figure 1

The chemicals used in the real process are organic solvents and toxic. Furthermore,
the system has to be heated up to approx. 90°C to attain the single-phase state, and
the reactor has only limited optical access due to safety issues, because the reaction
also needs high pressure (20 bar) for high yield and selectivity. Therefore, a step-by-
step procedure as shown in figure 2 has been retained to check the influence of
solvent and pressure on the PIV-measurements. Based on the findings,
measurements in a simplified configuration, e.g., a completely transparent model
reactor, at atmospheric pressure, might become possible. In the same manner,
measurements in water instead of organic solvents might deliver a proper
approximation. Both, combined with refraction-index matching, would allow for a
far more detailed level of accuracy and would thus deliver more information.

Therefore, in this study, PIV measurements in the original TMS-system at
atmospheric and high pressure are compared to measurements in water at different
pressure levels. From these results, all further experiments used to validate the

theoretical models developed separately (Kaiser et al. 2016) will be planned.



Figure 2 Measurement strategy

2. Experimental setup

The employed experimental setup is shown in figure 3. The experiments were carried
out in a stirred tank steel reactor (1, in Fig. 3 top) purchased from Biichi AG with two
glass windows (10mm thick), arranged in a 90° angle (see Fig. 3 centre and bottom).
The reactor has no baffles, a volume of 1000 ml, an inner diameter of 102mm and a
height of 108mm. The diameter of the windows is 40mm and they are located in the
vertical centre of the reactor. A 3-blade propeller stirrer (=50mm) was used for the
measurements at two rotational speeds, 200rpm and 400rpm. These rotational speeds

always lead to turbulent conditions with maximum Reynolds-Numbers

of 16 600 for water and 31 600 for the TMS systems, with n the
Re=nxd*xp/u

number of revolutions of the stirrer, d the stirrer diameter and p and u the density
and viscosity of the fluid respectively. Due to the much lower viscosity, the TMS has
about twice the Reynolds number of the water system. But, all examined regimes are
already in the fully-developed turbulent regime, leading for stirred systems to
constant characteristics, regarding power consumption, mixing times etc. (Zlokarnik
2001). This means, that the flow is mainly dominated by convective inertial effects

and not by viscous forces for all configurations considered. The shaft of the stirrer
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can be seen through the window, as shown in figure 1 (bottom, right). The stirrer
speed has been chosen according to the experimental constraints: first, considering
the reaction, which needs sufficient mixing; second, taking into account laser and
camera acquisition frequency; third, due to the funnel that is formed at about 600rpm
in a way to cover the area of interest, so that no further PIV measurements were
possible.

The different liquids (water and TMS-systems) were filled into the reactor and
fluorescent tracer particles (FluoOrange, An= 584nm) with a mean diameter of 9.84
pm, made of melamin resin (p=1510 kg/m?3, resistant to the solvents), purchased at

Microparticles GmbH, were added. The relaxation time of these particles, calculated

as , has a value of 2.110° s for the TMS and 8.410° s for water.
T =dp2pp/18>§u

Stokes numbers ( ) for the tank scale with , calculated for the
St =1, /7, Tp =g /U

— Mtirrer

highest measured velocity (0.3 m/s), have values of 1.310™ for TMS and 5.310” for

water. Calculated with the Kolmogorov time scale Stokes

T, =dstirrer/(u>< Re|

numbers still are very small with St=6.510" for water and $t=2.210" for TMS. This
means that these tracer particles can well follow the flow, even though their density
is rather high. Nitrogen was used to increase the pressure via a tube. Both, pressure

and temperature were continuously controlled and monitored via a Siemens



Miniplant Controlling system. Pressure is given in the following as gauge pressure
(overpressure).

[lumination for PIV was provided by a pulsed, frequency-doubled (532nm) Nd-YAG
laser (Litron LDY 300, number 3, in Fig. 3 top) with an energy of 54 m]J/P, formed to
a 0.5mm thick light sheet (5, in Fig. 3 top) and passed vertically, directly in front of
the stirrer axis (Fig. 3 bottom). The time delay between two pulses was 600 ps. Thus,
between two laser pulses, the particles maximally moved by about 180um. Given the
thickness of the laser sheet (500 pm), out-of-plane motion was therefore not a
noticeable problem. A LaVision Imager Intense CCD-camera (2) with a 1376x1040
pixel’ chip (pixel size: 6.45um x 6.45um), a 105 mm AF Micro Nikkor Nikon lens
(f#=4) and a 537 nm long-pass filter, to exclude laser light and reflections, recorded
the double PIV-images at an acquisition frequency of 3 Hz. The resulting image
resolution was, depending to the first decimal place on the x- or y-direction, around
42pm/pix. This means that structures of about 100pm and larger can be resolved.
The geometrical calibration has been done with a calibration target, mounted on the
stirrer shaft, just at the position where the light sheet passes in the reactor. Post-
treatment of the images has been done with LaVision Davis 8.4 Software. A multi-
pass PIV evaluation was used, with decreasing interrogation area size from 32x32
pixels to 16x16 pixels with 50% overlap and, in the mean, about 5 particles per
smallest interrogation area. This resulted in a final vector spacing of 340 pum. As
preprocessing, a time series filter and constant background value subtraction were

applied for enhancement of particle contrast in the images, as well as masking of the
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window and gas tube. Post-treatment of the obtained vector fields comprised peak
ratio filtering and a median filter compared with neighbouring vectors. Then, the
obtained 500 individual snapshot vector fields were averaged to a mean vector field,
the standard deviation is a measure for velocity fluctuations. The measurements
uncertainty has been evaluated using the method of (Wieneke 2015). This method
estimates the error induced by the calculation of the displacement field, based on the
intensity pattern of the images. It leads to a maximum error of 0.008 m/s for the
velocity magnitude, which is about one order of magnitude smaller than the
measured velocity differences between Water and TMS. Thus, it can be concluded,
that the measured differences are not due to measurement accuracy, but to a real
difference.

First, measurements in water at room temperature were performed. Then, the
pressure was increased stepwise (Ap=1bar) up to 10bar and the flow field was
recorded. The same procedure was repeated with two different compositions of the
TMS system. The first mixture (TMS 1) consisted of 42 wt% dimethylformamide
(DMF), 42wt% decane and 16wt% 1-dodedece and was measured at 94°C. The
second mixture (TMS 2) consisted of 32wt% DMF, 48wt% decane and 20wt% 1-
dodence and was measured at 82°C. Both temperatures were just a bit higher than
the critical temperature for phase change of the respective system. Liquid density of
the TMS-systems at reaction temperature has a value of ~760 kg/m’, while the
viscosity, compared to water, is rather small, with 0.4 mPa's. These properties and

compositions are summarized in table 1 together with the employed experimental
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conditions. All of the examined parameter combinations show the same qualitative
tendencies. Therefore, only a typical case in the mid-pressure range at 5bar with a
rotating speed of 400rpm has been chosen exemplarily for the further presentation of
the results.

Table 1 Liquid compositions and properties

DM dyna gauge stirr
F deca | dodede | wat | densi mic pressu er Re
wt ne ce er ty Viscosi re spee )
o wt% wt% | wt% | kg/m? ty b d
(s ar
mPa s rprm
0-10 | 200, | 830
Wat 400 0
or - - - 100 | 1000 1 166
00
0-10 | 200, | 158
TMS 400 | 00
1 42 42 16 - 760 0.4 316
00
0-10 | 200, | 158
TMS 400 | 00
2 32 48 20 - 760 0.4 316
00

Figure 3 Experimental setup

3. Results

3.1 Influence of solvents

To determine the influence of the different solvents, the planar velocity fields of the
two TMS mixtures and of water, all at 5 bar and 400rpm stirrer speed, are compared

in figures 4, top to Fig. 6. Arrows show the planar 2D-velocity direction, background

10



colour indicates the corresponding velocity component. The TMS systems are in the
single-phase state for the measurements and water is at room temperature. Velocities

are averaged over 500 snapshots.

Figure 4 Averaged velocity magnitude (top) and standard deviation of

magnitude (bottom) in different solvents at 5bar and 400rpm in m/s.

The highest velocity magnitude is found for all three solvent systems in the area
directly in front of the stirrer (centre of the window). To the left side, it decreases
homogeneously. On the right side, the gas tube and the temperature probe inside the
reactor (masked out, white bar on all following figures), strongly influence the local
flow structure. The velocity magnitude there is slightly higher than on the left side.
Due to the installed equipment, no symmetry exists in the flow within the vessel.

The corresponding rms-values, representing the flow fluctuations, are also
represented in figure 4, bottom. They show the same pattern for all three solvents,
but fluctuations are slightly smaller in the case of water. The largest fluctuations are
always found at the top of the observation window. This might be caused indirectly
by the waves and the funnel at the liquid surface, which is situated about 2cm above
the window. The fluctuations on the right side can be explained by the temperature
and gas probes that are situated on that side.

Looking at figure 5, which shows the vertical velocity component v, a similar

situation can be recognized. The highest velocity in y-direction exists directly in front

11



of the stirrer. The lowest y-velocities are situated on the right side of the vessel,

where the probes are installed.

Figure 5 Vertical velocity component v, in different solvents at 5bar and 400rpm

in m/s.

Figure 6 Horizontal velocity component vy in different solvents at 5bar and

400rpm in m/s.

The horizontal component v,, shown in figure 6, clearly depicts the rotating fluid
motion induced by the stirrer, rotating from the right to the left. Fluid is transported
from the right to the left, with the highest horizontal motion in negative coordinate
direction. On both sides of the vessel the horizontal component is nearly zero, since
fluid comes from the third dimension into the measuring plane.

Regarding absolute velocity profiles, as presented for the centre of the window at
y=20mm in figure 7 (right column), the differences between the solvent systems and

water are small. All three fluids show similar velocity profiles.

Figure 7 Relative mean velocity differences between water and TMS solvent
systems in % at 5bar and 400rpm. Left: TMS1; centre: TMS2; right: absolute
velocity profiles in the centre of the window at y=20mm. Top: mean velocity
magnitude; centre: mean vertical velocity component; bottom: mean horizontal
velocity component.
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Due to the colour scale used in figures 4-6 for clarity, the difference between the
mean velocity fields of water and TMS may seem rather strong at first. But,
calculating the difference with the mean water results and normalizing it by the
mean water velocities, the situation becomes different (figure 7, left and centre
column). The deviation is maximum in a small region at the top of the stirrer shaft,
with values attaining locally up to 40% for the velocity magnitude (upper row). The
funnel, induced by the stirrer, might explain this relatively strong local deviation.

For the vertical and horizontal velocity components (figure 7, centre and lower row),
the situation is similar. The deviations reach locally values up to 70% near the stirrer
shaft; however, in most positions the relative deviation within the observation
window is rather small, with values around 10%. Visible differences between water
and the solvent systems are found mainly in the top centre region, close to the stirrer
funnel and on the right, next to the gas tube and temperature probe.

The differences between TMS and water are also represented in terms of root-mean-

square errors (RMSE) in figure 8, thus taking into account the velocity fluctuations.

The RMSE is calculated here as: , where v; and w; are the

RMSE =\/Z(v, -w,)?*/n

snap-shot velocity fields of TMS and water respectively and n is the number of snap-
shots. This figure shows again that the main differences exist near the stirrer shaft, on
top of the viewing window near the liquid surface and on the right side, near the

probes. In the central and lower part of the tank, the differences are very small for all
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velocity components (Fig. 8), although the bulk liquid densities differ from ~760
kg/ m® (TMS-Systems at reaction temperature) to 998 kg/ m? (water, 20°C), while the
viscosity varies from 0.4 mPas (TMS-Systems at reaction temperature) to 1 mPas

(water, 20°C)

Figure 8 Root-mean square difference between TMS solvent systems and water
of velocity magnitude (top), vertical velocity component (centre) and horizontal
component (bottom) in m/s at 5 bar and 400 rpm. Left: TMS1; right: TMS2.

3.2 Influence of pressure

Theoretically, pressure should not have any influence on the hydrodynamics in the
reactor. But, since the reaction including gas addition works only under high
pressure levels (10-20bars), it still seemed worthwhile to test also this parameter. To
check its possible influence, velocity fields at pressures from 0 to 10 bar gauge

pressure were acquired for water and for the TMS systems.

Figure 9 shows the averaged velocity magnitude in water at 0 and 9bar gauge
pressure and 400rpm. The relative difference attains, as shown in figure 9 (bottom,
left), values of maximum 15% near the stirrer shaft. Here, the velocities in water at 0
bar served as a reference and the difference to the 9 bar results has been normalized
in this manner. Once more, the RSME is calculated for this case (Fig. 9, bottom, right)
and the main differences between the 9 bar and 0 bar case are situated near the liquid

surface on top of the window and around the temperature probe.
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Figure 9 Averaged velocity magnitude [m/s] in water for 0 and 9 bar at 400rpm
(top) and relative mean deviation in % (bottom, left) and RMSE difference
(bottom, right).

The same procedure was repeated for the first TMS system with similar results, as
shown in figure 10. The pressure influence is comparable, with local maxima of 15%.
In this case the deviation is calculated with the TMS1 velocities at 0 bar as a
reference. The RMSE (Fig. 10, bottom, right) has the same aspect as for water. Only at
the left border of the window the values seem to be higher. This might be caused by

some reflections, visible on the raw images of the 9 bar case.

Figure 10 Averaged velocity magnitude [m/s] in TMS1 for O and 9 bar at 400rpm
(top) and relative mean deviation in % (bottom, left) and RMSE difference
(bottom, right).

In figure 11, the mean velocity magnitudes for the whole pressure range are shown
as radial profiles at the window centre position (y=20mm). All curves fall together
and no systematic change, related to pressure, can be observed. This confirms that

pressure has very little influence on hydrodynamics in this system.

Figure 11 Averaged velocity magnitude profiles (m/s) in TMS1 at 400rpm for
different pressure in the centre position of the window (y=20mm).

As a consequence of both investigations, and looking back at figure 2, it is finally
possible to work systematically with water as solvent and under atmospheric
pressure. This fact tremendously facilitates the full hydrodynamic characterization of
the process. Still, local differences near the stirrer shaft and the probes must be kept

in mind, even if they do not impact noticeably average properties.
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4. Conclusions

PIV-measurements have been carried out in a high-pressure, organic solvent reactor
under real reaction conditions, compared to a simple water filling at various pressure
levels. These experiments demonstrate that pressure shows no significant influence
(as expected), but also that the employed solvent system does not impact noticeably
the hydrodynamics in the stirred tank reactor for the range of Reynolds numbers
considered. Therefore, further experiments for the validation of theoretical reactor
models can be carried out in a model reactor, completely built out of glass, with
water filling, and at atmospheric pressure. Such conditions immensely reduce the
complexity of experimental studies, and allow accurate measurements of all relevant
quantities, opening the door for a deeper understanding of the underlying processes
and for validation of companion computations. A complete hydrodynamic
characterization is possible in this manner, so that optimal operating conditions can

be derived.
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Figure 1 Principle of thermomorphic solvent system (top) according to (Behr and
Roll 2005). Pictures of the corresponding states in the reactor used for the
present study (bottom); left: two-phase state at lower temperature (T<85 °C);
right: single-phase state at higher temperature, T>90°C (stirrer shaft,
temperature probe and gas tube are visible inside the reactor for the single-
phase state).
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Figure 7 Relative mean velocity differences between water and TMS solvent

systems in % at 5bar and 400rpm. Left: TMS1; centre: TMS2; right: absolute

velocity profiles in the centre of the window at y=20mm. Top: mean velocity
magnitude; centre: mean vertical velocity component; bottom: mean horizontal

velocity component.
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Figure 8 Root-mean square difference between TMS solvent systems and water
of velocity magnitude (top), vertical velocity component (centre) and horizontal
component (bottom) in m/s at 5 bar and 400 rpm. Left: TMS1; right: TMS2.
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Figure 9 Averaged velocity magnitude [m/s] in water for 0 and 9 bar at 400rpm
(top) and relative mean deviation in % (bottom, left) and RMSE difference
(bottom, right).
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Figure 10 Averaged velocity magnitude [m/s] in TMS1 for 0 and 9 bar at 400rpm
(top) and relative mean deviation in % (bottom, left) and RMSE difference
(bottom, right).
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Figure 11 Averaged velocity magnitude profiles (m/s) in TMS1 at 400rpm for
different pressure in the centre position of the window (y=20mm).
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