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Abstract Peer-to-peer accommodation is developing rapidly in the era of sharing economy, and the visual
recommendation of accommodation is also an urgent problem to be solved. Meanwhile, user-generated
content is critical in P2P accommodations, because they contain a wealth of information about the opinions
and experiences of users, which helps understand consumer decisions and improve products and services
better. However, the huge volume of reviews makes it difficult for potential customers to gain useful insights
and for managers to track customer opinions. In this paper, we propose a complete pipeline for recom-
mending personalized accommodations for consumers, while also providing insights for managers. First, we
use topic modeling techniques to mining opinions from review. Second, we build a deep learning network
for review sentiment analysis. Third, we perform sentiment analysis of the reviews at the aspect level to
obtain the sentiment vector representation of the accommodation. Finally, we propose a personalized
accommodation recommendation method based on the above work. Moreover, we design a visual analytic
system with a user-friendly interface to facilitate interactive analysis. Evaluation including user and case
studies demonstrates the usefulness and effectiveness of our method and system.

Keywords Visual analysis - Opinion mining - Sentiment analysis - Personalized recommendation -
Deep learning

1 Introduction

The sharing economy (Puschmann and Alt 2016) is growing rapidly in the short-term shared housing rental
industry. Meanwhile, with the development of the Internet, user-generated content (Krumm et al. 2008) is
growing rapidly. Potential consumers increasingly rely on this word-of-mouth information to evaluate
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products and services because online review information help them make informed decisions (Shi and
Li 2011). At the same time, managers are increasingly recognizing the importance of using this information
to gather feedback and evaluation of their own and competitors’ products and performance. It provides a
better understanding of consumer behavior and expectations, and identifies market opportunities.

However, the volume of reviews is so large that it is difficult for potential consumers to gain useful
insights, which influence them to make informed decisions. It also makes it difficult for managers to track
and manage customer comments. To our knowledge, there is a lack of sentiment analysis visualization
systems for customer feedback data related to the short-term rental industry.

In this paper, we propose a new complete pipeline to analyze and deal with these problems. First, we use
topic modeling techniques to mine a set of topics from a large number of online reviews of short-term rental
platforms. We conduct experiments and visualize the topic model and consider them as aspects of interest to
users. Second, we use deep learning models for sentiment analysis, combining topic model and sentiment
model to analyze the reviews at the aspect level. We then obtain the sentiment vectors of different aspects of
accommodations. Compared with online ratings, the implied sentiment features are more effective for
managers to analyze business and assist consumers in decision-making. Finally, we propose a well-designed
visualization system for tracking and managing consumer opinions and exploring potential patterns.

Our main contributions are as follows:

e We obtain a set of topics in the review corpus for accommodation analysis by unsupervised topic mining
methods.

e We combine topic model and deep learning model for aspect-level sentiment analysis to construct
implicit representations of accommodations.

e We design a visual analytic system to assist users in decision-making and provide empirical results with
real data to demonstrate the effectiveness of the system.

This paper is built upon our previous conference paper (Li et al. 2021), but it differs in many ways from that
work, where the main extensions are summarized in the following list:

(1) Supplement opinion mining topic model with a more detailed description of model training and
evaluation.

(2) Improve the sentiment analysis network model, explain the network design in more detail and add the
comparative experiment to prove the effectiveness of the model.

(3) Improve the visual effects of the visualization system to achieve a better user experience, and
introduces the interaction of the system.

(4) Add more details and sufficient explanations in case studies and evaluations.

(5) Add new case study on how to use the system to perform topic and sentiment analysis on
spatiotemporal analysis.

2 Related work

This section discusses the prior studies in the following four categories:

Topic modeling A probabilistic topic model is an algorithm for discovering latent semantic structures
from a large number of documents. The most popular of which is latent Dirichlet assignment (Blei
et al. 2003). It has a wide range of applications in text analysis, data visualization, recommendation systems,
information retrieval and web analysis. Kim et al. (2018) use LDA model mining on online reviews to
analyze customer preferences for detailed product attributes, providing realistic information that helps
companies to manage their activities. In recent years, topic mining has also been widely applied to the hotel
industry. Padma et al. (2020) use word frequency analysis to find the key attributes of luxury hotel services
and promote the sound development of hotel services. Ding et al. (2020) use a structured topic model to
extract service quality attributes from Airbnb reviews. Hu et al. (2019) use an improved structured topic
model (STM) to analyze New York City Tripadvisor’s hotel reviews, and provide detailed customer insights
for the hotel by comparing the topics in positive reviews and negative reviews. In our work, we use LDA
method on accommodation review data to extract topics that reasonably correspond to multiple aspects of
accommodation. This helps us to identify the aspects that users care about and provides the basis for later
data analysis modeling.
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Text sentiment analysis Sentiment analysis (Agarwal et al. 2015) uses natural language processing
(NLP), text analysis and computational techniques to automatically extract or classify sentiment from
reviews. Statistics in April 2013 found that 90% of customer decisions rely on online reviews (Peng et al.
2014). Thousands of users rely on online sentiment comments to make decisions, making sentiment analysis
technology very popular in decision-making applications. In the past few years, there has been a lot of
research devoted to applying sentiment analysis in various industries, using various types of methods.
Prameswari et al. (2017) use sentiment analysis and text summarization approach to mine scenic hotel
reviews in Indonesia, ultimately improving the quality of the hotel industry and supporting tourism in
Indonesia. Godakandage et al. (2020) provide a system for analyzing hotel reviews; they extract important
aspects of reviews and perform sentiment analysis on them, and finally provide aspect-based personalized
hotel recommendations, helping users to easily find the best hotel based on their preferences. Existing
sentiment analysis techniques include sentiment dictionary-based methods, machine learning methods and
deep learning methods. Deep learning methods that have emerged in recent years compensate for the
shortcomings of traditional machine learning methods. Deep learning models including convolutional neural
network (CNN) and recurrent neural network (RNN) are widely used in the field of text sentiment analysis.
In this paper, we use bidirectional encoder representations from transformers (BERT) (Devlin et al. 2019)
for word embedding and bidirectional LSTM (BiLSTM) (Mousa and Schuller 2017) model for sentence
sentiment classification.

Accommodation recommendation At present, many scholars have carried out related research on the
accommodation recommendation problem. Lerttripinyo et al. (2015) propose ACRo0SS, a system that col-
lects data from websites and selects representative reviews on predetermined topics through a feature-based
weighted nonnegative matrix factorization method. It is used to help users choose accommodation easily
and has achieved high user satisfaction. Weng et al. (2018) design a visual analysis system to help customers
find the ideal place to live. They mainly focused on points of interest and accessibility. Although they had
good experimental results, they did not consider related comments, sentiment and other factors. Different
from the selection of traditional hotels, there are more factors to be considered in the selection and
recommendation of P2P accommodations. Based on the existing research, this paper comprehensively
considers the factors for selection and recommendation of P2P accommodations through topic mining and
sentiment analysis.

Visualization of feedback data The rapid development of the Internet has brought about many websites.
Many people leave ratings and text reviews on travel and accommodation sites or shopping sites. Data
mining of customer feedback content is necessary for merchandising as well as service improvement.
OpinionSeer (Wu et al. 2010) is an effective visualization system that compares customer opinions of
different groups by visualizing online hotel customer feedback. Oelke et al. (2009) design an interactive
cyclic correlation graph for customer reviews on online stores and product reviews on websites, allowing
analysts to identify strengths and problems with different products and services. In our work, we use a
treemap diagram (Fig. 8) to visualize customer feedback. In the tree diagram, each topic is used as a node,
and the polarity of the comments under the topic is used as sub-nodes, which is represented by different
colors.

3 Approach overview

We describe the pipeline of our system in this section. As shown in Fig. 1, it consists of three modules.

The first module is the data model. The input data is the accommodation listing data and online review
data. All raw data is available on Airbnb'. We borrowed existing Python modules and crawler methods to
write a Python crawler program for the Airbnb website, and used proxy IP and multi-threading technology to
crawl data on specific web pages. In general, the data crawled in this paper covers all housing listings in the
Shanghai area and the time span is from 2017 to 2020. The data can be divided into three parts: housing
listing data, order data and consumer data. Order data refers to basic accommodation records, including
occupants, accommodation time and the listing number of the accommodation booked; listing data includes
listing location information, category to which listings belong, and overall evaluation of listings; consumer
data includes consumption reviews of people on the property. We perform data filtering and cleaning on raw
data, and finally store them in the database.

Par2l hitps://airbnb.com/.


https://airbnb.com/

1312 D. Li et al.

The second module is the data analysis module. First, we use topic modeling techniques to mine
accommodation reviews and obtain the best topic model through experiments. This could help us summarize
the key attributes of consumer comments and mining consumers’ concerns. Then, we train a sentiment
analysis model using advanced deep learning methods. Finally, on the basis of the previous work, we
perform topic-based sentiment analysis on the reviews. This is an important condition for us to provide
consumers with personalized accommodation recommendations.

The third module is the visual design module. We provide a visual analysis system for P2P accom-
modation recommendation, which takes online accommodation reviews, sentiment characteristics, geo-
graphic location and price as visual objects. The system includes a set of well-designed visual views, and
introduces a large number of interactive analysis functions to realize multi-dimensional display and inter-
active operation of accommodation sharing and online review data. The visualization system takes the
computer software development technology as the core, takes the portability and maintainability as the
design principle and takes the ease of use as the goal. Accommodation recommendation results and sen-
timent-related information on review topics are directly displayed to users through a web interface. At the
same time, users can configure basic options through the navigation view, and can explore potentially
interesting patterns through association analysis of multiple visualization components.

4 Data analysis
In this section, we introduce our analytical approaches used in the data analysis module.
4.1 Topic model for opinion mining

As mentioned in Sect. 3, the first step of our work is to discover the aspects that users care about, so we
integrate topic modeling into our pipeline. We use all text data from customer reviews for topic modeling.

Model train There are many implementations of the LDA. In this work, we utilize the LDA method
based on a variational Bayesian algorithm (Hoffman et al. 2010), as it is more efficient than the original one.
It uses a stochastic adaptive strategy to update the posterior parameters of the topic.

Determining the number of topics in the LDA is a difficult problem. When the similarity between the
topics is minimized, the right number of topics is found. In the LDA model training, the best indicator for
evaluating the model is considered as the log perplexity:

M M
Perplexity(D) = exp(~ Y logy Pw)/ " No) 1)
m=1 m=1

where D represents the test set in the corpus, M represents the number of documents, N,, represents the
number of words in the document M, P(w,,) represents the probability of w,,, and the perplexity reflects the
predictive ability of the model. For a document d, the uncertainty of our model about which topic document
d belongs to is the perplexity.

In our experiments, we extract nearly 200, 000 comments for topic word mining, and we set the number
of topics k from 2 to 20. First, we calculate the model perplexity of the corpus under different number of
topics. Second, we select the models with the least perplexity and check their topic distribution. Finally, the
perplexity achieves the minimum when k& = 8 as shown in Fig. 2.

Model evaluation We use the perplexity to evaluate our model. Since the output of the LDA is a set of
semantically similar word sequences, it is difficult for users to understand the generated topic. Therefore, we
apply LDAVIS (Sievert and Shirley 2014), a visualization method, to verify the feasibility of our model. A
visualization of the model, including the most relevant terms for each topic and the relationships among
each topic, is acceptable for non-technical users. We visualize the best LDA model as shown in Fig. 3.

We find that only two topics (Topic 7 & 8) partially overlap among the eight topics, and the remaining
topics are independent of each other. This shows that our model works well, and the correlation between the
various topics is not high. We also study the two overlapping topics and find that the terms in Topic 7 are
related to subway stations and transportation, while those in Topic 8 are related to geographic location. In
fact, these two aspects do have similarities, because location includes the factor of subway stations.
However, the latter also includes other factors, such as the distance to attractions and the distance to
shopping malls.



Visual Recommendation for Peer-To-Peer... 1313

Data Model Data Analysis

_—— e ==

i 1) Competitor Analysis
: 2) Service Improvement |
! 3) Assisted Decision Making | )

S U 7

o e e e e = e e e e —
—_—— e e ———

N - —

Fig. 1 The pipeline of our system, which includes data module, data analysis module, visual design module. Data module
includes some work of data crawling and preprocessing, and stores the data in the database. Data analysis module includes
three important parts, topic mining, sentiment network training and aspect-based sentiment analysis. Visual design module
introduces the design principles of our visualization system and the use of visualization components
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Fig. 2 The perplexity curve of the topic model under different number of topics

We summarize all the topics and salient terms in Table 1. It shows that there are eight aspects of concern
reflected in customer reviews, namely clean, decoration, service, quiet, feeling, amenity, subway and
location.

4.2 Sentiment analysis for review

In this section, we present two steps of opinion sentiment analysis. First, we apply the state-of-the-art
method BERT (Devlin et al. 2019) to embed sentences into a tensor space. Second, we represent each
sentence in an accommodation review as a two-dimensional tensor and use BiLSTM (Mousa and Schul-
ler 2017) for sentiment polarity classification. The process is shown in Fig. 4.
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Fig. 3 Topic model visualization and evaluation. a The overall distribution of topic models. b Words most relevant to the topic

Table 1 Opinions extracted from comments

Topics Most relevant terms

topic 1(clean) Clean, restrooms, comfortable, neat, satisfied...

Topic 2 (decoration) Decoration, style, design sense, warm, amazing...

Topic 3 (service) Warm, attentive, thankful, considerate, super nice...

Topic 4 (quiet) Quiet, sound insulation, comfortable, good environment, not noisy...
Topic 5 (feeling) Great experience, comfortable, warm, satisfaction, value for money ...
Topic 6 (amenity) Full facilities, design, kitchen, sofa, balcony...

Topic 7 (subway) Subway, location, distance, easy to travel, very close...

Topic 8 (location) Location, convenience, attractions, neighborhood, downtown...

Tensor embedding Word2Vec (Mikolov et al. 2013) is the most commonly used word vector tool in
NLP, but it is context-independent. In our pipeline, we employ a context-dependent model BERT. BERT
provides state-of-the-art performance and improves many NLP tasks (Dai and Le 2015) and subsequent
tasks. So we choose it as our pre-trained model. We use BERT to obtain static representations of sentences.
We divide each review corpus into sentences and input each sentence to the model for encoding. The output
is an L x 768 matrix, where L is the length of the sentence.

Polarity classification In this step, we use BiLSTM as our prediction model. First, we collect documents
from the corpus of accommodation reviews proposed by Songbo Tan. We acquire 4, 000 reviews including
2, 000 positive reviews and 2, 000 negative reviews. Then, we expand the dataset. We crawl a lot of reviews
with user scores from Ctripz. Next, we filter reviews with scores below 2.0 (Full score of 5 of 5.0) from the
corpus and consider them as negative reviews. We consider the reviews with scores of 5.0 as positive
reviews. Finally, we add 2, 000 positive reviews and 2, 000 negative reviews to expand the dataset. Our
dataset totally includes 8, 000 reviews.

Inspired by Minh et al. (2018), we combine the advantages of sentiment dictionary and deep learning to
propose a dual-channel fusion model of semantic information and sentiment information based on Bert word
embedding (Bert-BiLSTM-EIC) for comment sentiment analysis. As shown in Fig. 4, downstream model
includes two input channels. The first is the semantic information channel, which is used to extract semantic
information, and the second is the emotional information channel, which is used to extract the emotional
information features of sentences. The feature fusion layer merges the features extracted from the two

Par3S hitp://ctrip.com/
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Fig. 4 Neural network overview. The input is a sequence of sentences extracted from a review. The output is the probability

channels, and then passes through the FCN layer and the Softmax layer to obtain the probabilities belonging
to each category.

Model evaluation The training dataset includes 70% reviews. The testing dataset is composed of the
remaining 30% reviews. We use python 3.6 and PyTorch with a GPU of 1660ti. We finally achieve 94.42%
accuracy for our model, which shows that the model is effective for subsequent sentiment prediction. We
also compared with other classic methods, and the experimental results are shown in Table 2.

In fact, some reviews did not show strong emotional inclinations. Therefore, we predict the review as
positive or negative only when the probability of the polarity category is greater than 0.7. Otherwise, we
consider the opinion to be neutral.

4.3 Sentiment vector generation for recommendation

We combine both LDA model and sentiment classification model for aspect-based sentiment analysis to
construct sentiment vectors. We describe the definition and generation process of the sentiment vector
below.

Definition We define the sentiment vector space with |KI-dimensions, where H = {hy, h, ..., hy} are
accommodations. Given a collection of reviews associated with H, the sentiment vector space is designed as
follows. We define the number of topics as K, and T = {1, ,, ..., #x } are topics extracted by LDA model in
review comments. We regard these topics as different aspects of accommodations and define that each topic
corresponds to a dimension of accommodation sentiment vector to represent acggmmodation sensibly. For
each accommodation h, € H, we denote the vector of accommodation h, as V" = {s7, 3, ..., S }, where
value s; is the sentiment of each topic in review comments.

Generation We extract accommodation £,’s review comments r, = {r,1, 72, ..., F'um } from text corpus,
where M is the number of comments and r,; is a review which belongs to 4,,. For each comment r,; € r,,, we
need to assign sentiment to topics respectively. A single review includes multiple aspects, which belong to
different topics. So we split a comment r,,, into sentences. For each sentence S,, we generate the topic-
sentiment pair as <t,S >, where #* is the topic and S is the sentiment of sentence S,. The sentiment
polarity of S, is predicted by our model and S is calculated by Eq. 2. The sentiment of each topic in
comment 7, is calculated by aggregation of such topic-sentiment pair.

1, polarity (Sr) = positive,
S = compute (Sr) = 0, polarity (Sr) = neutral (2)
—1, polarity (Sr) = negative.

LDA is not effective in inferring the topic of the sentence since the sentences are usually short. We define
P(tx|rm) as the probability of a review r,, related to topic f. Similar to the topic prediction process in Jo and
Oh (2011), we infer the topic of a given sentence S, by the following equation:
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Table 2 Experimental results of different methods

Methods P/% R/% F1/%
Bert-CNN 89.76 88.92 89.34
Bert-LSTM 91.76 90.92 91.34
Bert-BiLSTM 92.62 92.24 92.43
Bert-BiLSTM-EIC(Ours) 94.42 93.38 93.90
P(S,|te) = [ P(Wiltx) - P(telrn) - P(rn) 3)

WieEs,

where P(S,|t;) is the probability that the sentence S, related to topic #. [ [y, P(Wi[t) is the probability that
the words W; of S, related to topic #, which is given by topic-word matrix from the LDA model. P(#|r,) is
the probability that topic #; related to review r,,, which is also calculated by the LDA model.

We calculate probability P(W;|#;) of each topic #, € {t1, 12, ..., tx }, and choose the one which has highest
probability of P(S,|t;) as the topic of sentence £5:

S = argmax{P(S,|t:)|tx € {t1,t2, ...,k } } 4)

Algorithm 1 Introduces the complete generation process.

t

Algorithm 1 Sentiment Vector Generation Algorithm
Input: accommodation #,,, sentiment analysis model, topic model

Output: /,’s sentiment vector V" = {s,1,5,2,..., 5}

1: r, =D(hy)

2: for all r,,,, in r,, do

3: split comment 7, into sentence list Sen = {S1, S2,...S,}
4: for all S, in Sen do

5: 5 = argmax{P(S,|to) |ty € {t1,t2,...,tx } }

6: S = compute(S,)

7: generate topic-sentiment pair < #°7,§ >

8: end for

9: Aggregate and average the topic-sentiment pairs of all sentences to get the sentiment vector of r,,,
10: Vih” = {5 572, .. sk
11: end for

12: Vi =y yln

1= l
13: return h,’s sentiment vector V" = {s,1,5.2, ..., }

Recommendation Through the above algorithm, we know the sentiment of each accommodation in various
aspects. This is more authentic than a simple rating on a website for consumers. Different consumers have
their own personal preferences for accommodation. Our algorithm finally recommends accommodation to
users that meet their preferences through weighted calculations. Suppose one user’s preference vector for
accommodation is u; = {ry1, ria, ..., it }, k is the number of topics. Finally, we use Eq. 5 to calculate the score
for each accommodation:

M,'TVh" (5)

k
score —

i=1
5 Visual design
Analyzing customer feedback data interactively through visualization system is urgently needed, as it not
only helps potential customers make informed decisions when booking products, but also helps accom-

modation managers track and manage customer feedback. In addition, since end users such as potential
customers or accommodation managers may not have much background in information technology, the
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system should be designed to be as simple and intuitive as possible. By iteratively discussing with experts to
improve the system prototype, we designed a good set of visualization techniques and user-friendly
interactions. This section describes the design goals of our visualization system and introduces the system.

5.1 Design requirements

In order to understand the problem domain and determine potential use for the design, we work closely with
many accommodation managers. Through a series of interviews, we refined design requirements, demon-
strated prototypes and gathered feedback to improve our system iteratively. The analytical tasks are
described below.

T1 What is the geospatial distribution of accommodations? How to filter the accommodations? How to
select accommodations in a specific area for analysis?

T2 What is the distribution of customers’ travel types? Do they prefer to travel on weekdays or holidays?

T3 What aspects are included in the reviews? What are their sentiment values in various aspects? How to
effectively display and compare the differences among accommodations.

T4 How to find the advantages and disadvantages? How to succinctly present a description of all aspects
of the review (including both positive and negative views)?

T5 How do sentiment evolve in time series? Are there any underlying driving factors when the sentiment
values appear abnormal?

These requirements help us propose the appropriate design principles and make informed decisions on
our visual design. As shown in Fig. 5, our system interface consists of a series of views that meet the design
requirements.

5.2 Map overview

Map view is a common method in multidimensional geographic information visualization research. We use
a map to show the geographic distribution of accommodations in this study.

Users can select different administrative districts to explore and analyze. The map shows the geographic
boundaries of the corresponding districts. At the same time, the selection of the analysis area can be made
using our tool. The purple polygon is the area selected for analysis as shown in Fig. Sc. The map consists of
three views, including a heatmap, point mapping view and sunburst view.
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Fig. 5 System overview. a Navigation window provides functions of selection and filtering. b Customer feedback shows the
raw review. ¢ Map view shows the geographical distribution and provides interactions. D Visual comparison view shows
ranking of related listings. e Theme river shows the evolution of sentiment over time sequences. f Treemap diagram shows the
review opinions for a particular accommodation
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@A | (B)

Fig. 6 a Heatmap of the accommodations. b Point mapping view of the accommodations

Heatmap We obtain the geographic location information of all relevant accommodations and display it
on the map in the form of a heatmap (Fig. 6a). This overview view allows the user to know which areas are
popular. If the end user is a homeowner or accommodation manager, the view gives him an approximate
idea of how many potential competitors exist in the neighborhood.

Point mapping view Accommodations are plotted on the map as circles (Fig. 6b). We divide the average
price of accommodations by zones, assign different colors and map the colors to these circles. The mapping
of prices and colors reflects the popularity of a certain area, and provides an intuitive reference for
accommodation prices or the choice of potential customers.

Sunburst view This view is an overview of accommodation customers. Accommodation managers would
like to know the types of their customers. We conduct a statistical analysis of the accommodation, and
combine the two dimensions of travel time and travel type to design this view (Fig. 5c). The first ring of the
view is the percentage of weekdays and holidays, and the second ring reflects the percentage of the type of
travel. The customer-side analysis helps the accommodation improve its services (rental time adjustment,
housing structure).

5.3 Visual comparison view

We use the LineUp view Gratzl et al. (2013) to show the features and differences among accommodations.
The LineUp is an interactive technique designed to create, visualize and explore rankings of items based on
a set of heterogeneous attributes. Users can analyze the differences among accommodations with the
LineUp view (T3). The left side of Fig. 7 is the selected area, which is selected on the map view by turning
on the AreaSelect function. The corresponding LineUp view is on the right side. The “ID” is a unique
identifier of the accommodation, and each accommodation contains eight aspects of sentiment indicators.
The indicators are represented by different colored bars, which are described in Sect. 4.1. By clicking on an
accommodation in the view list, the LineUp view highlights the accommodation selected by the user and
display the sentiment value. At the same time, it triggers an update of the corresponding treemap diagram
(described in Sect. 5.4).

Moreover, LineUp allows users to customize the sorting by customizing the property priority. This
makes it easy to let users know how accommodations are ranked in different areas. Whether they are
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Fig. 7 LineUp view shows sentiment indicators of selected accommodations, and each accommodation (left) has their
indicators in the LineUp view (right)
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potential customers or accommodation managers, LineUp provides them with useful suggestions. As shown
in Fig. 7, we select two accommodations and display their indicators. The first accommodation has a
sentiment value of 27.00 for “cleanliness” and the second accommodation has a sentiment value of 15.00
for “cleanliness,” so we believe that the first accommodation has higher feedback on “cleanliness” than the
second accommodation.

5.4 Review opinion view

We design the treemap diagram (Fig. 8) to visualize the sentiment features of the feedback data (T4). In our
design, each 1-level node of the tree diagram represents an aspect (obtained from Sect. 4.1), and we map the
number of comments related to the aspect to the node size. This design makes it easier for us to know what
is the focus of most consumers for this accommodation. In addition, each node contains some sub-nodes
(two-level nodes), and there will be at most three sub-nodes at the same time, which represent positive
(green), negative (red) and neutral (gray) comments. In the color design of the child nodes, we refer to the
knowledge of color psychology. Red represents danger, just like most of the signs (traffic lights, standstill)
and buttons (fire button) that represent warnings are red. Green represents the meaning of passing and
positive. Gray, it lies between black and white and represents neutrality in most cases. Finally, the aggregate
sentiment value is mapped to the size of the child nodes (two-level nodes).

For the interaction, when the mouse moves over each rectangle, the border of the corresponding rect-
angle is bolded to indicate that the topic is being viewed. When the corresponding rectangle is pressed, the
selected topic is highlighted, and the feedback list shows the views of the corresponding topic. As shown in
Fig. 8, when the user presses the negative feedback rectangle of the service topic, the feedback list shows the
negative views related to the “service” topic. The positive feedback related to the “decoration” topic is
shown on the right side.

In addition, we optimize the treemap diagram. We rank each topic according to the positive sentiment
value. This design helps recognize the strengths and weaknesses of accommodation well from the feedback
(T4). The aspects of accommodation with the best feedback should be focused, while the aspects with the
worst feedback should be improved. Experts also believe that our sorting improvement is more effective
than the original tree diagram.
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Fig. 8 Treemap diagram and opinions list shows various aspects of feedback sentiment
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5.5 Sentiment evolution view

The OpinionManager system is also provides a sentiment theme river (Fig. 5e) to show the evolution of
theme sentiment on a time series. The flow can usually be used to represent the change of time, the change
of the flow can reflect a certain trend, and the change trend of the flow can be easily observed by people. In
our design, each aspect (theme) is coded into a stream and assigned a color, where the color coding matches
the color of the bars in the LineUp view (Sect. 5.3). As far as we know, the change of time series sentiment
value also reflects the travel of the visitors (T2). For example, seasonal changes in sentiment values indicate
that accommodations are often seasonal as well (reviews can only be made if rent is available). Besides, the
sentiment evolution view can easily capture abnormal changes. There are usually some driving factors
behind the large changes in sentiment values, and we can easily find these potential reasons through the
feedback of the comments. Our system can observe and analyze abnormal sentiment fluctuations and
analyze the possible factors behind them, which is of great help to the improvement of follow-up services
and the formulation of policies (T5).

5.6 User interactions and system implementation

Our system provides the following interactions to help with data analysis:

Navigation with overview Users can select the administrative area to be analyzed in the drop-down box.
The corresponding geographical boundaries would be displayed on the map. The system also provides some
basic filtering options, such as filtering by average price and room type. Finally, the user can enable the area
selection function in the navigation bar, which allows drawing any polygon on the map to determine the area
to be analyzed. After turning off the area selection function, users can move and zoom the map view. The
Delete Area button would clear all selected areas on the map.

Highlight and brush Many visual elements in our system are associated with each view. To allow the end
user to get consistent information from different aspects, the relevant visual components are highlighted if
they are selected. When a rectangle in the tree diagram is clicked, the rectangle is highlighted and the
corresponding content is displayed in the feedback list. In addition, a sliding function has been added to
view the situation during a specific time period.

System implementation According to the needs of business scenarios and system users, the system adopts
B/S architecture for development. The front-end interface of the system uses the latest HTMLS, D3.js,
Echarts and other technologies. This provides users with an interactive Web interface that is responsive,
concise and easy to operate. Meanwhile, Spring MVC is used for back-end development to decouple
between layers, reduce dependencies and ensure stable system operation.

6 Case study

To show the effectiveness of the system, we invite experts and business managers to conduct case studies.
More content can be found in our video as supplementary material®.

6.1 Assist in customer decision making

Online reviews can help potential consumers make decisions. We invite travel enthusiasts to use our
system, who have different requirements for accommodation. Suppose Tourist 1 now would like to choose
an accommodation in Huangpu District. First, he has high requirements for the location of the accommo-
dation, which is close to the subway station and surrounded by many shopping malls. Second, he cares about
the environment around the accommodation and hopes that the environment is quiet. OpinionManager
supports customized sorting, which allows us to set priorities for different topics and gives the final ranking
results. The priority here can actually be understood as the user’s preference requirements. The higher the
priority, the higher the corresponding topic emotional weight. Our algorithm will assign different weights
according to the priority. Therefore, the system will give the final TopK ranking results according to the
user’s personalized requirements to assist consumers in making good decisions.

Par88 The introduction and case studies of the system can be seen in https:/www.youtube.com/watch?v=HtsDIQU50ko
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Fig. 9 OpinionManager assist in the decision making of potential consumers. a Users set the priority of each aspect according
to their personal needs. b Locations of the recommended accommodations

As shown in Fig. 9a, he set the priority for different aspects of the accommodation according to his needs
and obtained the final ranking result. To prove the validity of the recommendations, we check the top
recommended accommodation locations. As shown in Fig. 9b, we find that the top-ranked accommodation
is located near Nanjing East Road. It is an excellent location with two subway stations and bus stops in the
vicinity. In addition, we access the online link * to the accommodation via the unique ID. We find that the
accommodation is located in a quiet elevator apartment in the middle of a downtown area. The feedback of
these two aspects is also consistent with the actual as shown in Fig. 9b.

6.2 Anomaly in time-series sentiment

Sentiment anomalies on time series are of great concern to both accommodation managers and consumers.
We discuss two cases. The first one is the sentiment fluctuation caused by an unexpected disaster. For
example, Fig. 10a shows that the sentiment of each theme suddenly all dropped to O in the red dashed box
(we examine many accommodations in the same time period), which is generally rare. After discussions
with experts, we know that in the year 2020, all over the world was affected by COVID-19 and the travel
industry was slow to develop, making both P2P accommodation and the traditional accommodation industry
suffer heavy losses. We selected an accommodation with a high degree of popularity for further analysis.
Accommodation popularity can be measured by the number of reviews. Figure 11 shows the thematic
treemap of the content that consumers care about in accommodation before and after the epidemic. It can be
seen that before the outbreak, most of the comments on this listing were about location and services, and the
topic of hygiene was only ranked 6th; after the outbreak, the proportion of topics changed from the original
6th to the 6th. 1. This shows that after the outbreak, the hygiene theme seems to have attracted more

Par72 y4ps://zh.airbnb.com/rooms/16609008.
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attention from consumers, which may have something to do with Airbnb’s relevant policies or hygiene
requirements during the epidemic.

The second is a more granular level of sentiment anomaly detection. As shown in Fig. 10b, we find that
the sentiment of the cleanliness and environment theme for a given accommodation dropped rapidly from
October to November 2019 (please check the specific sentiment value of each theme in the tooltip), which
we think is abnormal. We then immediately search for relevant feedback comments within this time period.
Figure 10b shows the relevant feedback. From the feedback on both topics, we find that during this period of
time, the road construction around the accommodation resulted in poor cleanliness and noise. Our system
captures this particular abnormal sentiment change. Through the analysis of related visual components, the
factors behind the incident are finally discovered. This provides useful insights for accommodation man-
agement and timely improvement of related services. The above two cases demonstrate the effectiveness of
our system on sentiment anomaly detection.

6.3 Spatiotemporal analysis of topic and sentiment

The spatiotemporal analysis of topic and sentiment of the accommodation is meaningful to the manager.
Assuming that you need to choose a region for rent, so how to highlight the advantages of housing and build
your own brand is very important. In our case, we conduct a spatiotemporal comparative analysis of the
accommodations around East China Normal University (school) and the accommodations around Disney
land (scenic area). As shown in Fig. 12, the heatmap distribution (macro level) shows that the competition
around Disney is more intense. We analyze the popular listings in the two regions (ranked by the number of
reviews). From the treemap diagram, it can be observed that the consumers of the accommodations around
East China Normal University mainly focus on the location, environment and feelings, while the consumers
of the accommodations around Disney mainly focus on the location and services (such as pick-up service,
etc.). We think these are caused by the different purpose of users’ accommodation.

As shown in Fig. 13, we see that the accommodations around East China Normal University have higher
sentiment in April, July, August and September. We think that April may be the annual re-examination of
graduate students who need to rent houses, while July, August and September may be related to the peak
season tourism in Changfeng Park and the opening of schools every year. At the same time, Disney land’s
sentiment river shows cyclical changes. The sentiment value is high in July, August and January each year.
We believe that winter and summer vacations are peak seasons for tourism, and the increase in the number
of tourists makes house rentals increase. Through the above case analysis, we learn that our system can
compare and analyze consumer concerns in different regions, which can help accommodations in different
regions to highlight their advantages better. At the same time, periodic sentiment changes can also help
managers adjust their rental time.

7 User study
7.1 Participants and procedure

We invite 16 volunteers (half of males and females) with normal or corrected-to-normal vision to participate
in our experiment. In particular, three of them are managers with rich experience in accommodation
management and thirteen are travel enthusiasts who like to experience different accommodations. Opin-
ionManager system was built on a Java web server (hardware required with 3.40 GHz Intel Core i7 CPU and
32GB memory) for structuring the dataset, visualizing the interface and supporting the interaction. Par-
ticipants took tasks on a computer with the Chrome browser (no special hardware required but screen
display required with 1920 x 1080 pixel resolution).

The study conducts with three sessions. First, we give all participants a short tutorial about the problem
domain and the usage of our system. Second, participants used our system to complete the relevant analysis
tasks listed in Sect. 5.1. Third, participants took a questionnaire survey. The survey contained five questions,
as shown in Table 3. Participants answer with seven-point Likert-scale type, which 7 means “strongly
agree” with a question, 1 means “strongly disagree” with it, and 4 indicates “neutral.” Moreover, the
participants had to comment what parts of the tool they liked or disliked.
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7.2 Survey result

We quantitatively evaluated the performance of the system OpinionManager. Figure 14 summarizes the
results from our experiments. It shows the average ratings for almost all questions are 5.0 or above, which
indicates that OpinionManager system meets the expectations of most participants.

For FQ2 and FQ3 (competition analysis), the average scores are 6.6 and 6.3, which are the top two scores
among all questions. This shows that our system provides very satisfactory features for users. For example,
P1 stated that “Sometimes it is difficult for me to choose a suitable accommodation based on reviews or
overall ratings, because I have to compare various aspects of different accommodations.” Before using the
system, participants find it difficult to know how the accommodation is rated in all aspects. Conversely, after
using our system, they definitely find it very helpful, as they could quickly learn how the accommodation is
rated in various aspects, as well as the sentiment value. They can also quantitatively compare among
different accommodations to facilitate decision making. However, some participants gave low scores, and



1324 D. Li et al.

ECNU [Disney

location ‘ clean Iocatlon
=}

subway N B
service clean
decoration

deco! subwa

Fig. 12 Comparison of topic sentiment of accommodations in East China Normal University and Disney land. By comparing
the proportions of topics in different regions, we acquire the main concerns of consumers in different regions

S clean [ decoration subway ([l location [ service ) feel [ amenity @ clean @ decoration subway () location [ service (R feel ([ amenity

0«*‘. A

3B 73] sB 68 7R I 75 108 2019 4B 7B 108 2020 4B 7B 108

Fig. 13 Time-series sentiment changes of accommodations in in East China Normal University and Disney land. By
comparing the temporal sentiment of different regions, we acquire the active period of consumers in different regions

Table 3 Feedback survey for our System

Questions
FQ1 Users can well discover the geographical distribution of the listings.
FQ2 Users can easily identify the opinions contained in the review.
FQ3 Users can easily compare the strengths and weaknesses of the listings.
FQ4 Users can identify why sentiment appears anomalous in the time series.

FQ5 The system is easy to learn and use.
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Table 4 User evaluation questionnaire for recommendation effectiveness

FQ6 At least one satisfactory accommodation is included in the recommendations.
FQ7 Top-K recommendations include multiple satisfactory accommodations.
FQ8 Top-K recommendation results show that the more you like the

accommodation, the higher the ranking is.

after the test was completed, we learned from them that our algorithm could not extract the views well in the
case of a low number of comments in a particular accommodation, which lead to the lack of visual elements
in the design of the presentation.

For FQ1 (spatial exploration), the system also receive a high score. Participants can easily observe the
geographical distribution of accommodations. With the filtering of accommodation types, they understand
how many competitors are in the surrounding area. After the test was completed, we interviewed 4 vol-
unteers who gave low scores on this question to improve our system. For example, P2 stated that “the
graphics on the map are too single. In order to better understand potential competitors, different types of
glyphs should be drawn on the map, such as using triangles or squares to represent different room types.”
He thinks this design will be more effective.

For FQ4 (identify the reason of abnormal sentiment change), the average rating (1) shows that the
system does not satisfy users well. Participants indicate that discovering the drivers of sentiment change is
not convenient enough. Because multiple factors exist and cannot be captured from the comments. For
example, P3 stated that “the accommodation happened to be under renovation at a certain time and is not
released for rent” . If our system encounters this situation, it performs poorly.

In the FQ5 (Usability), it is including two parts, easy to learn and easy to use. The average ratings of
these two parts are 6.2. Most participants report that our system is easy to learn and use, since the interaction
in our visual design is user-friendly and almost based on general visual techniques.

In addition, we conducted another questionnaire on volunteers who participated in the use of the system,
which was an evaluation of the effectiveness of the system’s recommendation algorithm. We let the
participants choose an area in different areas of Shanghai to choose the accommodation. Each participant
uses our system to set priorities according to their own requirements, and then according to the Top-K
results recommended by the system, check the accommodation with the corresponding ID on the Aibrnb
website and complete our question Table 4 to verify the validity of our recommendation. We let users carry
out the Top-5 and Top-10 recommendation experiments respectively. According to the feedback from users,
it can be seen from Fig. 15 the scores of the three questions are all around 6 points, which shows that the
recommendation effect of the system is satisfactory. Users can basically find satisfactory accommodation
through our ranking results.

8 Discussion

The case study and user study demonstrate the usability and effectiveness of our recommendation algorithm
and the visualization system. However, in the process of case studies, there still exists limitations for
OpinionManager system usage.

For the perspective of algorithm, the best topic model for consumer reviews may change. The number of
topics should change as the review data changes, and an adaptive model should be designed. Deep learning

Average rating with standard deviation
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Fig. 14 Results of feedback survey
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Fig. 15 User evaluation of recommendation result effectiveness

model training and sentiment calculation takes a lot of time, which is acceptable for offline operations
because they can be stored in the Mysql database. But if there are scenarios that require real-time calcu-
lation, then the algorithm needs to be optimized in terms of time performance.

For the perspective of visual analysis, the design of the sentiment theme river is too simple, and requires
human observation of abnormal changes. There is no automatic detection and marking mechanism. In
addition, the number of indicators in the ranking view is currently fixed, and it should be adaptively changed
as the number of model topics changes in the future.

9 Conclusion and future work

In this paper, we propose OpinionManager, an interactive visual analysis system to recommended p2p
accommodations. This study has three important contributions. First, we propose an approach that combines
topic modeling and deep learning for review aspect sentiment analysis. Second, our pipeline is equally
applicable to other data, such as industry data and service product data. This provides support for improving
services or aiding decision making. Third, our system employs a variety of well-designed visualization and
interaction techniques.

In future work, we will further optimize the visual design and enhance the scalability of the system, and
consider the real factors in the recommendation algorithm for weighting. Moreover, we aim to deploy
OpinionManager to platforms to make it available to relevant end users.
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