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Abstract Multivariate spatial data plays an important role in computational science and engineering
simulations. The potential features and hidden relationships in multivariate data can assist scientists
to gain an in-depth understanding of a scientific process, verify a hypothesis and further discover
a new physical or chemical law. In this paper, we present a comprehensive survey of the state-of-
the-art techniques for multivariate spatial data visualization. We first introduce the basic concept
and characteristics of multivariate spatial data, and describe three main tasks in multivariate data
visualization: feature classification, fusion visualization, and correlation analysis. Finally, we prospect
potential research topics for multivariate data visualization according to the current research.
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1 Introduction

Multi-physics simulations are trending in the modern scientific computation, and these simulations
often generate data sets with multiple variables related to complex physical phenomena in physical
space. These data sets are generally called multivariate data or multifield data. For each spatial point p
in physical space, its associated values are {v1(p), v2(p), ..., vn(p)}, where each variable vi represents a
physical or chemical property, and n is the number of variables of the multivariate data. Each variable
of multivariate data could be a scalar, vector , or tensor field. Because it has multiple variables, mul-
tivariate data is heterogenous and complex, making it difficult to visualize, analyze, and gain insights
from the data. Multivariate data can be used to extract hidden relationships and explore existing phe-
nomenona or new laws in many applications, such as computational fluid dynamics, electromagnetic
field simulation, combustion simulation, and meteorological simulation. For example, three-dimensional
(3D) meteorological data can be obtained by computer simulations including multiple variables, such
as temperature, pressure, and humidity. Users can intuitively explore the correlations or features be-
tween these variables and even discover new phenomena and laws. Therefore, multivariate spatial data
visualization has always been an important research topic in the field of scientific visualization.

With the improvement in the computational performance of supercomputers, the simulation range
can be very large, and the achievable resolution is also very high. Multifield visualization is one of the
top scientific visualization research problems [30], owing to its complex structures and inner relation-
ships. The goal is to effectively visualize multiple variables simultaneously and intuitively represent
their mutual interactions.

The main research problems of multivariate data visualization are feature classification, fusion
visualization, and correlation analysis. In feature classification, features can be classified based on a
scalar value and its derived attributes for univariate data, whereas they are usually defined by multiple
variables for multivariate data. It is important and necessary to use multiple variables to define and
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Fig. 1 Number of publications related to multivariate data since 2010.

classify features for complex phenomena. In fusion visualization, variables can be rendered separately
in juxtaposed views, but they fail to intuitively establish spatial relationships between multiple vari-
ables. Thus, it is necessary to visualize multiple variables simultaneously in the same physical space
to facilitate the comparison of multiple features and the understanding of their interaction among
multiple variables. In correlation analysis, multivariate data generally can have hidden associations,
because they work collectively in the simulation model [6]. For instance, a hurricane is a rapidly ro-
tating storm system characterized by a low-pressure center, strong winds, along with heavy rain in
climate simulations. Thus, it would be beneficial to extract and represent their relationships via com-
bining information visualization and scientific visualization methods from multiple aspects, such as
the interactions among variables, numerical values, and features.

For the above three main research problems, we conduct a thorough literature review based on
relevant works from major visualization venues, namely IEEE VIS, EuroVis, PacificVis, and the visu-
alization journals, such as IEEE Transactions on Visualization and Computer Graphics (TVCG) and
Computer Graphics Forum (CGF). Kehrer and Hauser [31] summarized multiple facets of scientific
data, including multi-dimensional, multivariate, multi-value, multi-modal, and multi-model aspects
published prior to 2012. In this paper, we mainly focus on multivariate data visualization, especially
the recent progress in feature classification, fusion visualization, and correlation analysis. Fig. 1 shows
the number of publications related to multivariate data since 2010. The histogram is not claimed to
be complete, but reflects a trend showing that multivariate data visualization has been a hot topic in
recent years. Unlike other similar reviews, this paper aims to fill the gap in the literature review in the
field of multivariate data visualization since 2010 and provides an up-to-date and detailed overview of
the recent advances. In this paper, we first introduce feature classification methods for multivariate
data. Next, we discuss the fusion visualization based on different stages of the visualization pipeline.
We then review the correlation analysis of variables, voxels, numerical values, and features. Finally,
we provide several future research directions in multivariate data visualization. Table 1 shows the
categories of each of these sections and their corresponding references published after 2010.

Table 1 Related references in this paper for each section published after 2010.

Sections Categories References

Multivariate
spatial data
visualization

Feature classification
Interactive classification [65] [67], [19], [18], [40], [39], [68], [41]

Data mining [26], [66], [50], [63], [60], [62]
Topological structures [43], [12], [6], [16], [7], [64], [54]

Fusion visualization
Data fusion [53], [19], [32], [28], [7], [24], [41], [13]

Feature fusion [38], [18], [11]
Image fusion [4], [66], [49]

Correlation analysis

Voxels [44], [63]
Variables [58], [3], [13]

Numerical values [22], [27], [6], [39]
Features [47], [59]

Value-variable [3], [39]
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2 Feature Classification

With complex, large-scale, multivariate data, it is essential to locate important features in the data
and analyze these features to better understand the relevant phenomena. For example, a hurricane
eye shows low pressure and medium wind speed, and the non-combustion region of the turbulent
combustion data set shows a high heat release rate and low hydroxyl radical concentration. Features
in multivariate data are relatively complex, and the relationships between variables are also hidden.
Extracting and classifying these features is the first step in multivariate data visualization. Transfer
functions are commonly used in scalar fields, and they can be extended to high-dimensional trans-
fer functions for interactive classification. However, it is a time-consuming and challenging task to
interactively classify features, because users need to perform “trial-and-error” work according to the
statistical characteristics of the data. In this case, data mining can be employed to implement auto-
matic or semi-automatic feature classification. Moreover, abstract topological representation methods
such as isosurfaces and contour trees can be used to extract isosurfaces and segment features in scalar
fields. They can also be used to extract and express features in multivariate data. Feature classification
methods can extract and classify multiple features from raw data, such as the outer frame and the
frame layer of the turbulent combustion data set. In this section, we classify the feature classification
methods into three categories: interactive classification based on multiple variables, feature classifica-
tion based on data mining and feature classification based on topological structures, and summarize
the corresponding research.

(b)(a)

(d)(c)

Fig. 2 Examples of feature classification. (a) Four features can be classified from a two-dimensional transfer function
composed of pressure and temperature based on interactive feature classification [67]. (b) Interactive feature classification
using a high-dimensional transfer function based on a scatter plot matrix [41]. (c) Feature classification based on data
mining [66]. (d) Isosurfaces of two variables and their fiber surfaces based on topological structures [7].

2.1 Interactive Classification based on Multiple Variables

Interactive classification based on multiple variables can statistically analyze multivariate data and
present statistical information through information visualization. It can implement feature classifica-
tion by selecting different attributes or variables interactively. In general, multivariate data can be
transformed into a statistical space, such as a histogram-based transfer function, parallel coordinate
plot (PCP), and scatter plot (SP). It should be noted that transfer functions consider only partial
variables, whereas PCP and SP can present all the variables.



4 Xiangyang He et al.

Given a domain x representing a set of points, each of which presents an n-dimensional vector
containing scalar values of all variables with the same space coordinate, the mathematical expression
of a transfer function can be defined as: T : x → {c, α, ...}, where c is color and α is opacity. In
addition, there are other ranges such as illumination coefficient and texture. Many different geometric
attributes and statistical properties were proposed according to the characteristics of the extracted
features. In 2016, Ljung et al. [40] systematically provided an up-to-date overview of transfer functions
for the volume rendering of univariate data. In general, a high-dimensional transfer function is defined
for selecting features interactively, and then different colors are mapped to the corresponding features
to show each distribution. For univariate data, high-dimensional transfer functions are derived by
combining multiple attributes. However, it is more difficult to design a high-dimensional transfer
function for multivariate data, owing to the complexity of the data, which requires more research and
exploration. Gradients have been widely used in the design process of transfer functions, and they are
generally composed of two-dimensional (2D) histograms with scalar values [34]. Zhou and Hansen [67]
supported discretionary combinations of one-dimensional (1D) and 2D transfer functions for realizing
the hierarchical division of features and selecting multiple attributes to reduce the correlations between
the dimensions of high-dimensional transfer functions, as shown in Fig. 2(a).

Because there are usually more than ten variables in multivariate data, it is necessary to embed
all the data onto a 2D visual plane by projection reduction methods to help users explore internal
structures and distributions intuitively. A PCP is composed of multiple parallel axes, and each axis
represents a variable of the multivariate data. Each spatial sampling point is presented on a PCP to
show a polyline with vertices on the axes, and the position of the vertex on the i-th axis represents the
scalar value of the i-th variable for this spatial point. PCPs are intuitive with respect to the distribution
of each variable/dimension of multivariate data, owing to the presentation of numerical information
of all variables. Users can define numerical interval on each axis to explore interesting features. For
example, Zhang and Kaufman [65] introduced a PCP to design high-dimensional transfer functions
for identifying features by specifying the range between several scalar values. Liu and Shen [39] drew
PCPs independently for several interesting variables to visualize numerical distributions, and the axes
of corresponding variable present its associated attributes. Then, the associated attributes of each
variable were constrained to filter trivial data, and a high-dimensional transfer function was designed
for extracting features. There are also a lot of studies that provide a basis for the application and
improvement of PCPs [19,39,68] to explore the feature distributions of multivariate data. A SP is
another means of representing the relationships among variables by dimension reduction methods, such
as multidimensional scaling (MDS) [37] and t-SNE [42], to identify and select a cluster by projecting
data points onto a 2D visual plane. For instance, Guo et al. [19] presented a scalable system that
combines PCP and MDS projection to effectively identify features among variables, which shows the
advantages of numerical distributions and cluster distributions. The abovementioned methods only
take numerical distributions into account, but multivariate data usually has multiple features with the
same numerical distribution but located in different regions, that is, spatial distributions, which are
also significant for multivariate data.

A scatter plot matrix is another common interactive classification tool for guiding users to classify
and extract features by projecting all variable pairs into a plot in a matrix form. For example, Guo
et al. [18] presented a visualization method for the analysis of multivariate unsteady flow data by the
Lagrangian-based attribute space project (LASP) and provided a scatter plot matrix to project all the
variable pairs of the selected pathlines. Lu and Shen [41] proposed a bottom-up approach that employ
a scatter plot matrix to project all variable pairs onto a 2D plane to identify features, as shown in
Fig. 2(b). In this work, users can define and modify features by selecting different 2D transfer functions
iteratively.

This type of feature classification allows the flexible specification of features, and users are free to
choose variables to define interesting features. Moreover, the quality of the extracted features could be
higher with the participation of an experienced user. Certain features in multivariate data are often
associated with only certain variables, and thus it is not necessary to analyze all the variables; this
leads to a reduction in the computational overhead. In addition, finding all the meaningful features
interactively remains a time-consuming and challenging task, and a lack of guidance for those users
without prior knowledge of corresponding data sets makes it difficult to explore and classify the
features.
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2.2 Feature Classification based on Data Mining

Automatic or semi-automatic feature classification can be implemented by means of data mining
methods [23] such as dimensionality reduction, clustering, and feature point matching to improve
the analysis efficiency of multivariate data. In general, it is more difficult to design high-dimensional
transfer functions for multivariate data, because the design often relies on user interaction with prior
knowledge. In order to achieve good results, users need to perform “trial-and-error” work according to
the statistical characteristics of the data, making the design process slow and inefficient. The feature
classification based on data mining can avoid excessive interactions and improve the efficiency of
exploration, which is classified into two categories as follows. The first is the visualization of interesting
features selected from all features generated by automatically clustering. The second is the detection
of similar features from the feature expression of a sample defined by users.

Global clustering can provide complete features in cluster space, from which users can choose inter-
esting features to explore the characteristics of the data. Clustering is a common classification method
that clusters the spatial data automatically or semi-automatically according to the correlation among
voxels to identify different features in a 2D spatial plane. For scalar fields, Tzeng et al. [55] employed
the Iterative Self-Organizing Data Analysis Technique (ISODATA) clustering algorithm to generate
classification results interactively. For vector fields, Hong et al. [26] presented a feature classification
approach based on the Latent Dirichlet allocation (LDA) model by clustering pathlines with probabilis-
tic assignment. For multivariate data, Wu et al. [63] proposed an automatic analysis system integrating
clustering to explore the multivariate data, visual encoding, and an interactive interface. In this sys-
tem, different features can be classified automatically through a clustering-projection-classification
iteration.

For the detection of similar features, subsets of distributions or regions of raw data are usually
collected as initial features, from which similar features can be detected by means of multiple methods.
At present, there are many mature feature classification methods, such as Gaussian naive Bayes, k
nearest neighbor, support vector machines, neural networks, and random forests [50]. All these methods
collect parts of the spatial distributions of raw data as initial classified samples, then learn different
categories of transfer functions using machine learning algorithms, and finally apply these categories to
the whole volume data. In this way, they avoid the complex interactive design of transfer functions and
classify the features of raw data semi-automatically or automatically. Zhou and Hansen [66] proposed
a semi-automatic exploration method for multivariate data that collects the regions of interest from
different slices and extracts the features of corresponding regions automatically, as shown in Fig. 2(c).
In this work, the spatial distributions of multiple variables can also be fused for visualization. Wei et
al. [62] introduced two high-performance and memory-efficient algorithms for searching features that
are characterized by marginal and joint distributions in multivariate fields. These algorithms leverage
bitmap indexing and local voting to extract features that match a target distribution by the origin
results and redefinition to generate all the matching results. Wang et al. [60] presented a pattern
matching method for multivariate data by the 3D scale-invariant feature transform (SIFT) algorithm
with full rotation invariance to extract sparse sets of features for multiple scalar fields, from which a
region of interest can be defined by users as SIFT features. The matching patterns in the entire data
set are then located and ranked automatically.

Feature classification based on data mining is straightforward and effective, avoids excessive inter-
actions, and makes it convenient to generate features in cluster space. However, its performance relies
heavily on the clustering results or the feature classification algorithms, and it restraints user participa-
tion, which may contribute to the generation of unpredictable features. In recent years, the relationship
between machine learning and scientific visualization has become increasingly close. However, there
are still vacancies for related work involving multivariate data. The design of transfer functions and
feature classification are always difficult problems for multivariate data. Therefore, the identification
of methods to utilize emerging technologies to solve the abovementioned problems of this field is one
of the important avenues for future research.
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2.3 Feature Classification based on Topological Structures

Surface features are also salient in spatial data fields. Feature classification based on topological struc-
tures is similar to the isosurface extraction of univariate spatial data. It uses abstract topological
representation methods to extract surface features between multiple variables.

In multivariate data, the isosurface based on Marching Cubes in univariate spatial data can be
extended to fiber surfaces (the isolines of two fields). Nagaraj and Natarajan [43] proposed a variation
density function that profiles the relationship between multivariate fields over the isosurfaces of a given
scalar field to guide users to select an isosurface of a variable that can strongly represent the change in
other variables. Carr et al. [7] extracted fiber surfaces in bivariate fields based on Marching Cubes to
generate well-defined geometric surfaces, and analyzed the captured geometrical characteristics quan-
titatively, as shown in Fig. 2(d). This feature classification method is similar to the high-dimensional
transfer functions of volume rendering for multivariate data, although it fails to analyze the variable
sets with more than two variables. Tierny and Carr [54] provided a practical and efficient algorithm
extended from the concept of the univariate case for computing and extracting the Reeb space of bi-
variate data. The algorithm identifies the Jacobi set of bivariate fields (similar to the critical points in
univariate spatial data), and then uses Jacobi Fiber Surfaces (similar to critical contours in univariate
spatial data) to identify and compute the bivariate Reeb spaces. To improve the rendering efficiency,
Wu et al. [64] presented an efficient direct ray casting method to render the fiber surfaces of bivariate
spatial data in real time involving the computation of a distance field or the definition of control
polygons.

A contour tree, an abstract topology representation for scalar fields, can be used to capture the
variation of level sets in scalar fields [5], which is also a common method to identify salient isosurfaces.
Carr and Duke [6] introduced a Joint Contour Net, a range-based quantization approach, to extract
topological structures by quantifying the variation of multiple variables for topological analysis and
visualization in multivariate domains, which has been applied to nuclear physical [12] and meteorolog-
ical simulation [16]. They also reported an algorithm to construct joint contour nets for multivariate
fields and introduced its theoretical and practical properties in detail.

Feature classification based on topological structures can efficiently extract the surface features
between variables. However, unlike the topological structures of univariate data, it is difficult to clearly
define the critical point for the topological structures and topological features of multivariate data.
Therefore, methods to define and simplify the topological structures of multivariate data, and clearly
identify the surface structures between variables are among the currently important research problems.
Moreover, although there are many studies on the feature extraction of surfaces, they can only extract
features from bivariate data at present, and thus the construction and identification of topological
structures among three or more variables is still an urgent problem to be solved.

3 Fusion Visualization

Multivariate data
Data 

processing

Data 

fusion

Feature 

fusion

Visual 

mapping
Rendering

Image 

fusion

Fig. 3 Several fusion rendering processes of multivariate data. Data fusion is designed to extract features directly before
data processing, whereas feature fusion takes place after data processing. After rendering and processing each variable
separately, image fusion can be executed to fuse all the images.

The visualization of multivariate data was first proposed by Carwfis [10]. Fuchs and Hauser et
al. [15] summarized the relevant research related to the visualization of multivariate scientific data
before 2009. Features from different variables require simultaneous visualization to establish the spa-
tial relationships among multiple variables. Conventional visualization methods for multivariate data
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can be classified into two categories: juxtaposed views and fusion visualization. For the former, Liu
and Shen [39] controlled the correlated thresholds of a variable and selected an interesting numerical
distribution, and then the spatial distributions of other variables are presented side by side under the
same thresholds. For the latter, Rocha et al. [45] proposed a real-time technique to map decals on
surfaces to presenting multivariate data. In general, juxtaposed views fail to intuitively establish the
corresponding relationships of several variables for same spatial points, so the range of application is
relatively narrow. Fusion visualization is a widely used rendering method that maps different variable
domains to different visual channels, such as colors, textures, opacity and icons, and then fuses these
channels in a reasonable way.

For fusion visualization, there are two main challenges. One of these is variable-related. Multiple
colors for different features are presented at each 3D spatial sampling point; when a new color is
produced visually, the original colors may disappear or become too weak to presented. The other is
depth-related. The rays are sampled for color blending and opaque blending, which can result in
visual confusion and misleading results. For example, RGB channels can be used to represent three
variables, but this may mislead users because the color blending of RGB may produce ambiguous
colors.

In this section, we classify fusion visualization into three categories based on the visualization
pipeline: data fusion, feature fusion, and image fusion, as shown in Fig. 3. Furthermore, we discuss the
advantages and disadvantages of the three categories.

(a) (b) (c)

Fig. 4 The examples for fusion visualization. (a) The visual exploration of uncertain data sets using data fusion [24].
(b) A two-level volume rendering method of segmented data sets using feature fusion [20]. (c) The interactive interface
for creating multivariate time-varying data visualizations using image fusion [49].

3.1 Data Fusion

For data fusion, the attributes of multivariate data can be processed directly, and certain data pro-
cessing methods, such as statistical analysis and feature extraction, can be organically combined for
visual analysis. Data fusion is represented by: f(v1(p), v2(p), ..., vn(p)) 7→ c(p), where vi(p) and c(p)
are the scalar values of i-th variable and the color of the sampled point p respectively, n is the number
of variables, and f is a mapping function to generate corresponding colors to distinguish different
features. In general, we use f to construct a new field from multiple variables or a high-dimensional
transfer function for fusing multiple variables. Because the source, scale, or type of multivariate data
may be different, data fusion needs to handle fusing multiple variables. In addition, multiple variables
can also be processed directly for extracting salient features by statistical characteristics or distribu-
tion characteristics. Owing to the existence of various feature classification methods, there are various
ways of fusing data.

A new field could be generated by fusing multiple variables to explore the relationships among
variables. In this field, each spatial point represents the similarity or correlation of the variables. For
instance, Dutta et al. [13] created a new scalar field, i.e., the pointwise mutual information (PMI) field,
to preserve the combined and complementary information of multiple variables. They also extended
the PMI field to a time-varying PMI field to capture the information from multiple time steps. In
addition, topological structures in multivariate data, such as fiber surfaces, can usually be extracted
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by fusing multiple fields to improve the understanding of multivariate data. For example, Carr et al. [7]
extracted fiber surfaces from bivariate data. However, with the increase in the number of variables,
the occlusion between variables and confused visualization make it difficult to explore these features.
For this reason, Huettenberger et al. [28] proposed two techniques for simplifying the corresponding
structures generated by Pareto sets for multivariate data. The first technique is based on a weighted
graph to present connected components of Pareto extrema. The second simplification technique follows
the lines of Suthambhara and Natarajan [53] to compute and simplify the contour tree for multivariate
data. In particular, the analysis of more than two variables is supported in this work.

Multiple variables can also be fused by high-dimensional transfer functions without considering
spatial information. In general, high-dimensional transfer functions are designed interactively. For
example, Lu and Shen [41] designed a bottom-up method for interactive subspace exploration to
extract inner features of multivariate data, and then mapped these features to different colors, as
shown in Fig. 2(b). Guo et al. [19] designed high-dimensional transfer functions combining a PCP and
multi-scaling projection, and used color coding of multiple features to fuse multiple variables before
data processing. He et al. [24] provided an improved PCP for designing high-dimensional transfer
functions based on Range Likelihood Tree to code colors to render different features, as shown in
Fig. 4(a).

There is a noise-based volume rendering method for multivariate data in which only one variable is
calculated for each pixel in a 2D image by a noise-based ray casting algorithm. The method can avoid
the two problems mentioned above by coding different color channels without color blending, which is
also a common method of data fusion. The noise-based method was first proposed by Carwfis [10]. They
regarded volume density cloud and noise amount as the first and second variables, and proposed noise
splats for fusing the relationships between variables, making different variables clearly distinguishable
with high resolution. Khlebnikov et al. [32] proposed a method for multivariate data visualization
that generates an opacity redistribution pattern and an opacity mapping function with high-frequency
to avoid confusion by random-phase Gabor noise. After this, different variables can be rendered by
different colors, which allows users to distinguish different distributions with high resolution.

The noise-based volume rendering method can avoid the occlusion among variables and confused
visualization for multivariate data in a single view, which is a better visualization method than others.
However, the method relies on many structure models, the information carrying capacity is limited, the
depth information is missing, and the visualization results depend on the design of the noise functions.

3.2 Feature Fusion

For feature fusion, features from each variable are usually extracted and expressed, such as the iso-
surfaces of multiple variables, the fusion of isosurfaces or colors in scalar fields and streamlines in
vector fields, and the different regions rendered by different variables. Feature fusion can be expressed
as: g(f(v1(p)) 7→ c1, f(v2(p)) 7→ c2, ..., f(vn(p)) 7→ cn) 7→ c(p), where f represents the corresponding
mapping function for each variable to obtain its respective color ci, n is the number of variables, and
g represents the fusion operation to obtain the final color. Usually, g can mix multiple colors and
opacities to produce a new color, i.e., color blending. Moreover, g can also control the presentation of
each variable. For example, the features or variables are hidden when the opacity is set to 0. For this
method, the visual depth information among features can be preserved.

Color blending is the most commonly used method for visualization [1,2]. Color blending can be
further classified into the fusion based on the integrating process of volume rendering and result-based
image fusion. The fusion based on the integrating process of volume rendering can present the spatial
distributions of features intuitively by fusing the colors of different features at each sampling point,
whereas new colors generated by the fusion may easily cause ambiguity and even mislead users into
making incorrect judgements. For these problems, Ding et al. [11] presented a method that employed
multi-class sampling to individually generate and illustrate spatial sampling points for each variable.
Three visualization modes were provided for spatial distributions and correlations of multiple variables,
which can identify the colors and variables more accurately. The method is similar to color weaving [56,
21]. Color weaving generally displays multiple original independent colors in a high-frequency texture
side by side to fill corresponding regions, which can deal with the overlapping of multiple colors and
overcome the disadvantage of traditional color blending.
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Different features can also be rendered by different colors to present the relationships among vari-
ables. The challenges of occlusion, clipping and fusion for conventional multivariate visualization make
it difficult to visually explore the features of multiple variables. For this problem, Chuang et al. [9] and
Kuhne et al. [38] successively proposed hue-preserving color blending methods to avoid false colors and
preserve the depth information of multiple features in multivariate scalar fields. In multivariate vector
fields, Guo et al. [18] proposed a scalable method for the exploration of multivariate unsteady flow
data with LSAP. The method projects pathlines starting from spatial points onto a 2D plane to reduce
the complexity and incorporates a MapReduce-like framework with scalable Pivot MDS to simplify
the field line tracing, from which users can select groups of points and the corresponding pathlines can
be presented.

The main boundary structure can be clearly presented through surface rendering, and volume
rendering is expected to display the internal features of objects. The combination of the two rendering
methods can make full use of their respective advantages, which can further depict the phenomena and
laws hidden in data, and improve the ability to comprehensively display images. In many applications,
the results of volume rendering and surface rendering need to be displayed simultaneously to achieve
the optimal display of features. Hybrid rendering is a technique to combine the two. For example,
in the seismic field, it is necessary to show the fault plane, the surface of reservoir rock, and other
geologic formations in sequence to design the drilling trajectory and select the optimal mining plan.
Hauser et al. [20] proposed a two-level volume rendering technology with which one of the specific
rendering methods including maximum intensity projection, direct volume rendering, and isosurface
rendering can be selected for each subregion to achieve feature fusion, as shown in Fig. 4(b). Kreeger
and Kaufman [35] realized feature fusion through sampling 3D textures and depth buffers. In this
work, surface rendering was used to render blood vessels, and volume rendering was used to render
other tissues for visualizing the MRI data of a patient’s head.

Feature fusion can give full play to the fused features of different variables or those among variables,
and it can avoid producing new colors and preserve the depth information among features, making it
possible to visualize multiple features more intuitively. However, visual occlusion may still occur when
there are too many fused features, and the quality of the visual results relies on structural patterns
and feature classification methods.

3.3 Image Fusion

For image fusion, each variable is rendered to an image or visual primitive (hereinafter collectively
referred to as image) through different visual channels, and then the images are fused for visualization.
Each pixel of the resultant image only presents the color of one image. The expression of image fusion
is I(Image1, Image2, Image3, ...) 7→ Image, where Imagei represents the result of the i-th variable,
and I is the fusion function of multiple results to get the final Image. Image fusion is simple and
intuitive, and makes it easy to explore the inner relationships of multivariate data.

Section 3.2 discusses the two categories of color blending. For result-based image fusion, multiple
images are fused directly to get the final image. For instance, Zhou and Hansen [66] provided lasso tools
to select regions of interest as initial features from multiple slices, and similar features are extracted
to show the 3D spatial distributions based on image fusion.

An icon-based method encodes different variables or features into different tuples to distinguish
them through human perception of shape, size, direction, etc. It can transmit direction information
well, and thus it is widely used in the visualization of vector fields [33] and tensor fields. However,
icons are easily obscured, making it difficult to apply to multivariate data. Compared to the icon-based
method, texture-based coding can provide a more natural and compact structure by mapping different
colors or opacity to this structure to achieve the goal of fusing multiple variables at the same time.
Urness et al. [56] proposed the concept of color weaving in 2D multivariate flow fields. They assigned
different colors to different streamlines in the texture generated by the Line Integral Convolution (LIC),
such that multiple colors could be represented simultaneously at the same spatial point. Schroeder and
Keefe [49] provided a sketch for origin visualization, through which users can interactively and directly
create new time-varying multivariate data visualization by means of rich tools to map colors or icons,
as shown in Fig. 4(c). Glyph-based visualization [4], similar to the icon-based method, usually uses
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glyphs such as shapes, indices, and textures to place the locations of variables, which is widely used
in 2D, 2.5D, or 3D visualization space.

In conclusion, color blending is widely used for its intuitive perception, but ambiguous colors or
mutual occlusion among features makes the information of variables difficult to distinguish. The icon-
based and texture-based methods can avoid occlusion and visual confusion to some extent, though
they require users to recover lost information according to a random structure, which increases the
burden of user perception. Noise-based methods can be applied to avoid this problem. Moreover, focus
and context visualization makes it possible to retain contextual information when local features are
displayed in the focused area [36], which provides an idea to solve the above problem in multivariate
spatial visualization.

4 Correlation Analysis

In general, the relationships between variables of multivariate data are intricate and complex. Accord-
ing to the objectives of correlation analysis, we divide the correlation into five different categories:
correlation between variables, correlation between voxels, correlation between numerical values, corre-
lation between features and the hybrid analysis method for variables and numerical values.

(b)(a) (d)(c)

Fig. 5 Examples of multivariate correlation analysis. (a) Correlation between voxels measured by gradient [44]. (b)
Correlation between variables measured by mutual information [3]. (c) Correlation between numerical values based on
the associated relationships [39]. (d) Correlation between features based on FeatureNet [59].

4.1 Correlation between Voxels

The correlation between voxels measures the similarities of scalar values or their derived attributes.
The correlation measure for each voxel is mostly based on the similarity of gradient fields. Gosink

et al. [17] measured the gradient correlation based on the cosine of two gradient vectors, i.e., a related
scalar field of two gradient fields was generated by the inner product of each spatial sampling point.
Sauber et al. [46] introduced a similarity measure method named gradient similarity measure (GSIM),
as follows:

s(Ofi,Ofj) = (sd(Ofi,Ofj) · sm(Ofi,Ofj))
r, (1)

sd(Ofi,Ofj) = (
OfTi Ofj
‖Ofi · Ofj‖

)2, (2)

sm(Ofi,Ofj) =
4 · ‖Ofi‖ · ‖Ofj‖

(‖Ofi ‖+ ‖Ofj‖)2
. (3)

The above expressions take into account the similarity of magnitude and direction of two gradient fields
based on voxels, where sd and sm represent the similarity in direction and magnitude respectively, Ofi
represents the gradient with respect to the i-th variable, and the exponent r regulates the sensitivity
of the measure.

All the above methods aim at the measurement of bivariate fields. Sauber et al [46] then proposed a
method to measure the gradients of all the variable pairs by the minimum similarity, extending GSIM to
multiple variables. Nagaraj et al.[44] introduced a gradient-based comparison method for multivariate
data. The method is defined as a partial derivative matrix comprising the gradient vectors of different
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fields. Let F = {f1, f2, ..., fm} be a set of scalar fields on a manifold M. The differential at point p ∈M
is defined as:

dF (p) =

 ∂f1
∂x1

(p) ... ∂f1
∂xn

(p)

... ... ...
∂fm
∂x1

(p) ... ∂fm
∂xn

(p)

 . (4)

The multi-field comparison measure ηFp is defined as ‖dF (p)‖, which represents the norm of the matrix
dF (p) at sampling point p. This method calculates the correlation between variables at each voxel
point to generate a derived scalar field, as shown in Fig. 5(a). Usually, the new scalar field needs to be
classified to identify salient regions with strong relationships.

Clustering is also a common method to analyze the correlation between voxels. There are many
methods that use cluster algorithms in the field of data mining to classify similar voxels into one
group for identifying features [55,57,63]. Van Long and Linsen [57] proposed a hierarchical density-
based clustering method, in which the density is calculated based on grid cells. Compared with other
clustering methods, the main advantage of this method is that the thresholds of the density do not
need to be specified. The authors also designed a radical layout to intuitively show the results of
hierarchical clustering. In the correlation analysis of voxel-based methods, visual analysis methods
prefer to combine human intelligence to obtain more accurate clustering results. The simplest idea is
to provide a rough clustering result of the data, and then iteratively correct the clustering result in an
appropriate way. Ivanovska and Linsen [29] clustered multivariate data with certain simple and efficient
methods such as k-means and median cut, and provided a 2D slice view to correct the clustering results
by splitting and merging operations.

The similarity between voxels is defined based on all variables, such the correlation between variable
might avoid missing important features. However these methods cannot identify the features only
correlated with partial variables. Moreover, irrelevant variables may have a great influence on clustering
results with the increase in the number of variables, which may easily mislead users to explore trivial
features.

4.2 Correlation Between Variables

The overall correlation measurement of variables mainly considers the interaction between variables.
Statistical analysis and information theory are introduced in this section.

The correlation coefficient is a standard and common statistical measurement method that deter-
mines whether two variable sets are linearly dependent by comparing the differences between their
scalar values and their respective mean values. As a global measurement method, the correlation coef-
ficient can also be used to calculate the local correlation between two variables [46]. For time-varying
data, a linear relationship for the same spatial sampling point between two time steps can also be
measured by the correlation coefficient [52].

Information theory provides a theoretical framework for the measurement of the amount of infor-
mation between variables, which is widely used in the visualization field to measure the importance of
a variable or the similarity between two variables. The correlation between two variables can be mea-
sured through the amount of information shared by the two variables, i.e., mutual information. Biswas
et al. [3] employed mutual information to measure the informativeness of one variable about the other
variable and grouped variables based on mutual information in a graph-based approach, as shown in
Fig. 5(b). Because there is information redundancy between variables, they first clustered and grouped
variables using mutual information as a measurement of distance, and then used conditional entropy
to determine the variable with minimum uncertainty as the most important variable for each group to
further analyze the correlation between variables. In addition, information theory can also be extended
to time-varying fields. For example, Wang et al. [58] applied the transfer entropy to investigate the
salient relationships between variables in time-varying multivariate fields. Dutta et al. [13] extracted
important features by mutual information and its two decompositions in time-varying multivariate
data, and multiple time-varying features were encoded into the same individual field to analyze the
track and characteristics of these features.

The correlation between variables is simple and straightforward, and it usually measures the global
correlation between two variables. However, as most of the correlation between variables is based on
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the overall correlation between two or more variables, it is difficult to extract the significant features
of local correlation between variables. Moreover, the correlation between variables fails to take the
composition of the numerical and spatial distributions of variables into account.

4.3 Correlation Between Numerical Values

The correlation between numerical values is used to analyze the relationships of value pairs for multiple
variables.

A PCP can map multiple variables onto the same 2D plane to present the numerical relationships
intuitively, which is a very common numerical analysis method in the study of multivariate data.
However, owing to layout constraints, only the relationship between adjacent axes can be intuitively
represented, and mutual occlusions between coordinate axes make it difficult to identify correlation
patterns between numerical values for large-scale data. In addition, it is impossible to interactively
select all possible correlation patterns in a PCP, and thus many automatic numerical analysis methods
are proposed. Haidacher et al. [22] established distance fields for the isosurfaces of variable domains, and
measured these distance fields using mutual information to calculate the similarity between isosurfaces.
A similarity matrix was generated to show all the equivalent pairs of two variables in this work. Liu and
Shen [39] extracted the relationships between scalar values in two different variable domains and used
the Influence-Passivity Model to choose the most representative scalar value, as shown in Fig. 5(c).

Topological structures can also be applied to the correlation analysis of numerical values. Contour
tree [8] is used to represent the relationship between values according to the change in level sets. Carr
and Duke [6] extended the contour tree of multivariate data to establish topological relationships be-
tween different numerical intervals in high-dimensional data. In addition, various topological structures
for multivariate data are proposed to measure the changes between values such as the Jacobi set [14],
and Pareto set [27].

The correlation between numerical values can be used to analyze the global and local relationships
by flexibly controlling the parameters of each variable. In this method, the numerical values of each
variable are employed to analyze the numerical distributions. However, it fails to take the spatial
distributions into account, and thus some trivial features with spatial distributions may be ignored.

4.4 Correlation between Features

The correlation between features aims at analyzing the differences and similarities between the features
of multiple variables.

Schneider et al. [48,47] presented an efficient method that compares different features between
variables based on simplified contour trees. They extracted multiple largest contours of each variable
domain, calculated the similarity between the contours, and finally extracted the similar contours
of different scalar fields by clustering. The method effectively avoids the ambiguous features defined
by transfer functions in the process of rendering multiple surface meshes. Wang et al. [59] proposed
an interactive visual analysis method for the features and relationships in multivariate data. They
extracted the main features between variables and the hierarchical relationships between these features
based on merge trees. Next, they established the associated relationships between the features by
defining the similarities between them to merge the feature trees of different variables. A FeatureNet
was then constructed as a navigation tool to guide users to explore the correlation between features,
as shown in Fig. 5(d).

The correlation between features takes the local relationships between features into account, and
it is easy to clearly identify the different features. However, the correlation results rely on the feature
classification methods.

4.5 Value-variable Correlation Analysis

The several correlation analysis methods mentioned above, whether based on the global correlation
analysis for variables and voxels or based on the local correlation analysis for numerical values and
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features, only analyze one aspect for multivariate data. However, variable sets usually show strong
correlation in multiple aspects. To address this problem, the value-variable correlation analysis can
avoid the one-sidedness of the above methods. For example, Biswas et al. [3] employed mutual infor-
mation to measure the informativeness of one variable about another variable. In this work, a hybrid
correlation analysis combining numerical values and variables was employed for exploring features in
multivariate data, because the corresponding isosurfaces were selected for the measurement of scalar
values and other variables were also be presented for the measurement of variables. Liu and Shen [39]
analyzed the correlation between numerical values using PCPs, and then selected an interesting isosur-
face of a variable. The volume rendering results for other variables were presented under the condition
of side-by-side isosurfaces. In this work, numerical values and variables are analyzed, which avoids
the complexity of subspace exploration. In addition, features from multiple variables can be indepen-
dently filtered according to the feature extraction methods of univariate data, and then feature fusion
is employed to analyze the correlation between features and variables. The value-variable correlation
analysis method avoids the one-sidedness of unilateral correlation, and is strongly related to the feature
classification of multivariate data.

5 Conclusion

Multivariate data visualization is designed to efficiently express and analyze variables and their po-
tential relationships, and then display and explore the evolution laws of complex scientific phenomena
by visualization to assist scientists in discovering new relationships or laws. Therefore, multivariate
data visualization has always been an important research topic in the field of scientific visualization.
In this paper, we provide a comprehensive survey of multivariate data visualization with a focus on
features classification, fusion visualization, and correlation analysis. Many advanced works have been
developed with the respect to the above three aspects in different fields, such as medicine, electro-
magnetism, combustion simulation, and meteorological simulation. With the rise of applications in
large-scale scientific and engineering fields, the devices and methods of data acquisition have become
increasingly intelligent and wide-ranging, bringing great challenges and opportunities to multivariate
data visualization. Certain potential research topics for multivariate data visualization according to
current research are discussed below.

For feature classification, it is essential to locate, extract, and analyze important features of
multivariate data, whereas it is time consuming and challenging to find all the meaningful features
interactively if the user has little prior knowledge. Deep learning has been a hot topic in recent
years, although it has few applications in multivariate data analysis. It can be used to automatically
train and express multivariate data and implement the classification by intelligently combining spatial
and numerical distributions, which are considered potential future research topics. Moreover, feature
classification based on topological structures can only extract the features of bivariate data at present,
and thus the construction and identification of topological structures among three or more variables
are still urgent problems to be solved. In the time-varying multivariate field, a time-varying feature
may exist throughout time steps, so the feature classification methods in multivariate data aiming to
extracting multiple features of one time step can also be extended to extract and trace time-varying
features in the future.

For fusion visualization, the rendering of univariate spatial data is relatively mature, whereas
the fusion visualization for multivariate data still has problems such as visual confusion, occlusion, and
fatal colors. There are many excellent methods to solve these types of problems, but these methods
still have various defects within partial perspectives. Thus, the search for methods to solve the above
problems efficiently and thoroughly is a promising direction for future research. Moreover, there are
lots of methods for fusion visualization, whereas the quality of the perception-awareness of these
methods fails to be considered. This brings an opportunity to explore the evaluation methods of fusion
visualization.

For correlation analysis, the correlation between variables is focused on global analysis at present,
whereas multiple data always have local relationships between partial variables. The analysis of the
local relationships between variables is important for future exploration. In addition, the correlation
between multiple time steps in time-varying multivariate data needs to be examined. Furthermore,
multivariate data usually has a combined mode, that is, different objects only show strong correlation
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under a specific combination of variables, and certain variables are only related to portion of the
objects. The correlation analysis in information visualization is efficient and rich to analyze the combine
mode. For example, subspace analysis in information visualization can analyze the local relationships
between attributes and data items, which could be applied to multivariate scientific data. For instance,
He et al. [25] presented a bicluster method to cluster variables and voxels simultaneously to extract
all biclusters with a similar scalar value pattern automatically, which applies subspace analysis of
information visualization to scientific visualization.

In recent years, the work of fusion visualization for multivariate data has gradually matured, and
most of the work has focused on feature classification and correlation analysis. Due to the improve-
ment in the computational performance of supercomputers, the number of variables and data size
are becoming increasingly complex, and the complexity of multivariate data increases the difficulty
of the understanding of the intricate relationships among multiple variables, i.e. feature classification
and correlation analysis. This bring great opportunities in data representation to reduce the data size
and analyze on compact data representation [61,51]. Moreover, finding methods to reconstruct the
multivariate data reasonably, better classify features, and render the spatial fields of different variables
remain problems that need to be addressed.
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