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Abstract While vector fields are essential to simulate a large amount of natural phenomena, the difficulty to
identify patterns and predict behaviors makes the visual segmentation in simulations an attractive and
powerful tool. In this paper, we present a novel user-steered segmentation framework to cope with steady as
well as unsteady vector fields on fluid flow simulations. Given a discrete vector field, our approach extracts
multi-valued features from the field by exploiting its streamline structures so that these features are mapped
to a visual space through a multidimensional projection technique. From an easy-to-handle interface, the
user can interact with the projected data so as to partition and explore the most relevant vector features in a
guidance frame of the simulation. Besides navigating and visually mining structures of interest, the inter-
activity with the projected data also allows the user to progressively enhance the segmentation result
according to his insights. Finally, to successfully deal with unsteady simulations, the segments previously
annotated by the user are used as a training set for a Support Vector Machine approach that classifies the
remaining frames in the flow. We attest the effectiveness and versatility of our methodology throughout a set
of classical physical-inspired applications on fluid flow simulations as depicted in the experiment results
section.

Keywords Flow segmentation � Time-varying visualization � Vector field � Interactive tools �
Machine learning

1 Introduction

Segmenting vector fields is of key importance in the context of scientific illustration and visualization. The
fluid mechanics community, for example, faces the problem when simulating the motion of a fluid, to
capture different structures of the flow such as vortices, saddle points and skins (Post et al. 2002). Aiming at
segmenting vector fields that commonly appear in computational simulations, three major categories have
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gained a great amount of attention in the last decade: topology-based, geometric-based, and feature space-
based.

Methods that purely rely on topology extract critical points from the vector field so that the topological
structures of these points are conveniently handled and classified to cluster different regions of the
field (Mahrous et al. 2004; Laramee et al. 2007). Despite their robustness in fragmenting arbitrary vector
fields (Bhatia et al. 2011, 2012), approaches based on topology are typically computationally expensive,
being intricate also to be coded in most of the cases. Geometry-based methods profit from the geometric
attributes of the vector field such as curvatures, gradients, and streamlines, where the vector flow is
partitioned according to the similarity between geometric representatives of the output segments. Although
intuitive and effective (Ferreira et al. 2013; Li et al. 2006; Kuhn et al. 2011; Zhang et al. 2016a, b),
geometry-based methods often suffer from the absence of a user interactive interface to adequately cus-
tomize the segmentation. Finally, the last class of methods takes a specified set of features computed from
the vector field, so that regions of similar flow behavior are grouped and classified (Daniels et al. 2010;
Rossl and Theisel 2012; Motta et al. 2015). In fact, feature space-based algorithms usually perform well
when dealing with steady vector fields (a static frame extracted from the flow), however, processing time-
dependent sequence of frames (the unsteady case) is still a hurdle for the majority of these methods.

In this work, we introduce a new technique for segmenting both steady and unsteady vector fields which
combines streamlines, multidimensional projection, and supervised machine learning into an innovative and
unified framework. In contrast to most existing algorithms, in particular, the three basic groups mentioned
above that formally tackle the segmentation task as a well-behaved steady-state problem, our approach
enables to segment multiple frames in a time-varying vector field, a challenging and more general case due
to the preservation of the temporal coherence between the frames. Moreover, in our formulation, the user
can conveniently drive the segmentation by freely interacting with projected data obtained from a feature
space in a 2D visual interface, leading, therefore, to alternatives for customization issues. As we shall show,
the clusters annotated by the user in a given frame of the vector flow are automatically propagated to the
others by applying modern concepts of machine learning, preserving the user’s choice while still avoiding
unnecessary side processing in all the remaining frames of the simulation.

2 Pipeline overview

Our supervised segmentation framework is composed by four main steps, namely, feature extraction,
multidimensional projection, clustering, and learning, as presented in Fig. 1. In the first step, streamlines are
extracted from the vector field and embedded into a multi-attribute space whose dimensions correspond to
differential and geometric properties of the vectors, being computed for each time-step (a frame) of the flow.
The resulting high-dimensional data is projected to a 2D visual space, so as to preserve neighborhood
structures between the streamlines of the vector field as much as possible. Clustering is then performed in
the visual space according to the prior subdivision of partitions by the viewer, thus highlighting the
geometric patterns that she/he intends to visualize in the simulation. Finally, in the last stage, we train a
support vector machine (SVM) mechanism to automatically propagate the traits previously specified by the
user to the remaining frames of the vector field. Another interactive aspect of our framework is that the
viewer can also assign new clusters to be exploited once the simulation is being run (see the bottom arrow in
Fig. 1).

As a boosting step for our approach, we run the feature extraction apparatus described in Motta et al.
(2015) aiming at producing a set of high-dimensional points for each frame of the simulation. This gives rise
to our multidimensional projection scheme, which is carried out by the LAMP algorithm (Joia et al. 2011).
In the following, we briefly discuss the technical aspects regarding the flow features used to construct our
multidimensional attribute space.

3 Features description and quantization

Given a streamline S obtained as in Motta et al. (2015), we extract a set of discriminative features repre-
senting different properties of the flow so that these collected attributes are quantized and prescribed as
feature vectors into a high-dimensional space. These attributes are numerically computed from the vector
field V by employing basic Finite Difference (FD) rules and then interpolated for each streamline point
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si 2 S through a regular bicubic (or tricubic, in the 3D case) interpolation scheme. So, let v be the local
velocity at a certain streamline point si 2 S. We then consider the following attributes to represent our
collection of differential and geometric flow features:

1. Magnitude of Velocity (kvk) determines the intensity of the resulting velocity in a certain point of the
vector field V (Sternberg and Loomis 2014).

2. Magnitude of Vorticity (kxk) measures how much a fluid portion locally rotates as it moves with its
flow (Sternberg and Loomis 2014).

3. Divergence (r � v) gauges how much a fluid portion is being transported away from the neighborhood
of a given point located in the flow, in other words, it quantifies the decay rate of the density at this
point (Sternberg and Loomis 2014).

4. Curvature (j) can be intuitively understood as a measure of how sharply a curve is turning as it is
traversed. In our implementation, we compute the curvature as suggested by McLoughlin et al. (2012):

j ¼ kv� ak
kvk3

; ð1Þ

where a is the local acceleration, computed by J � v, with Jij ¼ ovi=oxj being the coefficients of the Jacobian
matrix.
5. Torsion (s) accounts for the twisting of a particle embedded within a 3D vector field. So, we include s as

a valid attribute for 3D simulations, which is computed as follows (McLoughlin et al. 2012):

s ¼ ðv� aÞ � ðJ � aÞ
kv� ak2

: ð2Þ

To assign a single feature vector to each streamline S, an attribute value Ak
i for each one of the above-

mentioned features k is designed to represent the attributes of si 2 S. These values are then distributed, by
features, to form a frequency histogram of m bins. Finally, a composite histogram is created by
concatenating the feature histograms into a 4m-dimensional attribute vector (see Fig. 2), in summary: a
streamline S is represented by a 4m-dimensional point in a feature space. In our experiments we take

Fig. 1 Pipeline overview of our vector field segmentation framework

A User-Friendly Interactive 627



m ¼ 10, which leads to high-dimensional spaces of 40 and 50 dimensions for 2D and 3D vector fields,
respectively.

Next, we describe the key aspects of the high-dimensional mapping to the visual plane to properly
evidence the good capabilities and flexibility of our approach to the task of segmenting and learning
structures of interest in arbitrary dynamic vector field simulations.

4 Multidimensional projection

In this step, we focus on mapping the high-dimensional instances obtained from the feature extraction
process onto a two-dimensional visual space. For this purpose, we use the multidimensional projection
technique called Local Affine Multidimensional Projection (LAMP) (Joia et al. 2011) to project the data as
well as to assist the segmentation process, in an effort to discriminating patterns of interest into separated
clusters. Besides preserving neighborhood structures efficiently during the projection step, the LAMP
technique also enables a very flexible mechanism to interactively modify the projection according to the
user instructions. Notice that this is an important trait in our context (which also covers time-varying vector
fields), as the process of segmenting ‘‘frame-by-frame’’ the whole simulation tends to be laborious and very
time-consuming. Furthermore, using this kind of interactive proposal, one could also avoid the preliminary
task of segmenting completely a boosting simulation frame before propagating its segments to the other
frames, which indeed leads to be more applicable and opportune for practical usages.

LAMP takes a set of control points to accomplish the mapping T of a high-dimensional set of points X to
a two-dimensional visual space Y. The control points are typically a small subset XS � X, whose basic
information contained in the interactive plane Y is known a priori. The mapping T is achieved by solving
the following optimization problem:

argmin
T

kAT� BkF subject to T>T ¼ I; ð3Þ

where k � kF stands for the Frobenious norm, I is the identity matrix, and A and B are matrices whose rows
correspond to the coordinates of each control point in the high-dimensional and visual space, respectively.
The orthogonal constraint T>T ¼ I enforces that the resulting transformation T will behave like a rigid
transformation, ensuring that the distances will be preserved as much as possible after the data projection.
Equation (3) is efficiently solved through the singular value decomposition (SVD) method as pointed out in
Joia et al. (2011), i.e.,:

T ¼ UV> ; with A>B ¼ URV> ; ð4Þ

where ½U;R;V� ¼ SVD ðA>BÞ. When a user interacts with the control points in the visual space, she/he
also modifies the entries in the rows of matrix B, thus adjusting T to deal with the user intervention. It means
that, technically speaking, when a control point is dragged in the visual space, the data in its neighborhood is
also dragged together, which allows for controlling neighborhood structures directly from the visual space.

Fig. 2 Frequency histogram generated by concatenating the histograms derived from the above-mentioned features to
compose a feature vector of 40 components in the high-dimensional attribute space
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Such a flexibility in handling neighborhood structures is exploited in our context, enabling to the user a
robust exploratory mechanism towards vector field interactive analysis.

Once the high-dimensional instances have been projected, the mapped points are then used to support the
next step of our framework as an effective and exploratory tool to interactively label and mine structures of
interest in the vector field.

4.1 User manipulation of clusters

Considering the flexibility in operating distinct collections of data provided by Eq. (3), we take advantage of
this fact towards locating and visually mining clusters of streamlines within the vector field. More
specifically, users are invited to actively participate in the segmentation process by organizing the data into
desirable segments of streamlines. Given a reference frame Fj among the complete list of vector field layers
Fi, i ¼ 1; 2; :::; n, the user selects in the interactive layout the group of features that she/he would like to give
prominence in Fj (see Fig. 3). Since our framework is easy-to-handle and quite intuitive, its use can allow
both scientists as well as non-familiar viewers to interact with the streamlines in a vector field, therefore
facilitating the visual identification of important singularities in a computational simulation, for example, to
locate sources and skins. Furthermore, the identification of clusters is also facilitated during the visual
navigation, as the clusters are naturally seen due to their geometric positions in the projection plane as
previously illustrated in Fig. 3.

Besides being easy-to-operate and robust in terms of clustering similar streamline-coded points, our
technique also enables an interactive mechanism which allows for repartitioning data by ‘‘dragging and
drop’’ the projected control points. When a control point is moved in the interactive plane, the data in its
neighborhood is moved together, thus allowing to control the neighborhood structures in the visual space.
So, if the projection result is not satisfactory, the user can select badly clustered points, turning them into
new control points that can be manually moved in the interactive layout to better refine clusters and, thereby,
improve the streamlines classification. Figure 4 illustrates a user intervention case where control points are
dragged to different clusters within the interactive layout.

4.2 Control points assignment

Let N be the number of streamline vectors in X taken from a given guidance frame Fj, and nS be the number
of control points in the projection plane Y. As suggested in Joia et al. (2011), we set nS ¼

ffiffiffiffi

N
p� �

as a prior
estimation to pave the way for reaching a good level of accuracy in our opening multidimensional mapping.
So, as a useful and predictive scheme to get the best candidates for the control points, we first subdivide the
vector field domain into a d-dimensional regular grid G containing

ffiffiffiffiffi

nSd
p� �

cells in each axis, wherein d
stands for the vector field dimension. For each cell C 2 G, let FC ¼ f/igNi¼1 be the set of feature vectors
corresponding the streamlines which intersect C. The control point associated to the cell C is the feature
vector /j 2 FC which minimizes the following expression:

Fig. 3 Segmentation of a target frame in a time-dependent vector field. The clusters selected by the user are shown in the
visual interactive layout (right), and the segmentation generated after user interaction (left)
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j ¼ argmin
i

k/i �MCk22 ; ð5Þ

where the vector MC accounts for a statistical measure of centrality given by the mode among all feature
vectors in FC.

This strategy enables a more refined selection of control points, embedding different behaviors across the
vector field in a more equalized and representative manner. Moreover, it solves the problem of having
distinct projections for the same dataset, as our procedure to select control points is totally deterministic.
Figure 5 illustrates the employed scheme.

5 Learning segmentation on unsteady vector fields

Let ~X be the multidimensional feature space formed by all streamline-like points taken from the frames Fi

over time, i ¼ 1; 2; . . .; n. We start from the projected 2D points grouped as multiple clusters by the user in
the guidance frame Fj managed as in the previous step of our framework. So, clusters as well as the high-
dimensional data ~X are used to drive the streamlines classification in all time-dependent frames Fi, i 6¼ j.
More precisely, we create a training set for a machine learning method which learns and sorts out the feature

Fig. 4 Manipulation of control points by drag-and-drop interactions. The user can interact with the vector field partitions by
re-positioning control points (in red) in the visual space (see the movements of the black arrows in the middle-right layout) to
enhance the segmentation quality (see the dashed areas)

Fig. 5 Control points selection strategy. (Left) The vector field is subdivided into a regular grid. (Right) For each grid cell C,
we compute the mode MC of all feature vectors whose corresponding streamlines (in blue) intersect C. The control point
associated to C is the feature vector closer to MC (see the red streamline)
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points of the frames according to their level of similarity with the features of Fj. To accomplish this task, we
employ a multi-class version of the Support Vector Machine (SVM) (Dietterich and Bakiri 1995) on ~X.

We apply the SVM to construct a training set Q which reflects the user-specified traits from the guidance
frame Fj. This training set is used to generate a set of hyperplanes ~H in ~X, so that ~H splits ~X into multiple
disjoint subspaces. As a result, the sampled points from ~X are classified, so that each streamline located at
Fi, i 6¼ j, is labeled in terms of a cluster learned in Fj. In practice, to reduce the influence of outliers on ~X, we
also introduce in the classification process the lower and upper bounds of histograms encoded by the
streamlines. Such a procedure is performed by imposing for each set of multi-featured frame points, the
global average of the histogram bounds as they range all the unclassified frames.

The strength and versatility of the machine learning theory smooth the path to properly manage a large
amount of frames while achieving multiple segmentations. Indeed, this learning scheme turns the seg-
mentation task simpler and less laborious on unsteady vector fields, avoiding the exhaustive and individual
supervision of the frames by the user. Furthermore, regions with similar streamlines in the vector field can
be easily identified from the projected data in the visual space, pointing out where users should nail down
their exploration to propagate to the other frames the patterns previously labeled in Fj.

Finally, another useful aspect of our approach is the availability for interactive reclassifications, as we
can seen in Fig. 6. First, the user defines a cluster setup in the visual space before applying the training and
classification process. So, from the simulation being run, she/he rearranges the clusters as observed in the
bottom row of Fig. 6 to create a new training set and, hence, also a novel time-varying segmentation that
matches the user’s purpose.

6 Experiments

To demonstrate the robustness and flexibility of our approach to segment arbitrary vector fields, we compare
it against two state-of-the-art visualization methods namely Daniels’ method (Daniels et al. 2010) and the
Edge maps tool (Bhatia et al. 2012). We also evaluate our framework in a set of challenging cases com-
prising time-varying vector fields (the unsteady case), as the ones conducted by classical simulations of
computational fluid dynamics (CFD) such as Rayleigh–Taylor effect and von Kármán instabilities. So, we
focus on properly classifying the vector fields into multiple clusters so that they can be seen by the user as a
junction of different flow patterns (e.g., rotational, curvilinear, laminar, turbulent flow, etc).

To computationally create our numerical simulations, we employ the well-known Gerris solver (Popinet
2003). Considering the unsteady set of experiments, we take a time step dt ¼ 0:05 for the streamline
integration and we assign 10 for the number of bins of the frequency histograms (see Sec. 3). Finally, as

Fig. 6 Interactively retraining our framework. The user at first clusters the vector field, analyses the dynamic results (top) and,
later, retrains our framework with a secondary cluster configuration to determine a new classifier and, therefore, also a novel
time-varying segmentation (bottom)
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described before, we make use of the following geometric features to create multi-valued vectors to be used
in our classification scheme: curvature, divergence, magnitude of velocity/vorticity, and torsion (for 3D
vector fields, only).

6.1 The steady case

We start our tests comparing the proposed approach versus Daniels et al. method (Daniels et al. 2010) when
both are applied to segment a smoke flow vector field. Figure 7 (left) depicts the segmentation of the smoke
flow with the features extracted as proposed in Daniels et al. (2010), while Fig. 7 (right) shows the output
produced by our technique. Notice from the rightmost layout displayed in Fig. 7 that our framework
performs well when compared to Daniels et al. (2010), as the projected data was better spread in the visual
space from our technique, enabling the user to quickly identify natural clusters during the visual inspection.
Another aspect is that the proposed framework leads to more structured clusters in the vector field as well as
the lack of artifacts in the segmented regions (e.g., see in the leftmost image the pink gap inside the greenish
partition).

Figure 8 demonstrates the good performance of the proposed methodology when evaluated against the
well-established Edge Maps method (Bhatia et al. 2012), a powerful state-of-the-art technique which takes
advantage of topological properties of the vector field to accomplish the clustering. One can verify from the

Fig. 7 Segmentation of the vector field from a smoke simulation. The left image shows the result of Daniels’ method (Daniels
et al. 2010) using KNN (k-nearest neighbors) with k ¼ 30 for the samples. The right image brings our result. The projections
are also portrayed in the bottom-right layouts of the vector fields

Fig. 8 Comparison between the Edge Maps method (left) and our methodology (right). Critical points (colored spheres) are
depicted in the Edge Maps’ result while both visual layout and segmentation are portrayed in the rightmost image for our
method
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results depicted in Fig. 8 that our approach originates quite similar partitions to the ones coming from the
Edge Maps, attesting the positive performance of the designed technique even though against a robust
(although a labor-intensive tool to be properly coded and tuned) visualization tool such as Edge Maps
method.

Another important characteristic to be emphasized is that, in contrast with the visualizations typically
produced by the Edge Maps, our method holds the capacity of interactive exploration, providing to the
viewers a simple and versatile tool to explore and inspect regions accordingly their own interest, besides the
benefits acquired from their insights and prior knowledge when interacting with the vector field. Another
issue is the computational cost of the EM algorithm, which is considered higher than our method.

6.2 The unsteady case

We now concentrate our experimental analysis towards dealing with the harder case of unsteady fluid flow
simulations, that is, when the flow varies as the time increases. For this purpose, we consider three simu-
lations as reported below.

Fig. 9 Unsteady vector field segmentation of a von Kármán vortex street generated by a cylindrical object (brown). (Top)
User-steered classification in an arbitrary frame allows the method to propagate the learned prior segmentation to the remaining
layers in the simulation. Note that the higher velocity vortices (red) are dismembered from the vortices with lower velocity
(cyan)
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Figure 9 presents the resulting segmentation for a vector field obtained from the von Kármán vortex
street simulation. Notice from the representative frames in Fig. 9 that our approach is able to accurately
detect the swirling-like vortices caused by the subdivision of the fluid flow around the cylindrical object.
Moreover, our technique also accurately captures the vortices even to the more drastic case when they
totally detach from the cylinder (see the transitions from steps 273 to 276, and 324 to 344).1

Rayleigh–Taylor (RT) instability occurs between two fluids of different densities when the lighter fluid
pushes and wraps the second one at interface into vortices. Figure 10 elucidates this phenomenon wherein a
given frame of the RT simulation (see the step 35) is used as a guidance segmentation by our training
process so that the other frames of the vector field are classified and labeled through our machine learning
model. As illustrated in Fig. 10 (top row), our approach precisely captures the symmetric vortices along the
simulation frames. In fact, this symmetry can also be verified on the unstable behavior of the fluids in the
corresponding bottom row layers of Fig. 10.1

Our method can also be easily extended to three-dimensional discrete vector fields. The visual metaphor
adopted in this case combines rendered streamlines for each cluster to provide a more informative visu-
alization of 3D simulations, and a surface to better highlight the transition zone between distinct partitions.
The surface is generated using the marching cubes algorithm in a scalar field built from the labels of the
clusters smoothed by Garcia’s method (Garcia 2010). Figure 11 shows the segmentation of two clusters in a
3D flow obtained from a resampled version of the Von Funck et al’s dataset (Funck et al. 2008) for smoke
visualization. Note that our method reaches a good level of partitioning even to the three-dimensional
simulation case of the von Karman street phenomenon, as the characteristic vortices are subdivided into two
different classes of flows: laminar/curvilinear and turbulent regions.

Fig. 10 Projected and user segmented data (topmost-left); clusters propagated along the flow steps (top left-to-right). On the
bottom, the interface between a heavier (red) and lighter (blue) fluid which simulates the well-known Rayleigh–Taylor
instability

1 Check the complete video: http://icmc.usp.br/e/13837.
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Computational performance of the performed simulations is summarized in Table 1. We run all the
reported experiments on an Intel Xeon E5345 with eight 2.3 GHz cores and 16GB RAM, being the
simulation steps processed among these eight cores. Another important aspect regards computational issues
of our approach is that the streamline integration, interpolation and data processing can also be run in
parallel for each step of our simulation, so that the timings described in Table 1 can be further improved in
the future.

7 Conclusion

In this paper, we address the problem of segmenting steady as well as unsteady fluid flow simulations as an
interactive framework that unifies multidimensional projection, machine learning concepts and the user
capability in grouping data into different clusters of interest. Despite its simplicity, flexibility and robustness
in segmenting vector fields, our approach can succeed in many scenarios, ranging from artificial to ‘‘real
world’’ collected data, as verified by the experimental results. Moreover, the proposed methodology
achieves very pleasant results when compared to existing representative techniques and also providing
useful traits as interactivity flexibility and easiness of use. In summary, all these characteristics render the
proposed framework a very attractive interactive tool in the context of fluid flow visualization, specially to
handle the complex case of unsteady simulations.

As future work, we intend to incorporate new features extracted from the vector field into our frame-
work, such as the energy of the flow provided by the POD (Proper Orthogonal Decomposition) (Berkooz
et al. 1993) modes. Another direction is to port our method to GPU architecture, since the classification of
unsteady vector fields can also be accomplished in parallel.

Acknowledgements We would like to thank Harsh Bhatia to kindly provide the results with Edge Maps (Bhatia et al. 2012).
This research has been supported by FAPESP (São Paulo Research Foundation: grants #2013/07375-0; #2014/16857-0), and
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Fig. 11 Segmentation of a 3D flow around a parallelepiped. From left-to-right: reference and captured frames along the time,
respectively

Table 1 Steady and unsteady vector fields characteristics and timings (in seconds)

Experiment # Frames Grid size # Streamlines Time (s) Category

Figure 3 1 161 9 161 251 12.03 Steady
Figure 4 1 90 9 90 961 8.66 Steady
Figure 9 400 400 9 100 1639 7046 Unsteady
Figure 10 38 150 9 50 1372 318 Unsteady
Figure 11 50 32 9 96 9 24 2204 8615 Unsteady
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