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Abstract Many visual analytics have been developed for examining scientific publications comprising wealthy
data such as authors and citations. The studies provide unprecedented insights on a variety of applications, e.g.,
literature review and collaboration analysis. However, visual information (e.g., figures) that is widely employed for
storytelling and methods description are often neglected. We present VIStory, an interactive storyboard for
exploring visual information in scientific publications. We harvest a new dataset of a large corpora of figures, using
an automatic figure extraction method. Each figure contains various attributes such as dominant color and width/
height ratio, together with faceted metadata of the publication including venues, authors, and keywords. To depict
these information, we develop an intuitive interface consisting of three components: (1) Faceted View enables
efficient query by publication metadata, benefiting from a nested table structure, (2) Storyboard View arranges paper
rings—a well-designed glyph for depicting figure attributes, in a themeriver layout to reveal temporal trends, and (3)
Endgame View presents a highlighted figure together with the publication metadata. We illustrate the applicability
of VIStory with case studies on two datasets, i.e., 10-year IEEE VIS publications, and publications by a research
team at CVPR, ICCV, and ECCV conferences. Quantitative and qualitative results from a formal user study
demonstrate the efficiency of VIStory in exploring visual information in scientific publications.

Keywords Document visualization - Image browser - Faceted metadata

1 Introduction

Publications are one of the most important outcomes of scientific research. Together with the development of
science itself, substantial amounts of scientific publications have been generated. Though digital libraries like
Google Scholar and Microsoft Academic provide powerful searching and browsing functionalities, they are
often found ineffective for high-level tasks such as collaboration analysis. Visual analytics has gained intense
interest in exploring scientific publications, as it can enable human cognition and reasoning with machine’s
powerful computing capacity (Keim et al. 2008). Vast amounts of visual analytics have been developed that
facilitate applications including literature review and citation analysis (e.g., Chou and Yang 2011; Heimerl
et al. 2016; Wu et al. 2015; Latif and Beck 2018).
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Visual information (e.g., figures) are typically employed in scientific visualizations for describing facts,
methods, or telling stories (Strobelt et al. 2009). Specifically, in fields such as visualization, research pro-
cesses generate imagery data that can substantially reflect content and quality of the research (Chen et al.
2009). Taking visualization publications for an example, studying the visual information can benefit the field
from multiple perspectives: to generate compact visual representations (e.g., Strobelt et al. 2009), to guide
design processes to make memorable, recognizable, and recallable visualizations (e.g., Borkin et al.
2013, 2016), and to provide quality metrics for evaluating visualizations (e.g., Janicke and Chen 2010;
Matzen et al. 2018).

Many surveys on subfields of visualization, e.g., Treevis.net for tree visualization (Schulz 2011),
TimeViz Browser (Tominski and Aigner 2015) for time-series visualization, Text Visualization Browser
(Kucher and Kerren 2015) for text visualization, utilize imagery thumbnails to depict visualization tech-
niques. The visual information enable users to quickly get an overview of the field, facilitate teaching, and
find related work based on various categories defined in a survey taxonomy (Kucher and Kerren 2015).
However, existing visual analytics for scientific publications typically focus on metadata of scientific
publications such as authors and citations (e.g., Beck et al. 2016; Federico et al. 2017), while neglect the
visual information. There is an emerging need for a survey system that enables quick and comprehensive
exploration of visual information in scientific publications.

We develop an interactive storyboard, namely VIStory, that fulfills the requirement. To ease the
maintenance pressure for such a visual survey system, we develop an automatic method to extract fig-
ures and multi-faceted metadata (including authors, keywords, venues, etc.) from scientific publications, and
we construct a nested table structure to support efficient query of the visual information (Sect. 4). Next, we
design an intuitive visual interface that adopt well-established visualization techniques of glyph design for
visual information, themeriver layout for temporal variation, faceted exploration for multi-faceted analysis,
and endgame view for details exploration (Sect. 5). We elaborate the utility and effectiveness of VIStory via
case studies on ten-year IEEE VIS publications from 2009-2018, and publications by a multimedia group at
three major computer vision conferences, i.e., CVPR, ICCV, and ECCV (Sect. 6). The studies reveal some
interesting patterns, such as the emerging of machine learning topics in visualization conferences. We also
conduct a formal user study in comparison with a state-of-the-art visual survey system—SurVis (Beck et al.
2016). The quantitative results demonstrate the efficiency, and the qualitative feedback shows the preference
of VIStory (Sect. 7).

In summary, we contribute to the visual exploration of scientific publications in the following way:

— First, we propose a new perspective of exploring scientific publications, i.e., analyzing the visual
information. Specifically, we curate a total of 11,568 figures from ten-year IEEE VIS publications in
2009-2018, using an automatic figure and metadata extraction method. We will release the dataset to
foster future research.

— Second, we develop an interactive storyboard—VIStory that facilitates the exploration of visual
information in scientific publications. VIStory integrates a compact glyph design of paper ring to
represent multi-dimensional attributes of figures in one publication. The paper rings are arranged in a
themeriver layout for depicting temporal trends. Faceted views and endgame views are also incorporated
to support multi-faceted analysis and details-on-demand exploration.

— Lastly, we present three case studies conducted on the collected figures, to support real-world usage
scenarios: author profile probe, VIS trend analysis, and research impact exploration. We figured out
some interesting patterns, such as emerging topic of Machine Learning in IEEE VIS publications, which
help users quickly understand a research field.

2 Related work

We group related work in the three categories: Visual document analysis (discussing studies of developing
visual analytics for documentation analysis); Image browser (discussing general methods for visually
exploring images); Visualization taxonomies (discussing recent trends of understanding visualization field
by analyzing visualization publications).



VIStory: interactive storyboard for exploring visual information 71

2.1 Visual document analysis

The plethora of scientific publications poses challenges for the literature review. Though digital libraries
such as Google Scholar and Microsoft Academic enable search by concepts or keywords, researchers can
easily lose focus as little abstraction of tremendous raw publications are made by the digital libraries (Chou
and Yang 2011). Many visual analytics have been developed to fill the gap. The systems can be categorized
by data types of multi-faceted metadata including authors, references, title, and publication date (Federico
et al. 2017). Exemplary work include Jigsaw (Gorg et al. 2013) and HierarchicalTopics (Dou et al. 2013)
for text analysis, PaperVis (Chou and Yang 2011) and CiteRivers (Heimerl et al. 2016) for citation, and
egoSlider (Wu et al. 2015) and Vis Author Profile (Latif and Beck 2018) for authorship analysis. Coupled
with advanced analysis techniques and intuitive visual designs, these systems have been proven effective in
facilitating the understanding and assessment of scientific publications (Federico et al. 2017).

However, only a few visualizations are developed for depicting visual information in scientific publi-
cations. Strobelt et al. (2009) organized key figures and important terms in a compact manner to generate an
abstraction for documents. Schulz (2011) collected all tree visualization techniques, and developed a ref-
erence system that supports interactive exploration. Chen et al. (2020) analyzed composition and config-
uration patterns in multiple-view visualizations collected from IEEE VIS, EuroVis, and PacificVis
conferences. A similar reference website was later developed for text visualization (Kucher and Kerren
2015). Unfortunately, the visualizations are either suitable for only a small amount of documents (Strobelt
et al. 2009), or relying heavily on developer expertises for maintenance (Schulz 2011; Kucher and Kerren
2015). Instead, this work aims for an interactive storyboard for vast amounts of figures automatically
extracted from scientific publications.

2.2 Image browser

To visualize massive amounts of figures calls for effective image browser. A common approach is to
organize images in a layout based on pairwise image similarities (Plant and Schaefer 2011). The layout has
many variations, such as Neighbor-Joining tree (Eler et al. 2009), multi-dimensional scaling (Joia et al.
2011), Voronoi treemap (Tan et al. 2012), or picture collage (Liang et al. 2018). Some image browsers
make use of images’ semantic information that can be generated from conventional image annotation (Yang
et al. 2006), emerging deep learning (Xie et al. 2018), and mutual information (Zeng et al. 2019). Besides
similarities and semantics, images can also comprise multi-dimensional metadata such as place and cate-
gories, which can be used to facilitate searching and browsing (Corput and Wijk 2016). MediaTable (Rooij
et al. 2010) arranged all images and associate metadata in a tabular layout. PICTuReVis (van der Corput
and van Wijk 2017) showed that relations among people can be revealed based on image collections.
StreetVizor (Shen et al. 2018) compared attributes extracted from spatial-dependent street views in cities.

This work adopts a conventional approach of browsing images using multi-faceted metadata (Yee et al.
2003), which is naturally compatible with conventional visualization mantra ‘overview first, zoom and filter,
then details on demand’ (Shneiderman 1996). Moreover, publication figures exhibit multi-dimensional and
temporal properties, requiring new visual design for depicting high-level patterns such as temporal varia-
tions. We employ glyph-based designs to intuitively depict multi-dimensional attributes, and arrange them
in a themeriver layout to reveal temporal variations.

2.3 Visualization taxonomies

This work can facilitate the understanding of visualization field, by studying past 10-year visualization
publications in IEEE VIS. We follow the suggestions from (Isenberg et al. 2017b) to study visualization
publications by taxonomy. In addition to traditional taxonomy factors such as venues and topics, visual-
ization researchers have identified more reasonable factors including data type (Shneiderman 1996), design
models (Tory and Mdller 2004), and data encodings (Rodrigues et al. 2006). Borkin et al. (2013) adopted a
more detailed visualization taxonomy that categorize statistical charts based on visual encodings and per-
ceptual tasks. Recently, Isenberg et al. (2017b) examined the keywords in IEEE VIS publications. They
identified shortcomings of existing visualization taxonomy and proposed common terminologies. An online
query tool (http://keyvis.org/) was also released to the public. We follow the work to categorize visual-
ization publications based on keywords, e.g., volume rendering and user study. Furthermore, we develop an
interactive storyboard to provide intuitive visual exploration of IEEE VIS publications.
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3 Requirements and system overview

This work aims to explore visual information in scientific publications, which can benefit different users in
addressing various tasks, e.g.,

— Students would like to compare profiles of different authors/topics when choosing supervisors/research
topics.

— Researchers wish to understand what the others have developed when expanding their research areas.

— Reviewers may need to confirm if a visual design has been published when reviewing papers.

3.1 Requirements

We opt to develop an interactive storyboard to facilitate exploration, which shall meet the following
requirements:

— RI. Automation: The system should enable automatic collection of visual information from scientific
publications. In this way, minimum maintenance efforts are required, rather than heavy manual work by
professional experts.

— R2. Multi-faceted analysis: The system should support multi-faceted analysis to meet different tasks,
e.g., to help students find active researchers in the field, or to assist researchers in revealing trend of
research topics in recent years.

— R3. Intuitive visual design: The system should incorporate intuitive visual design to effectively depict
hidden information from figures in scientific publications. More details are presented in Sect. 5.1.

3.2 System overview

As illustrated in Fig. 1, VIStory workflow mainly consists of three stages: (1) Data Extraction, (2) Data
Management, and (3) Interactive Visual Exploration. In Data Extraction stage, we extract figures and
metadata from scientific publications, using an automatic figure extraction method (Sect. 4.1). This yields a
total of 11,568 figures, and metadata including authors, venues, and keywords, from 1171 IEEE VIS
publications 2009-2018. We also compute figure attributes including size, aspect ratio, and median color for
each publication figure. Next, in the Data Management stage, we organize all extracted figures according to
publication metadata and figure attributes in a nested table structure (Sect. 4.3). The structure enables quick
query on publication metadata to support faceted exploration. Last, in Interactive Visual Exploration stage,
we design Faceted View, Storyboard View, and Endgame View to facilitate exploration of the visual
information. The interface is a web-based implementation. A demonstration of VIStory for the IEEE VIS
publications can be found at: https://dongoa.github.io/VIStory/.

4 Modeling publication figure

This section first describes automatic methods for extracting figures (Sect. 4.1), followed by description of
data characteristics (Sect. 4.2) and a nested table data structure for improving querying efficiency
(Sect. 4.3).

4.1 Automatic figure extraction

Though we have crawled all the paper, it remains challenging to extract figures in an automatic way (R1).
We develop an automatic figure extraction method with the following steps.

1. We first convert a PDF paper to JPG images using ghostscript,’ and to an XML file using pdftohtm].”
The XML file records ordered text boxes {B;} and their corresponding attributes of position (x, y),
width (w), and height (h).

' www.ghostscript.com.

2 pdftohtml.sourceforge.net.
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Fig. 1 VIStory workflow mainly consists of three stages: Data Extraction, Data Management, and Interactive Visual
Exploration

2. We search for keywords of Fig. and Figure appearing as the first word of a text box, which indicate
either figure captions or descriptions. Here, we make a reasonable heuristic that figure captions are
placed below figures. Thus, if attribute y; of a text box B; to (y;—1 + h;—) of the previous box B;_; is
small, we regard the text box as text description.

3. After identifying a text box B; as figure caption, we can determine a figure’s position in y-dimension as
(yi—1 + hi_1, ;). Position in x-dimension is determined by x; and w;. A two-column figure is identified if
x; is less than while (x; + w;) is larger than half page width.

4. We use the identified positions to extract a figure in the corresponding JPG image. Lastly, we crop out
background by identifying the minimum bounding box of pixels in different colors with the background
color.

We measured accuracy of the automatic figure extraction method by comparing with figures extracted in
a manual manner. We randomly selected 30 papers from the publication dataset, and manually cropped all
the figures in each paper. First, we compared the accuracy regarding number of figures—the automatic
method produces exactly the same number of figures with the manual cropping. Second, we compared the
accuracy regarding cropping bounding box. Here, we only compared the aspect ratios between pairwise
figures extracted by the two methods, since sizes of manually extracted figures are affected by screen size—
the accuracy is 0.997.

Figure 2 presents average number of figures in the collected VAST, InfoVis, and SciVis publications.
We can identify that most publications include 5-15 figures, while SciVis publications tend to have a
slightly higher mean. Nevertheless, there are also several abnormalities. A VAST and InfoVis paper
(highlighted by red circles) include over 30 figures, which is about three times than other papers.

4.2 Data characteristics

The IEEE VIS dataset (Isenberg et al. 2017a) also records multi-faceted metadata for each publication,
including venue (i.e., VAST, InfoVis, SciVis), publication year, authors, and keywords. The metadata can
reveal many interesting knowledge. For instance, we can figure out researchers who are active in the field by
author, or find out what topics are becoming popular by keyword. Thus, we decide to support interactive
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Fig. 2 Number of figures included in VAST, InfoVis, and SciVis proceedings in 2009-2018

exploration of the dataset using the metadata. We regard publication year as a key factor for depicting trends
over time, thus it is fixed as a factor during interactive exploration. For the computer vision publications, we
consider num. of citations as an important factor for reflecting the research impacts. Some publications
exceeding 1,000 citations are of specific interest.

Besides publication metadata, we would like to further explore attributes of a figure F.

— Figure size (Fy..). We measure figure size by multiplying figure width F,, and height Fj, i.e.,
Fsize:FwXFh~

— Aspect ratio (). We measure aspect ratio of a figure, i.e., A = F,,/Fj.

— Median color (F,,,). We identify median color of a figure defined as centroid of a cube representing all
the colors enclosed by the cube (Heckbert 1982), which can be efficiently quantified using median-cut
algorithm.

These attributes reveal intrinsic properties of visualizations as color and shape are pre-attentive visual
stimuli (Rodrigues et al. 2006). In addition, it can also benefit paper writing, as researchers would like to
know how much space and what w/h ratio is suitable. Notice that, image size and w/h ratio are scalar values,
while color is represented as a vector of red, green, blue values.

4.3 Nested table structure

The processed data exhibit properties of multi-faceted (publication metadata) and multi-dimensional (fig-
ure attributes). Such complex data nature brings in challenges for accomplishing the requirement of R2.
multi-faceted exploration. To overcome such challenge, we organize the data in a nested table structure,
based on the universal relational model—‘one can place all data attributes into a table, which may then be
decomposed into smaller tables as needed’ (Hawryszkiewycz 1984). Similar to that in (Shen et al. 2018),
the table structure is illustrated in Fig. 1 top-right.

— We first group all publications by publication year in rows, and another attribute (venue, author,
keyword, number of figures) in columns. By this, each cell consists of different numbers of publications.

— Each publication is further represented as a table recording figures as rows and figure attributes as
columns. The number of rows is dynamical depending on number of figures, while column number is
fixed to three for attributes of image size, aspect ratio, and color.

5 VIStory interface

Designing an intuitive visual interface is a key requirement of this work (R3). This section first summarizes
carefully considered design rationales to fulfill the requirements, followed by detailed descriptions of
components of VIStory.

5.1 Design rationales

We consider an intuitive visual design should meet the following rationales to fulfill the requirements:
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Fig. 3 VIStory interface for exploring a collection of scientific publications. a The Faceted View enables efficient query of
publications through multi-faceted metadata of venues, authors, and keywords. b The queried publications are encoded as
glyphs arranged in a themeriver layout to depict temporal trends in the Storyboard View. ¢ The Endgame View presents a
highlighted figure along with information of the publication

— Complete: The interface should support exploration of both publication metadata and figure attributes.
The twofold perspective information complement each other in supporting high-level analytical tasks.
For instance, to figure out what colors (figure attributes) are frequently used by a visualization expert
(publication metadata).

— Overview + Details: No surprisingly, tremendous amount of figures will be collected from the
publications. The system should provide overviews of the figures from different perspectives.
Meanwhile, interactive techniques should be integrated to support details-on-demand exploration.

— Faceted Browsing: As described above, the publication metadata are faceted, i.e., composed of
orthogonal sets of categories. To support R2. Multi-faceted analysis, the interface should allow users to
manipulate the figures for analysis using faceted metadata, rather than projecting all figures into low-
dimensions using MDS or t-SNE.

Based on these rationales, we finally come up with VIStory interface as shown in Fig. 3. The interface
mainly consists of three view components: Faceted View (Fig. 3a), Storyboard View (Fig. 3b), and
Endgame View (Fig. 3c).

5.2 Faceted view

Inspired by (Yee et al. 2003), we design Faceted View as shown in Fig. 3a to fulfill the rationale of Faceted
Browsing. The view consists of configurable faceted panels corresponding to first level of metadata terms:
For IEEE VIS publications, the panels are Venues, Authors, Keywords, and Num. of Figures, whilst for the
second dataset, the panels are Venues, Authors, Num. of Citations, and Num. of Figures. Each panel is
comprised of attributes of second level of metadata terms, e.g., InfoVis, SciVis, and VAST in the Venues
panel for IEEE VIS publications, whilst CVPR, ICCV, ECCV for the second dataset. Specifically, we divide
the numerical Num. of Citations into four ranges of More than 1000, 100—1000, 50-100, and Less than 50,
and Num. of Figures into four ranges of more than 20, 10-20, 5-10, and less than 5. In this way, all faceted
attributes are categorical. The attributes are sorted in descending order by the number of publications with
the attribute. An exception is attributes in the fourth panel, which are sorted by number of figures. Notice
that, there can be too many attributes in Authors and Keywords panels. We further add a minimum threshold
controller to filter out attributes with fewer publications than the threshold.

To support Overview + Details rationale, the Faceted View enables visual query of publications for
exploration by clicking on the user-interested attributes. Let denote the multi-faceted dataset of n publi-
cations as P = {p;}'_,. We note the categorical facets as V (venues), A (authors), K (keywords), and N
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(num. of figures). For simplicity, we refer all of the facets as X unless stated explicitly. Let x; as the jth
attribute of facet X, X(p;) be the attribute value of facet X for publication p;. Note that, V(p;) and N(p;) are
single values, while A(p;) and K(p;) can be a vector of values as a publication may have multiple coauthors
and keywords.

Let denote the list of publications with attribute x; as P,. Thus, we have P, = {p € P,X(p) € {x;}}. In
VIStory, users can select multiple attributes from the same or different facets. Figure 4 shows an example of
visual query results made by two attributes V| and V, from facet V, and two attributes A; and A, from facet A.

— Union. In case, multiple attributes from the same facet are selected, query result is union of publications
with the attributes, i.e., Py, », = {p € P,X(p) € {xj1,x;2}}. For instance, when users select both A and
A as illustrated in Fig. 4, the query result is {p, p2, p3,ps}-

— Intersection. In case multiple attributes from different facets are selected, query result is intersection of
publications with the attributes, i.e., P, v = {p € P,X(p) € {x;} and X'(p) € {x;}}. For instance, when
users select both A; and Vy, only publication p; will be queried.

By default, all attributes in Venues facet are selected (see Fig. 3a), i.e., all publications in the dataset are
chosen for exploration.

5.3 Storyboard view

After a user selects certain attributes, a subset of publications Py C P is filtered for exploration. P, can be
further grouped based on user-defined attribute of Venues, Authors, Keyword, or Fig. Num., using the
buttons in Fig. 3bl. Users can also control the number of groups to be visualized using the drop down
selection list. After selecting the grouping attribute and number of groups, the relative information is
presented in Storyboard View as shown in Fig. 3b. As a main view component in VIStory, the view employs
the following intuitive visual designs.

5.3.1 Paper ring

To support Complete rationale, we need to depict multi-dimensional figure attributes, including size, w/h
ratio, and domain color. We come up with a glyph of paper ring as shown in Fig. 5. Here, all figures in one
publication are represented as arcs, which are arranged in a clockwise order corresponding to the fig-
ure order in the publication. For each figure, its size is encoded as arc length, w/h ratio encoded as arc
height, and domain color as the arc color. Notice that, arc lengths indicate only relative sizes of figures in the
same publication, but not absolute sizes across multiple publications. This work treats every publication
equally, hence all paper rings share the same radius.

Figure 5 shows a paper ring glyph for a SciVis publication (Marino and Kaufman 2016). As the glyph
depicts, there are in total 13 figures in the publication, and most figures exhibit brownish domain color.
Obviously, the first figure occupies the largest size, while the third figure has the biggest w/h ratio. These
two figures may reveal the main contributions of the publication. By examining the original figures, we can
notice that the first figure includes two subfigures, while the third figure has three. These subfigures are
arranged side-by-side, probably for comparative analysis.

5.3.2 Themeriver

There can be a numerous number of papers in P, where a worst case can be 1171 when P; = P. Remember
that we treat year as a fixed analytical factor (Sect. 4.2). Thus, we employ themeriver (Havre et al. 2000)—a
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Fig. 5 Paper ring glyph for (Marino and Kaufman 2016): Arcs in clockwise layout depict figures in a paper, with arc length for
figure size, arc height as w/h ratio, and color as domain color

classical visual representation for depicting temporal trends design, to arrange the paper rings. Here, the
rendering canvas is first divided into 10 equal parts horizontally, corresponding to 10-years publication year.
The river height corresponds to the number of publications. From Fig. 3, we can notice that the height of
SciVis river (middle) is decreasing, while that of VAST river (bottom) is increasing.

5.3.3 Layout

Next, we need to position the paper rings in the themeriver in a meaningful way. Let denote a group of
publications in one year as P, := {p;}_,, where m indicates the number of publications in the group. We
can extract a bounding box By := (cx,, cyg, e, he) € R* in the themeriver, where cx, & cy, indicate center
position of By, and w,&h, indicate its width and height, respectively. Our problem is to find
Pi == (C.Xi, CYiyr)avPi € Pg'

We develop a simple yet effective greedy algorithm to address this problem. The algorithm work as
follows:

1. By is first divided into 1 column and m rows, yielding 1 x m §rids and each grid can store one paper
ring. We denote paper ring radius r as 7,1, and rg = min(wg,%).

2. We next divide B, into 2 columns and [m/2] rows, where [m/2] indicates the ceiling of m/2. In this
way, we can derive rgy = min(5t, r5).

3. We check condition 7y > r,: if the condition is not met, we stop the process and return 7,;; otherwise,
we continue step 2 by increasing the column number until rg, <ry(,—1) and return rg(,_1).

4. In the same way, we derive radii for all groups, and choose the minimum value as the final radius r.

5. After deciding r, we start from (cxg,cy,) and find a minimum bounding box that can pack all paper
rings. In this way, paper rings in the same group are positioned close to each other and far from rings in
other groups.

To better illustrate our solution, we give two examples shown in Fig. 6. The first example is storyboard for
publications by Hanspeter Pfister, who got the most number of 34 IEEE VIS publications in 2009-2018
(together with Huamin Qu). The second example is storyboard for publications by top-3 authors of
{Hanspeter Pfister, Huamin Qu, Kwan-Liu Ma}. Both views are grouped by Venue attribute. We select the
first groups from both views, which contain one publication in (a) and four publications in (b). In (a), r; is
chosen since r; > r; by contrast in (b), r, is chosen since r, > r; & ry > r3.

5.4 Endgame view

To further support Overview + Details rationale, we further design Endgame View as shown in Fig. 3c1,c2.
The view consists of two perspectives of information: First, the raw figure is presented on the left side;
Second, the publication metadata, including title, authors, venues, keywords, and order of the figure, are
presented on the right side. The view is connected to the center of its corresponding arc by a dashed line. It
can be dragged around to avoid occlusion of important visuals. Multiple endgame views can be enabled at



78 W. Zeng et al.

@R o
5 N N

o
: : c ew 4y " "')
r>rz ' i ~~ aA® % Q—(’O“%
_E— } L 4
&

o 5| 0098
I s e Ol e 2099 "8 |00
7 » Sl@gléo ©
W I\l
» ’.) " % s
o0 QG 32 e |22/90
o 5O - ~ 3
GO s v ¢ 0O & ]
I g L) g by 4
(88 O €
st

Fig. 6 A greedy algorithm for deciding radius of paper ring. r; is chosen in a while r, is chosen in (b). See Sect. 5.3

the same time, such that to enable comparison. Taking Fig. 3c1,c2 for an example, it is obvious that (c1)
presents a 2D abstract visualization with nodes and links, while (c2) is a scientific visualization with 3D
visual cues.

6 Case study

We conduct case studies on two real-world datasets to demonstrate efficacy of VIStory. First, we experiment
with representative visualizations from proceedings of renowned IEEE VIS conference (including VAST,
InfoVis, and SciVis). To better understand trend of the field, we choose past 10-year papers published in
2009-2018. Thanks to a well-organized IEEE VIS dataset (Isenberg et al. 2017a), we can crawl all papers
using provided digital object identifier (DOI). In total, we collect 1171 papers, of which 383 are VAST, 403
are InfoVis, and 385 are SciVis. Second, we extend the applicability to publications by a research group
named Center for Multimedia Integrated Technologies at Shenzhen Institutes of Advanced Technology,
Chinese Academy of Sciences. The team’s research focus on computer vision, multimedia, deep learning,
etc. We select papers published by the team at top computer vision conferences of CVPR, ICCV, ECCV in
2007-2019, yielding a total of 43 papers, of which 21 are CVPR, 8 are ICCV and 14 are ECCV.

Below we present three usage scenarios: author profile probe (Sect. 6.1), VIS trend analysis (Sect. 6.2),
and research impact exploration (Sect. 6.3).

6.1 Study 1: Author profile probe

VIStory can be applied to probe author profile, including number of publications and topics over years. To
demonstrate this, we first filter publications made by active visualization researchers in mainland China.
This is accomplished by selecting seven researchers of {Shixia Liu, Xiaoru Yuan, Yingcai Wu, Wei Chen,
Weiwei Cui, Nan Cao, Yunhai Wang} (ordered by number of publications in past 10-year IEEE VIS
conference) from Author panel in Faceted View. We then select author as grouping factor and set group
number to 10, yielding a Storyboard View as in Fig. 7.

From the view, we can obtain several interesting discoveries.

— First, the view presents 10 author groups, meaning that there are three additional authors. We can
identify they are Huamin Qu, Hangi Guo, and Mengchen Liu, and they exhibit different patterns. (1)
Huamin Qu: Surprisingly Huamin Qu obtains the most number of publications in the query result,
indicating he had close collaborations with the selected seven researchers. (2) Hangi Guo: We can notice
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Fig. 7 Author profiles of top visualization researchers in mainland China who contributed most publications to IEEE VIS
publications in 2009-2018, i.e., {Shixia Liu, Xiaoru Yuan, Yingcai Wu, Wei Chen, Weiwei Cui, Nan Cao, Yunhai Wang}. Notice
that, Huamin Qu, Hanqgi Guo, and Mengchen Liu are not in the selection list, but still appear in the view

that the river of Hangi Guo starts from 2010, and many paper rings are the same with those of Xiaoru
Yuan. A quick examination reveals that they collaborated on seven publications in past 10 years. (3)
Mengchen Liu: We can observe that Mengchen Liu stably contributed at least one publication every year
starting from 2013, and all of them are in collaboration with Shixia Liu. The observations infer that
Hangi Guo-Xiaoru Yuan and Mengchen Liu-Shixia Liu were probably in supervisee—supervisor
relationship.

— We can also obverse peak and bottom publications years from the changes over time. In 2014, both
Shixia Liu and Xiaoru Yuan contributed five publications, followed by four from Wei Chen and three
from Yingcai Wu. In contrast, much fewer publications are made in 2011 and 2015.

— Lastly, we would like to retrieve what topics the authors worked on, by clicking on figure arcs and
examining the Endgame View. Here, we select three representative works as the insets by Xiaoru Yuan
(top), Weiwei Cui (middle), and Yunhai Wang (bottom), which are published in SciVis, VAST, and
InfoVis, respectively. The figures reflect different visualization techniques employed by the three
publications. Scientific visualization (top inset) employs 3D visual representation to represent spatial
attributes, visual analytics (middle inset) integrates coordinated multiple views to depict data from
multiple perspectives, and information visualization (bottom inset) focuses on improving human’s visual
perception on abstract 2D data.

6.2 Study 2: VIS trend analysis

VIStory can also be utilized to analyze trend of visualization topics, by exploring keyword attribute. Here,
we filter publications by selecting three top keywords of {Interaction, Volume Rendering, and Machine
Learning} from the Keyword panel in Faceted View. There are in total 44 publications with the keyword of
interaction, 41 for volume rendering, and 18 for machine learning. Keyword is also selected as grouping
factor and group number is set to 3, yielding a Storyboard View presented in Fig. 8 (left).

Through the storyboard, we can observe different trend patterns of the topics in past 10-year IEEE VIS
conference. First, number of publications on interaction remains relatively stable, with several publications
accepted each year. Interaction is a fundamental component for interactive visualization, thus many studies
were conducted to improve interaction efficiency. Second, volume rendering becomes less popular, as the
number of publications is decreasing. This is probably because volume rendering has been exhaustively
studied since the beginning of scientific visualization. In contrast, we can observe that more publications on
machine learning were accepted in the last two years. A heuristic is that many visual analytics systems have
been developed to open the black box of deep learning techniques.

To verify the heuristic, we dis-select interaction and volume rendering, and change grouping factor to
venue. This results in a Storyboard View as presented in Fig. 8 (middle). A first glimpse shows that most
machine learning publications are in VAST conference, while only two in InfoVis and one in SciVis. Deeper
examination by viewing an Endgame View (top inset) reveals that the work is to visualize training process
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Fig. 8 Exploring trends of visualization topics of Interaction, Volume Rendering, and Machine Learning in 2009-2018. Left:
Number of publications on interaction remains stable, on volume rendering is decreasing, while on machine learning gets
popular. Center: Closer examination of publications on machine learning shows that most publications are in VAST
conference. Right: Top Endgame View shows that the VAST paper is to explain CNN, while the bottom view shows a InfoVis
paper utilizing machine learning to facilitate graph layout

of a convolutional neural network (CNN). In contrast, another Endgame View (bottom inset) shows that the
work utilized machine learning to facilitate graph layout. The findings indicate that the heuristic is
reasonable.

6.3 Study 3: Research impact exploration

We conduct another study on the second dataset, i.e., research papers published at CVPR, ICCV, and
ECCYV by a multimedia team. The team was established in 2007, so we select the period from 2007-2019.
Figure 9 (left) presents an overview of the publications. From the overview, we can notice that: First, the
team achieved much better performance at the three major computer vision conferences since 2013. This
indicates that the team grows up since then, and the team has contributed much to the trend of applying deep
learning in vision tasks. Second, the team publish more in CVPR than the other two conferences. There are
no overlap between ICCV and ECCV publications in each year. This is probably because ICCV is held
every other year. Third, we can see that most arcs exhibit either white or dark gray colors. In comparison,
visualization figures (see Figs. 7, 8) present more diverse colors. This reflects the differences in color usage
by the two fields.

Next, we would like to explore high-impact publications by the team. This is done by filtering publi-
cations with over 1000 citations. Fig. 9(center) shows the results. We can see that there are a total of five
publications, out of which four are published in ECCV and one in CVPR. All papers were published before
2017, as it takes time for paper citing. Actually, there are several other papers after 2017 with hundreds of
citations. By clicking on the figure arcs, we can exploit the details by checking the Endgame views
(Fig. 9(right)). The top view shows the corresponding paper is about action recognition from videos, while
the bottom view shows the paper is on image super-resolution. Both papers are pioneering works on the
topics.
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Fig. 9 Exploring research impacts of computer vision papers by a multimedia group. Left: overview of all publications by the
team at CVPR, ICCV, and ECCV conferences. Center: Exploration of high-impact publications by filtering publications with
more than 1000 citations. Right: Endgame Views show details of these high-impact publications
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7 User study

To evaluate the effectiveness of VIStory in assisting users in exploring scientific publications, we
conducted a user study that compares VIStory with SurVis (Beck et al. 2016)—a state-of-the-art visual
literature survey system. Similar to VIStory, SurVis also enables the examination of scientific publications
from multiple facets, e.g., authors and keywords. Yet, SurVis lacks an overview of the visual information.
For fair comparison, we replicated a SurVis implementation of the IEEE VIS publications using source code
(https://github.com/fabian-beck/survis) provided by the authors. The reimplementation can be found on
https://xiiii.bitbucket.io/.

Participants We recruited 20 participants (6 females, 14 males) between the ages of 23-25 (age:
24.25 +0.91). All participants are graduate students with backgrounds in computer science. They are
familiar with digital libraries, e.g., Google Scholar and Microsoft Academic, in retrieving literature.

Experiment setting and procedure We prepared 10 multiple-choice questions regarding information in
scientific publication, e.g., “Which keyword (Interaction, Volume Rendering, Machine Learning) is an
emerging topic over 2009-2018?” and “Which authors lead in ’'Uncertainty Visualization’ publications
during 2009-2018? . The questions were well chosen to cover both metadata and visual information of the
scientific publications; see Supplementary Table S1. An optional answer *Cannot find the answer’ is pro-
vided for each question, in case, the participant felt the answer is not available. Each participant was asked
to find answers using both VIStory and SurVis. To minimize learning effects, the order of systems was
randomly assigned to each participant. Due to the COVID-19 pandemic, the study was performed virtually.

Each participant first performed a pre-study background questionnaire, followed by an introduction of
the functionalities of both systems. We next allowed the participants to freely explore the systems until they
felt comfortable using them. After that, the participants went through the questions using the systems. The
participants were reminded to finish the questions as fast as they can, as completion time is an evaluation
metrics. After finishing the questions, the participants were asked to complete a questionnaire.

Hypothesis: VIStory provides an overview of the scientific publications by arranging paper glyphs in a
themeriver layout, which is not available in SurVis. Hence, we expect VIStory would be more efficient, i.e.,
taking less completion time, than SurVis. Result: We collected in total 40 (20 participants X 2 systems)
experiment results. Before the analysis, we first confirmed that all results of completion time follow a
normal distribution using a Shapiro-Wilk test. We then performed a one-way ANOVA on two groups of
experiment results for the systems. Completion time for the questions with VIStory is on average 142.75s
less than that with SurVis (p <0.05) (see Fig. 10 (left)). The results confirmed the hypothesis. Notice that,
the average number of correct answers for VIStory (9.2) is higher than that for SurVis (6.0) (see Fig. 10
(left)). This is because SurVis shows no visual information that is required for some questions. We observed
that the participants quickly skipped the questions by choosing ’Cannot find the answer’ option. Hence,
VIStory would be even more efficient than SurVis in terms of completion time per correct answer.

Feedback: Qualitative feedbacks using 7-point Likert scale questions were collected from the partici-
pants after the experiments. Figure 10 (right) presents a summary of the feedbacks. More details are
presented in Supplementary Table S2. For the interface design, the participants had a positive impression.
They all agreed that (1) the paper ring is intuitive (Q1) (mean = 5.55, SD = 1.02); (2) the themeriver layout
depicts temporal trends well (Q2) (mean = 6.15, SD = 0.79); and (3) the faceted exploration facilitate multi-

Number of

Complemtion time  correct answers Q1: Intuitiveness of paper ring glyph. 5.55+1.02
1000: .
) 12 Q2: Usefulness of themeriver layout 6.15 +0.79
in depicting temporal trends.
Q3: Usefulness of faceted exploration 6.30 + 0.57
500s + 6 in facilitating multi-faceted analysis. DA
Q4: VIStory is easy to use. 6.10 £0.77
0s 0 0% | 20% @ 40% ' 60% | 80%  100%
VIStory SurVis M Not at all [ Strongly disagree [ Disagree  Neural | Agree [ Strongly agree Ml Absolutely

Fig. 10 User study results. Left: Quantitative results of means and standard errors of completion time and number of correct
answers using VIStory and Survis. Right: Qualitative feedbacks on usability of VIStory. The rightmost column denotes Mean
+ SD
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faceted analysis (Q3) (mean = 6.30, SD = 0.57). For the system usability, all participants consider VIStory is
easy to use (Q4) (mean = 6.10, SD = 0.77).

In the free-form question on future improvements (Q5), the participants gave several fruitful suggestions.
First, some participants noticed that many paper rings are in light colors, making it difficult to distinguish
with the background themeriver colors. The participants tended to examine endgame views of those paper
rings in dark colors. We explained that the ring color is corresponding to the median color of the figure, and
the participants suggested to encode some other metrics, such as color histograms and variance. Second, the
participants also suggested to integrate the functionality of query by image in the interface. Several par-
ticipants studying computer vision noted that figure plagiarism detection is getting more attention recently,
and to find similar visualization designs would be an interesting topic. This will make VIStory more useful,
and we plan to realize it in the near future.

8 Limitations and future work

The case studies demonstrate the efficacy of VIStory in probing author profiles, understanding visualization
trends, and exploring research impacts. These information can benefit real-world applications, e.g., to help
students find suitable supervisors, and to help researchers find hot topics. Nevertheless, there are still some
limitations of our system.

First, this analyses are conducted on past 10-year IEEE VIS publications and publications by a specific
research team. The information only covers a small amount of works in visualization and computer vision.
For instance, volume rendering as a pioneering visualization topic has now been widely used for visualizing
medical images and flow simulations. Many studies on volume rendering have been published on other
venues such as IEEE Transactions on Medical Imaging (IEEE TMI). Similarly, IEEE VIS publications only
count a small portion of outcomes of an author. Many publications, such as those in IEEE Transactions on
Visualization and Computer Graphics (IEEE TVCG), are not counted here. In this sense, we can only claim
that study 1 reveals author profiles, and study 2 indicates trends of visualization topics in IEEE VIS
conference. Nevertheless, we regard this as a common limitation for similar studies using only IEEE VIS
publications (e.g., Isenberg et al. 2017a, b).

A feasible solution to address the limitation is to incorporate more data for analysis, e.g. other publi-
cations in IEEE TVCG, EuroVis, PacificVis, and VINCI. In this way, a more complete overview of the
visualization field can be achieved. However, this can cause another limitation regarding scalability of the
system. Experiments reveal that paper rings in Storyboard View becomes too small to be observable when
the total number of publications reaches 1000 (see Fig. 3 for an example). Though the scalability issue can
be mitigated through filtering interactions, we would like to examine more visual design alternatives. A
feasible solution here is to employ advanced semantic image projection methods, which has been shown
effective for handling millions of images (Xie et al. 2018). To integrate semantic image projection with
faceted visual interaction (Yee et al. 2003) would be an interesting direction.

Besides, there are several promising directions for our future work. First, we spent much time on
extracting figures from visualization publications. We would like to make it open for future researches, e.g.,
to extract visualization-related image metrics using deep learning techniques. We also call for collaborations
on enriching the dataset, such as to manually label all the figures. We will soon make VIStory system open
to the public. Second, with the automatic figure extraction method, we can easily harvest more figures from
scientific publications. We plan to do so on publications in past 10-year IEEE TVCG, EuroVis, and
PacificVis. Lastly, we would like to continue working on the visual interface to incorporate more analytical
features and improve the system scalability.

9 Conclusion

This paper presents VIStory, a storyboard that supports interactive exploration of visual information col-
lected from scientific publications. The benefit of this work is prominent: First, we suggest visual infor-
mation as a new perspective for exploring scientific publications. To illustrate the usability of this approach,
we curate a new dataset of 11,568 figures from ten-year IEEE VIS publications in 2009-2018 by an
automatic figure extraction method. We plan to release the dataset to facilitate future research. Second, we
develop VIStory—a literature survey system that assists users in exploring the visual information. The
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system integrates a nested table structure to support multi-faceted analysis, and design of intuitive paper
rings arranged in a themeriver layout to promote intuitive visual exploration. Third, we conduct three case
studies and a user study that demonstrate the effectiveness of VIStory in helping users address practical
needs such as to probe author profile, to identify temporal trends, and to explore research impact.
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