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ABSTRACT 

This thesis aims to introduce an agent-based system engineering approach, 
named Hierarchical-Granularity Holonic Modelling, to support intelligent 
information processing at multiple granularity levels. The focus is especially 
on complex hierarchical systems. 

Nowadays, due to ever growing complexity of information systems and 
processes, there is an increasing need of a simple self-modular computational 
model able to manage data and perform information granulation at different 
resolutions (i.e., both spatial and temporal). The current literature lacks to 
provide such a methodology. To cite a relevant example, the object-oriented 
paradigm is suitable for describing a system at a given representation level; 
notwithstanding, further design effort is needed if a more synthetical of more 
analytical view of the same system is required.  

In the literature, the agent paradigm represents a viable solution in complex 
systems modelling; in particular, Multi-Agent Systems have been applied with 
success in a countless variety of distributed intelligence settings. Current 
agent-oriented implementations however suffer from an apparent dichotomy 
between agents as intelligent entities and agents’ structures as superimposed 
hierarchies of roles within a given organization. The agents’ architectures are 
often rigid and require intense re-engineering when the underpinning ontology 
is updated to cast new design criteria. 

The latest stage in the evolution of modelling frameworks is represented by 
Holonic Systems, based on the notion of ‘holon’ and ‘holarchy’ (i.e., 
hierarchy of holons). A holon, just like an agent, is an intelligent entity able to 
interact with the environment and to take decisions to solve a specific 
problem. Contrarily to agent, holon has the noteworthy property of playing the 
role of a whole and a part at the same time. This reflects at the organizational 
level: holarchy functions first as autonomous wholes in supra-ordination to 
their parts, secondly as dependent parts in sub-ordination to controls on higher 
levels, and thirdly in coordination with their local environment.  

These ideas were originally devised by Arthur Koestler in 1967. Since then, 
Holonic Systems have gained more and more credit in various fields such as 
Biology, Ecology, Theory of Emergence and Intelligent Manufacturing. 
Notwithstanding, with respect to these disciplines, fewer works on Holonic 
Systems can be found in the general framework of Artificial and 
Computational Intelligence. Moreover, the distance between theoretic models 
and actual implementation is still wide open.  

In this thesis, starting from the Koestler’s original idea, we devise a novel 
agent-inspired model that merges intelligence with the holonic structure at 
multiple hierarchical-granularity levels. This is made possible thanks to a rule-
based knowledge recursive representation, which allows the holonic agent to 
carry out both operating and learning tasks in a hierarchy of granularity levels.  

The proposed model can be directly used in terms of hardware/software 
applications. This endows systems and software engineers with a modular and 
scalable approach when dealing with complex hierarchical systems. In order 
to support our claims, exemplar experiments of our proposal are shown and 
prospective implications are commented. 
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1. INTRODUCTION 
Modularity, scalability, self-organization, have always been desirable traits 

in complex systems development: a simple evidence for this claim comes 
from a lookout at the evolution of software engineering methodologies in the 
latest decades.  

From the 70’s on, structured programs (Bhom & Jacopini, 1966) 
progressively replaced ‘spaghetti code’ that made unwise use of the criticised 
GOTO statement (Dijikstra, 1968) in favour of more abstract programming 
methodologies. Later, the object-oriented paradigm enlarged the 
programmer’s ability to figure out complex software by introducing the 
abstract notion of class. In the middle 90s, agent-based technologies 
(Wooldridge & Jennings, 1995) injected Artificial Intelligence (AI) inside 
software entities providing them with highly specific behaviours such as 
autonomy, coordination, goal-oriented behaviour and so on.  

Along this line, each new achievement embraced the previous one in a 
climax of powerful theoretical and operational methodologies to gain control 
and design ability on systems of increasing complexity.  

With reference to the latest developments in the engineering of complex 
systems, two methodologies that account for different solutions to hierarchical 
organizations should mentioned, namely: Multi-Agent Systems and Holonic 
Systems. These approaches represent two pillars of our proposal, i.e., 
providing a novel holonic-based methodology to support intelligent 
information processing at various granularity levels.  

1.1 Multi‐Agent Systems and Hierarchical 
Organizations 

Nowadays, the leading paradigm, especially in the engineering of large 
distributed systems, is represented by the concept of Multi-Agent Systems 
(MAS). MAS are goal-driven organizations of intelligent agents that interact 
with one other on behalf of users (Wooldridge, 2009). The impressive growth 
of computer networks, such as the Internet, has made it possible to think to 
countless applications for MAS considered as machines talking to other 
machines for human benefit. To make an example, as envisioned by Tim 
Berners Lee with the prospect of the Semantic Web (Berners Lee et al., 2001), 
in the (near?) future an Internet user will let a group of agents searching the 
Web on his/her behalf for relevant documents, avoiding tedious hours spent in 
unfruitful search. Such a task is extremely coherent with the idea of MAS.  

One key aspect of MAS is that, in order for agents to interact successfully, 
they require the ability to cooperate, coordinate, and negotiate with each other, 
much as people do. As it happens in the real world, this engagement requires 
some social organization model. Consequently, MAS provide a novel new 
framework for simulating societies, which may help shed some light on 
various kinds of social processes (Wooldridge, 2009). 

The two extremes of MAS organizations range from ‘horizontal’ 
architectures (using, for example, a blackboard architectural model for agent 
communication (Corkill, 1991)) to ‘vertical’ architectures that arrange agent 
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management and control according to a mechanism of delegation in a 
hierarchical fashion (Sycara, 1998). Generally, hierarchical MAS are 
preferable as long as the system grows in complexity: a horizontal 
organization model in fact soon becomes unwieldy when the number of agent 
interactions increases. 

Any vertical architecture employs some kind of hierarchical organization. 
According to Mesarović et al. (Mesarović et al, 1970), a hierarchical 
organization can be defined as a collection of decision makers each of whom 
acts as a controller of the decision level below him and, at the same time, as a 
dispatcher of information to the level above him; the bottom level of 
controlles operates in the given process.  

For example, in the Theory of Information Systems, the classification of 
business activities within organizations (strategic, tactical and operational) is 
described in hierarchical terms by means of the so-called Anthony’s pyramid 
(Anthony, 1965).  

A hierarchical MAS-based adaptation of the Anthony’s pyramid is depicted 
in Figure 1.1. In this kind of hierarchical representation, the members of the 
organization are clustered into layers. The boundaries between layers account 
for well-defined, distinct and strict roles within the organization. Depending 
on the role they play, members have to fulfil specific duties with a certain 
degree of freedom and carry out some activities in compliance with the upper 
level strategy. In this sense, they can be considered agents in the proper sense. 

In the Anthony’s pyramid, discretionality (hence autonomy) progressively 
increases towards the top, thus agents at higher levels are supposed to be more 
autonomous than their subordinates. This aspect can be viewed as caused by a 
special arrangement of the system knowledge. Knowledge at each layer has 
different qualities. At each level of the pyramid, knowledge is more long-
termed, more wide covering and more general than that of subordinate layers. 
Furthermore, it is generally not observable by subordinate layers. With a 

Figure 1.1: A representation of the Anthony’s Pyramid in terms of a 
hierarchical MAS. 
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qualitative assessment, we can judge the knowledge at the strategy layer to be 
of higher quality with respect to other layers, at least from the system goal 
point of view. It is noteworthy that the quality of knowledge follows the same 
pattern as autonomy. Hence, agents at each level are biased somehow in their 
social behaviour by the quality of knowledge/autonomy they handle. 

Vertical MAS architectures are very desirable from the engineering 
perspective since they guarantee a rationale partition of functional tasks within 
agents’ organization. Nevertheless, they inevitably suffer from the stiffness of 
the agent roles superimposed during the design phase.  

1.2 Holistic and Reductionist Approaches in Complex 
Systems Design 

Making an agent change its role is not so straightforward. This would 
require endowing the agent with the ability to understand the context in which 
it operates coupled with the ability to perceive its specificity within the 
wholeness of the surrounding environment. Such requirements are generally 
pursued by a holistic approach, while MAS are typically engineered according 
to a reductionist vision.  

Holism (from ὅλος - holos, a Greek word meaning all, entire, total) is the 
idea that all the properties of a given system (biological, chemical, social, 
economic, mental, linguistic, etc.) cannot be determined or explained by its 
component parts alone. Instead, the system as a whole determines in an 
important way how the parts behave. Aristotle in the Metaphysics concisely 
summarized the general principle of holism: "The whole is more than the sum 
of its parts“.  

Reductionism is sometimes seen as the opposite of holism. Reductionism in 
science says that a complex system can be explained by reduction to its 
fundamental parts. Reductionism essentially claims that psychology and 
sociology are reducible to biology, biology is reducible to chemistry, and 
finally chemistry is reducible to physics. Some other proponents of 
reductionism, however, think that holism is the opposite only of greedy 
reductionism. 

1.3 Holonic Systems and Hierarchically‐Nested 
Structures 

From an engineering perspective, the holistic vision is well suited to the 
paradigm Holonic Systems. With respect to MAS, Holonic Systems show the 
major difference that the former are based on the notion of ‘holon’ rather than 
that of agent.  

The term holon first appeared in 1967, in a work authored by Arthur 
Koestler (Koestler, 1967) meaning an entity capable of playing the role of a 
whole and a part at the same time. 

In order to have a better insight into Koestler’s thought, it is worthwhile to 
refer to his own words, as reported in the Alpbach Symposium in 1968 
(Koestler, 1969), where he presented his conceptual framework as an attempt 
to overcome the dichotomy between reductionism and holism.  
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Koestler enlisted several aspects regarding the general properties of what he 
called Self-regulating Open Hierarchic Order (SOHO) and successively took 
the name of holarchies. In particular, the claims in the following are devoted 
to introducing the concept of holon and its Janus effect.  

Claim 1.1: The organism in its structural aspect is not an aggregation of 
elementary parts, and in its functional aspects not a chain of elementary units 
of behaviour. 

Claim 1.2: The organism is to be regarded as a multi-levelled hierarchy of 
semi-autonomous sub-wholes, branching into sub-wholes of a lower order, 
and so on. Sub-wholes on any level of the hierarchy are referred to as holons. 

Claim 1.3: Parts and wholes in an absolute sense do not exist in the domains 
of life. The concept of the holon is intended to reconcile the atomistic and 
holistic approaches. 

Claim 1.4: Biological holons are self-regulating open systems which display 
both the autonomous properties of wholes and the dependent properties of 
parts. This dichotomy is present on every level of every type of hierarchic 
organization, and is referred to as the "Janus phenomenon". 

Claim 1.5: More generally, the term "holon" may be applied to any stable 
biological or social sub-whole which displays rule-governed behaviour 
and/or structural Gestalt-constancy. Thus organelles and homologous organs 
are evolutionary holons; morphogenetic fields are ontogenetic holons; the 
ethologist's "fixed action-patterns" and the sub-routines of acquired skills are 
behavioural holons; phonemes, morphemes, words, phrases are linguistic 
holons; individuals, families, tribes, nations are social holons.  

Koestler’s own words move from the concept of organism as a systemic 
whole (Claim 1.1) to introduce that of multi-level hierarchy (Claim 1.2) 
conceived as a self-regulating structure of sub-wholes. The latter, as parts of a 
greater whole, have to be considered as functional to the system they are 
hosted in; however, at the same time, they also show autonomous 
characteristics, which make them being a system as well. Alternatively 
speaking, holons account for a recursive interpretation of the concept of 
system where part and wholes are not considered as separate entities. This is 
easily observable in the domain of life (Claim 1.3). This dichotomy reflects on 
every level of the hierarchy (Claim 1.4) and can be extended to any biological 
or social sub-whole based on rules (Claim 1.5).  

In summary, Koestler’s holon is a basic model component suitable for 
building self-regulating hierarchical organizations. The chief distinction 
between holon and other model-based entities is the appearance of the so-
called Janus phenomenon. Janus was the ancient roman god who reigned over 
the realm of doors, passages, beginnings and endings.  

The holon actually shows a Janus face since it contemplates within a unique 
entity two distinct but complementary perspectives: top-down and bottom-up. 

 Top-down: one side looks “down” and acts as an autonomous system 
following its own goals and rules, also giving directions to lower-level 
components (sub-holons);  
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 Bottom-up: the other side looks “up” and serves as a part obeying to a 
higher-level component (super-holons).  

This double-face nature reflects in the part/whole relationship that is 
observed in living and social organisms and can be extended to any complex 
hierarchical system as well. According to this view, it turns clear how the 
concept of holon can be relevant in the general framework of Systems Theory. 

Holon part/whole duality could be represented mathematically by means of 
the recursive notion of subsets and in fact, as shown further in the text, 
recursion is essential to characterize part-whole relationships within Holonic 
Systems. However, since Computational Intelligence (CI) is the scope of the 
thesis, we do not engage with mathematics and set theory, instead we deal 
with architectures for supporting knowledge extraction, representation and 
management, hence, ultimately, intelligent information processing. 

A holon, as intelligent entity, accomplishes the following two tasks: 

 acts as an autonomous system following its own goals and rules, also 
giving directions to lower-level components (sub-holons); 

 serves as a part obeying to a higher-level component (super-holons) 

Consequently, a hierarchical organization of holons, also known as 
‘holarchy’, should leverage MAS architectures at the maximum extent by 
overcoming the rigid distinction between intelligent entities and the 
hierarchical structure that enrols them.  

Thanks to the concept of holarchies, Holonic Systems instantiate a different 
organizational paradigm where the roles of parts and whole coincide. 
Holarchy can be described as multi-strata hierarchy (C. Ferber, 1999), i.e., a 
hierarchical ordered system where every level is a domain specific abstract 
version of the overall complex system under scope.  

It is important to point out that, while in common lexicon words such as 
‘stratum’, ‘layer’, ‘level’, are all synonyms meaning “an abstract place usually 
conceived as having depth”, in the context of this paper, they account for very 
different senses.  

Multi-level (or multi-strata) hierarchy, in contrast with multi-layered 
hierarchy, is characterized by the complete (physical or conceptual) nesting of 
each level into the higher adjacent one. This representation should be borne in 
mind throughout the thesis when referring to holarchies. Except from the most 
abstract level (which is only a whole and not a part of something bigger), at 
any given level, groups of holons, as parts, completely defines their super-
holons, as wholes. In this case, holons are the components for modelling parts 
of the system at different granularity levels. If holarchy is explored from 
whole to parts, i.e., towards more detailed granularity levels, then a process-
oriented decomposition is followed (refer to (Clegg and Shaw, 2008) for an 
example); otherwise, if parts are used to aggregate into wholes, i.e., towards 
more abstract granularity level, then an emergent behaviour (see, for example, 
(Ulieru and Este, 2004)) is observed. 



 11

A pictorial representation of holarchy as multi-strata hierarchy is displayed 
in Figure 1.2: holons at level n are grouped into organisations that can be 
considered at level n+1 as an individual entity. Inversely, individual entities at 
level n+1 can be seen at level n as organisations. The process can be repeated 
on any number of levels until a ground-level representation is reached out. 

1.4 Thesis Objective 

Holons, in the theoretical frame provided by Koestler, are an abstract 
inspiration for hierarchical systems with intelligent behaviours; furthermore, 
they allow for modelling complex phenomena in a non-reductionist way 
(Pichler, 2000). In this sense, they paved the way for studies in AI, since 
autonomy and self-organization are two distinctive properties of intelligent 
agents and MAS respectively (Russell and Norvig, 2003). Furthermore, since 
holon is intrinsically a modular object, it can be used to empower class-based 
design and development with interesting features from the Software 
Engineering viewpoint. 

Unfortunately, the utility of reconsidering holons and holarchies from the AI 
perspective has not been perceived so far at the right extent. Possibly, this is 
due to the genesis and further development of holonic theories which are 
native of non-AI (but, we daresay, close-to-AI) fields such as manufacturing 
or business organizations.  

In this thesis, our effort is devoted to examine holon and holarchy models 
from the standpoint of AI. The aim is to introduce a holonic computational 
representation for leveraging the analysis, design and implementation of 
complex multi-level organizations. Metaphorically, we pursue the goal of 
merging intelligence with agents’ hierarchical organizations, which is quite a 
novel engagement in the literature.  

Figure 1.2: A representation of holarchy as a multi-strata hierarchy, from 
(C. Ferber, 1999). 
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An artwork drafting our intention is depicted in Figure 1.3. Holarchies are 
holons at a wider granularity level: this way the part/whole distinction 
between the container and the contained entity vanishes turning into a 
granularity level problem based on a unique conceptual entity. 

1.5 Thesis Structure  

In order to achieve the objective of this thesis, the rest of the text is 
organized into these parts: 

 Chapter 2 reviews some basic findings of the AI literature concerning 
agent modelling. Afterwards, holons and holarchies are introduced and 
put in comparison with agents and MAS respectively to highlight 
differences and similarities between the two approaches. This 
confrontation is carried out mainly at the architectural level. Then, the 
focus is moved towards information granulation viewed as a suitable 
conceptual and operational link to connect the realm of agents with the 
realm of holons. The survey is carried out under the light of 
prospective CI theories such as Granular Computing and Computing 
With Words;  

 Chapter 3 is aimed at introducing the proposed hierarchical-granularity 
holonic model (HGHM) as a novel agent-inspired computational 
machinery that fulfils the goal of the thesis. The presentation of 
HGHM is quite elaborated since it involves the reader in the task of 
assembling oddly shaped, interlocking and tessellating ideas, as in a 
jigsaw puzzle. First, the duality between parts and wholes is faced at 
the knowledge representation level. In particular, a granularity-level-
independent description based on the object-oriented notation is used 
for re-defining the two concepts of holon and holarchy in a 
computational way. This multi-level representation supplies for a 

Figure 1.3: Intelligence inside the holarchy. An artwork. 
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recursive decomposition of both the system knowledge and 
computation at the same time by introducing the novel concept of 
‘holonic granule’. The focus is mainly on “crisp” holonic granules: 
their extension to fuzzy logic, although of a great interest, would yield 
another specific work, which goes further beyond the scope of the 
thesis. As next step, holonic granules are considered as basic entities 
of a ‘holonic grammar’ as the automaton suitable for describing 
systems at different granularity levels. An archetype algorithm for 
parsing holonic grammar-generated descriptions is hence designed. To 
endow HGHM with unsupervised knowledge acquisition ability, a 
heuristics is introduced to allow automated extraction of holonic 
grammars from observational data. This completes the picture: the 
jigsaw puzzle is finally assembled and the overall model is presented 
also in a formal notation; 

 Chapter 4 shows some multi-topics applications springing from the 
proposed model: string parsing, signal self-description, time-series 
prediction and intelligent system modelling;  

 Chapter 5 concludes the thesis by highlighting prospective 
implications and future works of HGHM in AI and Software 
Engineering. 
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2. RELATED WORK 
This chapter surveys in a row the basic concepts underpinning our proposal, 

namely agents, holons and granular computing, as they have appeared in the 
literature. We start with a brief introduction to the concept of intelligence with 
particular reference to the ideas of Minsky, one of the forerunners of the agent 
theory. Next we go in depth through an overview of agent theory and agent 
societies (MAS) focussing on their architectural limits with reference to 
complex systems modelling; then we move towards holonic modelling and the 
paradigm of holistic thinking which seems to be facing a great renewal in 
these last years. The current limits of Holonic Systems methodologies 
conclude the section on holonic-based approaches. Finally, we explore 
Granular Computing and Computing With Words as computational 
approaches that appear to be useful to reduce the gap between the agent and 
holonic realms. 

2.1 Intelligence and Computational Models 

No doubt, the concept of ‘intelligence’ is a controversial one. Engaging with 
it is a cumbersome task that will be deliberately skipped here. A complete 
analysis would imply considering other areas such as human sciences, 
epistemology, philosophy, all well beyond the scope of the thesis.  

What is certain indeed, is that AI nowadays strives for a shared definition. 
As a matter of course, it is further more pragmatic understand which 
(seeming) intelligent things can be done with artificial machines and to what 
extent the so-called ‘Machine Intelligent Quotient’ (MIQ) can be increased.  

A troublesome suggestion comes from the famous article Steps toward 
Artificial Intelligence dated back 1961 (Minsky, 1961) where Marvin Minsky 
asserted ironically but in a rightful way: “A computer can do, in a sense, only 
what it is told to do”. At first glance, the claim does not leave much space for 
AI-enthusiasts. However, it diverts the attention from the problem of 
intelligence focussing on another aspect: what machines can do.  

The true power of a machine is in the range and type of input manipulations 
it can perform, which ultimately depends on the computational model 
empowered. A computational model is any (numerical or symbolic) model 
that allows for studying the behaviour of complex systems. It is fair to 
imagine that the more complex the system, the more sophisticated the 
computational model employed.  

By restricting the view to only symbol manipulation based systems, i.e., a 
framework where input and outputs are strings of symbols of a given alphabet 
and input/output matching is performed by some algorithmic procedure 
(Minsky, 1967), computational models corresponds to automata. An 
automaton, interpreted as a string recognizer, is an abstract machine able to 
recognize languages written in some formal grammar (Chomsky, 1956), 
(Chomsky, 195) (see Figure 2.1, taken from (Ausiello et al., 2008)).  
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Automata theory is a well-established discipline with a solid theoretical 
background. To have a clear mind of this, it suffices recalling the names of 
some of its forefathers such as Turing, Markov, Church, Kleene and Post. 
They all contributed to the cause of newborn computer science from the 
perspective of Mathematical Logic.  

An overview of their achievements, especially for Turing and Markov, can 
be found in Mendelson (Mendelson, 1964). Almost at the same time when 
Chomsky was working on his seminal theory of generative grammars for the 
description of natural languages, Markov proposed a string rewriting system 
based on the formal assessment of the notion of algorithm. He was, indeed, 
mainly interested in investigating how to determine the effective 
computability of a given function, dealing with pure mathematics from a 
symbolic logic perspective. It is worth saying that the theory of Markov 
algorithms is proved to produce a Turing-equivalent computational model. 
Kleene, Church and Post had devised similar computational models some 
years before. 

Notwithstanding, the primary perplexity remains on how pure computation, 
which is conceptually very close to theorem proving, string parsing and, in 
general, formal theories, i.e., apparently semantic-less actions, could drive out 
intelligent, i.e., semantic-full, consequences (an interesting essay on this point 
from the perspective of cognitive science can be found in (Hutchins, 1995)).  

A solution to this dilemma was proposed by Minsky, several years after his 
informative article on AI, by conjecturing that intelligence, as a complex 
process, is the manifest appearance of a number of simpler phenomena taking 
place at a lower observation level.  

In the book Society of Mind (Minsky, 1986), Minsky gathered his intuitions 
by saying that the complex jigsaw puzzle of intelligence can be ultimately 
recomposed only by unveiling its atomic intertwining mindless parts. The 
name he gave to these particles was that of agents. Using the same Minsky’s 
words: 

Each mental agent by itself can only do some simple things that need no 
mind or thought at all. Yet when we join these agents in societies – in 
certain very special ways – this lead to true intelligence. 

 

Figure 2.1: Automaton as a string recognizer.  
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Ahead in the text, he quoted:  

[…] whenever we find that an agent has to do anything complicated, we’ll 
replace it with a sub-society of agents that do simpler things. […] When 
we break things down to their smaller parts, they’ll each seem dry as dust 
at first, as though some essence has been lost.  

In Minsky’s view, agents represent a computational model for describing 
the complex processes that happen within our own mind in terms of simpler 
entities, arranged as if they constituted a society. Furthermore, his description 
contains elements of ‘granular thinking’, a viewpoint enlightened by the more 
recent studies of Zadeh (Zadeh, 1998), the founder of Fuzzy Logic (FL) and 
one of the main contributors to the CI field.  

After Misky’s intuitions, the relevant work of Wooldridge and Jennings 
(Wooldridge & Jennings, 1995) helped the computational paradigm of agents 
attract the interest of scholars over the successive years. Although (as for 
intelligence) a shared definition for agent does not exist, today, agents 
represent a widely used design and development framework that supplies a 
trade off between formal theories and engineering applications. In particular, 
due to ever-growing networked resources, such as the Internet, and the 
availability of computational nodes at relatively low-cost, the attention of 
scholars and practitioners has progressively moved from single agent design 
to agents’ society, i.e., MAS.  

 Central to MAS modelling is communication as a direct consequence of the 
design process. Typically, the followed approach when building MAS consists 
in a top-down assignment of the global problem to functional sub-units each 
of which endowed with a specific role and a specific task to accomplish. MAS 
are then arranged in a hierarchy of agents: agents at a higher level delegate 
more operational functions to agents at the lower levels through the institute 
of communication (see (Fornara et al, 2008)). The drawback of this approach 
is the stiffness of the overall architecture, which requires heavy reengineering 
when some unexpected change is needed at the knowledge representation and 
consequently at the communication level (Calabrese et al., 2010).   

    On the opposite side, when a bottom-up methodology is pursued, the design 
approach is completely different, requiring minimal (or no) communication 
(Crespi et al., 2008): the design target changes from the global system to the 
sole agent’s behaviour. In this case, single autonomous entities, if properly 
programmed, should be able to make a collective behaviour emerge out of 
interaction within the environment. The difficulty lays in providing a 
sufficiently powerful autonomous behaviour capable also of taking into 
account requirements of a global and social vision.  

Efforts in this direction come from holistic theories and in particular from 
Holonic System theories. Unfortunately, due to their genesis in the field of 
intelligent manufacturing, Holonic Systems are currently quite far from the AI 
and CI standpoint. At the same time, they account for interesting properties 
such as the conceptual predisposition to handle, natively, multiple granularity 
levels, which may represent an interesting point of contact with CI sub-
domains like Granular Computing and Computing With Words.  
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2.2 Agents 
Nature is the most significant source of inspiration for CI models.  

Among nature-inspired computational paradigms, the agent-oriented one 
plays a primary and ambitious role since it does not only aim at imitating 
some specific processes that we commonly ascribe to intelligence (cognition, 
learning, communication, etc…) but tries to encode an entire intelligent entity 
within a single computational entity.  

2.2.1 Agents and CI 

Agent-based methodologies have accompanied CI evolution, especially in 
the last decade. An early agent-based approach to CI is that of Poole et al. 
(Poole et al., 1998) who claimed that CI “is the study of the design of 
intelligent agents”. This assumption may appear quite restrictive for many 
scholars in CI since other computational models have at least the same dignity 
as agent-based solutions. Nevertheless, for the scope of this thesis, CI will be 
mainly conceived from the agent-modelling viewpoint although not certainly 
exhaustive of the entire CI field.  

A confirmation of the amplitude of the CI literature and its relationships 
with the concept of agent can be found in the work of van Eck et al. (van Eck 
et al., 2006). They adopted concept maps trained over the abstracts of the 
papers presented at the IEEE World Congress on Computational Intelligence 
(WCCI) in 2002 and 2006 to visualize the most used concepts employed by 
authors. The two maps are shown in Figure 2.2.  

Like after a “big bang”, it seems that CI is moving from a chaotic dense 
mass of concepts toward some clutters of similar research domains. Certainly 
enough, we are facing only the very beginning of this CI-universe-forming 
process and it is hard to predict what we may expect these maps would be, 
say, the next decade.  

As far as now, three main clusters are being formed in the CI literature. 
They coarsely correspond to the three principal constituents of soft computing 
technology, namely: genetic algorithms (GA), fuzzy logic (FL) and neural 
networks (NN). Zadeh had envisaged such a tripartition already several years 
before (Zadeh, 1994) with the only relevant difference that, instead of GA, he 
had identified the cluster of probabilistic reasoning as the abstract framework 
to deal with uncertainty.  

The main reason for the tripartition is that each master theory works on a 
specific aspect of CI: FL is primarily concerned with imprecision, NN with 
learning and GA with search. Generally, any intelligent system needs all the 
three aspects covered during the engineering process. This often implies some 
sort of mesh-up of different techniques, thus requiring a composite system 
design (Alippi et al., 1999). Agents indeed are sufficiently undifferentiated 
with respect to the previous tripartition since they encompass natively, as 
shown further in the text, all these aspects.  

Turning back to the figures, in both 2002 and 2006 concept maps, we note 
that the agent label is present but in different positions. While in 2002 it was 
laying in the overlapping area between evolutionary and fuzzy systems, in 
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2006 it had moved to the outskirt of the graph, perhaps denoting a more 
independent assessment with respect to traditional CI techniques.  

The ultimate goal of the thesis is to add a new concept in proximity of that 
of agent, the concept of holon. 

2.2.2 Agent basic definitions and foreground aspects 

In order to manage the concept of agent on a more objective basis, it is 
useful to refer to some widely accepted definitions.    

Agent “black-box” definitions  

Def. 2.1: An agent is something that acts in an environment. 

Figure 2.2: concept maps representing the CI field as of 2002 (uppermost figure) 
and as of 2006 (lowermost figure). Images taken from (van Eck et al., 2006). 
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Def. 2.2: An intelligent agent performs at least the following tasks: 

1. it builds models of the environment; 

2. given observations, it determines, through reasoning, what the  

world is and will be like; 

3. it learns from past experiences; 

4. given a model of the world and a goal, it decides what should be  

done. 

Def. 2.1 and Def. 2.2 allow for drafting a first coarse picture of the agent 
concept and its relationship with the environment (see Figure 2.3, slightly 
adopted from (Poole et al., 1998)). Agent is viewed as a dynamic box-model 
having observations, prior knowledge, goals in input and having actions in 
output. Observations represent agent’s perceptions of the surrounding 
environment. Prior knowledge and goals are built-in elements set by the agent 
designer. Learning allows for coding new behaviours hence actions by 
training on past experiences. 

Def. 2.1 introduces the important concept of environment; Def. 2.2 enlists 
the minimum set of tasks an agent is supposed to accomplish to gain the 
quality of being defined as intelligent. Namely they are:  

 Knowledge Representation;  

 Reasoning; 

 Learning;  

 Decision-making. 

Since these notions account for crucial aspects of agent design, they are 
treated briefly in the next subsections. 

Figure 2.3: Agent abstract model.  
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2.2.2.1 The role of environment 

Agent definition introduces the notion of ‘environment’ as something that 
must be taken into consideration when defining an agent. As reported in 
(Odell et al, 2003):  

An environment provides the conditions under which an entity (agent or 
object) can exist. It defines the properties of the world in which an agent 
will function. 

The environment is then an unavoidable part of the agent definition because 
it defines the boundary conditions of the agent design process. Furthermore, 
its importance is evident from the fact that, in a closed-loop architecture as the 
one depicted in Figure 2.3, it represents the block that governs the feed-back 
process; hence, as we can infer from Control Theory, it is fundamental in the 
system (agent) dynamic behaviour.  

It is fair to imagine that environment is generally a complex system, i.e., 
composed by different elements, which change in time and interact in a 
nonlinear way. A vast literature exists on the topic, especially in the field of 
complex systems science (CSS) and cellular automata. Despite the fact that 
that CSS and AI have many points in common, the interaction between the 
two communities is however still very limited (Bandini & Serra, 2006).  

The attempt to model the environment as a complex system from an agent-
based perspective leads however to an awkward conclusion, being it only a 
way to divert from the original problem of environment definition. In fact 
(unless we claim an agent-based environment to be like a monad) for each 
agent employed to characterize the environment, we should define, in 
accordance with agent definition, the environment in which it operates. The 
result is that we have a circular definition with no apparent escape.  

As shown in more detail further in the text, holistic thinking handles the 
notion of environment in a more naturally way since it makes no such 
dichotomic distinction between the whole (environment) and a part of the 
whole (agent) as it happens instead for previous agent definitions.  

2.2.2.2 Aspects in Knowledge Representation 

As it often happens in AI, also Knowledge Representation (KR) skips a 
precise definition. In (Davis et al. 1993) the authors pointed out that, at that 
time, the question about what KR actually is had not been answered directly 
yet. Since then, a great effort has been engaged by scholars in different 
research fields to provide at least an operational definition for KR. One of the 
major outcomes of such an engagement is the notion of ‘ontology’. 

Ontologies: a brief overview 

Nowadays, when computer scientists refer to KR, they commonly employ 
the name of ontology, but with a meaning different from the one that can be 
usually found in a dictionary.  The online Oxford dictionary for example 
provides for ontology the following definition: “the branch of metaphysics 
concerned with the nature of being”.  
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In Computer Science, ontology is defined indeed as “a specification of a 
representational vocabulary for a shared domain of discourse -- definitions of 
classes, relations, functions, and other objects” (Gruber, 1993). Throughout 
the text, we will refer only to the latter sense.  

The importance of ontologies is at least twofold, being related to the 
possibility of drawing inference in automated way but also to the mechanism 
of knowledge sharing among different applications, which allows for 
interoperability and knowledge reuse, two desirable properties for a system 
engineer.  

Ontologies are knowledge structures based on two parts, the definition of 
concepts and the relationships among them (Gruber, 1995) (Uschold et al., 
1998). Put this way, also an Entity-Relationship Model (Chen, 1976) could be 
defined as a type of ontology. However, in common practice, ontologies are 
not specifically engineered to produce a database; instead, they play the role 
of knowledge bases by supplying some kind of machinery for the knowledge 
representation and reasoning (KRR) task.  

A simple way to think about an ontology implementation is to employ a 
hierarchy of concepts. Hierarchies can have a number of purposes: from 
classification to control or system description. When dealing with 
classification in KR tasks, hierarchies often assume the form of taxonomies.  

A relevant formalization of ontologies according to taxonomical structures 
can be found in (Dellshaft & Staab, 2006). As suggested in (Velardi et al. 
2007), taxonomy can be regarded as a form of business intelligence, to 
integrate information, reduce semantic heterogeneity, facilitate the 
communication between information systems.  

Taxonomies are generally implemented by means of graph-based structures, 
in particular directed acyclic graphs (DAGs) or trees (Di Lecce & Calabrese 
2008). Similar considerations have been drawn by Ning and Shihan (Ning & 
Shihan, 2006) who suggest that the structure of an ontology should satisfy the 
structure of its referring domain knowledge, i.e., the quality of the ontology 
strictly depends on the way its knowledge is structured. In particular, the 
authors consider ontology as an undirected graph G = <V,E>. Each concept is 
a vertex in the graph. If a concept has an object property whose value is an 
instance of another concept, an edge is drawn between these two concepts.  

Almost the same assumptions can be found in (Chakrabarti et al., 1999). By 
the way, representing ontology knowledge in form of a graph is a widely 
accepted paradigm.  

An example in this sense is given by the standard Resource Description 
Framework (RDF) data model which consists in a collection of statements 
(each made of the triplet Subject-Verb-Object) representing a labelled directed 
graph.  

An RDF statement (W3C, 2004) is a triplet having the structure pattern 
<subject, predicate, object> as in the serialized XML notation that follows. 
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<?xml version=“1.0” ?> 

<rdf:RDF  xmlns:rdf=http://www.w3.org/1999/02/22‐rdf‐syntax‐ns#  

xmlns:au=ʺhttp://mydictionary.org/schema/ʺ> 

<rdf:Description about=ʺhttp://www.myself.it/Phd_Thesis/ʺ> 

<au:author>myself</au:author> 

</rdf:Description> 

</rdf:RDF> 

The subject of RDF statements must actually be a resource defined by a 
unique identifier as a Uniform Resource Locator, so the above statement could 
be turned into an RDF statement illustrated in Figure 2.4.   

Despite its flexibility, RDF representation does not include important 
features that a real ontology should have such as the management of modal or 
fuzzy assertions, uncertainty, inconsistence and so on. Generally, it can be 
said that an ontology structure may be reduced to a graph; however, its real 
model is actually more complex than it (Di Lecce & Calabrese, 2008). 

An extension of RDF is the W3C standard Web Ontology language (OWL), 
(W3C, 2009) which comes with increasingly-expressive sublanguages (OWL 
Lite, OWL DL, OWL Full) for supporting different inference capabilities and 
adds more vocabulary for describing properties and classes: among others, 
relations between classes (e.g., disjointness), cardinality (e.g., "exactly one"), 
equality, richer typing of properties, characteristics of properties (e.g., 
symmetry), and enumerated classes.  

One of the main problems related to building ontologies is that this is a very 
time consuming activity. In the last years, ontology engineers have devised 
several semi-automatic ontology-building approaches, especially for the 
Semantic Web (Maedche & Staab 2001). Nevertheless, the human factor is 
still determinant. An awkward aspect of this is that multiple ontologies 
describing the same or narrow domains may be hardly mapped each other. 
The same concept may be in fact lexicalised in different ways; furthermore, 
some relations comprised in a given ontology may not be present in another. 

 

 

http://www.myself.it/Phd_Thesis/ 
 

myself 
author 

Figure 2.4: RDF statement example expressed in a graph notation.  
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Ontology for representing language: semantic lexicon 

As shown before, ontologies are employed for leveraging reusable KR and 
automated inference: hence, a critical point for ontology engineers is how to 
express specifications of concepts in a symbolic machine-readable way. 
Concepts and relations characterizing the ontological layer in fact need to be 
somehow lexicalised in order to be used and shared by a computational 
model. This is the reason why any KRR implementation requires both the 
ontological layer, considered as the semantic representation of the world of 
interest, and the lexical layer, considered as the symbolic transposition of the 
semantic representation.  

A very particular subset of ontology studies is the one considering language 
itself as the target domain of conceptualization. In this special case, concepts 
represent the meanings of lexical entries of a dictionary (words). One of the 
most widely used names for this kind of ontology is semantic lexicon.  

In a semantic lexicon, a one-to-one relationship can be drawn between the 
concept (semantic layer) and its word form (lexical layer) giving rise to the 
notion of word sense. Then, the collection of all word senses can be 
represented by a matrix whose rows and columns are respectively the lexical 
set and the semantic set. The sense matrix element can be expressed as a 
binary relation between a word form and a concept. A sense between lexical 
entry li and concept entity cj occurs if the (i, j) element of the matrix comes 
with unary value. 

This matrix is generally referred to as lexical matrix in the literature 
(Magnini et al., 1994) (Komarovaa & Nowak, 2001). Such a naming 
convention however does not take care explicitly of the semantic aspect. For 
this reason, we prefer to use for this structure the name of sense matrix. Table 
2.1 depicts an example of a sense matrix.  

Notice that, depending on the entry points (by row or by column) to the 
matrix, two possible patterns can be identified: lexical entries with more than 
one concept associated accounts for polysemy, concepts with more than one 
lexical entry associated accounts for synonymy. 

Table 2.1. Sense matrix example.  

Sense 
Matrix 

Concepts 

c1 c2 c3 c4 

L
ex

ic
on

 

l1 0 1 0 1 

l2 0 0 0 1 
l3 1 1 0 0 
l4 1 0 1 1 
l5 0 0 1 0 

 

In the domain of real-world applications, significant outcomes have been 
obtained with WordNet (Fellbaum, 1998) semantic lexicon. WordNet, an open 
project of the Princeton University, is referred to in the literature in several 
ways: lexical knowledge base (Basili et al., 2002) (Inkpen, 2001), lexical 
taxonomy (Jiang & Conrath, 1997) (Gangemi et al., 2001), lexical database 
(Miller, 1995) (Ordan & Wintner, 2005), machine readable dictionary (Kegl, 
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1995) (Hayashi & Ishida, 2006), ontology (Snasel et al., 2005) (Qian et al., 
2005), semantic lexicon (Di Lecce et al., 2009) (Quian et al., 2009). The latter 
definition is here preferred for the reason commented above. 

Originally based on the concept of synset (i.e., groups of synonyms) as 
atomic information granule, the recent release of WordNet 3.0 data model 
instead has been developed around the concept of sense, which is a more fine-
grained one. The underpinning KR model is represented by lexico-semantic 
chains over the domain of senses organized according to given structural 
patterns. For example hypernymy taxonomy arranges all WordNet senses 
according to a hierarchy that spans from the root concept of ‘entity’ (most 
general concept node with the meaning of ‘that which is perceived or known 
or inferred to have its own distinct existence’) to very specific leaf concepts 
such as ‘thesis’ (with the sense gloss of ‘usually a requirement for an 
advanced academic degree’).   

WordNet's structure makes it a useful tool for computational linguistics and 
natural language processing (see Figure 2.5 for an excerpt); for example it has 
been employed with promising results in the Semantic Web and automatic 
sense disambiguation (Navigli & Velardi, 2005)(Di Lecce et al., 2009).   

Figure 2.5: Excerpt of the WordNet taxonomy at the root level. 

 S: (n) entity (that which is perceived or known or inferred to have its own 
distinct existence (living or nonliving)) 

o direct hyponym / full hyponym 
 S: (n) physical entity (an entity that has physical existence) 

o direct hyponym / full hyponym 
 S: (n) thing (a separate and self-

contained entity) 
 S: (n) object, physical object (a tangible 

and visible entity; an entity that can cast 
a shadow) "it was full of rackets, balls 
and other objects" 

 S: (n) causal agent, cause, causal agency 
(any entity that produces an effect or is 
responsible for events or results) 

 S: (n) matter (that which has mass and 
occupies space) "physicists study both 
the nature of matter and the forces 
which govern it" 

 S: (n) process, physical process (a 
sustained phenomenon or one marked by 
gradual changes through a series of 
states) "events now in process"; "the 
process of calcification begins later for 
boys than for girls" 

 S: (n) substance (material of a particular 
kind or constitution) "the immune 
response recognizes invading 
substances" 

o direct hypernym / inherited hypernym / sister 
term 

 S: (n) abstraction, abstract entity (a general concept 
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2.2.2.3 Aspects in Automated Reasoning 

In the attempt to mimic human abilities, one key aspect of intelligent agents 
is automated reasoning. It broadly consists in determining whether a 
conjecture   can be proved relying on   assumptions. In other words, the 

central problem of automated reasoning is theorem proving.  

Basically, theorem proving can be made according to two possible 
directions (Bonacina & Martelli, 2006):  

 from general to particular with deductive theorem proving, which is 
concerned precisely with the entailment problem (in symbols:   |= 
 ); 

 from particular to general with inductive theorem proving, where the 
problem is to determine whether  entails all ground instances σ of 
  (in symbols:   |=  σ, for all ground substitutions σ). 

In both cases, the problem is to find an effective computation that leads to 
the desired proof. In (fully) automated theorem proving, the machine is 
expected to find a proof alone basing on its own build-in algorithms. 

Limits of classical approaches 

In classical logic settings, many proof techniques have been studied and 
implemented. Generally, the main limitation of these techniques is the so-
called logical omniscience problem: it implies the agent being a perfect 
reasoner. Given a Knowledge Base  , the agent should be capable of 
inferring all possible consequences of its axioms.  

In case of partial knowledge, the hypothesis of logic omniscience forces the 
agent to think of all possible scenarios (called possible worlds), thus leading 
to unfeasible or extreme resource-consuming situations even to model a card 
play. Possible world semantics is most commonly formulated by means of the 
Kripke’s formalism of modal logic.  

A thorough dissertation about all these issues can be found in (Wooldridge 
& Jennings, 1995). 

Modern approaches  

Traditional formalisms, although supported by strong theoretical bases, 
often fails to provide a valuable solution to real world problems. In many 
occasions in fact, an intelligent agent is required to infer and take decisions 
even when there is not enough information to prove that an action will work. 
This case is better known to as reasoning under uncertainty.   

A wide comprehensive historical coverage on this topic has been performed 
by the work of Dubois and Prade (Dubois & Prade, 2009). The authors 
consider that an agent believes a piece of information to be uncertain when it 
is not able to state if the piece of information is true of false. To this end, they 
exploit the mathematical definition of disjunctive set as the formal foreground 
for handling more-than-Boolean semantics.  
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The mathematical notion of uncertainty perhaps represents one of the best 
achievements in modern theory of formal logic reasoning. It encompasses in a 
unique framework all previous probabilistic theories (from Boole to De 
Finetti) along with more recent fuzzy set theory (Zadeh, 1965) (which is, 
however, basically conceived for dealing with imprecision rather than 
uncertainty) and possibilistic logic (Shafer, 1976) theories. 

2.2.2.4 Aspects in Machine Learning  

A precise definition for Machine Learning (ML) does not exist, however the 
Langley’s assumption (Langley, 2000), can be considered as a commonly 
accepted one: he considers learning as any “mechanisms through which 
intelligent agents improve their behaviour over time”.  

In more operational terms, ML can be described as the process of 
discovering recurrent structures from a set of available data (examples) and 
extrapolating these regularities to new data (Esposito et al., 2006). This 
process can be undertaken in several ways, but in general all the available ML 
techniques fall within the two categories of supervised and unsupervised 
approaches (Jain et al., 1999).  

Fostered by the need of unveiling hidden relationships among variables in 
large repositories, a relevant research direction in ML is that of Data Mining 
and Knowledge Discovery in databases. At the same time, it is useful 
mentioning the growing awareness among researchers about identifying ML 
as a classification problem. These two topics, data mining and classification, 
are treated in the following. 

Data mining and Knowledge Discovery in data 

Much interest seems nowadays to be arousing on the themes of Data Mining 
(DM) and Knowledge Discovery in Data (KDD). A thorough description of 
the two fields goes beyond the scope of the thesis. Here it follows a brief 
summary. 

DM is the discipline concerned with the search for “useful nuggets of 
information among huge amounts of data” (Jain, 1999). Spurred from the 
early work of Agrawal on databases (Agrawal et al., 1993) at the beginning of 
90s, DM has become now a popular technique in several application domains. 

DM has traditionally concentrated on the analysis of a static world, in which 
data instances are collected, stored and analyzed to derive models and take 
decisions according to them. In recent times, the focus has moved to on-the-
fly data with the attempt of detecting dynamic behaviours and extracting 
spatio-temporal patterns (Mennis & Liu, 2005). 

KDD is a branch of DM aimed at turning data into (structured) knowledge. 
This is achieved by combining cross-domain expertise such as AI, databases, 
statistics and cognitive psychology (Pazzani, 2000).The outcome of a KDD 
process is generally a (formal) model for structuring and representing 
knowledge. 

To cite a relevant example, Object Management Group (OMG) developed a 
specification called Knowledge Discovery Metamodel (KDM) (OMG, 2007) 
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which defines an ontology for the software assets and their relationships for 
performing knowledge discovery of existing code. 

Inductive Learning  

According to the studies of Vapnik (Vapnikin, 1979), (inductive) learning 
can be viewed as a classification problem. Here, we mainly refer to the 
formalism and arguments used by Alippi and Braione (Alippi & Braione, 
2006) to provide a summary of the learning problem along with some basic 
definitions that will be helpful ahead in the text. 

Consider a stationary random pair, yz ,x , xnX x ,  1,0y  and a 

set    nfF ααx |, of real valued functions called the hypothesis 

space.    1,0:, Xf αx represents an hypothesis or classifier made on x  
(the input vector of the acquired data) with controllable parametersα. As 
weights and biases in a neural network, α array accounts for the parameters 
needed to tune the machinery used to verify the hypotheses.  

  αx,, fyL  denotes the loss function expressing the cost of observing y 

instead of  αx,f . A risk is then associated to L this way: 

     αx,, fyLER  . This way, learning is turned into the process of 

finding an 0 such that the risk function is minimized given a set of N 

observational measurements  NN yxyxS ,,,, 11  .  

Such a learning process is generally referred to as training. The ultimate 
goal of training is hence to find a classifier with minimum risk. It is a 
common practice to assign a unit cost to the event of incorrect 
classification  axfy , . In this case, risk reduces to the error 

probability     axfyPErr , .  

It has been proved (Devroye et al., 1996) that no classifier can be more 
precise that the Bayes one (a.k.a maximum a-posteriori classifier), whose 
knowledge is associated with the knowledge of the conditional probability 
distribution of y with respect to x. Since, in the general case, we are unable to 
state whether the chosen hypothesis space contains the Bayes classifier or not 
then the following holds   BErrErr 0 .  

The two errors are also known as the language-intrinsic and inherent error, 
respectively. The first (  0Err ) is concerned with the way the problem is 

described in terms of hypotheses by means of the computational model with 
parameters α  adopted: the closer the description to the actual process, the less 
its value. The latter ( BErr ) depends on the learning problem itself and can 
only be improved by improving the problem itself.  

An inductive learning principle defines how data are used to select a 
classifier from a given hypothesis space. Inductive principles define 
relationships between α and S such either in functional terms α = α(S) or in 
probability terms Pα|S. The two cases correspond to deterministic and 
stochastic inductive learning principles respectively. Finally, a learning 
algorithm is a procedural implementation of an inductive principle. 
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2.2.2.5 Aspects in decision making 

When agent is required to take decisions, it should accomplish the task at 
the best of its available possibilities. Especially in uncertain environment 
(partially observed processes, limited information, time constraints etc…) 
such a commitment is hard to put into practice since decisions have to be 
based on minimizing or maximizing some stochastic variable or mediating 
among different alternatives.  

In the literature, a great deal of proposals has aroused to handle such noisy 
and imprecise environments. As an example, in the case of mobile robots 
acting in outdoor scenarios, behavioural FL-based rules can be adaptively 
learnt by the robotic agent by means of specifically engineered GAs (Hagras 
et al., 2001). 

As a matter of course, agent decisions and consequently agent behaviour can 
be related to the way agent is engineered. The next paragraph is devoted to 
present this aspect in more detail. 

2.2.3 Agent basic design principles 

Previous definitions Def 2.1 and Def. 2.2 characterize intelligent agents at 
the black box level. In this paragraph, we move toward the design level. For 
this reason, it is useful referring to another definition, featured by Russel and 
Norvig in their leading book Artificial Intelligence: a Modern Approach 
(Russel & Norvig, 2003): 

Agent “gray-box” definition 

Def. 2.3: An agent is anything that can be viewed as perceiving its 
environment through sensors and acting upon that environment through 
effectors 

Def 2.3. Adds to the glossary of the agent definition two other important 
terms: namely ‘sensors’ and ‘effectors’ which allow for defining respectively 
the input and the output agent interface with the external world (Figure 2.6).  

Figure 2.6: Agent pictorial representation emphasizing the role of sensors and 
effectors as interfaces with the environment, from (Russel&Norvig, 2003).  
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At the design level, agent intelligence has to be something related to 
sensors-effectors mapping. Following a mathematical formalism, agent model 
can be represented as a function defined in the domain PN of percept 
sequences of length N with values in the co-domain A of actions: 

AP: Nf  

However, this representation is too inflexible and largely impractical in real-
world situations. In fact, function f is supposed to be non-linear in complex 
settings. For example, if we had to model an agent playing chess, we should 
consider an extraordinary number of percept sequences thus requiring an 
immense look-up table to implement all possible percept-action pairs defined 
by the f function. To overcome this limitation, other solutions have to be 
pursued. 

2.2.3.1 Agent grey‐box models    

Agent models can be arranged in a climax of complexity starting from very 
trivial perception/action mapping to more sophisticated ones. In general, as far 
as agent models gain in complexity, the corresponding agent behaviour seems 
to be more human-like and intelligent. In the following, a list of different 
models is briefly presented and commented:  

 A SIMPLE REFLEX AGENT is the simplest conceivable agent 
endowed with a static set of condition-action rules. Percept sequence, 
once decoded, is matched against a table of action rules. When the 
match is found, the corresponding action is triggered. At the software 
level, the simple reflex agent barely corresponds to a “switch case” 
construct; hence, it acts as a selector of the input. At the hardware 
level, a simple reflex agent corresponds to a switchboard or similar 
machinery. 

 A REFLEX AGENT WITH STATE yields the concept of internal 
state. A perception sequence, given an internal state, may determine a 
change in it. In this case, the action is triggered by the agent internal 
state. This allows designers to setup finite-state-automata (FSA) 
agents. FSA alone account for a myriad of applications especially in 
the field of automation engineering from vending machines to robotic 
arms in production lines. FSA can be employed to drive the logic of a 
software program as well. As for simple reflex agent however, the 
limit of this approach is in the fact that agent has no autonomous 
learning ability and shows only regular behavioural patterns. 

 A GOAL-BASED AGENT is purposely engineered to accomplish a 
given task. This accounts for a germinal autonomous behaviour, 
although driven by a well-established and pre-defined goal. 
Furthermore, in presence of a goal, some target-following strategy has 
to be applied. This can be done in several ways. In principle, we could 
imagine a cost function to minimize, such that when its value is below 
a certain threshold the agent considers that the goal has been reached. 
Applications of this kind are currently widespread: for example, GPS 
car navigation systems or web crawlers. 
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 A UTILITY-BASED AGENT has its own utility functions to decide 
what is better for itself in presence of multiple contrasting choices. 
Utility provides a way in which the likelihood of success can be 
weighed up against the importance of the goals. This allows for a great 
flexibility in terms of adaptive behaviours. Implementations for this 
kind of agents are progressively appearing in the market in the latest 
times. Consider, for example, autonomous robotic vacuum cleaners: 
these robots have to deal with both a goal-oriented behaviour (clean 
one or more rooms) and a utility-based behaviour (come back to the 
re-charge station when battery is low).  

2.2.3.2 Multiple possible views in agent design: the AI panorama 

Agents represent quite a well-established topic within the vast field of CI. 
Since the latter is only a subset of the AI domain, what about agents in AI? 

AI is a cross-fertile domain where different schools of thoughts confront 
each other sometimes with harsh and implacable positions. 

Weak and strong AI 

A first coarse-grained distinction is between weak-AI and strong-AI 
supporters (Wooldridge & Jennings, 1995). According to the first group, 
agents are hardware-centred (robots) or software-centred computer systems 
(softbots) showing a minimal set of features commonly considered as being a 
sign of an intelligent behaviour. Namely, these are: 

 Autonomy: ability to have their own self-control mechanism; 

 Reactivity: ability to react to environment changes (physical for robots 
or software for softbots); 

 Pro-activeness: ability to self-activate also in absence of external 
stimuli, generally due to a goal-oriented or utility-oriented behaviour;  

 Social-ability: ability to communicate with peers using a given 
language (such as FIPA Agent Communication Language). 

Actually, the weak notion of AI can be easily conceptualized in terms of 
software programs implementing the four previous abilities up to a certain 
extent. Probably weak AI is the mainstream at present for the span of 
academic and industrial applications that are leveraged by this kind of 
research perspective.  

Strong-AI supporters are indeed convinced that agents, maybe in the next 
future, will be endowed with typical human-like abilities such as pure 
abstraction, easy context-switching, unsupervised learning and even 
consciousness.  

If this last ambitious research trend were really successful, machines would 
probably replace mankind in most of activities currently accomplished by 
humans, thus having a dramatic impact in common man everyday life. It is 
fair to say that, up to now, strong AI seems to be more a matter of theorists 
rather than of application engineers. 
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A crisp classification for AI approaches 

Enlarging the previous analysis, Russel and Norvig (Russel & Norvig, 2003) 
proposed to classify all conceivable AI approaches basing on two features we 
refer to as: frame of reference and reference model. 

 Frame of reference relies on two possible values corresponding to 
antithetical perspectives: the mentalist viewpoint and the behaviourist 
viewpoint. The first one can be considered as an inside-the-box 
approach, the other as an outside-the-box approach. 

 Reference model can be either the human being or a generic rational 
entity. 

Hence, four crisp categories are possible; they are reported in Table 2.2 
(slightly adapted from (Russel & Norvig, 2003)). 

Table 2.2 Classification of different approaches to AI. 

AI approaches Human Rationalist 

Mentalist Thinking humanly Thinking rationally 

Behaviourist Acting humanly Acting rationally 
 

 Thinking humanly: this approach requires, by definition, a cognitive 
model of the human mind. Cognitive Science unbinds a number of 
human-centred sciences (like Psychology), thus it necessitates an 
interdisciplinary panel of experts to be dealt with appropriately. 
Nevertheless, there can be found some authors in the AI field facing the 
issue of designing agent mental states. Some of them focus on 
Knowledge Belief Intention (a.k.a. KBI) or Belief Desire Intentions 
(BDI) models (Long & Esterline, 2000); others consider Obligations, 
thus giving rise to BOID (van der Torre, 2003) and BDO models (Ma & 
Shi, 2000). Moreover, other authors investigate emotional agent models 
(Camurri & Coglio, 1998).  

 Acting humanly: spurred by the famous Turing Test proposal (Turing, 
1950), it is based on the idea of measuring agent intelligence through a 
fair competition with human one. In order for the test to be passed, i.e., 
fooling a human observer, computer machine should be endowed with 
knowledge representation, natural language processing, automated 
reasoning and learning ability at the maximum extent. Up until now, the 
gold medal of the Loebner Prize that would award the designer of the 
first machine passing the Test still remains unassigned. Despite the 
initial enthusiasm strived by the Turing’s proposal, much criticism has 
been raised about the effectiveness of the Test. The philosopher of mind 
John Searle for example opposed to Turing’s view the hypothetical 
experiment of the “Chinese Room” (Searle, 1980). The gist of Searle’s 
argument is that any symbol manipulation machine cannot be considered 
as having an intentional mind in the proper sense. In other words, 
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according to Searl’s thought, computational intelligence cannot resemble 
human one even for ontological reasons. The Turing test is a measure of 
the complexity of a problem from the perspective of AI. It is 
noteworthy, for example, that the general problem of Word Sense 
Disambiguation has been shown to be at least as much difficult as the 
Turing test (as quoted in (Navigli, 2009)). In recent times, almost sixty 
years after the Turing proposal, conversational-oriented applications 
called chatterbots, such as A.L.I.C.E. by Richard Wallace, winner of 
several Loebner prizes, are attracting the interest of scholars and 
investors. Chatbots are computer programs able to simulate intelligent 
behaviour in textual conversation with humans in very restricted 
domains. For example, they can be used as virtual assistant in Web 
content presentation. Although they are not certainly able to undertake 
an open-domain conversation for long time, they seem to be effective in 
accomplishing task-oriented dialogue-based activities (Carberry & L. 
Lambert, 1999) (DeVault et al., 2009). 

 Thinking rationally: it is probably the oldest approach ante litteram to 
AI, since it can be traced back to ancient Greek philosophers such as 
Plato and Aristotle (who first formalized in the IV century B.C. the 
notion of logic through his famous syllogism). In the last two centuries, 
the logicist tradition has been dominated by mathematicians that 
produced several contributes to formal knowledge representation and 
reasoning like first-order-logic. Looking at AI from a theorem-proving 
perspective is appealing for the rigorousness of the approach, but 
theoretical and practical obstacles arise from the computational 
perspective. Some critical points, which are barely distinguishable since 
they present different facets of the same epistemic issue, are for 
example: informal and empirical knowledge representation (to what 
extent observed facts comply with learned and/or formal rules?) and 
tractability (is a sub-optimal solution to the problem achievable in 
reasonable time?). 

 Acting rationally: it likely represents the predominant current approach 
to AI and is centred on designing rationale agents. A rational agent 
abdicates from the achievement of correct inference at any cost in favour 
of a more pragmatic action that also accepts sub-optimal choices. The 
outstanding development of multi-agent systems in the literature can be 
ascribed to this approach. Russel and Norvig advocate the superiority of 
rationale agent by saying: “First, it is more general than the ‘laws of 
thought’ approach, because correct inference is only a useful 
mechanism for achieving rationality, and not a necessary one. Second, it 
is more amenable to scientific development than approaches based on 
human behaviour or human thought, because the standard of rationality 
is clearly defined and completely general.”  

Most of the current trends in agent and MAS modelling and implementation 
seem to be following the latter paradigm. 
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2.2.4 Agents from the literature to real‐world applications: 

the MAS paradigm 

Fostered by a rapid advance in hardware and software technologies and by 
the increasing need for the management of complex distributed systems, the 
attention of researchers has progressively moved the focus on MAS, i.e., 
societies of agents aimed at accomplishing (often in a completely automated 
way) human user-centred task.  

In the recent past, the search for a shared theoretical model for MAS has 
produced a long debate within the research community (Flores-Mendez, 
1999). Three points of discussions mainly following the survey work of 
Omicini and Poggi (Omicini & Poggi, 2006) are: 

 Standardized MAS design; 

 Adopted communication languages; 

 Real-world application domains. 

2.2.4.1 Standardized MAS design 

The work toward standards for agents interoperability was mainly carried 
out from the middle of 90s by FIPA – Foundation for Intelligent Physical 
Agent - that boosted the study and development of MAS applications: now, as 
a result, a large number of both open source and commercial agent 
development environments and toolkits are available (see, for example, JADE 
– Java Agent Development framework – (Bellifemine et al., 2001) and JACK 
(Winikoff, 2005)). In particular, it is here worth noting that JADE is today the 
most used agent-oriented platform worldwide.  

In the last years, research mainly focused on enhancing the most widely 
used development tools with new features, aimed at simplifying software 
development, as well as to extend their use in other application domains. In 
particular, a number of researchers are working in: (i) the development of 
tools for bridging agent technologies with both Web services and Semantic 
Web technologies (Motta et al., 2003), (ii) the definition of agent 
programming layer on the top of the most known peer-to-peer middleware 
(Bertolini et al., 2003), and (iii) the introduction of the most sophisticated 
security techniques in the MAS architectures (Poggi et al., 2005). 

2.2.4.2 Adopted communication language 

One key element in MAS is communication. In fact, agents need to be able 
to communicate with users, with system resources, and with each other if they 
are to cooperate, collaborate, negotiate and so on. Therefore, a number of 
researchers focussed on communication components for MAS and, in 
particular, on the definition of a language for the communication between 
agents.  

Agent languages rely on speech act theory (Searle, 1969) and are based on a 
separation between the communicative acts and the content language. 
Currently the most used and studied agent communication language is the 
FIPA ACL (FIPA, 2002), whose main features are the possibility of using 
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different content languages and the management of conversations through 
predefined interaction protocols.  

However, some researchers proved the limits of this languages and are 
working on the improvement to provide alternative semantics, new 
ontological supports, new content languages (Di Stefano et al., 2004) and 
even new generalized theory of communication acts as in (Fornara et al., 
2008). 

2.2.4.3 Real‐world application domain 

The current trend in MAS studies seems to put the focus more on 
applications than on theoretical issues.  

In the latest years, ranging from comparatively small systems for personal 
assistance to open, complex, mission-critical systems for industrial 
applications (Jennings & Wooldridge, 1998) (Shen & Norrie, 1999) 
(Pechoucek & Marik, 2008), MAS-based approaches have spawned a 
countless variety of engineering applications.  

Industrial applications are very important for MAS because they represent 
the field where the MAS techniques were first experimented, and where they 
first showed their huge potential. Today, MAS are used for a number of 
different industrial applications: in particular, they are employed in 
application scenarios like process control (Jennings, 1994), system diagnostics 
(Albert et al., 2003), manufacturing (Parunak, 1987) and network 
management (Bieszczad et al., 1998), whose distributed nature easily falls 
within the reach of MAS techniques.  

One of the first and most important application fields for MAS is 
information management (Decker & K.Sycara, 1997). In particular, the 
Internet has been described as an ideal domain for MAS, given its distributed 
nature and the sheer volume of information available that make the use of 
agents of great interest for searching and filtering the information (Klusch, 
2001).  

Internet has also pushed the use of MAS technologies in the fields of 
commerce and business process management. Today, electronic commerce 
and automated business processes have increasingly assumed a pivotal role in 
many organizations because they offers opportunities to significantly improve 
the way in which the many entities involved in the business process interact. 
In this scenario, MAS have been shown both to be suitable for the modelling 
and the design of business process management systems (Camarinha-Matos & 
Afsarmanesh, 2001), and to be amenable to work as key components for the 
automation of some or all the steps of these processes (Jennings et al., 1996). 
Moreover, the metaphor of the electronic marketplace has suggested buyer-
supplier or producer-consumer strategy models, often based on FL criteria 
(Minghua He et al., 2003) (Chi-Bin et al., 2005) (Lagorse et al., 2009). 

The distributed nature of traffic and transport processes, along with the 
strong independence among the entities involved in such processes, have 
made MAS a key solution for the engineering of effective, real-world 
applications for both traffic management and transport logistics (Davidsson et 
al., 2005). Different applications have been already realized; in particular, one 
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of them OASIS (Ljungberg & Lucas, 1992) can be considered as the proof 
that MAS are the ideal means for building open, complex, mission-critical 
systems.  

Another setting where MAS technology comes into effect is the 
management of pervasive and ubiquitous applications (see, for example, 
(Doctor et al., 2005)). The implementation of wide and dense sensor networks 
able to monitor various parameters, such as the air quality in environmental 
applications, is nowadays feasible even with off-the-shelf technologies. Since 
these networks are generally composed of many low-cost nodes, they allow 
for monitoring wide areas with a high level of spatial detail. On the other 
hand, they acquire a huge quantity of data, thus requiring advanced 
approaches to be handled (Abilemona et al. 2010). Another specific aspect of 
these sensor networks is the significance of the sampled data. Indeed, data 
sampled by a given node can be considered as detailed observations of a local 
phenomenon. The integrated analysis of data simultaneously sampled by 
various neighbourhood nodes gives information about a phenomenon 
interesting a wider area. By working on the dimension of the neighbourhood, 
it is possible to have a multi-level vision of the observed phenomenon by 
changing the observation scale. This requires however, flexible and scalable 
architectures endowed with sufficient autonomous intelligence in order to 
solve specific problems without human intervention.  

The effort to minimize the semantic distance between smart devices and the 
final human user is a major point of concern (Acampora and Loia, 2008). In 
fact, employing a large amount of low-cost general-purpose devices puts forth 
the need for managing local intelligence in an effective and efficient way 
where the use of agents and MAS can be relevant. 

2.2.4.4 MAS architectural limits  

Although MAS provide unquestionable advantages in the field of distributed 
systems, a number of challenges arise in their design and implementation 
(Sycara, 1998). Namely, the most important are: problem decomposition, 
communication, global coordination, technology issues, decision-making.  

In (Di Lecce et al., 2004) a MAS-based multi-layer communication 
architecture facing these points from the perspective of an ontology-driven 
design was introduced. The key intuition is that, by using an adequate 
ontological approach, it is possible to define a system having the ability of 
performing knowledge extraction and providing, at the same time, information 
to unskilled users too.  

Applied in a number of different application domains (Di Lecce et al., 2008) 
(Di Lecce et al., 2009), the MAS architecture is based on layers that represent 
the functional steps virtually adopted in any intelligent information processing 
task, namely: interface layer (managed by the an interface agent), brokerage 
layer (hosting the broker and the coach agent) and the analysis layer 
(employing multiple validation and forecast agents). The employed agents are 
reported in the following:  

 Interface agent translates the message from human/natural language 
into an ACL; 
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 Broker agent decides which agents can satisfy the requirement. Broker 
analyzes a local database in which services offered by MAS are stored 
and, starting by one query, it produces as many messages as the 
request needs. The language that broker uses to communicate is 
generated using understandable and common language for all agents; 

 Validation agents are concerned with providing a quality assessment 
for data; 

 Forecast agents have their own knowledge, based on a forecasting 
model. Each forecast agent applies its analysis method, in this way it is 
possible to define which is the best forecast method among those ones 
that are used; 

 Coach is a complementary agent of the broker, because it is able to 
assemble the information contained in the messages that the validation 
and forecast agents have sent. In the end of the process, the Coach 
sends a message to the Interface agent, which translates the answer 
from an ACL into a human understandable language. 

Communication flow starts at the top-level, in consequence of the user 
query submission, and propagates down the hierarchy toward database level, 
were data are structured, confronted and used to make predictions. Then, 
information flow is pulled back to the high level of the hierarchy to provide a 
suitable response to the user. 

The main critical aspect of this architecture is its dependence on the 
application-specific ontology. Changes either in the problem semantics or in 
the granularity level description have a significant impact on the overall 
system re-engineering process. In other words, this architecture is flat with 
respect to the problem description: if ontology is granulated in a different 
manner, this requires rewriting some or every single agent of the architecture. 

INTERFACE 
LAYER

BROKERAGE 
LAYER

ANALYSIS 
LAYER

Interface agent

Broker agent Coach agent

SYSTEM KNOWLEDGE BASE 

Validation agents Forecasting 

Figure 2.7: Hierarchical MAS derived from (Di Lecce et al., 2004).  
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2.3 Holons 

2.3.1 What is a holon? 

The first recorded use of the term ‘holon’ in the literature is ascribed to 
Koestler (Kostler, 1967) who devised, in late 60’s, the concept of an entity 
being a whole (from the Greek ‘hol’) and a part (from the Greek ‘on’) at the 
same time. The definition is intrinsically recursive since it accounts for 
describing holons in terms of other holons. As it will be shown in the next 
chapter, this particular property is essential for characterizing the 
computational model proposed in this thesis. 

The Koestler’s intuition was led by comparison with the biological world 
where multiple entities participate at different granularity levels to the goal of 
the living creature that host them. Examples are cells arranged into more 
complex structures as organs in a living multi-cell (prokaryotic) organism. 
These cells are in fact autonomous entities with respect to their own goals; 
notwithstanding they cooperate for sustaining the organism (with his own 
goal) they are part of. The search for self-similar, autonomous, and 
cooperative building blocks to employ in the management of complex systems 
has taken great benefit from the holon concept.  

This is particularly evident in the field of Intelligent Manufactory Systems 
(IMS) where the new paradigm has given birth to the so-called Holonic 
Manufacturing Systems (van Brussel et al., 1998) (Kopacek, 1999) (Gruver et 
al., 2003) (Brennan et al., 2005). In fact, the complexity of manufacturing 
systems integration, ranging from enterprise resource planning (ERP) to 
supervisory control and data acquisition (SCADA), combined with the 
increasing demand for agile and reconfigurable production lines, seems to be 
particularly tailored to the holonic philosophy.  

Since the offspring, several holon-based systems have been presented in the 
literature, especially in the last decade (Adam et al., 2000) (Fletcher et al., 
2000) (Kremer & Norrie, 2000) (Fujita, 2001) (Cheng et al., 2001) (Fleetwood 
et al. 2003). However, the contribution of the holon paradigm in the scientific 
literature goes further beyond applications. A late research trend seems to 
support the idea that the basic of holonic methodology is a way to conceive 
process description as a system of systems, hence being useful for system 
modelling and ultimately system thinking theories (Jackson & Keys, 1984).  

In a recent work (Simão et al., 2009), a classification of system architecture 
approaches is framed according to both theoretical and modelling aspects 
(Table 2.3). The authors identify holonic thinking as an extension of ontology-
based theories. This can be considered an evolution of the heterarchical 
approaches to adaptable and agile systems. Furthermore, the authors consider 
MAS to be the natural implementation of holonic modelling. Under this 
perspective, MAS technologies represent an efficient way to support holonic-
based systems design, provided that ontology paradigm is revised according to 
a holistic representation. 
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Table 2.2 Hierarchy of systems architectures (Simão et al. 2009). 

Approach 
Paradigms 

Theoretical Modelling 

5 Adaptable or Agile 
Fractals, Bionics, and 

Holonics 
MULTI AGENT 

SYSTEMS (MAS) 

4 Heterarchical or Interoperable Ontologies and Cognitics 
Uncoupled System 
(Objects/Agents) 

3 
Hierarchical Integrated or 

Visible 
Systemics and System 

Engineering 
Computer Integrated 
Manufacturing (CIM) 

2 Hierarchical or Rigid System Theory Automatic Control 

1 Isolated or Fragmented Empiricism Ad  hoc approaches 

 

2.3.2 Holonic modelling in the literature 

Early considerations about the use of the holon paradigm in the framework 
of system modelling can be traced back at least to late 90’s. In 1998, 
Thompson and Hughes (Thompson & Hughes, 1998) introduce an object-
oriented theoretical model to describe (human and computer) activities within 
a given organization. The work was led by the aim of finding an improved 
solution to the design of computer integrated manufacturing systems. The 
basic building block characterizing the holon formal description was adapted 
from the object-oriented notation to represent IT support of a business process 
at any given granularity level.  

The authors start their analysis from a simple observation: the most 
significant initiatives in defining CIM architecture approaches and enterprise 
modelling show that these approaches are both difficult to use and 
comprehend, and significantly lacking in scope. They claim that the existing 
approaches do not attend adequately to people and organizational aspects, and 
their relationship with computer-based systems: traditional hierarchical 
perspectives are predominant, while business-process views based on the flow 
through an enterprise towards the customer are lacking.  

According to the authors, a manufacturing enterprise can be represented as a 
network of semi-autonomous cells, “alike and fractal in nature”, with the 
common purpose to satisfy the ‘supply=demand’ equation. Interesting 
enough, the cells have a dynamic existence: they exist as long as they have a 
role to play; their specialization depends on the process involved.  

In this view, organizational structure “is provided by the system-subsystem 
relationship and the classification structure”. Interaction between subsystems 
does not imply subsystems loosing their autonomy. There is no superimposed 
hierarchy of command and control and no hierarchy of decision making. As it 
happens in biological systems, “subsystems work autonomously but broadly 
to the same agenda”. 

This kind of ‘cooperation in autonomy’ capitalizes on the property of 
emergence: some complex system behaviours are evident only at a higher 
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echelon as it happens in biological systems. Granularity levels are then 
properly accounted for without the need of an external top-down 
decomposition imposed by a hierarchy of commands/control, but only 
referring to a system-subsystem part-whole decomposition. The use of this 
paradigm as a conceptual means for describing complex systems is properly 
called ‘holonic modelling’.  

Holonic modelling has been successively endorsed and further formalized in 
a recent work focusing on Process-Oriented Holonic (PrOH) modelling 
(Clegg & Shaw, 2008), a methodology that uses holistic thinking and a the 
holon concept to build business process descriptions at different granularity 
levels. In particular, it has been conceived as a useful support for modellers 
whishing to analyzing business processes in organizations characterized by 
high complexity, low volume and high variety. 

One key element of PrOH modelling is the concept of granularity. 
According to the authors’ view, some modellers use the notions of scope (i.e., 
the range of activities modelled) and/or level (the detail/depth of that 
modelling) with the intent to frame a model’s content (Robinson, 2003; 
Greasley, 2004; Valacich et al., 2006). In PrOH terms, this approach is 
considered as an oversimplification: a more sophisticated notion of granularity 
is needed. Put in simple terms, it means deciding what goes in and what stays 
out of the process model (Gardiner & Gregory, 1996). The modeller must 
decide on the size of each piece of the model (whether that piece is an entity 
within a model, an entire model or a set of models). It is plain to say that this 
approach is intrinsically recursive (Jackson & Keys, 1984) and can be applied 
at any level of modelling. 

Without entering the PrOH methodology in depth (since our thesis does not 
specifically deals with business process analysis), it suffices saying that the 
model’s scope and the number of levels are defined according to a triplet of 
parameters, namely: pitch, width and length. Pitch value ranges across 
organizational levels of the Anthony’s pyramid (operational, tactics, strategy); 
width represents the degree of relationship to core process statement (higher 
values account for supporting processes): length indicates where to start and 
finish modelling a process. Given a certain granularity level, the modeller has 
to ask himself: “does the inclusion of any particular elements, relationships, 
inputs, outputs or feedback loops in the model, help to describe the behaviour 
of the core business process and its critical success factors within these 
dimensions?” The coarser the description used the closer to the strategic level. 

PrOH modelling allows for overcoming the traditional ‘inside-the-box’ task 
breakdown approach that employs aggregation/reduction patterns in favour of 
a new ‘outside-the-box’ methodology based on abstraction/enrichment 
criteria. Using the authors’ own words: 

Aggregation assumes that the truthfulness of activity relationships in the 
lower pitched models is absolute. In contrast, abstraction does not assume 
this but builds upon the premise that through developing higher-level 
models, one can identify new properties, which reshape existing process 
descriptions and lower level models. In reverse, enrichment is built upon 
the premise that lower level models can also possess new properties 
requiring new process descriptions. 
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In other words, holonic modelling as an offspring of holistic thinking is 
about providing enrichment/abstraction patterns in a holarchical way. Models 
explicitly aim to show properties that occur relative to the chosen granularity 
level. Traditional hierarchical thinking instead aims to define systems in 
absolute terms. The contrast between the two approaches is depicted in Figure 
2.8. 

    Contrarily to hierarchical MAS where agent position is determined by its 
role in the hierarchy (driven by functional system decomposition during the 
design process), holons assemble into holarchies depending on the ‘emergent 
knowledge’ that, at any granularity level, is necessary to accomplish the 
system goal within a given process description.  

The principle of emerging knowledge has been formally postulated in 
(Ulieru & Este. 2004) with the intent of describing holarchy as a coordinated 
system aiming at minimizing system entropy. The authors explicit that 
optimal knowledge at the holarchy highest level of resolution (inter-enterprise 
level) corresponds to an optimal level of information organization and 
distribution among the agents within all levels of the holarchy. Moreover, they 
use entropy as a measure of the degree of order in the information spread 
across the multi-agent system modelling the holarchy. 

In a very recent work (Ulieru & Doursat, 2010), Ulieru and Doursat 
emphasise the role of emergent engineering as a radical paradigm shift with 
respect to traditional top-down hierarchical analysis. The authors contrast 
traditional engineering approaches where designer imposes order exogenously 
to the modelled system as a supreme architect of the whole design process 
with the new one where the design actually becomes a facilitator of the self-
assembling process. The difference is evident since, in the latter case, the 
supervision is demanded to an implicit fitness evaluation function that 

Figure 2.8: Holarchy vs Hierarchy building (Clegg & Shaw, 2008).  
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depends on the environmental constraints in which the basic blocks of the 
entire architecture have to deal with.  

Consequently, the role of system engineer changes significantly: instead of 
defining the system along with its constraints in advance, following a top-
down hierarchical thinking, he/she supports and guide the complex system 
through its process of “self-design”. Organisational structure then arises from 
the bottom-up, through interactions among elementary components. The 
change in role from “dictator” of a system’s blueprint to “facilitator” of the 
self-organization process allows the system “to adapt its development and 
evolve to meet dynamic goals and unexpected situations in an anticipative 
manner—an impossible feat under the traditional approach.” The two 
approaches are confronted in Figure 2.9. 

The design-by-emergence paradigm has inspired our proposal, as we will 
see in the next chapter. 

2.3.3 Contrasting Aspects between Holonic and Agent‐based 

Systems 

    Following the work of Marik and Pechoucek (Marik & Pechoucek, 2002), 
a comprehensive comparison between holon and agent was presented in (Giret 
and Botti, 2004). Confrontation is carried out on a number of features. The 
result of the authors’ analysis is summarized by the table in Figure 2.10. Three 
interesting points that mark the difference between the two models are: 

 Information and physical processing: both elements are present in 
holons while agents are generally considered only as software 
entities; 

 Recursiveness: which is characteristic for holons but not for agents; 

Figure 2.9: Top-down vs. bottom-up ‘design by emergence’ (Ulieru & Doursat, 
2010).  
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 Organization: holons organize themselves according to holarchies, 
generally represented as dynamic hierarchic structures (Xiaokun &  
Norrie, 1999), while agent architectures are fixed and can range from 
horizontal to vertical organizations (Sycara, 1998)(Okamoto et al., 
2008). 

These points are considered in more detail hereinafter. 

2.3.3.1 Information and physical processing 

As for information and physical processing are concerned, the commonly 
accepted architecture to take as a source of inspiration is the one proposed in 
(Christensen, 1994) and reported in Fig. 2.11.    

The interesting behind this representation is that holon is an indivisible 
composition of HW and SW, along with its functional constituent layers. It is 
therefore impressive how this three-layered architecture can be mapped onto 
the three levels (bare machine, firmware and operating system) of a multi-

 
 

Inter-Holon 
Interface 

Decision 
Making 

Human 
Interface 

 Information 
processing 

 Physical control  Physical 
processing 

Physical processing 
 

Fig. 2.11: Multi-layer intra-holon architecture according to (Christensen, 1994). 

Figure 2.10: Holon vs Agent (Giret & Botti, 2004).  
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level Von Neumann architecture (Tannenbaum, 2006) equipped with 
Operating System (OS). A similar tripartition can be also found in other works 
(Colombo et al., 2006) in the field of Intelligent Manufacturing Systems.  

In (Fletcher & Deen, 2001) functional blocks are proposed to manage real-
time control for low-level process-machine interaction. In the authors’ view, 
each autonomous holon is composed of a hierarchy of large-grain functional 
components where interaction is carried out by user-defined cooperation 
strategies. It is useful mentioning that the authors apply IEC 61499 as a 
standard-based implementation of their model.  

In industrial process management and control systems, function blocks are 
considered to be computational elements (Fig. 2.12A) of distributed 
application in a decentralized control system (Fig. 2.12B). Since applications 
map into devices over the communication network, any application model can 
be viewed as the composition of event-driven functional blocks exchanging 
data to manage process control (Fig. 2.12C). A more detailed overview on 
IEC 61499 can be found in (Christensen, 2007). 

2.3.3.2 Recursiveness  

Recursiveness is a special property of a function to call itself in a nested 
fashion; therefore, it is evident that in order for a recursive function to be 
properly executed, an OS layer is necessary to handle the stack of nested calls. 
From the point of view of recursiveness, any (decomposable) holon can be 
described by a recursive agency according to the model presented in 2002 
(Parunak & Odell, 2002). The authors extend the Unified Modelling 
Language to support the distinctive requirements of MAS through an object-
based description. They state: “[…] agent systems are a specialization of 

Figure 2.12: IEC 61499 standard. Three basic views are displayed:  
function block [A], system model [B], application model [C]. 
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object-based systems, in which individual objects have their own threads of 
control and their own goals or sense of purpose”.  

The holonic (recursive) object-based representation is depicted in Fig. 2.13; 
with minor adaptations, it is confirmed by more recent works concerning 
Holonic Manufacturing Systems (Walker et al., 2005). With reference to Fig. 
2.13, MAS are made of a collection of agents and is an agent itself; the atomic 
agent corresponds to an agent that cannot be decomposed (hence, it is not 
another MAS). Since MAS appear to be a significant component in holonic 
systems implementation, some authors explicitly refer to ‘Holonic Multiagent 
Systems’ (Schillo & Fischer, 2003) (Fischer et al., 2004). 

2.3.3.3 Organization 

Holarchy is a specific organization of holons across different levels 
(compliant with either process-oriented or functional-oriented paradigms). 
Theoretically, any (MAS) holon could be described recursively by a holarchy 
until the desired granularity level description is reached. For these reasons, 
when referring to a holarchy, the generally accepted abstract underlying 
structure is a hierarchical aggregation of holons like the one in Fig. 2.14. 
Holons correspond to nodes, while relationships correspond to edges.  

Holons groups into small clusters (sub-holarchies) at each layer. External 
relationships allow the holarchy for communicating with the external world. 

Some authors (Shafaei & Aghaee, 2008) attempt to provide a behavioural 
description of the holarchy. They assume that, for an external observer, those 
simple and reactive acts take place at the base of the holarchy while complex 
activities and behaviours are observable at the top of the holarchy. In other 
words, lower levels are more reactive and upper level holons are more 
proactive. It is useful noticing that this layered viewpoint is the same 
described in (Sycara, 1998) to MAS.  

Building holarchies is an essential stage in holonic modelling. Nevertheless, 
in the literature of systems engineering, automatic holarchy building has 
received little attention so far (Clegg, 2007).  

In some recent works (Hsieh, 2008a), (Hsieh, 2008b), collaborative 
algorithms for holarchy forming are developed as a solution to an 
optimization problem. Inter-holon communication is achieved using FIPA 
standard contract net protocol (CNP). The employed formalism for holonic 

Atomic
Agent 

MAS 
* 

1..* 
  Agent 

Fig. 2.13: Agent recursive architecture adapted from (Parunak and Odell, 2002). 
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process modelling is Petri nets, although modified for handling self-
reconfiguring situations (Hsieh, 2009). Broadly speaking, this approach can 
be considered the ultimate evolution of task-driven scheduling algorithms 
towards holonic-based control architectures.  

A benchmark of several task-graph scheduling algorithms was assessed in 
(Kwok & Ahmad, 1998), while example of reactive scheduling holonic 
techniques adapting to dynamic real-time constraints can be found in (Chen et 
al., 2005). Generally, all these techniques, along with their formalisms, 
develop in the framework of Automation and Operational Research.  

In this thesis, a different direction is followed. More specifically, the 
concept of “holonic granule” is introduced as a basic building block for 
dealing with granular systems. In particular, emphasis is given to holarchy 
formation from a KR perspective, hence moving from the field of Artificial 
Intelligence. In this sense, some bridging works are those of Ulieru (Ulieru & 
Cobzaru, 2005) (Ulieru & Doursat, 2010). 

2.3.4. Holonic Systems: what is still missing 

From an engineering perspective, holon behaves as an intelligent agent at 
the interface level and, at the same time, is decomposable into other holons 
from the inside. This property makes holon a suitable conceptual model for 
handling different granularity levels (Calabrese et al., 2010). However, real 
world implementations of Holonic Manufacturing Systems are still few (Tichy 
et al., 2005) (Leitão & Restivo, 2008), although they are expected to increase 
in the near future (Brennan et al, 2011).  

In the author’s view, a major breakthrough in holonic applications may 
come from the adoption of a suitable model capable of handling different 
Holonic Systems properties such as self-organization, self-similarity, 
capability of handling hierarchically-nested granularity levels and even self-
description (as we will see further) within a single computational model. As 
we saw, attempts in this direction have already been made, but more on a 
theoretical base and certainly not with reference to the CI field.  

In this thesis instead, we setup a CI-based approach to holonic modelling 
which builds upon the concept of granularity in a more practical and software-
oriented way. Since this attempt is quite ambitious, it is useful to bank upon 
some pre-existing hooks in the CI literature. For our purposes, it is useful in 
fact to talk about granularity with almost the same language of CI researchers.  

Fig. 2.14:  Holarchy layered architecture expressed in a graph-based notation.  
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2.4  Granular Computing and Computing with Words 

2.4.1 The notion of granularity 

Granularity is, by lexicon, the property of resembling or consisting of 
granules.  

A granule, metaphorically, is conceived as any atomic element that is not 
distinguishable from its peers for manifest features but only for the fact that it 
represents a singleton (eventually embracing a whole) among other singletons. 
Under this interpretation, set theory partially grasps the essence of granule 
with the notion of subsets and elements of a set (Hobbs, 1985) (Pawlack, 
1982). Following this direction, a brand new theory called Granular Rough 
Theory (GRT) has been formalized in recent times (Chen et al., 2009). GRT 
stems from an ongoing work with the ambitious goal of a redefinition of 
classical set theory by investigating its granular nature with the sole notion of 
part-whole relation. In this sense, there could be drawn interesting connections 
between GRT and holonic modelling approaches. However, due to the 
recentness of the proposal, no specific work in the literature can be found on 
the topic. 

Any abstract reasoning process requires a certain level of understanding, in 
the sense that abstract entities can be arranged into ontological relations, 
without zooming in their inner nature (Giunchiglia & Walsh, 1982).  

In philosophy, granules can be objects, or ideas; in general, they are abstract 
entities that are self-consistent, at least at the level of granularity at which they 
are considered.  

In the framework of KR, granules become concepts of a given ontology 
(Gruber, 1993). An early overview on KR can be traced back to early 80s 
(Mylopoulos, 1980), where the ideas of ‘aggregation’, ‘generalization’ and 
‘context’ were already present. 

Leaving aside the epistemic aspect of what ontology actually is, ontology 
engineers have preferred to search for how to express knowledge (Uschold & 
Gruninger, 1996). This has progressively emphasized the importance of 
hierarchically structured systems. Especially in the last decade, with the 
advent of research on Semantic Web (Berners-Lee, 2001), this shift has given 
rise, on one hand, to formal ontology languages (like OWL (Antoniou & van 
Harmelen, 2004)), on the other, to taxonomies and machine-readable 
dictionaries (like WordNet (Fellbaum, 1998)) semantic lexicon.  

In the field of CI, Lofti Zadeh, has been addressing the computational 
aspects behind the notion of granularity for more than two decades. He first 
introduced the notion of information granulation (Zadeh, 1979); then, he 
formalized that concept in the more general theory of FL (Zadeh, 1996) 
(Zadeh, 1997).  

Led by the observation of the human reasoning process, which is inevitably 
built upon some machinery for handling approximate and imprecise logical 
inference, Zadeh considers information granulation to be a key aspect of both 
human concept formation and intelligent information systems. According to 
his view, granules (whether crisp or fuzzy) are (Zadeh, 1998): 
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Granule definition 

Def. 2.4: “clump of objects (points) drawn together by indistinguishability, 
similarity, proximity of functionality” 

The process of forming information granules is called information 
granulation. In the light of FL, information granulation is the basic process of 
Granular Computing (GrC). Ultimately, it provides a basic framework for 
Computing with Words (CWW) methodology, i.e., expressing knowledge of 
observed phenomena in terms of linguistic propositions rather than numerical 
equations.  The two concepts of GrC and CWW are presented hereinafter in 
more detail. 

2.4.2 What is Granular Computing (GrC)? 

The term “Granular Computing” is a relatively new one. It was first used in 
1997 (Lin, 1997) to provide a unique label for a number of models, ideas, 
applications sprouted from different domains such as machine learning, data 
mining, high-performance computing and so on.  

We employ the definition quoted by Pedrycz along with some logical 
passages from his introduction to GrC (Pedrycz, 2001): 

Granular Computing (GrC) definition 

Def. 2.5: “ GrC deals with representing information in the form of some 
aggregates (that embrace a number of individual entities) and their ensuing 
processing.” 

According to Pedrycz’s view, GrC as opposed to numeric computing (which 
is data-oriented), is knowledge-oriented and accounts for a new way of 
dealing with information processing in a unified way. Since knowledge is 
basically made of information granules, information granulation operates on 
the granule scale thus defining a sort of pyramid of information processing 
where low levels account for ground data and higher level for symbolic 
abstraction (see Figure 2.15). 

The problem of traversing different granularity levels according to both 
enrichment or abstraction criteria becomes then a relevant issue from the 
system engineer’s point of view. Several points need to be addressed. For 
example, are knowledge structures developed with the use of “large” 
information granules useful when more specific results are required? Is the 
identity of the granule forming elements lost when granulation is carried out: 
i.e., is granulation a non-recoverable process? What are the limits of 
abstracting and enriching information structures? As Pedrycz says, “these 
aspects boil down to the mechanisms of encoding and decoding granular 
information.”  

Notice that, given an information granule X, the encoding/decoding 
mechanism at each level should be such that: 

||COD(ENC(X)) – X||  min 
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If the absolute difference in the left of the equation were zero, the algorithm 
would be information loss-less with respect to different granularity-level 
representations. Efforts to develop algorithms in this direction have been 
devised by the same Pedrycz in recent times using FCM in a collaborative 
agent environment (Pedrycz & Rai, 2008). 

2.4.3 Hierarchies in GrC 

In GrC, the importance of hierarchies has been recently addressed by Yao 
(Yao, 2005) who provides an overview of the methodological, computational 
and philosophical aspects of GrC by means of the unifying element of 
granular structure. He argues that granular systems self-manifest their 
properties through (often multi-level) hierarchical patterns. 

The following subsections synthesize part of Yao’s considerations.  

2.3.3.1 Architectural aspects of hierarchies in GrC 

A hierarchy characterizing a granular system is made of two basic elements:  

 Granules: representing the system building blocks; 

 Relationships among granules: defining the system structural 
properties. 

Granules arrange into levels. A level is populated of granules whose 
properties characterize the behaviour of the level. Generally, granules at a 
particular level can be recursively described in terms of internal hierarchies at 
a different system granularity level. Due to such taxonomic pattern, a partial 
order can be employed to define precedence within the structure.  

From an architectural point of view, two kinds of relationships can be 
drawn, namely: inter-level and intra-level. The former accounts for system 
multi-level expansion, the latter is indeed useful for describing a whole in 
terms of its parts. Figure 2.16 depicts these elements (granules, levels, and 
relationships) in a single abstract frame.  

GRANULARITY 

high 

low 

decoding 

encoding 

Figure 2.15: Information pyramid according to Pedrycz (Pedrycz, 2001).  
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Granules correspond to nodes. Relationships are of two kinds: intra-level 
relationships are expressed as nodes containing further granules; inter-level 
relationships correspond to edges among nodes at the same level. In other 
words, granulation seems to produce holarchies rather then hierarchies. This is 
a key point for our discussion in the next chapter. 

2.4.3.2 Semantic aspects of taxonomies in GrC 

Granular taxonomic descriptions can assume different meanings depending 
on the chosen application domain. Yao suggests, for example, that partial 
order in hierarchy levels can have, among others, these interpretations: levels 
of abstraction, levels of reduction, levels of control and levels of detail.  

The list of items can be easily extended as well by looking at other contexts, 
namely: system theory, system modelling, system thinking, logics, philosophy 
etc. It is noteworthy that, depending on the direction by which we transverse 
the taxonomy, we obtain, for each context, opposite approaches. Table 2.3 
summarizes the stances obtained in the two cases of either going from the root 
towards the leaves of the taxonomy or vice-versa. 

 

Table2.3 Different interpretations of taxonomy in granular systems. 
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2.4.3.3 Critical aspects in GrC hierarchies 

As a result of his inspection, Yao admits that several questions related to 
hierarchies in GrC cannot be answered unless a particular system and domain 

Figure 2.16: Multi-level granular taxonomy expressed in a graph-
based notation. 
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specific knowledge is adopted. Namely, these questions are: What generates 
levels? How many levels are needed? Why are the levels discrete? What 
separates the level? What ties the level together? How do levels interact with 
each other? 

As we will see, our proposed methodology provides an answer to these 
points according to a CWW-oriented methodology. 

2.4.4 From GrC to CWW 

GrC and CWW are strictly related. At the core of the CWW methodology 
lays in fact the concept of granule due to the inner fuzziness of linguistic 
expressions. In the Zadeh’s view, a word w is considered as a label of a 
granule (Zadeh, 1996). Under this perspective, the use of words becomes de 
facto a form of granulation. For example, saying that Mary is young equals to 
granulate the concept of age of Mary.  

In Zadeh’s own words: 

CWW definition 

Def. 2.6: “Computing with Words is a methodology for reasoning, computing 
and decision-making with information described in natural language” 

The reason for studying CWW is therefore simple since “conventional systems 
of computation do not have the capability to deal with linguistic valuations” 
(L. Zadeh) 

 This consideration puts forth the need for a computational model having 
words in input and words in output. As envisaged by Mendel (Mendel, 2007), 
the model should be activated by words, which would be encoded into a 
mathematical representation using fuzzy sets (or other equivalent theories), 
processed through a CWW engine and finally decoded back into a word (see 
Figure 2.17). It is fair to say that such a model is an automaton in accordance 
to what has been discussed at the beginning of the chapter. 

2.4.5 Computing With Words: open questions 

How CWW can be put into practice in an effective way is still a point of 
debate. In a recently published discussion forum (Mendel et al., 2010), 
researchers from the CWW task Force of the Fuzzy Systems Technical 
Committee of the IEEE Computational Intelligence Society exchange their 
opinions about CWW. Their quotes on the critical aspects of CWW can be 
considered a good starting point for our following argumentation. 

Figure 2.17: A CWW machine according to (Mendel, 2007). 
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CWW is a broad overarching methodology, which makes it very rich 
because it is open to interpretations and different instantiations (J. Mendel) 

A critical point for the CWW paradigms is to develop reasoning 
mechanisms that are able to map inputs words, perceptions and 
propositions to words, decisions, etc. (H. Hagras) 

What has been largely missing from the CWW literature is the connection 
between data and fuzzy set model. This connection should be made at the 
start of works about CWW because those works need to incorporate the 
uncertainties about words (J. Mendel) 

Starting from previous claims, in the next chapter we will provide a novel 
instantiation of CWW from the perspective of Holonic Systems.  In particular, 
we bring Holonic Systems and MAS theories within the boundary of GrC by 
exploiting the notion of multi-level hierarchy (a core aspect of GrC) and its 
counterpart in Holonic Systems (Figure 2.18).  

To achieve this aim, a novel agent-based holonic computational 
methodology called Hierarchical-Granularity Holonic Modelling is 
introduced. The proposed methodology will be capable of mapping input 
words to perceptions, representing knowledge, learning and taking decisions 
with respect to the given problem domain. Finally, it will be shown how 
uncertainty can be dealt within the proposed model.  

Figure 2.18: Multi-disciplinary approach employed in the thesis. 
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3.  HIERARCHICAL‐GRANULARITY  HOLONIC 

MODEL (HGHM) 

As shown in the previous chapter, agents and holons account for well-
established paradigms in the arena of complex systems engineering. The two 
approaches both deal with the same issue, i.e., intelligent information 
processing (especially on large scale), but from different viewpoints.  

The realm of agent-based systems is intimately related to the AI perspective 
sprouted from the Minsky’s idea of intelligence as a society of agents. On the 
other hand, the realm of Holonic Systems grounds on the holistic intuition 
proposed by Koestler who considered biological systems as a coordinated 
multi-level structure of beings conciliating the part/whole duality in a unique 
entity that he called holon. In between, we set GrC and, in particular, CWW as 
promising approaches to deal with complex systems from a linguistic-oriented 
direction in opposition to traditional data-oriented techniques. 

The offspring from AI towards linguistic approaches is apparent and well 
documented, passing through CI, FL, GrC, CWW (to cite probably the most 
relevant branch of this evolution); the other way that starts from Holonic 
Systems is indeed rather accidental at the moment, if existing at all. Our work 
attempts to reduce such a misbalance with the ultimate intention of importing 
aspects of holistic thinking into AI-inspired linguistic-oriented computational 
models and vice-versa.     

To fulfil this commitment, we consider it useful to restart from the original 
Koestler’s definition of holon with the aim of finding a minimal 
computational concept to use as an atomic entity for our modelling technique; 
once defined, it will be used as a basic building block to setup the whole 
theoretical and operational framework. Because of the previous 
considerations, the concept we search for has to encompass both holonic- and 
CI-oriented perspectives.  

For this reason, we begin our discussion in this chapter by presenting the 
notion of holonic granule, i.e., a formalization of the notion of granule 
independent from the chosen granularity level. Holonic granule re-defines the 
two concepts of holon and holarchy by devising a unique computational entity 
based on a recursive structure. As following step, holonic granules are used as 
basic entities of a ‘holonic grammar’: the machinery employed for describing 
linguistically complex hierarchical systems at different granularity levels. An 
archetype algorithm for managing holonic grammar-generated descriptions is 
hence designed. Next, a heuristics is introduced to allow automated extraction 
of holonic grammars from observational data. The overall computational 
model, endowed with this unsupervised learning ability, completes the picture 
and gives birth to the proposed hierarchical-granularity holonic model 
(HGHM). 

For the sake of clarity, the chapter is divided into two parts: Part I 
introduces the novel concept of holonic granule using an object-oriented 
notation along with its compositional and generative nature; Part II shows 
how to compute with holonic granule considered as an basic block for 
building agent-oriented systems.   
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PART I – HOLONIC GRANULES 

3.1 The Holonic Granule 

 According to Koestler’s original ideas, holon is an entity playing the role of 
a part and a whole at the same time. This is a bit weird at the operational level 
since it requires the same holonic entity having both the properties of a 
singleton and a community: how to do that?  

Our proposed solution stems from the observation that holons are agents 
able to show an architectural recursiveness (Giret & Botti, 2004). Already, we 
know that a holon which can be recursively decomposed at a lower granularity 
level into a community of other holons is said to produce a holarchy. If we 
also considered a holarchy to behave intelligently as if it were a holon, then 
the apparent dichotomy between parts and whole would vanish in favour on a 
new computational entity being a holon and a holarchy at the same time. 
These two roles are thus interleaved and one does not exist without the other. 
In particular, viewed from the extern, both holons and holarchies should 
appear as intelligent agents.  

Now, there follow the two underpinning assumptions that help us fixing our 
proposal: they are based on the explicit notion of granularity level considered 
from two complementary viewpoints.  

Claim. 3.1:  holon is an agent of a holarchy at a given granularity level 

Claim. 3.2:  given a certain granularity level, holarchy is an agent 

The first claim is compliant with the traditional holonic literature, i.e., holon 
as an autonomous whole (agent) being also a part of the holarchy at a certain 
granularity level; the second claim accounts for a stronger notion of 
intelligence as a society of agents assuming any level of the holarchy to be as 
a whole resembling to its intelligent parts. 

Notice that while Claim 3.1 defines a description pattern going ‘down’ the 
holarchy (top-down enrichment), the pattern described by Claim 3.2 allows 
for rising ‘up’ the holarchy (bottom-up abstraction). 

To visualize the semantics of the two claims, it is useful to consider the 
holon playing the role of an entity and the holarchy playing the role of a 
granule. It follows that a granule behaves like an entity and groups of entities 
behave like a granule. This interpretation unveils the double facets of our 
interpretation of Holonic Systems that can be viewed both at an entity level 
(enrichment) and at a granular level (abstraction). Such twofold nature is in 
full accordance with the traditional holonic-based paradigm (Ulieru et al., 
2002) and can be expressed in object-oriented notation as in Figure 3.1 

While the concept of entity is quite intuitive and does not deserve further 
attention, the nuance of granule in our interpretation of Holonic Systems as 
supported by Claim 3.1 and 3.2 is indeed crucial for the following discussion.  

A first informal identikit of the holonic granule can be drawn: 

Holonic Granule definition (informal) 

Def. 3.1: A holonic granule is a granule showing the properties of a holarchy  
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Note that this definition is an extension of that of Zadeh presented in the 
previous chapter: it adds in fact the aspect of holarchy accounting for an 
inherent architectural recursiveness. It is noteworthy that this aspect, in GrC, 
is generally not taken explicitly into account. 

3.1.1 Providing a formal definition of holonic granule 

We now introduce a more rigorous assessment of the same concept of 
holonic granule presented above. 

Holonic Granule definition (formal) 

Def. 3.2: Consider a set E of n entities, a set GE of k-tuples whose elements 
determine a total cover (not necessarily a partition) of E and a set RG of 
binary relationships defined over GE  such that the graph < GE , RG > is 
connected  
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A holonic granule (HG) is the graph GE RGHG ,  

    gi elements represent groups of similar and indistinguishable entities; 
consequently, they are granules in the Zadeh’s sense. Mathematically, gi, 
which are nodes of the graph defined by the HG, correspond to edges of the 
hypergraph defined over the entities of set E. We prefer however to disregard 
HG representation as a hypergraph since we retain it to be misleading. The 
reason for this position is that HG, as in Def 3.2, already incorporates the 
presence of entities, albeit implicitly. This because in order for a HG to be 
designed, it suffices defining the granules of the next neighbour sub-level (gi) 
as they were nodes of the whole graph without worrying about how these 
nodes can be further decomposed into subsumed entities in a recursive 
fashion. HGs in fact are abstract categories that can account for any given 
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granular problem. In other words, HG concept, by itself, guarantees recursive 
decomposition/granulation.  

It is important to observe that while a HG is always an entity (semantically, 
everything can be defined as to be an entity!), an entity can be either a HG or 
not. If an entity is a HG, we are simply defining a new decomposition where 
what we previously called as entities now become granules thus implying the 
need to find out some other more specific entity as basic building block. This 
case will be treated more in depth shortly hereinafter. Otherwise, if entity is 
not a HG, this means that, according to our problem representations, entity 
‘has reached the ground’ and then represents an atomic concept. In this case, 
we refer to entity as ‘primitive’ or ‘ground’ HG. 

Primitive HG definition 

Def. 3.3: Given a problem description expressed in terms of HGs, a primitive 
(or ground) HG is any HG at the lowest granularity level. 

Notice that HG, by definition, can be expressed as a particular type of a 
UML (OMG, 2007) class diagram (see Figure 3.2) where composition 
relationships are recursively defined over HG class in addition to the 
relationships defined in RG. 

One could ask why we considered composition rather than aggregation 
relationship. The reason is that composition is conceptually strongest than 
aggregation. Given a certain HG, if we could leave out a sub granule from it 
we would obtain a different whole, hence a different HG. In other words, 
composition accounts for the semantics of the phrase ‘a whole is more than 
the sum of its parts’, which is a well-known motto in the holistic thinking 
community. 

3.1.2 HG‐based system description: inside‐the‐box and 

outside‐the‐box aspects  

According to previous considerations, a HG-based system can be 
represented architecturally as a holarchy of HGs arranged in a given multi-
level structure which depends on the nature of the system under scope hence, 

Fig. 3.2: Representation of a HG-based system  as a UML class 
diagram. 
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ultimately, on the system ontology. In this regard, two main granule 
relationships can be identified:  

 inter-granule relationships;  

 intra-granule relationships. 

When the HG-based holarchy is described at a given (entity) level, the focus 
is on inter-granule relationships. In this case, the meaning of inter-granule 
relationships depends on the semantics of the HG. Alternatively, when the 
focus in on the mappings between a HG and its subsumed components at the 
next lower level then intra-granule recursive relationships are being 
considered. This because a process of conceptual refinement in granule 
description is being carried on.  

The distinction between intra- and inter-granule relationships defines two 
kinds of complementary granular system description approaches:  

 ‘inside-the-box’ (traditional); 

 ‘outside-the-box’ (innovative). 

The former relates to connections among subsystems at the same level, i.e., 
it describes a whole in terms of its parts; the latter relates to internal sub-
system decomposition (mapping from a level to the next one). The two 
approaches are both needed when a complete HG-based system is studied. 
Using the same object-oriented notation employed above, we include this new 
aspect in Figure 3.3. 

3.1.3 Inside‐the‐box vs outside‐the‐box views: what comes first? 
A reasonable point of suspicion about the HG-based system decomposition 

may be the ambiguity hidden behind the fact that some granules show both 
PART-WHOLE and functional relationships at the same time. It is fair to ask 
ourselves: what comes first in complex system modelling? The answer has a 
dramatic impact on the credibility of the whole proposal.  

Our position is that the supposed ambiguity is a false problem, since it can 
only solved with specific regards to the given scenario.  

0…*

1…*

HOLONIC 
GRANULE 

outside-the-box

inside-the-box

1…*

Fig. 3.3: Outside-the-box and Inside-the-box descriptions for a given 
HG-based system.
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For the sake of clarity, we prefer not to scatter problem discussion. Instead, 
we deal with this point by means of an intuitive example.  

Suppose we have two concept granules: a car and an oil station. The car is 
composed of a number of parts (accounting for part-whole relationships): 
wheels, front and rear glasses, engine, etc… Among various parts, there is 
also the tank.  Suppose that the tank is near empty and the car is at a certain 
distance, say 10 miles, from the next station (this situation accounts for a 
functional relationship between the car granule and the oil station granule). 
Car granule has to perform a decision about refuelling, i.e., exploiting the 
service of the oil station granule or not. This decision is in the mind of the car 
driver (an intelligent agent – not necessarily a human being) and may depend 
on a number of factors. Likely, the more the tank is near to be empty, the 
more certain the stop to the station. In this way, the problem is modelled in a 
fuzzy-logic fashion with a simple rule. Otherwise, driver’s decision can be 
influenced by his/her own attitudes or even external condition (in heavy rain 
the driver may wish to stop in a covered place) and hence could be described 
by a very complex inference model. In this worst-case scenario, how many 
times do we (or an intelligent program) use abstraction and enrichment 
patterns and functional relationships among components and in which order? 
There seems to be no optimal answer for this.  

This short story is to support the idea that ambiguity resolution is solved by 
the decision model, which cannot be a-priori defined. In other words, it is the 
system that drives out the correct sequence of inter and intra-granule ‘calls’ 
during system functioning. 

3.2 Multi‐Level HG‐Based Systems 

By similarity with the assumption of Claim 3.2 that holarchy is also a holon, 
we hypothesize from Def. 3.2 that any given HG is itself an entity: a fair 
hypothesis since everything can be considered an entity at the most abstract 
level of representation. Thus, the following remarks also hold: 

Rem. 3.1: any HG can be recursively decomposed depending on the 
granularity levels one may want to reach 

This decomposition is actually a type of enrichment, as we showed in 
Chapter 2. Rem. 3.1 provides slightly a better insight into granularity level 
understanding in GrC terms. If L is the level of representation of a system 
granule HGL, its enrichment at a finer granularity level leads to something like 
this:  

11
2

1
1 ...   L

m
LLL HGHGHGHG  

It is interesting to note that enrichment is a top-down description pattern 
aimed at zooming inside system structure. The result of this zoom is the 
discovery of new entities and relationships, hence new HGs.  

We assume that, at any level, decomposition (hence enrichment) is loseless 
meaning the inverse composition process (hence abstraction) should give back 
exactly the original HG.  

During HG-based decomposition process, there may be clumpiness among 
granules at level L-1. This accounts for non-crisp distinctions among HGs at 
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that level. For example, the idea of HGHM, the core of this doctoral thesis, is 
mainly presented in this chapter, but some references to it can be found in 
other chapters as well. We should undertake a finer granulation, for example 
at paragraph level, to appraise crisp boundaries for that concept.  

Notice that HG-based enrichment can be iterated until a desired abstraction 
level is reached, i.e., primitive HGs appear. This actually produces a holarchy 
structured at different granularity levels. Hence, we define a HG-based system 
this way: 

HG-based system definition 

Def. 3.4.:  A system is said to be HG-based iff it is representable as a HG-
based holarchy, i.e., at multiples granularity levels 

Figure 3.4 helps figure out the idea of granularity levels in HG definition by 
means of a pictorial representation. 

HG-based description as a modelling technique can be used to characterize 
any sort of complex system or process. For example purposes, we apply the 
notion of HG to the description of the well-known bubblesort algorithm. 

Figure 3.4: HG-based holarchical decomposition. 
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3.2.1 Exemplar HG‐based description: the bubblesort 

algorithm 

Bubblesort is the name of a popular simple sorting algorithm based on the 
metaphor of bubbles. Spanning through the entire input array length, elements 
with highest values bubble to the top of the array through a binary swapping 
mechanism based on the confrontation of adjacent value pairs. A (X, Y) value 
pair is swapped if X is found to be grater than Y. The maximum number of 
swaps is O(n2) where n is the array length; this because the swapping 
mechanism requires two nested cycles over indices i and j to cover all possible 
situations. At the end of the swapping process, the sorted array is returned. 

The previous description identifies several granules of information. The 
engagement is now to find a HG-based holarchy that allows for describing the 
bubblesort algorithm at different granularity levels.  

Assume we want to move in a top-down fashion, i.e., following an 
enrichment pattern. We then decompose the conceptual representation of the 
bubblesort algorithm starting from most abstract HG towards lower 
granularity levels. HG-based decomposition is carried on according to 
progressively more detailed view of the process under scope. In particular, as 
long as new elements contribute to enrich the description, a new level with a 
finer granulation is setup. Granulation is driven by new variables that allow 
for detailing the underpinning ontology behind the algorithm.  

An exemplar HG-based decomposition is visually represented by the 
holarchy in Figure 3.5, which is summarized in tabular form in Table 3.1. 

 

Table 3.1 Tabular representation of granularity levels in bubblesort HG-based 
decomposition. 

Level Semantics of the 
decomposed HG 

New concept 
causing 
enrichment  
[variable:type] 

Primitive functions employed  
(external HGs) 

0 bubblesort routine as a 
black box  

A: array Scanf(&data_in): data 
read from external environment  

Printf(data_out): 
write in the external environment 

-1 Core sorting process i,j: ranges Length(A:array): num 
find the length of array A 

-2 Sorting value pairs  A[i], A[j]: 
elements of array 

Select_pairs(A:array, [i,j]:ranges): 
list 
output list of adjacent value pairs 

-3 Verification  b: boolean Greater_than(X:num, Y:num): 
boolean 
verify if X is greater than Y 

-4 Swapping  <ground> Swap(X:num,Y:num, A:array): void 
swap two values in an array  
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3.3 Expressing HG Linguistically 
Until now, HG-based system description has been dealt mainly on an 

intuitive base. We now pursue its transposition of HG-based description at the 
computational level by following a linguistic approach: in fact, any 
description requires a (possibly formal) language to be made effective. For 
this to be achieved a HG-based grammar made of simple rules is presented, 
thus providing the suitable machinery to deal with HGs in CWW terms. 

3.3.1 Holonic Grammars  

To better introduce the concept of HG-based grammar it is useful referring 
to some basic definitions and remarks. 

HG proposition definition 

Def. 3.5:  A HG proposition (HGp) is a HG made up of two parts: a string 
representing a proposition about some observed data and a predicate value 
(‘T’ or ‘F’) representing its semantics. 

For example, an HGp can be of this kind:  

 F'',C'15is etemperaturthe'   

Bubble 
Sort 

main

scanf(data in) 
printf(data out)

core

length(A) 

raw data

i,j

A[i],A[j]

A

sort

select_pairs(A,[i, j]) 

b=T

swap

greater_than(A[i], A[j])

swap(i, j, A)

Figure 3.5: Example HG-based holarchy for representing the bubblesort 
algorithm. 
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which means that, given a certain context, it is observed that the temperature 
is not 15°C. 

Note that, according to the previous definition, the most intuitive way of 
representing an HGp h is: 

 vαh ,  

with   pertaining to some alphabet A and v representing a value in the set 
{‘T’, ‘F’}. However, since the couple of symbols ( , v) is itself a symbol, a 
more compact notation can be employed. 

 





FALSE is α if

TRUE is αif 
,




 v  

The over-line is used to indicate the logic complement to proposition . From 
now on, this compact notation will be preferred. 

 
It is important to notice that:  

Rem. 3.2: any proposition can be made true at the next higher (abstract) level 
of understanding, by simply including the falsehood inside the proposition  

For example the proposition: 

‘The Earth is flat’ 

is a measurable false hypothesis. However, 

‘It is false that ‘the Earth is flat’’ 

is conversely true. This logic step equals to rewriting a ‘false’ HGp this way: 

 T'',   

 

It is useful to introduce the following definition: 

Self-descriptive HGp  definition 

Def. 3.6:  An HGp is self-descriptive if it represents a true proposition.  

Note that Rem. 3.2 implies that any HGp can be made self-descriptive. 

 

We now introduce a compositional property of HGp thanks to the following 
theorem: 

Theorem 1.  Given two self-descriptive HGps ji  , , if  the logic implication 

Iij  holds:  

 jiijI  :  

then the HGp defined by the string ‘ ji   ’ is itself a self-descriptive HGp. 

Proof. It suffices reminding that, by definition, HGps always occupy the 
fourth row of truth table of logic implication reported in Table 3.2. 
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Table 3.2. Truth table of logical implication . 

A B BA   

F F T 

F T T 

T F F 

T T T 

 

Theorem I can be interpreted as follows. We have two HGps, say A and B, 
accounting for some verifiable true assertion about some process or 
phenomenon. Assuming that a logic implication between the two is found 
through some machinery, consequently the new assertion “IF A THEN B” 
considered as a whole is another true HGp. New HGps can be then built upon 
other HGps thus forming a growing collection of true IF…THEN assertions. 

Notice that “IF A THEN B” can account for two opposite types of logic 
implication: 

 (inductive)  Abstraction: B is an abstraction of A 

 (deductive) Enrichment: B is an enrichment of A 

In the abstraction case we may think to an example like: <IF ’take’ THEN 
‘verb’>. In this example ‘take’ as a singleton is logically an element of the 
class ‘verb’.  

In the enrichment case, we may think to example like: <IF ‘Sentence’ 
THEN ‘Noun Phrase+Verb Phrase’> meaning that, given a sentence, it 
consists in a composition of two syntactical parts. 

In both enrichment and abstraction case, Theorem I produces something 
more than the sum of its parts, in particular: 

 a new HG; 

 a structural relation (the logical implication) connecting its components. 

 
With reference to Theorem 1 and to the concept of abstraction pattern 

described above we introduce the following definition: 

Abstraction rule definition 

Def. 3.7: a self-descriptive HGp abstraction rule or simply abstraction rule is 
any rule that produces a subsumer HGp at a higher granularity level 

The evidence of how abstraction rules come in effect is confirmed by 
observing the following tautology: 

jiiji  
 

Note that the right side of the equivalence above, more evidently than 
Theorem I, highlights the self-descriptive nature of the abstraction rule. 
Actually, it represents a recursive rule.  
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Although not manifest, recursion is implicit even in the HGp definition. 
This can be shown trivially, by considering that the self-implication rule A  
A always holds true (because it is a tautology). 

It is useful to stress that the premise of the logical implication i  can be a 

single HGp or a composition (through logic AND) of more HGps without 
affecting the generality of Def. 3.7. Hence, abstraction rule contemplates both 
outside-the-box view (entities in relationship with each other) and inside-the-
box view (mapping from parts to a new whole). 

 
We can now introduce the following: 

HGp alphabet definition 

Def. 3.8: a self-descriptive HGp alphabet or simply an HGp alphabet is any 
set of self-descriptive HGps. 

The set grows as long as new abstraction rules are found throughout system 
inspection. This is described more formally in Theorem 2. 

Theorem 2.  Given a self-descriptive HG alphabet HA, for any couple of self-
descriptive HGps HAα1  , HAα2  related by the abstraction rule I12, the 
following logical entailment holds: 

 21

12

 HAHA
I
  

The proof is trivial from Theorem I. 

 

As complementary to the abstraction rule, we can define an enrichment rule 
this way:  

Enrichment rule definition 

Def.3.9: a self-descriptive HGp enrichment rule or simply enrichment rule is 
any rule that, given an HGp, produces an HG enrichment at a lower 
granularity level as logical implication of subsumed HGs. 

In the previous example of the bubblesort algorithm, enrichment rules were 
applied each time description was led to a lower granularity level. Notice that 
also in the case of enrichment rule, in consequence of rule application, those 
new symbols that were not initially present in the HGp alphabet now come 
out. 

In order to support the visual understanding of both the abstraction and the 
enrichment rule, Figure 3.6 helps rendering these logical passages in a 
pictorial way. 

 

Finally, the core definition of holonic grammar is introduced: 

Holonic Grammar definition 

Def. 3.10: Given a HG-based system, a (self-descriptive) holonic grammar 
(HGGr) is the set of abstraction and/or enrichment rules that supports system 
description 
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HGGr introduces a computational assessment of the original definition 
provided by Koestler. By means of abstraction rule, two holons build up a 
new super-holon at a higher granularity level, which comprises the two parts 
but represents also a new whole. Similarly, by using an enrichment rule, a 
holon is viewed at a lower granularity level in terms of its intertwining parts. 
The canonical property of being a whole and a part at the same time is so 
preserved.  

It is worthwhile mentioning that HGGrs are conceptually different from and 
cannot be mapped directly into any Chomsky grammar (Chomsky, 1956) 
(Chomsky, 1959). This would require in fact a symbol either being terminal 
and non-terminal contemporarily (due to HG inner recursion) or introducing a 
new symbol in the input alphabet because of a rewriting operation, which is 
not due. Nevertheless, as reported hereinafter, HGGr can be used for parsing 
natural language expressions as well.  

Another point of major differentiation is that Chomsky grammars are not 
explicitly conceived for grammar-induction tasks, while HGGr can be easily 
derived from knowledge extraction algorithms applied over sets of data as 
shown further in the text. 

3.3.2 HGGr rewriting rules 

Abstraction and enrichment rules have been previously presented at a 
logical/semantic level. In this subsection, we introduce a rewriting notation to 
use these rules also at the ‘syntax’ level.  

To characterize the rewriting process, the following simple notation is 
employed: square brackets [] are used to denote an HGp; at the pedix of the 
right bracket is the label that names the granulation process; strings represent 
primitive HGp, i.e., HGps that cannot be further enriched into other subsumed 
HGps. They are denoted directly by their names, in formulae: 

[]x = X 

Figure 3.6: Figurative description of the two possible kinds of holonic 
rules, namely abstraction and enrichment. 

2  

1  

1  

2  

ABSTRACTION 

ENRICHMENT 

Logical implication 

1 2 
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This is what happens for abstraction and enrichment rewritings respectively: 

 Abstraction: A B  [AB]abs where abs is the abstraction rule, A and B 
are HGps, [AB] is a new HGp; 

 Enrichment:  [AB]  [[]A[]B]enr where enr is the enrichment rule, 
[AB] is a HG, A and B are new HGps.   

Since a HG-based system is the same independently from the granulation 
process, assuming a lossless decomposition, it can be hypothesised that,  

enr = abs-1 and abs = enr-1 

if we apply consecutively abstraction and enrichment on the same data, we 
then obtain: 

 A B  [AB]abs  # abstraction rule is applied to A and B HGps 

 [AB]abs [[[]A[]B]abs] enr # enrichment rule is applied  

 [[[]A[]B]abs]enr  []A[]B #  f(f-1(x))=x 

 []A[]B A B   # []x = X 

From now on, we will consider the terms ‘HG’ and ‘HGp’ as equivalent, 
since the latter has been introduced only to stress the linguistic representation 
of the former. Furthermore, ‘granule’ and ‘HG’ will be considered always 
synonyms.  

3.3.3 Rewriting examples 

To gain practice with holonic rewriting notation, two examples of 
enrichment (top-down) rewriting are proposed. Abstraction (bottom-up) 
rewriting will be dealt specifically further in the text for describing the 
mechanism of (inductive) HG-based knowledge extraction. 

3.3.3.1 Rewriting example 1 – Describing bubblesort algorithm with 

words 

With reference to the bubblesort example, the enrichment rewriting process 
is transcribed as follows: 

1. BS  

2. [scanf A printf]BS  

3. [scanf [length i,j]A printf]BS 

4. [scanf [length [select_pairs A[i],A[j]]i,j ]A printf]BS 

5. [scanf [length [select_pairs [greater_than b]A[i],A[j] ]i,j ]A printf]BS 

6. [scanf [length [select_pairs [greater_than [swap]b ]A[i],A[j] ]i,j ]A 
printf]BS 

3.3.3.2 Rewriting example 2 – Describing a simple phrase 

Consider the example phrase “the man took the book” provided by 
Chomsky for describing context-free grammars in its groundbreaking paper 
about the structures of languages (Chomsky, 1956). 
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Using context-free rules, the phrase can be parsed according to these 
rewritings: 

S  NP VP 

VP  V NP 

NP  the man | the book  

V  took 

Where S, NP, VP and V are non-terminal symbols that account for: 
sentence, noun phrase, verb phrase and verb, respectively, and the others are 
terminal symbols.  

Viewed in holonic terms we have: 

1. S 

2. [NP VP]S  

3. [[the man]NP [V NP]VP]S 

4. [[the man]NP [[took]V [the book]NP ]VP ]S 
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PART II ‐ MODELLING 

3.4 Computing with HGs 

At this point, HG has been discussed at both an abstract and a linguistic 
level. As we saw, HGs account for a re-interpretation of the concept of 
granule from the perspective of holonic-based theories. Furthermore, they 
represent a viable means to describe linguistically systems at different 
granularity levels.   

In this section, we introduce three basic elements for computing with HGs, 
namely:  

 HG-based holarchy representation; 

 HG-based Holarchy management; 

 Automated HG-based holarchy extraction from data. 

Afterwards, these three aspects will be combined into a unique 
computational frame (HGHM) which is at the core of our proposal. 

3.4.1 Encoding the HG‐based structure in a compact KR 

Holonic abstraction and enrichment criteria define a conceptual framework 
for handling the structure of a granular system in a holarchical way. In fact, 
they employ a unique concept, that of HG, to build up multi-granularity level 
structures. The interesting is that, in addition to hierarchical patterns, HGs 
encode naturally the concept of recursion that allows for nesting hierarchies 
into hierarchies, thus determining multi-strata holarchies.  

As next step, we saw how the hierarchical granularity structure of a HG-
based holarchy could be expressed linguistically by using the notation of 
holonic rules. 

It is now useful to understand how holonic rules can be useful to support KR 
in complex system modelling.  

A recent work (Hoang Thi Thanh Ha et al., 2009) applies type theory as a 
means of KR for describing complex systems that are recursively 
decomposable into subsystems. With respect to this kind of mathematical KR 
however, HGs have the advantage to be managed more easily, for example by 
software engineers. Granules at the lowest level in fact can be figured out as 
classes organized into subsuming granules, which can be considered as 
packages, i.e., component-based software granules. This interpretation is 
indeed commonly accepted in the GrC community (Han & Dong, 2007).  

Reasoning in terms of abstraction/enrichment rules, the structure of a HG-
based system can be encoded into a hashtable having the left part of the rules 
as keys and right part of the rules as values.  

With reference to previous example 2, a possible encoding employing both 
abstraction and enrichment rules is the one presented in Table 3.3 
(information granules are deliberately redundant to allow for different 
composition/decomposition patterns). 
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Table 3.3. Hashtable encoding the HG-based structure of example 2. 

Keys Record #Rule type 
New HG Program code

[ ]S [[ ]NP [ ]VP]S Program for granule S #enrichment 
the man [the man]NP Program for granule the man #abstraction 
took [took]V Program for granule took #abstraction 
the book [the book] NP Program for granule the book #abstraction 
[]NP [the man]NP Program for granule NP1 #enrichment 

[the book] NP Program for granule NP2 #enrichment 

 

In analogy with semantic lexica described in the previous chapter, we refer 
to different keys having the same values as ‘synonymous rules’ and single 
keys with multiple values as ‘polysemous rules’ (as []NP). 

In principle, hashtable can host both abstraction and enrichment rules. The 
two formulations are equivalent at the logical level. 

Consider the HG = [XY]Z. HG can be obtained as: 

 X Y [XY]Z if an abstraction rule is used, or 

 Z  [[]X[]Y]Z if an enrichment rule is used 

For practical reasons, it is useful to convert all rules of a type into the other 
one. In particular, we will use enrichment patterns by default in Holonic 
System structuring.  

Finally, it is very important to stress that the hashtable encoding mechanism 
can be used to retrieve pieces of information related to the granule used as key 
for entering the table. For example, system KB can be split according to the 
constituent HGs and hence called at run-time during system processing. This 
concept will be clearer in the next chapter where a specific example regarding 
this aspect will be presented. 

3.4.2 HG‐based system management algorithm 

Suppose to have a system entirely described in terms of HGs through the 
mechanism presented above: all system granularity levels are then represented 
by means of holonic rules. In this section, we answer (affirmatively) the 
question:  

Is there a compact program capable of handling the HG-based granulation 
process granule by granule?  

In other words, we are searching for an algorithm that, starting from a given 
HG, is able to roll and unroll the system holarchy according to its HG-based 
structure. The algorithm has the form of a FSA where each state of 
computation corresponds to a HG. We do not deliberately go deep into this 
equivalence with FSA since this would require a very complex mathematical 
and conceptual framework. It suffices saying that similar attempts in other 
fields are being investigated in the literature under the name of abstract state 
machines (Gurevich, 2000). Therefore, we divert from extreme formalization 
and we employ already used example to keep on with our discussion.  
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With reference to the simple bubblesort example, our commitment consists 
in finding an algorithm based capable of processing information flow granule 
by granule throughout the levels of the HG-based decomposition. This is 
somewhat similar to mimicking human granulation abilities when, for 
example, starting from a general concept, one goes in depth to provide a more 
detailed view of the ontology he/she wants to communicate. 

Here it follows an archetype solution to our previous question. The whole 
program control structure is based on granules and is entirely defined by the 
hashtable table presented before where only enrichment rules are considered. 
Each granule corresponds to a class provided with a unique external method, 
which acts as a constructor for the class.  

At start, a main function is supposed to call the first granule. Then, program 
execution is managed entirely by the HG-based structure. Throughout 
program flow, a granule/class may leave the program execution to its sub-
granules and/or to other granules according to rules of the KB structure. When 
a call is made towards a sub-granule (intra-granule method call), the program 
flow jumps down a logical level. In this case, when the callback occurs, 
program flow returns at the caller granule level. Alternatively, a call is made 
towards a granule at the same level (inter-granule method call).  

Since the system architecture is entirely described in terms of granules, a 
unique recursive thread can manage execution once for all. Its structure is 
synthesized by the archetype class whose pseudo-code is presented 
hereinafter. Examples of actual implementations of the algorithm are reported 
in the next chapter.  

It is noteworthy that the archetype structure is the same for each granule 
execution. This means that HG-based software is modular at the highest 
extent.  

Two main aspects are worth mentioning: 

ABSTRACT ARCHETYPE CLASS FOR 
(NON-POLYSEMOUS)HOLONIC GRANULE-BASED SYSTEM MANAGEMENT 

 

 
CLASS Granulate{ 
 static WM;  // working_memory 
  WM.Granules_List  this;  
  
 Public Granulate(Granule_to_run, WM){ 

1. WM.Granules_List   Look_up(Granule_to_run) 
2. UNTIL new_Gr in WM.Granules_List { 
3.   WM   Perfom_task(Granule_to_run, WM) 
4.    WM    Granulate(new_Gr, WM)  

  } LOOP 
5. RETURN WM 

} 
  
 Private perfom_task(Gr, my_WM) implements Interface  
 // do something… 
} 
 
Public static Look_up(Gr) 
//  connects to system HG-based structure 



 70

 the archetype class supervises program unfolding with an extern call 
to the hashtable for the HG-based system structure (code step 1) 

 only one execution thread with a loop-back at the end (code step 4) 
is required. If the list of granules that have to interact with the thread 
is not empty (code step 2), the thread performs a task specific to the 
granule/class (code step 3) and then instantiates recursively another 
granule/class (code step 4). 

The first point is interesting since it conceptually separates business logic 
execution from business logic management. The second point is fundamental 
for its implication on the overall code complexity as shown shortly after. 

The archetype program is conceived for managing HG-based program 
execution in a top-down fashion. Starting from a given HG, the holarchy gets 
unrolled at a lower granularity level according to the structure provided in the 
hashtable. Note that working memory is passed through the entire 
computation thread just as if it were a ‘moving’ tape across sequential 
instantiation of the granulation class. In this regard, we obtain a very weird 
computational metaphor. Data is progressively digested by the structure 
(holarchy) until computation stops and the first called HG outputs processed 
data. This data digestion mechanism is typical of a recursive program (such as 
the factorial of an integer). The interesting is that depending on the data 
digestion, the entire holarchy develops around unrolling and rolling patterns. 
When a primitive HG is called, it represents the lowermost granule of 
computation for that branch of the program. Once completed its task, the 
primitive HG call backs its subsuming HG, thus giving rise to the rolling 
phase. 

3.4.2.1 Handling polysemous rules in HG‐based system management 

A particular pattern of program execution occurs when a polysemous rule is 
found. A polysemous rule is a decision point for the holarchy evolution 
process. The calling thread should be multiplexed into as many new threads of 
computation as there are polysemous values for the given key.  

At least two solutions can be imagined. The first one consists in admitting 
that there is some decision function embedded in the program code able to 
choose one of the possible threads. In this case, the granulation process should 
be endowed with some thread killing mechanism (as it happens for voting 
agent inside MAS hierarchies). Otherwise, a holarchy cloning mechanism can 
be supposed.  

Each possible thread would give rise to a holarchy cloning. Another 
possibility is the combination of the two extremes.  

Let us consider the previous example about the parsing of the phrase ‘the 
man took the book’.  

As we saw, granule []NP is polysemous and hence it represents a decision 
point for the HG-based control flow algorithm. As it will be shown in the next 
chapter, this state of the program execution can be dealt with a call to a fork 
on the state of the process (giving rise to a multi-threaded program control 
flow) or on the entire holarchy (giving rise to a cloned process). 
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3.4.2.2 Cyclomatic complexity of HG‐based system management 

programs 

Cyclomatic complexity is a popular metric for measuring software 
complexity by reckoning the number of basic paths encountered through a 
program execution (McCabe, 1976). In this regard, program code is arranged 
according to a graph where nodes represent code blocks and edges represent 
basic control paths in the program flow.  

The cyclomatic number C(G) of a strongly connected graph G (i.e., a graph 
with the end node cycled back to the entry node) is equal to the total number 
of linearly independent cycles. A cycle is linearly independent if it does not 
contain other cycles in it.  

With reference to the HG-based archetype presented before, it can be 
noticed that the cyclomatic number is equal to one. This because the recursive 
call represents by itself a closing cycle which is a call to another instance of 
the archetype (see Figure 3.7 for more detail).  

Hence, the cyclomatic number of the entire HG-based program is the 
number of total granule calls (part-whole granulations plus the number of 
functional relationships) representing system architecture. This value is a 
lower bound since it depends on the system decomposition performed by the 
software designer. 

3.4.3 Knowledge acquisition in HG‐based approach 

An important and distinguishing element of intelligent systems is the way its 
knowledge is acquired. A desirable property of such systems is the ability to 
automatically extract information from input data. In HG-based setting, this 
equals to extracting the holonic rules that drive out the granulation process.  

Figure 3.7: Graph control flow for the HG-based archetype program. 
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In this section, we present a recently published heuristics (Calabrese, 2010) 
that provides a simple computational process for obtaining HG-based 
structures from signals.  

A (discrete-time) signal is any time-ordered sequence of real numbers. 
Mathematically, a signal can be denoted as a function such that: 

Zs : 

Given a set S of signals (made of one single or more elements), the heuristic 
attempts to extract IF THEN rules from it by means of a two-step procedure. 
The two steps are respectively called hypothsesization and structuring for 
reasons that will be motivated hereinafter. They are preceded by two ancillary 
phases: signal pre-processing and buffering, whose description is worthless 
because it corresponds to typical application-specific phases in the signal 
processing activity. An overview of the proposed technique is highlighted in 
Figure 3.8. 

3.4.3.1 Hypothesization 

As first processing step, a transformation is performed on the set of input 
signals S or on a pre-processed form of it. In particular, for each available 
signal, a function is defined as follows: 

 





                     otherwise0

  at time  verifiedis  if1 kh
hks  

h is a numerical hypothesis made on Ss . For example, an exemplar 
hypothesis can answer the question: is signal s at time k greater than its mean? 
The hypothesis can be set by an external agent, or taken from a list of 
predefined items.  

Notice that the input signal is transformed into a binary array. The same 
procedure is applied to all the available input signals so that a binary matrix is 
actually outputted by this step.  

Figure 3.8: Process flow for automated HG-based structure extraction from 
data. 
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Since the hypothesization procedure can be  performed on running data, the 
output binary matrix is stored in a first-in-first-out buffer of a given length. 
Once the buffer is full, it flushes data towards the next step. 

3.4.3.2 Structuring 

Data coming from the hypothesization step are subjected to a structuring 
procedure by means of the well-known technique of the classification and 
regression tree (CART) (Breiman et al., 1984).  

CART is a widely used non-linear regression technique that takes a set of 
data arrays as input and then outputs inter-signal relationships according to the 
following form: 

 ,...,,...,, 1121  kkkk ssssCARTs  

where kisi , are called predictor variables, while ks is called the predicted 

variable. 

CART defines a decision tree structure on incoming data. Each decision 
node (predictor) is a binary variable corresponding to an IF-THEN 
algorithmic structure. Leaf nodes represent the possible values of the 
predicted variables. In our setting, the IF THEN structures covering each 
branch of the tree corresponds to series of hypotheses on the input signals. 
These patterns represent logical implication rules of the type: 

Predictors (intermediate nodes)  Predicted (leaf node) 

hence, they are holonic rules in the proper sense. In particular, they account 
for abstraction (bottom-up or inductive) patterns since they use 
terminal/observed symbols to build up more complex wholes. There are as 
many holonic rules as the number of branches in the tree. 

    Notice that, since we cannot know a-priori predictor-predicted 
relationships, an exhaustive search requires considering all the N possibilities, 
where N represents the number of binary arrays outputted by the 
hypothesization phase. Thus, N trees are obtained. They actually form the HG-
based structure for the proposed signal processing system. 

3.4.3.3 Extracting holonic (self‐descriptive) rules: the agent 

knowledge acquisition problem  

    Consider, for example, an agent observing three binary signals s1, s2, s3 such 
that s3 is defined by the logic function  s3= (s1 XOR s2) with s1, s2 generated by 
a random source.  

The nature of the logic relations is supposed hidden to the observer agent 
who can only take note of the measurements he performs on the lines that 
comes out from the ‘black box’ of the circuit. We call this setting the ‘agent 
knowledge acquisition problem’ and we provide a visually representation for 
it in Figure 3.9.  



 74

Suppose the agent applying the proposed holonic-based technique. In 
particular, the hypothesis done is the same for each signal:  









0.5  is  valuemeasured theif0

5.0 is  valuemeasured theif1
)(h  

    In order to unveil the kind of relations among signals, the observer agent 
collects a sufficient number of self-descriptive triplets. Here, the word 
‘sufficient’ is awkward. It means: sufficiently large as to guarantee that all 
relevant hidden patterns are observed during the series of measurements. Of 
course, without external knowledge, there is no way to be sure that the 
measures taken are sufficient.  

In this very simple case, the truth table of the inspected logic circuit has only 
four possible slots. After having observed a random succession of the four 
types of triplets (namely <0, 0, 0><0, 1, 1><1, 0, 1><1, 1, 0>), we may think 
that the agent decides to stop buffering data collection and proceeds with 
CART-based analysis.  

    Since the agent does not know a-priori which candidate to choose as 
predicted variables, he should try all three possibilities. The structure obtained 
from the CART applied over s3 predicted variable is depicted in Figure 3.10. 
This structure is immediately referable to holonic rules by inspecting the 
branch of the obtained decision trees. In particular, four rules can be extracted, 
namely they are: 

321    
321    

321    
321    

Note that the found holonic rules correspond to the truth table of the 
inspected digital logic circuit. Simulations were run in Matlab® R14 
environment, with the libraries of the Statistics Toolbox for CART-based 
processing. 

Figure 3.9: Pictorial representation of the agent knowledge extraction 
problem. 
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3.4.3.4 Uncertainty in holonic rules 

    It is important to stress that when observations are reduced to binary values, 
this does not implies that the CART predicted values will fall into the crisp set 
{0,1}. Suppose to take three random binary variables s1, s2, s3 and impose, for 
example, s3 being the predicted variable. The CART obtained after repeated 
observations is drawn in Figure 3.11. Note that all s3 values almost equal 0.5. 
These situations can be interpreted as producing uncertain holonic rules, thus 
allowing for inferring only uncertain models (at least with respect to the given 
dataset).  

 

Figure 3.10.  Tree structure representing s3= (s1 XOR s2). 

Figure 3.11:  Tree structure representing s3 = s1 = s2 = RAND.  
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3.5  Devising  a  New  Kind  of  Holonic  Computational 

Model: HGHM 

So far, different aspects of our HG-based approach have been presented, 
namely: HG-based decomposition, linguistic description, holarchy structure 
encoding and management and, finally, extraction of holonic rules from data. 

In this paragraph, we pack all previous achievements within a unique full-
fledged computational model called Hierarchical Granularity Holonic Model 
(HGHM), actually a new kind of intelligent agent to use as building block in 
complex hierarchical systems modelling.  

A picture of the proposed HGHM is depicted in Figure 3.12.  

As an agent, this new holonic model is endowed with an interface with the 
external world made up of sensors to perceive the environment and actuators 
to produce effects in the environment. HGHM behaviour depends on the FSA 
governed by the HG-based structure.   

The presented computational model is structured into two overarching 
layers:  

 KR layer: it is characterized by the knowledge extraction process 
(implemented through the heuristics like the one presented before) that 
traverses this layer in order to feed the HG-based KR. Real-time data 
are taken from the lower computational body layer and the information 
structuring heuristics is applied on. If a holonic rule with certain 
accuracy is extracted from data, it contributes to build up the system 
structure in the form of a HG-based holarchy. Non-structured data are 
archived in order to enlarge the dataset used for future runs. 

 Computational body layer: it is characterized by the holarchy 
rolling/unrolling mechanism in dependence of the data flow coming 
from the sensors. It actually represents the automaton (string 
recognizer) inside the computational model. The recursive HG 
management algorithm attempts to decode real-time data based on the 
rules provided by the upper KR layer. If a match is found, a 
corresponding action is triggered. 

From a CI perspective, HGHM is both an (holonic) agent and a holarchy at 
the same time. This is possible thanks to the underpinning notion of HG. 
HGHM in fact is a computational model that computes through granulation. 
During computation, it can be assumed that each HG is in charge of a holon 
and hence the whole holarchy is nothing but a structure of nested holons 
working in cooperation.  

From a software-oriented perspective, HGHM architecture is a holonic 
factory where the knowledge extraction process defines the form of the 
holarchy (by adding or updating holonic rules) and the HG management 
process is responsible for building and destroying the holons that maps input 
from sensors to output for actuators. 



 77

3.5.1 Simple reflex HGHM  

The computational model as presented above is mainly the holonic 
equivalent of the simple-reflex-agent model discussed in the previous chapter. 
It takes data from sensors, performs a mapping from data to some logical state 
(i.e., the HG under computation) and triggers the action related to that state 
according to its FSA model. At the current stage of development, this is a very 
basic setting that can be certainly improved in terms of dynamic response by 
adding, for example, internal states for goal-driven or utility-driven 
behaviours. In this thesis however, we will not go beyond this simple reflex 
model, leaving HGHM development to further studies on the subject. 

Nevertheless, in this basic setting HGHM has some noteworthy property 
with respect to its homologous in the agent realm. At least there are two major 
enhanced characteristics: 

 Automated knowledge extraction from observational data; 

 Native information granulation abilities. 

While in simplex-reflex-agent design, it is responsibility of the agent 
engineer to define behavioural rules for the agent; in the holonic counterpart 
some simple behaviour can emerge in an unsupervised manner. For example, 
as the previous section on automated extraction of holonic rules shows, we 
may use the HGHM to self-describe an observed process in terms of HG-
based structures. Thanks to the proposed heuristics, HGHM in fact can start 
from a ‘tabula rasa’ representation of the observed data and then, after 
sufficient data collection, can build up by itself the holarchical structure 
extracted from the observed data.  

Figure 3.12: The proposed HGHM architecture.
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At the same time, since holarchical KR is structurally conceived as a multi-
level hierarchy, the kind of data self-description is arranged at different 
granularity levels, which is indeed a desirable property when observing a 
complex unknown phenomenon. 

3.6  Hierarchical  Granularity  Holonic  Model:  a  More 

Formal Assessment 

Let  nLLLH ,...,, 21 be a collection of holonic layers composing the 

hierarchical framework of a HG-based system where each layer 
 i

n
ii

i i
hhhL ,...,, 21 contains a collection of ni HGs; let  tsssS ,...,, 21 be a set 

of environmental sensors connected to L1 and let  raaaA ,...,, 21 be a 

collection of actuators settable by holons in iL with  i = 1…n. 

To assemble the communication ‘backbone’ of the holarchy infrastructure a 
binary relation with peculiar characteristics is purposely introduced. 
 
Holonic communication constraints definition 

Def. 3.11: A binary relation R is defined on the set 
n

i iLH
1

 , such that: 

1. p
q

Rp
l hh   iff pq   or 1 pq , with inp ...1  

2. p
l

R hs   if Ss  and 1p  

3. ah Rp
l  if Aa  and inp ...1  

 
The relation R defines the holonic communication constraints by means of 
the following subsets: 

HC   1,...1,...1|,  qpqpnknlhh qp
Rq

k
p

l  and there exists a  

communication channel between q
k

p
l hh  and .  

With reference to the pair  q
k

p
l hh , , two possibilities are given: 

1. if pq  then the channel is named intra-level channel,  
2. otherwise, it is named inter-level channel.  

 
Let  noooO ,...,, 21 be a collection of ontologies that models a set of sub-

contexts related to a composed application domain, and be 
n

i i OLf
1

:


  a 

function such that   q
p

l ohf  iff qp  . 

 
Finally, let P be the program that manages the HG-based system under 
analysis and L the heuristics that drives the knowledge extraction process. 
 
All previous definitions provided, it is possible to define HGHM this way: 

HGHM definition 

Def. 3.12: An HGHM is any tuple of the following type: 

LPfOASHHGHM R ,,,,,,,    
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3.6.1 HGHM to support knowledge‐based modelling   

The proposed HGHM, as formally described above, grounds on physical 
data coming from the sensors and, depending on the structure of its holonic 
rules evolves from granule to granule to carry out computation. This 
description holds true for modelling from really simple tasks to really 
complex ones.  

In the case of the bubblesort algorithm for example, HGHM would read the 
array, unroll the holarchy as shown in Figure 3.5, perform computations on 
data at each granularity level and then roll back the holarchy at the caller HG 
level to output the processed result. In this regard, with respect to other 
modelling techniques (e.g., flow diagrams), HGHM provides in addition the 
ability to look through abstract/enrichment patterns straightforwardly thanks 
to the concept of HG. 

This property of handling different granularity levels is of course more 
useful in complex distributed system. For example, in most pervasive 
monitoring applications, the use of locally distributed smart devices is not 
sufficient to guarantee an effective and efficient management alone. The 
amount of information that comes from scattered sources, actually 
representing different observation points of the same macro-phenomenon, 
needs in fact to pass through a number of phases (i.e., pre-processing, 
validation, elaboration, fusion etc…).  

Traditional MAS approaches would face this issue by imposing an agent 
organization that fixedly assigns a functional role to each agent: the main 
drawback is the stiffness of the whole system. In this case, in fact, MAS 
architecture is built in consequence of a thorough inspection of the underlying 
ontology.  

  A so formed hierarchical dataset can be sliced at different levels with cuts 
occurring at the same distance from the root. By convention, the root (most 
general concept) is at the top of the hierarchy, while concepts that are more 
specific span toward leaves. Each level aggregates concepts with similar 
granularity: these levels can be themselves clustered according to their sub-
contexts, actually defining sub-ontologies organized in the form of holarchies.  

In the HGHM-based holarchy, all the holons at the same level (representing 
one or more sub-holarchies) share the same ontology. The holons at the lowest 
level receive data from the real world using a set of sensors. Furthermore, 
these holons can handle various actuators to operate in the real world. All the 
holons at the higher levels receive data only from the holons at the 
neighbouring lower level. Each holon can communicate with other holons at 
its same level or with a holon at the neighbouring higher level. The 
relationship between the holons at a given level and the holons at the 
neighbouring lower level is a one-to-many relationship.   

Using this approach, by rising from a level to another of the holarchy, it is 
possible to synthesize concepts. In other words, the proposed system is able to 
give a telescopic vision of the model under analysis. Each level gives a 
specific detail about the observed system. A figurative description of the 
HGHM is depicted in Fig. 3.13.  



 80

3.6.2. HGHM: an epistemic issue 

HGHM has the noteworthy property of being applicable also almost without 
explicit human intervention during the design phase. In the case of the simple 

reflex holon, the tuple LPfOASH R ,,,,,,,   is produced in part by the 

knowledge extraction process.  

In fact, assuming that S represents the input channel from where the data 
come into the model and A is the output channel where linguistic descriptions 
of data come out, the other elements of the tuple emerge from the HG 

structuring algorithm. The holarchy H along with the partial order relation 
R  

is the result of the knowledge extraction heuristics and evolves as long as new 
data feeds the process. The interesting is that, since H is defined in terms of 
hypotheses on observed variables  data structure is self-described not needing 
for new symbols.  

Of course, ontology remains a human matter laying in the interpretation of 
rules behind observed phenomena. However, the issue is quite more subtle. 
When rules are extracted from data, this is because there is the fair hypothesis 
that some deterministic phenomenon (automaton) is producing that data (if it 
were not so, we would have great difficulties in admitting science is a good 
means to interpret reality!). Hence, the core ontology, i.e., the ground truth, 
lays within the environment; otherwise, any heuristics (human and non-
human) would be effectiveless. In this sense, environment ‘self-describes’ 
through data in coherence with the ontology that provides semantics to the 
whole machinery. In other words, when using HGHM for automated rule 
extraction from data we are referring to a subset of the previous tuple, 
disregarding semantic aspects, hence O and f elements. 

In this thesis, we were not concerned with facing this important epistemic 
issue (which the author reputes to be central to AI); we hope that the proposed 
HGHM-based approach can be useful to promote an open debate on it.  

Figure 3.13: HGHM Holarchy spans across different granularity levels 
according to increasing semantics and decreasing data granularity until a 

desired description level is reached. 
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4. HGHM‐BASED APPLICATIONS 
This chapter is devoted to explore some of the possible uses of the proposed 

holonic modelling technique by means of example applications. In particular, 
three main topics are covered:  

1. HG-based holarchy management algorithms;  

2. Automated HG-based holarchy extraction from data (both for 
descriptive and predictive purposes); 

3. Hierarchical-granularity holonic modelling in distributed intelligence 
settings.  

4.1 HG‐based Holarchy Management Algorithms 

In this section, we apply HGHM to string parsing, a typical process in 
automated translating and compiling tasks. The aim is not however to deploy 
new parsing algorithms (outside the scope of this thesis) but indeed to grasp 
the basic concepts that allow engineers to develop progressively more 
complex holarchy generation strategies by means of the proposed 
computational model. 

4.1.1 Parsing task outline 

For example purposes, we employ a very well known string as the target of 
our processing, the famous Shakespeare’s motto “to be or not to be that is the 
question”. Punctuation is deliberately left aside in order to handle with the 
very raw text (along with its possible ambiguous interpretations). 

We consider a holonic enrichment (top-down) setting, i.e., we assume that 
the holonic grammar accepting the text is engineered in a holarchical fashion 
at progressively higher levels of detail: from the root to the leaves. 

4.1.2 Setting up of the KB structure 
In order to deal only with available data avoiding the use of external 

knowledge, in this first example, we disregard part-of-speech tags and 
consider our KB structure to be composed of a short list of enrichment rules. 
The result is that we are assuming the syntactical structure uses some 
words/holons of the text as super-holons for other words/holons. In other 
words, there are no meta-symbols superimposed. This may appear weird for 
computational linguists and is certain not canonical to Chomsky production, 
but it is useful recalling that the goal pursued here is completely different: 
providing some tutorial examples to understand better how the HGHM 
actually works when unrolling out and rolling in the holarchy. The parsing 
setting seems to fit quite well to this commitment.  

KB structure, as seen in Chapter 3, is deployed as a hashtable with keys and 
values corresponding respectively to the left part and the right part of the 
holonic rule. In this example, each row (HG) of the KB structure is added a 
column with the pieces of information that define the software processing 
relative to that row (HG). In this way, the core of the processing algorithm is 
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encoded in the KB structure and retrieved on the fly during computation only 
when needed. 

In the case of the presented example 1, the added column simply proposes 
the right part of the holonic rule according to the natural lexical order of the 
words. This means that the codes retrieved from the added column during 
software running do not transform run-time data but only perform swapping 
on them 

The KB structure employed in example 1 is displayed in both graphical 
(Figure 4.1) and tabular notation (Table 4.1) (other structures, of course, can 
be imagined). The first row, by convention, has an empty entry for the 
initialization task. The system is supposed in fact to be triggered by the 
perception of the input. In our case, the input corresponds to the whole phrase, 
which is the target of our parsing procedure. 

In the sequel, it follows a high-level description of the holarchy generation 
algorithm. 

 

Table 4.1 KB structure used for the holonic generation task in example 1. 

Left holonic rule Right holonic rule Right holonic rule in 
lexical order 

[]is [[]that []the]is that is the 
[]that [[]or]that that or 
[]or [[]to[]not]or to or not 
[]to [[]be]to to be 
[]the [[]question]the the question 
[]be be be 
[]question question question 

 
 
 
 
 

 is  
|--------/   \--------|   

                     that                 the  
  |       | 

           or                    question 
          |--------/   \--------|       
         to                   not  
          |                   | 
         be                to 
     | 
   be  

Figure 4.1: Holarchy used for example 1.
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4.1.3 Holarchy generation algorithm 
The holarchy generation algorithm is chiefly based on:  

 a core function HOLARCHY_GEN;  
 a working memory structure referred to as WM. 

At start, a MAIN function is supposed to be run. Its solely purpose is to 
initialize the WM structure; after that, it releases program control to 
HOLARCHY_GEN. 

All computation consists in recursive calls to the function 
HOLARCHY_GEN. This function takes WM in input, eventually makes 
some processing on it (thus changing its state) and returns it back to itself. 
Hence, it is noteworthy that no global variable is used: all data needed for 
computational purposes is encoded within WM structure.  

The other sub-routines are: 

 KBS_CALL: which manages interaction with the KB structure; 
 UPDATE_WM: which can be considered as the state transition 

function. 
The recursive calls modifies the shape to the holarchy over time: we can 

think of it as a holarchy forming process that commences at the root and 
develops from it, growing along a branch, then, after reaching the leaf, rolling 
back to the last bifurcation node and taking the other branch, going on like 
that until holarchy is completely rolled in again at the root level. 

Here it follows the whole algorithm in pseudo-code notation: 

Function MAIN(input, seed): struct                                  
Def struct WM   #  Define WM 
Init(&WM, input, seed)  # Initialize WM 
WM = HOLARCHY_GEN(WM)  # Initial call to recursive structure 
 
Return WM 

 
Function HOLARCHY_GEN(WM: struct): struct 
holonic_words = KBS_CALL(WM)  # call to system KB structure 
 
FOR j from 1 to length(Holonic_words)  # span through found holons 
 WM = UPDATE_WM(WM, holonic_words(j)) # change WM state 

WM = HOLARCHY_GEN(WM)   # recursive call 
END 
 
Return WM 

 
Function KBS_CALL (WM:struct): list 

WM.tmp = Lookup(WM.tmp_ parent) # lookup the KB structure (with a key) 
        # to find the new component values of  

                                                   #the holonic rule 
WM.tmp = Tokenize(WM.tmp)       # obtain a list of tokens 
WM.tmp = mask(WM.tmp, WM.check) # consider only non-checked results 
   
Return WM.tmp 
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Function UPDATE_WM(WM, holonic_word): struct 
WM.tmp = find(WM.tokens, holonic_word) # find where holonic_word occurs 
 
IF(pos)      # update WM state 
     Check_out(WM.tokens.check, WM.tmp) # check the holonic word 
 
#>>>>>>>>>>>>>>>>>perform holon-related computation>>>>>>>>>>>>>>># 

WM.parse_struct = Process(WM.parse_struct, holonic_word)  
 #<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<# 

 
WM.parent = holonic_word # update current holonic word  

END 
 
Return WM 

4.1.4 Example 1 ‐ Step by step processing  
In order to have a more precise idea of what happens during computation of 

the holonic generation algorithm a step by step analysis is devised. As first 
steps, WM structure is defined and then initialized according to the arguments 
passed through the MAIN() function. 

WM is composed of some basic variables encoding the state of the 
computation. Namely they are: 

 WM.tokens: to store the list of holonic words received in input; 

 WM.tokens.check: to store the list of tokens which have been already 
processed; 

 WM.tmp: acting as a buffer area where storing temporary results; 

 WM.parent: to keep trace of the holonic word currently being 
processed; 

 WM.parse_struct: to store the parsing structure at run-time. 

WM is then initialized: WM.tokens is initialized to the tokenized input 
string, WM.Parent is initialized with the seed passed as MAIN argument, 
WM.parse_struct is set to the right part of the holonic rule in lexical order 
corresponding to the given seed. All checks are set False, except for the one 
corresponding to the seed, which is set True. 

After the INIT() call, WM represents the initial state of the algorithm. For 
example, a call to MAIN like that: 

MAIN((to be or not to be that is the question), (or)) 

Produces the structure in Table 4.2. 

 

Table 4.2. Exemplar starting state for the holonic generation algorithm. 

W
M

 

tokens  [to] [be] [or] [not] [to] [be] [that] [is]  [the] [ques
tion] 

check F F T F F F F F F F 
index 0 1 2 3 4 5 6 7 8 9 

tmp [] 

parent [or] 

parse_struct [to or not] 
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Note that the state of computation can be described univocally by 
WM.parse_struct and WP.parent. Concisely, the initially state can be 
expressed using a unique notation by bolding the checked holonic words and 
underlining the parent node that way: 

[to or not] 

which corresponds to: 

[[]to []not]or 

For readability purposes, we prefer, in this context, the former notation. 
Now, let us proceed with HOLARCHY_GEN() call. The first line of code is  

holonic_words = KBS_CALL(WM) 
The subroutine KBS_CALL() lookups WM.parent within the KB structure 

hashtable. Since WM.parent is equal to [or] holonic word, this key retrieves 
from the KB structure the value [to not or].   

Then, a mask operation is run on the tokenized text [[to][not][or]] against 
WM.check to find out only non-checked tokens. At this stage only [or] token 
is checked, hence the list of non-checked tokens [[to][not]] is returned back to 
the calling HOLARCHY_GEN() function. 

For each token in WM.tokens list, a holarchy branch will be generated. In 
other words, each holonic word will be the new seed of a holarchy generation 
process. 

Let us start with the first seed corresponding to the holonic word [to]. The 
UPDATE_WM() function is called. Now it comes the task of identifying the 
position of the holonic word [to] inside the input. This is a reverse engineering 
task that can be handled hypothesising WM.tokens to be an associative array 
and find() a primitive function performing such a task. In this case the token 
[to] is found at position 0 and 4 in WM.tokens. These values are equally 
distant with respect to the seed [or] so it turn clear how the choice between 
the two is a matter of ‘dice rolling’. We will consider this ambiguous case 
further in order not to make description too unwieldy. For the sake of 
simplicity, we suppose to take always, the leftmost value, hence [to] at 
position 0. Token [to] is then checked: [to]  [to]  

Now it comes the turn of updating WM.parse_struct. The following line of 
code: 

WM.parse_struct = Process([to or not], [to]) 

accounts for some process made at the level of the current holonic word. In 
this very simple case, the following transition occurs on WM.parse_struct 
value (bold is used to indicate checked tokens): 

[to or not]  [to be or not] 

which is equivalent to write: 

[[]to []not]or  [[[]be]to []not]or  

What happens is that [to] is responsible for inserting its holonic rule inside the 
parsing structure according to the lexical order specified in the KB structure. 
[to] is then set as the new top of stack seed for the holarchy generation 
process: 
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WM.parent = [[to] [or]] 

Now that state transition is over, a recursive call is made to function 
HOLARCHY_GEN() to keep up with the overall process. The list of states 
encountered during all computation is then: 

1. [to or not] 

2. [to be or not] 

3. [to be or not] 

4. [to be or not to] 

5. [to be or not to be] 

6. [to be or not to be] 

Note that, according to the given KB structure, when the initial seed 
corresponds to [is], the holarchy reaches its maximum extent since it spans 
through the whole input phrase according to the following states: 

1. [that is the] 

2. [or that is the] 

3. [to or not that is the] 

4. [to be or not that is the] 

5. [to be or not that is the] 

6. [to be or not to that is the] 

7. [to be or not to be that is the] 

8. [to be or not to be that is the] 

9. [to be or not to be that is the question] 

10. [to be or not to be that is the question] 

It is noteworthy that from steps 3 to 8 the computation is the same as for the 
holarchy generation driven by the [or] holonic word. 

4.1.4.1 Handling ambiguous (polysemous) configuration 

Ambiguity is a very undesirable property of computational systems. In the 
case of holarchy generation process, the problems raised by ambiguous 
configurations can be well explained by means of an example. 

Consider the Chomsky example presented in the previous chapter analyzing 
the phrase ‘the man took the book’. Suppose the algorithm to be in this state: 

 [[]NP []VP]S 

Now, NP can drive two possible productions, namely: 

[]NP [the man]NP 

[]NP [the book]NP 

Which one to choose? Of course, this question cannot be answered with the 
solely information of the KB structure. The problem has a random solution 
from the point of view of the computational model unless some decision 
strategy is adopted (e.g., based on statistical properties derived from a corpus). 
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The option of the decision strategy equals to having some voting mechanism 
implemented. From a programming point of view this can be done 
considering [[]NP []VP]S state in the program flow as a broker/coach point 
where two distinct threads split from the parent one. When the threads leave 
control back to the parent thread, some decision mechanism based on the 
processed data will select the winner.  

Another possibility is duplicating the parent thread through a sort of cloning 
mechanism: in this case, the entire holarchy is cloned as many times as there 
are polysemous rules to apply. 

In both cases what actually happens is a call to a fork() function (Figure 
4.2). The difference is that, in the case of the broker/coach configuration the 
fork is limited to the process of the caller granule - fork([[]NP]) - and the 
decision point is inside the holarchy at the level of that granule; while in the 
second configuration, the fork is applied to the process characterizing the 
entire holarchy - fork([[]NP []VP]S) - and the decision point is outside the 
holarchy thus have to be defined by an external process. 
 

 

4.1.5 Example 2 ‐ Handling more complex cases 
Once endowed with the ability to handle polysemy, holonic generation 

algorithm is suitable to manage more complex cases than example 1. It is 
interesting to point out that ‘complex’ in this context corresponds simply to 
assuming KB structure to be richer as for the number and form of holonic 
rules. In fact, thanks to the proposed holonic modelling technique, complexity 
is shifted from the computational level (algorithm) to the KR level (holarchy). 
The algorithm is designed once for all to work well independently of the 
holarchy extension, hence, what it really matters in computational terms, is the 
number of rules and decision points the algorithm has to compute. 

Because of previous observation, the challenge is in building a holarchy 
which could represent system knowledge in a more semantic-full way. A 
proposal is depicted in Figure 4.3. Here we note that we make use of new 
granules that semantically correspond to abstract concepts like sentence [S], 
noun [N], subject [Subj] and so on. Once again, we are not concerned with 
computational linguistic aspects, nor we pretend our representation being 

S 

NP VP 

the 

? 

the 
book 

multi-threaded configuration 

S 

N VP

the 

?

cloning configuration 

S 

N VP 

the 
book 

Figure 4.2: Two possible fork configurations to solve holarchy ambiguity. 
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correct in pure syntactical terms. What is important to highlight is indeed that, 
by enriching the holonic rules with more sophisticated concept granules, the 
holarchy generation problem remains the same at the computational level. 
This is of a great interest, since it allows model engineer to focus on KR rather 
then to implementation issues. 

With particular reference to the holarchy in Figure 4.3, the holonic words 
corresponding to the input text have been purposely considered as primitive 
holons, i.e., not further decomposable, considering the enrichment rules to be 
a matter of (meta-) symbols representing abstract concepts.  

Example 2 is highly polysemous due to holonic word [S] that has different 
productions: 

[]S [[]Subj is []NP]S  
[]S [[]S or []S]S 

[]S [to []V]S 

[]S [not []S]S 

 

 

4.2 Automated Holarchy Extraction from Data 

In this section, we exploit HGHM as a means for extracting holonic rules 
from measurement signals.  Signals can be of any kind, physical or digital; the 
only requirement is the possibility to gather signal time series in order to have 
a sufficient number of observations. This makes the proposed technique 
sufficiently general for a wide variety of measurement settings.  

4.2.1 Example 3 ‐ Temperature time‐series analysis 

As for example 3 is concerned, an experiment employing the maximum 
temperature time-series collected in the two Italian cities of Taranto and Rome 
(from November 25th to January 11th 2010) with a sampling rate of three 
samples per day is reported. This measurement signal is set as input to the 
holonic IF THEN rules extraction process described in Chapter 3.  

            S 
            | 

            Subj is NP 
           |          \--------| 
                  S that      the N 
                  |                      |  
                        S or  S               question 
             |          \----| 
                     to V        not S 
               |                | 
              be           to V 
             | 
            be  

Figure 4.3: Holarchy used for the proposed example 2. 
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4.2.1.1 Step 1 ‐ Hypothesisation 

As first step, a pre-processing activity is made on available data in order to 
have multiple sources for the hypothesization task. From the sampled data, 
two other signals are extracted: the 1-day moving average and the 7-day 
moving average. The three signals are then subjected to the following cross-
conditional hypotheses: 

 Hypothesis 1 -  kh1 : if the sampled data at time k is greater than the 

1-day moving  average at the same sampling time; 

 Hypothesis 2 -  kh2 : if the sampled data at time k is greater than the 

7-day moving  average at the same sampling time; 

 Hypothesis 3 -   :3 kh  if the 1-day moving  average at time k is greater 

than the 7-day moving  average at the same sampling time; 

The three hypotheses generate an n x m binary matrix M where n is the total 
number of considered sampling times and m the total number of considered 
hypotheses. This matrix represents the dataset that feeds the computational 
process based on CART. Note that, for any given sampling time, hypotheses 
encoded in matrix M sometimes are all verified and sometimes not (Figure 
4.4). 

Figure 4.4: Visual representation of the hypotheses devised for the dataset of the city
of Taranto. 
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4.2.1.2 Step 2 ‐ Holarchy structuring 

 In the second processing step, in order for holonic rules to be extracted, 
binary matrix Mn,m is decomposed into two subsets: D1n,m-1 for the predictor 
variables (whose mutual order is not significant) and D2n,1 for the predicted 
variable. Hence, n possible arrangements of the matrix M are obtained, one 
for each possible predicted variable. 

In this first case, we suppose that all n samples in the two datasets are used 
to feed the rule extraction process. In the reported experiment, all available 
data have been used within a single run to feed the computational process. In 
the forth, we will consider a different setting.  

After CART processing, six rules with total certainty are found: they are 
reported in Table 4.3. It is noteworthy that they are the same for the two 
considered datasets. The table lists the rules written in a formal notation as 
logical implication rules, then it proposes the holonic rule formalism, finally it 
provides the coverage of each rule with respect to the whole dataset. It is 
interesting to visually note that the binary activation patterns for each rule (1 
if the rule is verified at the given sample, 0 otherwise) define different 
signatures between the two considered datasets in the rule vector space (see 
Figure 4.5 and 4.6). This consideration allows for future studies aimed at 
classifying meteorological patterns on the base of the proposed technique.   

An interesting aspect is that the obtained activation patterns define a 
complete partition of the original dataset, i.e. only one rule is activated at each 
sampling time. This means that the two datasets can be completely described 
in terms of the IF THEN hypotheses used for the experiment. Consequently, 
thanks to the proposed computational technique, original numerical datasets 
have been converted into algorithmic structures, which allows for shifting the 
problem of signal analysis at a logic/linguistic level. We now go more in-
depth into this aspect exploring the KR provided by the found rules. 

 

Table 4.3. List of no-uncertainty Holonic Rules found and their distribution over the 
dataset. 

Rule 
Id 

Rules 
Implication 

Rule 
Holonic rule 
(enrichment) 

Dataset coverage 
Taranto Rome 

1 132    
32

[][]   
132

][][[]   16.75% 20,43% 

2 132    
32

[][]   
132

][][[]   10,22% 13,78% 

3 231    
31

[][]   
231

][][[]   28,26% 30,02% 

4 231    
31

[][]   
231

][][[]   22,06% 19,93% 

5 321    
21

[][]   
321

][][[]   8,13% 3,94% 

6 321    
21

[][]   
321

][][[]   14,58% 11,90% 

100% 100% 
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Figure 4.5: Max temperatures (diagram above) and holonic rule verification 
patterns (diagram below) extracted from the dataset of the city of Taranto. 

In the rule diagram each row accounts for the verification of the 
corresponding rule reported in Table 4.3. 

Figure 4.6: Max temperatures (diagram above) and holonic rule verification 
patterns (diagram below) extracted from the dataset of the city of Rome. In the 
rule diagram each row accounts for the verification of the corresponding rule 

reported in Table 4.3. 
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4.2.1.3 Holarchy extracted from data 

    Let us consider the first two holonic rules of Table 4.3. Assuming T for 
‘true’ and F for ‘false’ the two rules can be rewritten this way: 

 Rule 1: 
13232

]]][][[[][][  FTFTF   

 Rule 2: 
13232

]]][][[[][][  TFTFT   

Each hypothesis has been granulated into its basic components according to 
its semantic values, namely T or F (Figure 4.7). It is fair to consider these two 
values as atomic ones, so they do represent non-decomposable holons, i.e., 
elementary granules of information. In Boolean logic, any given hypothesis 
must be true or false, i.e., hypotheses can be considered as super-holons 
obtained through abstraction of the two primitive holons T and F related by 
XOR logical relationship. 

Since Rule 1 and Rule 2 abstract the same granule, they can be viewed as 
parts of a bigger abstraction rule. The so obtained enrichment rules realizes a 
very particular holarchy where, starting from the bottom, each two 
consecutive levels the first concerns semantics (ontology layer) and the 
second concerns the variables hosting the semantic values (lexical layer). 

Figure 4.7: Holarchy representing a given hypothesis in 
Boolean logic. 

F T

hyp 

xor 

1  

FT

2  3  

FT FT

OR 
relationship 

XOR 
relationship 

Figure 4.8: Holarchy representing the first two rules extracted from example 3. 
Arrows point in bottom-up direction. 

placeholder for 
AND 
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Note that similar considerations can be drawn for the couples of rules (3, 4) 

and (5, 6). The holarchy representing the knowledge extracted from data is 
then highly interleaved since each granule corresponding to a hypothesis can 
be an abstraction of other hypotheses or it can be a part itself as an enrichment 
of another hypothesis. In fact, KR has the following six possible states: 

321  , 321  , 321  , 321  ,  321  , 321   

4.2.1.4 Managing uncertainty in holonic rules: some observations 

The six found holonic rules of example 3 have been extracted from the 
whole dataset represented by the matrix M of binary observed hypotheses. In 
order to be sure that there were no bias in the experimental setting, hundreds 
of independent runs have been performed each one obtained through a random 
permutation of the columns of matrix M related to predictor variables.  

Each run confirmed the same set of six holonic rules with no uncertainty 
(i.e., having a zero or one as leaf node of the CART). At the same time, six 
uncertain rules have always been found (i.e., having a leaf node equal to a 
number comprised in (0, 1)). They can be interpreted as holonic rules with a 
given amount of uncertainty attached.  

Uncertainty could be computed by means of some function in the space of 
True and False hypothesis using FL (Figure 4.9). For example by means of I-
type FL, we could imagine uncertainty is maximum when the leaf value is 0.5 
while, as long as it approaches to 0=False or 1=True, it decreases accordingly. 
Alternatively, by employing II-type FL (Mendel & John, 2002) (Hagras, 
2007) (Hagras et al., 2007), a so-called Footprint of Uncertainty can be 
sketched by contouring the two membership functions defining the True and 
False fuzzy predicates. The values of the footprint of uncertainty area can be 
assigned differently depending on the type of the applied uncertainty 
modelling technique (Wagner & Hagras, 2010). 

The six uncertain rules along with their computed I-type FL uncertainty 
values are reported in Table 4.4. 

 

Table 4.4. Uncertain implication rules of example 3. 

Rule 
Id 

Implication 
Rule 

Leaf node 
value 
[0, 1] 

Uncertainty 
value 
[0, 1] 

7 132    0.22345 0.4469 

8 132    0.6022 0.7956 

9 231    0.4653 0.9306 

10 231    0.55702 0.88596 

11 321    0.37209 0.74418 

12 321    0.68329 0.63342 
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4.2.1.5 Managing imprecision in holonic rules: some results 
Finally, we verify another aspect related to holonic rule extraction in 

example 3. We could easily imagine that: the less the window size of the 
dataset, the more imprecise the set of holonic rules retrieved. This behaviour 
has actually been found in data. In particular, we used as a measure of 
imprecision the number of samples covered by more than one certain holonic 
rule. In fact, ‘certain’ means ‘certain with respect to the observed dataset’: if 
the dataset is a subset of the original one, some more specific rules that were 
not so general to be retrieved from the whole dataset may now come out. 
Table 4.5 summarizes obtained results.  

 

Table 4.5 Statistics collected from example 1 regarding multiple rules distribution per 
sample. 

considered 
training window 
length in % of 
the total dataset 

Total number of 
rules found 
after knowledge 
extraction 

% of the whole dataset having N rules per 
sample 

N=1 N=2 N=3 N=4 

Whole dataset 6 100% 0% 0% 0% 

50% 6 100% 0% 0% 0% 

7% 6 100% 0% 0% 0% 

5% 8 22.7% 77.3% 0% 0% 

4% 10 0% 49.7% 50.3% 0% 

2% 11 0% 31.3% 68.7% 0% 

1.5% 12 0% 0% 100% 0% 

1.2% 13 0% 0% 77.9% 22.1% 

0.8% 9 0% 18.4% 53.4% 28.2% 

0.4% 6 0% 0% 100% 0% 

0.15% 6 0% 0% 100% 0% 

1/whole dataset 6 0% 0% 100% 0% 

1  
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Figure 4.9: possible type-I (left) and type-II (right) fuzzy description of uncertainty 
in holonic rules. 
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4.2.2 Example 4 – Making predictions 

The previous setting of example 3 can be reused for making prediction with 
minor modifications. Given a signal s along with a number of samples 
available until time k, make a prediction on s means finding the value of s(k+m) 
for some m > 0. In general, the realm of prediction is accompanied with 
uncertainty: effective predictor has to be paired with some ‘hit’ function 
aiming at scoring the quality of prediction. 

With reference to example 3, we introduce a simple trick at the hypothesis 
generation level. In particular, we reformulate the first hypothesis this way: 

 Hypothesis 1 -  mkh 1 : if the sampled data at time k+m is greater 

than the 1-day moving  average at time k; 
Hence, after the knowledge extraction task, if  mkh 1  is found being 

logically implied as a consequence of the other hypotheses, then it realizes a 
prediction rule with an uncertainty reckoned from the leaf node value as 
shown above. As expected, with this new setting, no more certain rules are 
found but only uncertain ones. 

In particular, for m=3, 12 uncertain rules have been found, four of them 
having  mkh 1  as implied variable. Table 4.6 summarizes obtained results.  

 

Table 4.6: Implication rules accounting for prediction in temperature time-series. 

Rule 
Id Implication 

Rule 

Leaf node 
value 
[0, 1] 

Uncertainty 
value 
[0, 1] 

1 132    0.4368 0.8736 

2 132    0.10628 0.21256 

3 132    0,84921 0.30158 

4 132    0.52308 0.95384 

 

4.2.2.1 Applying prediction to other application domains: stock 

market 

Of course, the proposed prediction technique can be applied to any kind of 
application domain, for example to stock market prediction. Stock market is in 
fact considered as a typical example of stochastic model (Wang et al., 2007). 
Consequently, the automated extraction of rules from time-series data is of 
great interest for stock price forecasting programs.  

Here it follows the result of three hypotheses similar to that of the previous 
temperature prediction model applied to the case of Dow Jones Industrial 
(DJI) average index on a dataset comprising the stock prices from January 
2005 to September 2010. 
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The three employed hypotheses are the following: 

 Hypothesis 1 -  mkh 1 : if the 5-day moving average at time k+m is 

greater than the 10-day moving  average at k sampling time; 

 Hypothesis 2 -  kh2 : if the 10-day moving average at time k is 

greater than the 20-day moving  average at the same sampling time; 

 Hypothesis 3 -   :3 kh  if the 20-day moving average at time k is 

greater than the 30-day moving average at the same sampling time; 

The next Table summarizes the found results obtained with different values 
of m. In general, the higher the value of m, the more the proximity of 
prediction to pure chance (i.e., T = 0.5 and F = 0.5). 

 

Table 4.7. )(1 mkh   values accounting for prediction of  DJ index trend at k+m 

sample. 

Predictors 

32  32  32  32  )(1 mkh 
 

m 

L
ea

f 
n

od
e 

va
lu

e 
[0

, 1
] 

1 0.40753 0.50935 0.62179 0.69681 
5 0,43197 0.56808 0,66667 0,66607 

10 0,5068 0,56808 0,66026 0,67921 
15 0,48299 0.62441 0.64103 0,6962 
30 0,48966 0.53774 0.59732 0.68545 

 

4.3  Using  HGHM  for  Complex  System  Management 

Design 

Apart from structure parsing, signal analysis and signal prediction, HGHM 
can be also employed to support system engineer in devising an alternative 
solution to MAS-driven design approaches. 

To supply a deeper comprehension of HGHM-based design methodology, 
three different test cases have been considered, namely: 

1. Electric Power Distribution Management; 

2. Distributed air quality monitoring system; 

3. Software modelling. 

The first case is aimed at accompanying the reader through a step-by-step 
description process, to gain insight into the technicalities of the proposed 
methodology. The second test case is taken from an already published work 
(Calabrese et al., 2010) and is reported with the only aim of corroborating the 
wide applicability of HGHM-based design. Finally, the last application case 
shows the potential impact of our proposal to Software Engineering in terms 
of modularity and scalability of HGHM-based software. 
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4.3.1 Electric Power Distribution Management 

Electric power distribution network represents an evident example of a 
complex system arranged as a geographical network of electric producers and 
consumers. Basically, the aim of the system is to guarantee, at any given time, 
that the electric load requested by all customers (being they domestic or 
industrial) is supplied by, at least, an equal amount of electric power produced 
by electric plants connected to the network.  

A lot of equipments are requested for the process to be satisfied and can be 
encountered during the process of electric flow from the power plant to 
customer’s meter socket, namely: extra high (i.e., 800kV), high (i.e., 220kV) 
or medium (i.e., 33kV) voltage transmission lines (generally aereal), 
transmission towers, transformer stations and substations, low voltage 
distribution lines, relais, inverters and other electrical stuff. 

4.3.1.1 Architectural aspects 

Wide electric networks covering the needs of entire states and countries are 
all hierarchic since at least two levels can be identified: 

1. Transmission level: it accounts for the bulk transmission of electrical 
energy from generating power plants to substations located near to 
population centres. This level can be further subdivided into two sub-
levels: one for extra-high voltage transmission and the other for high 
voltage transmission. In both cases, a three phase alternating current is 
used to cover very long distances (hundreds or miles) minimizing the 
energy loss in transmission. Generally, interconnections at this level 
are redundant hence having the form of a grid so that electric energy 
has more possible routes to flow if some failures occur.  

2. Distribution level: it covers more limited areas (urban or rural). It is 
made of local wiring between high voltage substations and customers 
and can be schematized as a bus with different kind of loads attached. 
It is noteworthy that small energy production sources (such as city 
power plants, solar or wind farms) are generally connected at this 
level. 

Figure 4.10: Typical electrical energy transformation steps encountered from power 
plant to residential load (in US). Image taken from the Internet. 
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Architecturally, a holarchy-based representation of the electric network can 
be hence drawn with simple assumptions: 

1. A holon is any entity between two transformer stations; 

2. A primitive holon is any entity between a transformer station and the 
ground;  

3. Any transformer station represents the interface between two or more 
holons; 

4. An overarching layer called “Electric Network” is introduced as 
super-holon subsuming the entire holarchy. This holon is connected 
to subsumed holons of the lower adjacent level. 

It is easy to notice that holons accounting for transmission or distribution 
lines have the role of hubs for primitive holons at their own level. This reflects 
the star network topology, which is typical of such wide geographical 
complex systems. 

4.3.1.2 Information processing aspects 

At the information processing level, the system-engineering task consists in 
defining the archetype holonic component. This corresponds to finding an 
appropriate algorithm, as shown in the previous chapter, that recursively 
updates the amount of information that flows through the holarchy at any time 
instant. For this to be achieved, the first step defines which elements the 
archetype holon is composed of. Of course, the here provided archetype is a 
toy one, since it is aimed only at better explaining the proposed methodology. 
A very detailed and functional description of the archetype holon for electric 
power distribution management deserves a specific work, which is further 
beyond the scope of the thesis. 

Consider the archetype holon H in terms of a class made of the following 
variables and methods: 

 H.primitive: it is a Boolean value indicating whether H is a primitive 
holon or not; 

 H.power: it represents the current electric power measured at the 
primary circuit;  

 H.powercost: it is a value representing the cost of producing or 
consuming one Kwh of electric energy; 

 H.tolerance: it is a value to use in the system management strategy 
described forth; 

 H.forecast(k): it forecast H.power values in the future k instants; 

 H.alter(amount): alter energy consumption/production (if allowed by 
H) of a given amount. 

The holarchy building mechanism is entirely described by an archetype 
enrichment rule to apply to non-primitive holons by means of the following 
formula: 





N

1i

i .powerHH.power  
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where Hi is a holon connected to H at the same level of H or at the lower 
adjacent level. The meaning of the enrichment rule is straightforward: at any 
time instant, the electric power measured in any point of the network is equal 
to the algebraic sum of the load and the produced power. When the sum is 
negative then a drop in current affects the area and a blackout occurs. Of 
course, the system has to be engineered to avoid any cause of power failure. 

The description of H is now almost complete. The only thing missing is the 
algorithm for characterizing holon behaviour. To this end, we start by 
hypothesizing a very simple strategy that can be realized repeatedly over time 
according to these steps: 

1. IF H.power > 0 THEN 

2.   energy_gap = H.power-H.tolerance 

3.   H.restore(energy_gap) 

4. END 

Figure 4.11: Electric power distribution network viewed in holarchical terms. 
Background image is taken from the Internet. 
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The key point of the holon management program is the restore() function 
whose aim is to adjust dynamically a given tolerance threshold to avoid the 
risk of sudden increase in load request. Actually, this mechanism is a target-
following one, with the target being the given threshold. 

The restore() function can be engineered in several ways. The simplest one 
is to implement a function like that: 

Function restore(energy_gap) 

1. IF energy_gap > 0 THEN 

2.   decrease energy production in subsumed holarchy calling  

H.alter() functions 

3. ELSE 

4.   increase energy production in subsumed holarchy through   

H.alter() functions 

5. END 

It is apparent that the proposed strategy is the more robust to variability in 
load request or local failures as higher the tolerance threshold is. This results 
in a very stiff and expensive risk-avoidance strategy. 

The same restore() function can be however made more adaptable to 
network dynamics by introducing more knowledge in the management 
process. This can be done employing the H.forecats() function and building a 
more developed strategy on top of it. For example, if the holon forecasts that a 
certain increase in energy request will affect the network in the next few 
hours, particular energy increasing production patterns can be activated 
among energy producers in order to minimize the cost of the extra-amount of 
energy to be produced. 

4.3.1.3 System Reengineering: adding new levels  

Thanks to the hierarchically nested structure of the holarchy it is possible to 
add a new granularity level to the network description, thus allowing for 
energy balancing strategy also at lower levels of the networks. This can be 
useful since, in general, the stock of extra-energy produced at the highest 
levels of the holarchy (nuclear plants, coal plants etc…) is more expensive 
and less manageable than the stocks produced at lowest levels. The algorithm 
that determines the holon behaviour can be even maintained the same, thus 
accounting for a modular structure. 

In Figure 4.12, the lowest level of the holarchy (level -3) is further enriched 
by adding a new level The so defined new holons supervise single house 
energy load or city distribution network. It is interesting that, this level can be 
even further decomposed thus having very small-scale energy management 
systems like Demand-Side Management systems, which are progressively 
attracting the interest of both industrial and academic applications (Calabrese 
et al., 2007). 
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4.3.2 Distributed air quality monitoring system 

The first studies about the air pollution, undertaken by industry, started in 
the 1950s. In various countries, the obtained results allowed the introduction 
of specific laws to protect the environment and consequently the human 
health. The air quality analysis was extended to indoor environments later, 
when, in the 1970s, there were some cases of pulmonary diseases into air-
conditioned buildings. The air quality monitoring for indoor environments is 
becoming an interesting issue in the most economically developed countries. 
Indeed, in these countries people show strong tendency to spend their time in 
indoor environments. According to (Bocchio and Masoero, 1992), already in 
the early 90s, people spent until the 90% of their time in indoor environments, 
30-40% of this time is spent in working environments. Probably these figures 
have not changed significantly since then, as most people can experience. 
From these data, it appears clear how the necessity of new monitoring systems 
designed to work in various indoor and outdoor environments is extremely 
relevant.   

The latest improvements both in the field of sensors and in ICT technology 
are opening the way to the development of innovative pervasive distributed 
sensor networks composed of many low-cost nodes. In (Di Lecce et al. 2010) 
the nodes are composed of two main modules as shown in Fig. 4.13. The 
sensors module is made up of a set of analogical sensors whose number and 
type vary according to the application. The processing module is based on a 
programmable unit handling various aspects of the acquisition and data 
management process (sampling, compressing, sending and, possibly, setting 
actuators). A key element of these nodes is their ability to send data through a 
network using various connections (such as wired and wireless network, 
GPRS and UMTS) according to the specific application. These processing 
units are characterized by reduced size and good computational power 
allowing them to execute complex tasks.  

Figure 4.12: Previous holarchy at level -3 is enriched at the next lower level. 

LEVEL -3 
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Typical examples of indoor air quality monitoring applications are big 
civilian buildings and industrial environments. These environments are 
composed of various areas characterized by strong micro-climatic 
heterogeneities (i.e., different rooms, area around different machineries, etc.). 
In these conditions, the proposed holonic monitoring system, based on a dense 
sensor network, is able to analyze each micro-climatic area. On the other 
hand, the proposed architecture allows changing the observation scale in order 
to have various levels of detail about the monitored environment.  

 

4.3.2.1 Proposed architecture in more detail 

One of the advantages of the HGHM-based architecture is that it is possible 
to add as many levels as one wants without affecting the modularity of the 
basic holon. Here it follows a more detailed description for each layer. 

Level 1 

The lowest level is composed of all the sensors in the network. Here 
information is local, namely, it is referred to specific monitored location. The 
main tasks of the holons at this level are: 

 Sampling data: each holon samples data at a given sampling rate 
according to the specific application; 

 Data validation: each holon implements various validation algorithms 
in order to avoid the well known problem of incomplete data series (V. 
Di Lecce et al. 2008) These algorithms work only on local sampled 
data; 

 User interface: each holon at this level has a simple web based user 
interface. Using this interface a user can have local information about 
the monitored environment. 

Level 2 

The second level of the architecture works at a higher semantic level. Here 
the monitored building is considered as divided in various regions. A region is 
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Fig. 4.13:  A schematic overview of the proposed acquisition system. 
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composed of several neighbouring locations (i.e., a set of neighbouring 
rooms). In the proposed HGHM-based architecture, at this level there is one 
holon for each region. Here each holon: 

 Works with several neighbouring holons standing in the previous 
level; 

 Handles information referred to a whole region of the monitored 
environment. The size of this region is in inverse proportion to the 
heterogeneity level among the various areas of the monitored 
environment. 

At this level, each holon has the following tasks: 

 Area modelling: for each monitored region, a holon builds a model 
about the daily evolution of the monitored parameters. This model 
plays a significant role in the next task; 

 Spatial validation: this is a further level of validation implemented in 
this system. Data sampled from various nodes are compared among 
them. When a significant discordance is found between two or more 
nodes (namely between two ore more neighbouring monitored areas), 
the sampled data are compared to those computed by the model. If the 
actual situation is compatible with the model then data are labelled 
with a high reliability coefficient else the reliability coefficient is 
reduced (proportionally to the divergence); 

 Alarm management: when critical conditions are detected, the system 
is able to raise various levels of alarm, according to the criticality of 
the event. Using area modelling and spatial validation, it is possible to 
infer if a given situation is due to a sporadic local event or to a 
phenomenon that is interesting a wider area; 

 User interface: at this level, user can obtain qualitative and quantitative 
information about the trend of the various monitored parameters. The 
interface shows average information about the whole region. When a 
local critical condition is detected the interface passes the control to 
the holon at the lower level in order to show local detailed data about 
the event under analysis.  

Level 3 

The third level of the HGHM architecture implements the same functions of 
the second layer but works at a higher abstraction level. Indeed, here the holon 
works on the features extracted by the holons at the second level. The area-
modelling task is referred to the entire monitored structure. The alarm 
management function is used to handle critical events involving more than 
one regions of the monitored structure. Likewise, the user interface shows the 
same kind of information but referred to the whole monitored environment. 

4.3.3 HGHM as a software modelling paradigm 

The proposed HGHM resembles human reasoning approach to complex 
problems where hierarchical abstraction/enrichment patterns are continuously 
employed. 
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As a matter of course, HGHM is an ideal one to deal with software 
engineering, a typical knowledge-intensive application domain where 
abstraction and enrichment are required to build up ever more complex and 
detailed models at different logical resolutions. In recent times, there is in fact 
a growing need of a balance between pure abstraction (e.g., refer to (Wang, 
2008)) and practical software design (Wu, 2005) (Auprasert & Limpiyakorn, 
2009) due to increasing software systems complexity.  

The importance of computing with granules in Software Engineering is 
quite a recent finding in the literature of CI (Pedrycz, 2002). HGHM, which is 
actually a GrC methodology, has the advantage of undertaking 
abstraction/enrichment modelling tasks in a natural way. Now we deepen this 
aspect by highlighting HGHM as a software paradigm especially for complex 
system modelling. 

4.3.3.1 Handling data and program organization 

Software programs can be imagined as a collection of data processing 
tasks that implement a business logic to satisfy some application-dependent 
user need. Data are generally structured in a database to encode business logic 
elements both at an abstract and at an implementation level.  

This entire conceptual frame continues to hold when using HGHM-based 
approach to software modelling, however a major enhancement in data 
representation is required with respect to traditional Software Engineering 
approaches. Since HGHM is entirely based on the concept of HGs, also 
program data have to be organized accordingly. In particular, each class 
characterizing system description has to be re-mapped into a HG class, as 
shown in Figure 4.14.  

This is something that can be always done since system description 
contemplates, at an abstract level, only two kinds of classes we can refer to as 
part classes and whole classes. As a result, the (hierarchical) target system is 
modelled as a recursive composition of HGs classes. 

Figure 4.14: Object-oriented view of the HGHM impact on KR: target system 
(on the left) is represented in terms of HGs (on the right). 
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After transforming business logic data into HG-based KR, we can 
organize the elements of the HGHM into groups using UML package diagram 
notation (OMG, 2007b). To this end, we identify four main packages drawn in 
Figure 4.15: 

 Holonic factory: this package is responsible for grouping all the 
archetype components called when a new holon is instantiated in the 
HGHM.  It is made of three sub-packages, namely: 

o Interface for handling data input/output from sensors to 
actuators; 

o Holarchy structuring for implementing knowledge extraction 
functions that feed HG-based KR; 

o Holarchy management for holarchy control at runtime. 

Note that this sub-packages supervises the processes that characterise 
HGHM (I/O, structuring, management) 

 Knowledge management: it consists of two sub-packages: 

o Holarchy structure 

o Knowledge base 

These are two DBMS working in cooperation. The Holarchy structure 
package supervises the hashtable representing HG-based system 
decomposition; the Knowledge base package stores the granulation 
process to be assigned to each holonic rule. This process is recalled at 
runtime by the holarchy granulation package to characterize the 
dynamics of the HGHM. 

 Holarchy granulation: this package is responsible for the dynamics of 
the HGHM. It supervises granulation (hence state transition) during 
system program running Every object working in this package is built at 
runtime from the holonic factory package for the class instantiation and 
from the knowledge management package for importing the knowledge 
necessary to carry out the granulation process 

 Primitive holons: this package includes all that functions which have to 
be considered primitive with reference to KR. These functions actually 
perform as black-box components already available ‘off-the-shelf’. 

The software engineer is atop of the HGHM. It is responsible for designing 
system KR. This process consists in the same steps we devised with the 
example of the bubblesort algorithm but on a greater scale. It is interesting to 
note that the role of the software engineer is greatly reduced when primitive 
holons are already at his/her disposal. This means that HGHM will resemble 
an assembly of parts at the KR level.  

The holonic factory package can be thought as realized once for all while 
holarchy granulation entirely depends on the holarchy structure and the KB. 
This means that the true effort of the software engineer is moved to the KR 
level, which is a desirable property for complex systems design.  
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4.3.3.2 Communication aspects 

Communication aspects are less crucial in HGHM than in agent-oriented 
application. This because holons are, by design, similar with respect to their 
information processing role. Intelligence is in fact at the holarchy level and 
hence does not need to be communicated but is intrinsic to the information 
process as a whole. 

Nevertheless, some considerations can be drawn. Information flow traverses 
the HGHM-based architecture following two opposite directions: upward and 
downward. The upward flow accounts for data raising towards higher-level 
components; the downward flow triggers commands directed towards 
actuators or lower layer components. Both commands and data 
communications are implemented, by default, through asynchronous message 
exchange for at least reasons of two orders:  

1. since HGHM is ultimately conceived for human-centric applications, 
user requests can occur at any time. In this sense, the architecture must 
be as flexible as to balance appropriately heavy load requests with 
real-time constraints. 

2. data require time to be processed. After processing, it can happen that 
the processed output is considered irrelevant with respect to the local 
ontological model and does not produce a data communication act to 
the upper layer. From this perspective, HGHM is more suited to event-
driven programming, a technique that is experiencing an increasing 
interest in modern software engineering due to the ability of handling 
multi-level abstraction coding more straightforwardly than traditional 
programming techniques (Meyer, 2009). 

Both the two points are compatible with well-known communication 
standards such as Agent Communication Language (ACL) and related Java-
based implementations like the Java Agent DEvelopment Framework (JADE) 
(Bellifemine et al, 2007). Similarly, it is useful to mention that agent-sensors 
or agent-actuators communications based on the eXtensible Markup Language 
(XML) have also been proposed in recent years (Acampora & Loia, 2005) and 
can be applied straightforwardly in HGHM settings as well. 
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5. CONCLUDING REMARKS 
In this thesis, an original model for information processing at various 

granularity levels called Hierarchical-Granularity Holonic Model (HGHM) 
has been introduced. HGHM empowers traditional complex systems 
engineering approach, such as object-oriented or agent-oriented modelling, by 
natively embedding into a unique model the concept of hierarchic granular 
knowledge representation and processing. Both theoretical and operational 
aspects along with some potential applications of HGHM-based approach 
have been devised in the thesis. This concluding chapter is aimed at 
summarizing the relevant aspects raised by our proposal and at drawing a line 
towards future developments on the subject. 

5.1  Relevant  aspects  in  HGH  modelling,  border 

domains and prospective works 

GrC and the holonic field have remained quite distant from one other during 
these years. However, the expressive power behind the notion of holon, a self-
similar entity for managing complex systems, is well suited for exploring in 
depth granular structures with a simple and efficient conceptual framework. 
To achieve this end, the concept of holonic granule (HG) has been introduced 
and a number of example applications that emerge from the theory of HGs has 
been presented. HG enlightens the complementarity of the two fields, 
tightening them into a unique model. Furthermore, thanks to introduction of a 
particular grammar both for writing HG-oriented software and designing HG-
based systems, our proposal is close to the field of CWW. By means of HGs 
we are able to provide hierarchical-granularity level descriptions for complex 
system analysis. 

The author is confident that the study about Holonic Systems can leverage 
connections among holonic approaches and GrC and CWW applications. By 
definition, holons provide an abstract framework for dealing with (granular) 
entities that can be aggregated into higher-level entities or decomposed into 
lower-level entities maintaining always the same computational structure. 
Consequently, they are suitable for describing processes at different 
granularity levels on the base of available data. In this sense, holons can be an 
‘alphabet’ in which to inflect GrC and CWW ideas. Hopefully, the proposed 
technique represents a first step in this direction. 

 In the authors’ view, HGH modelling is worth considering for at least 
reasons of two orders: 

 it combines theoretical and practical aspects in a unique framework; 

 it allows for handling system granularity under a holonic perspective. 

The first point represents a remarkable point with respect to the current GrC 
community where the debate on the trade-off between the theory and 
implementation is still wide open. The second point is in the line of the 
Occam’s razor principle: since the holonic modelling has already a well-
grounded authorship, its translation to the GrC field is more straightforward 
than building a new theory from scratch. 
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Since our HGHM is based mainly on the architectural aspects of granular 
systems, we believe that our proposal is additive to several existing 
methodologies. For example, a more in-depth investigation should be pursued 
between HGH modelling and FL. One major point is that in both approaches 
knowledge of observed phenomena is expressed in terms of linguistic 
propositions rather than numerical equations. 

In this thesis, the focus was on crisp granular modelling alone: HGs 
accounting for linguistic hypotheses on data have been considered principally 
in case they were true or false with no degree of uncertainty attached. 
However, reasoning in FL-like terms, holonic rules can be assigned a 
membership value indicating the uncertainty about the truthfulness of the 
underpinning logical implication. This makes holonic rules prospectively 
suitable for automated inference under uncertainty and hence they can be a 
valuable means for those real-world settings where agents have to take 
decisions with only noisy and incomplete information available. In this sense, 
well-established solutions like FL-based agents can be a source of inspiration 
and comparison for future HGHM-based applications. 

It is necessary to point out that, from a CI perspective, our HG-based 
approach compared to FL-based ones is at a very early stage of evolution. At 
the moment, it is hardly predictable which similarities and which differences 
will emerge in the next future. Time will tell: if we look at FL development 
for example, we notice that some decades have been required to mould new 
concepts such as GrC and type-II FL. 

For what program coding and software structure parsing are concerned we 
found out that HGHM, thanks to its inherent recursive nature, allows for 
separating neatly between computational element (which remains always the 
same, at any hierarchical-granularity level) and KR, leaving this one on the 
behalf of the software engineer. 

HGH modelling, stemming from the original Koestler’s idea of holon as an 
entity being a while and a part at the same time, allows to deal with holistic 
approaches in a computational way. In the literature, with particular reference 
to the scientific one, the holistic view as been considered as too philosophical 
and scarcely applicable to real-world situations. In fact, we, as engineers, are 
generally thought to decompose complex problems according to a reductionist 
view, which is certainly efficient in practical terms, but has the disadvantage 
of loosing the concept of the whole as more than the sum of its parts, which is 
something difficult to grasp only with reductionist-oriented approaches.  

Since HGH modelling is not only a theoretical frame, but, as shown in the 
thesis, also a practical methodology for managing different problems in the 
realm of complex systems modelling, we are hopeful that new debates and 
new proposals will arouse in the field of CI following our direction. 

5.2 Open Questions and Future Developments 

In this thesis, a novel holonic-based methodology for supporting complex 
system modelling at multiple granularity levels has been presented.  

From an engineering perspective, the relevant aspect of the proposal lays in 
the possibility to handle multiple granularity-level descriptions within a single 
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framework. This was made possible thanks to the noteworthy property of 
holon considered as a computational entity able to play the part of a whole and 
a part of a whole at the same time. Such a kind of ambiguous definition has 
been made operational by introducing the concept of HG, a re-definition of 
the Zadeh’s concept of information granule in holonic terms. 

HGs are data structures arranged in a recursive fashion: i.e., they can be 
described as nested hierarchies of other instances of themselves until some 
primitive form is reached out. HGs can be encoded within a hashtable to 
provide the basic structure for holonic-inspired programs: we provided some 
example for this. These programs have the interesting features of being high 
modular, since they all inherit the same archetype class which is specialized at 
run-time depending on the granularity-level the holonic program is being 
processed. 

A heuristics for extracting HGs from data has also been reported. It allows 
for inducing HG-based structure directly from observation but also for 
automated signal analysis and prediction.  

Holarchy extraction and management algorithms have been then fused 
within a single computational model that we referred to as HGHM. 

HGHM is both a conceptual and operational framework to deal with 
complex systems according to a (holonic) agent-oriented view. For example, 
HGHM can be used as a software modelling approach basing on the idea that 
primitive processing functions can be considered as instances of an archetype 
HG-based class. More generally, HGHM is useful for modelling any complex 
system where a (physical or conceptual) hierarchy exists. For example, we 
devised a HGHM-based re-interpretation of the electric power distribution 
network, showing how the problem of energy balancing can be handled in 
holonic terms. 

This thesis should be considered as a first insight into the problems of 
holonic modelling from a CI standpoint. Much work is to be done and 
hypothetical connections between the proposed approach and other CI 
solutions should be further investigated. 

For example, we only gave some hints about the possible relationships 
between HGH Modelling and FL, while the evolutionary aspects of HG-based 
holarchies have been completely skipped. 

There remain several implementing questions that should be addressed with 
more care such as the combinatorial aspects in holarchy unrolling mechanism 
(when holonic rule are highly polysemous) and the technical problems related 
to the depth of recursion during computation.  

A first attempt to provide some symbolic-logic characterization to the 
process of holarchy rolling/unrolling has been shown. However, this would 
require a deeper study also from the perspective of Automata Theory and 
Mathematical Logic. The holonic grammar here proposed has in fact to be 
considered more as an easy-to-understand computational tool to describe HG-
based process like abstraction and enrichment rather than a formal framework 
with solid theoretical foundations. 
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Finally, at the epistemic level, HGH Modelling poses several questions in 
terms of re-definition of the concept of environment as nothing but a super-
holon of the holonic system under scope. This position is in contrast with our 
current view of agent and environment as entities that must be kept separated 
to perform an efficient design. 

Last but not least, our modelling approach assumes implicitly the super-
holon playing the role of the environment as being the true reference 
knowledge during the knowledge extraction phase. From an epistemic point of 
view, this implies that ground observations would have some sort of inherent 
truth that allows for producing correct inferences of the observed phenomena. 



 112

REFERENCES 

1. R. Abilemona, E. M. Petriu, T. E. Whalen (2010), Distributed intelligent sensor 
agent system for environment mapping, Journal of Ambient Intelligence and 
Humanized Computing, Springer, 1(2): 95-110 

2. G. Acampora, V. Loia (2005), Fuzzy control interoperability and scalability for 
adaptive domotic framework, IEEE Trans. Industrial Informatics 1(2): 97-111. 

3. G. Acampora, V. Loia (2008), A proposal of ubiquitous fuzzy computing for 
Ambient Intelligence, Information Sciences: an International Journal, Elsevier 
Science Inc., 178(3): 631-646 

4. E. Adam, R. Mandiau, C. Kolski (2000), HOMASCOW: a holonic multi-agent 
system for cooperative work, Proc. of the 11th International Workshop on Database 
and Expert Systems Applications, pp. 247-253 

5. R. Agrawal, T. Imieliński, A. Swami (1993), Mining association rules between sets 
of items in large databases, Proc. of the ACM SIGMOD international conference on 
Management of data, pp. 207 – 216 

6. M. Albert, T. Laengle, H. Woern, M. Capobianco, A. Brighenti (2003), Multi-agent 
systems for industrial diagnostics. Proc. of the 5th IFAC Symposium on Fault 
Detection, Supervision and Safety of Technical Processes, pages 483-488    

7. C. Alippi, P. Braione (2006), Classification Methods and Inductive Learning Rules: 
What We May Learn From Theory, IEEE Transactions on Systems, Man, and 
Cybernetics—part C: Applications and Reviews, 36(5): 649-655.   

8. C. Alippi, S. Ferrari, V. Piuri , M.Sami, F. Scotti (1999), New trends in intelligent 
system design for embedded and measurement applications, IEEE Instrumentation & 
Measurement Magazine, 2(2): 36-44 

9. R. N. Anthony (1965), Planning and Control Systems: A Framework for Analysis, 
Harvard Business School Division of Research 

10. G. Antoniou, F. van Harmelen (2004), Web Ontology Language: OWL. Handbook 
on Ontologies, pp.: 67-92 

11. B. Auprasert, Y. Limpiyakorn (2009), Representing Source Code with Granular 
Hierarchical Structures, Proc. of the IEEE 17th International Conference on Program 
Comprehension, pp. 319-320 

12. G. Ausiello , F. D'Amore , G. Gambosi (2008), Linguaggi, Modelli, Complessità 
(italian only), 2nd ed. Franco Angeli, Milan 

13. S. Bandini, R. Serra, Complex Systems, AI*IA Intelligenza Artificiale 3(1): 102-108 
14. R. Basili, et al. (2002), Knowledge-Based Multilingual Document Analysis, Proc. of 

the International Conference on Computational Linguistics (COLING 2002) on 
SEMANET: building and using semantic networks - Volume 11: 1-7 

15. F. L. Bellifemine, G. Caire, D. Greenwood (2007), Developing Multi-Agent Systems 
with JADE, Wiley ed. 

16. F. L. Bellifemine, A. Poggi, G. Rimassa (2001), Developing multi-agent systems 
with a FIPA-compliant agent framework, Software, Practice and Experience, 
31(2):103-128  

17. T. Berners-Lee, J. Hendler, O. Lassila (May 2001), The Semantic Web, Scientific 
American 

18. D. Bertolini, P. Busetta, A. Molani, M. Nori, A. Perini (2003), Designing peer-to-
peer applications: An agent-oriented approach, In R. Kowalczyk, J. P. Muller, H. 
Tianfield, and R. Unland, editors, Agent Technologies, Infrastructures, Tools, and 
Applications for E-Services, volume 2592 of LNCS, pages 92-106, Springer 

19. A. Bieszczad, T. White, B. Pagurek (1998), Mobile agents for network management, 
IEEE Communications Surveys & Tutorials, 1(1): 2-9 

20. V. Bocchio, M. Masoero (1992), CH4, Energia, Metano (italian only), 2: 15-20. 
21. C. Böhm, G. Jacopini (May 1966), Flow diagrams, Turing machines and languages 

with only two formation rules, Communications of the ACM, 9(5): 366 – 371 
22. M. P. Bonacina, A. Martelli, Automated reasoning, AI*IA Intelligenza Artificiale 

3(1):14-20 
23. L. Breiman, J. Friedman, C. J. Stone, R.A. Olshen (1984), Classification and 

Regression Trees, 1st Edition, Taylor & Francis 



 113

24. R. W. Brennan, J. H. Christensen, W. A. Gruver, Dilip B. Kotak, D. H. Norrie, E. 
van Leeuwen (2005), Holonic Manufacturing Systems – A Technical Overview, 
Industrial Information Technology Handbook, Richard Zurawski (ed), CRC Press 

25. R. W. Brennan, W. A. Gruver, Ken H. Hall (eds) (2011), Special Issue on Industrial 
Applications of Holonic Systems, IEEE Transactions on Systems, Man, and 
Cybernetics, Part C: Applications and Reviews, 41(1): 1-3 

26. H. van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, P. Peeters (1998), Reference 
architecture for holonic manufacturing systems: PROSA, Computers in Industry, 
37(3): 255-274 

27. M. Calabrese (2010), Self-Descriptive IF THEN Rules from Signal Measurements. A 
holonic-based computational technique, Proc. of the 2010 IEEE International 
Conference on Computational Intelligence for Measurement Systems and 
Applications (CIMSA 2010), pp.: 102-106 

28. M. Calabrese, A. Amato, V. Di Lecce, V. Piuri (2010), Hierarchical-granularity 
holonic modelling, Journal of Ambient Intelligence and Humanized Computing , 
Springer, 1(3): 199-209 

29. M. Calabrese, V. Di Lecce, V. Piuri (2007), ANN Residential Load Classifier for 
Intelligent DSM System, Proc. of CIMSA 2007 – IEEE International Conference on 
Computational Intelligence for Measurement Systems and Applications, Ostuni - 
Italy, pp. 33 – 38, June 27-29.  

30. L. Camarinha-Matos, H. Afsarmanesh (2001), Virtual enterprise modelling and 
support infrastructures: applying multi-agent system approaches, In J. Carbonell and 
J. Siekmann, editors, Multi-agents systems and applications, pp.: 335—364. 
Springer-Verlag, New York, NY, USA 

31. A. Camurri, A. Coglio (1998), An architecture for emotional agents, IEEE 
Multimedia, 5(4): 24-33 

32. S. Carberry, L. Lambert (1999), A process model for recognizing communicative 
acts and modelling negotiation subdialogues, Computational Linguistics, 25(1): 1 – 
53, MIT Press.  

33. S. Chakrabarti, B.E. Dom, D. Gibson, J.M. Kleinberg, R. Kumar, P. Raghavan, S. 
Rajagopalan, A. Tomkins (1999), Mining the Link Structure of the World Wide 
Web, IEEE Computer 

34. P. P.S. Chen (1976), The Entity-Relationship Model: Toward a Unified View of 
Data, ACM Transactiona on Database Systems, 1(1): 9-36 

35. B. Chen, M. Sun, M. Zhou (2009), Granular Rough Theory: A representation 
semantics oriented theory of roughness, Applied Soft Computing, 9(2): 786-805 

36. F.F. Chen, R.F Babiceanu, R.H. Sturges (2005), Real-time holonic scheduling of 
material handling operations in a dynamic manufacturing environment, Robotics and 
Computer-Integrated Manufacturing, 21:  328–337 

37. C. Chi-Bin, C.-C.H. Chan, Lin Cheng-Chuan (2005), Buyer-supplier negotiation by 
fuzzy logic based agents, Proc. of the Third International Conference on Information 
Technology and Applications, Vol. 1, 137 - 142    

38. N. Chomsky (1956), Three models for the description of language. IRE Transactions 
on Information Theory, (2): 113–124 

39. N. Chomsky (1959), On certain formal properties of grammars, Information and 
Control, 2 (2): 137–167 

40. J.H. Christensen (1994), Holonic Manufacturing Systems: Initial Architecture and 
Standards Directions, Proc. of the 1st Euro Workshop on Holonic Manufacturing 
Systems, HMS Consortium, pp.: 1-20 

41. J.H. Christensen (2007), IEC 61499: A Standardized Architecture for Adding Value 
in Industrial Automation, Kitara seminar, HTC High Tech Center, Available at 
www.holobloc.com. 

42. B.T. Clegg (2007), Building a Holarchy Using Business Process-Oriented Holonic 
(PrOH) Modelling, IEEE Trans. Syst., Man, Cybern.—Part A: Systems And 
Humans, 37(1): 23-40 

43. B.T. Clegg, D. Shaw (2008), Using process-oriented holonic (PrOH) modelling to 
increase understanding of information systems, Information Systems Journal, 18: 
447-477 

44. V. Crespi, A. Galstyan, K. Lerman (2008), Top-down vs bottom-up methodologies 
in multi-agent system design, Autonomous Robots, Springer, 24 (3): 303-313 



 114

45. B. Clegg, S. Duncan (Sept. 2008), Using process-oriented holonic (PrOH) modelling 
to increase understanding of information systems, Information Systems Journal, 
18(5): 447-477(31) 

46. A.W. Colombo, R. Schoop, R. Neubert (2006), An Agent-Based IntelligentControl 
Platform for Industrial Holonic Manufacturing Systems, IEEE Transactions on 
Industrial Electronics, 53(1): 322-337. 

47. D. D. Corkill (Sept. 1991), Blackboard Systems,  AI Expert, 6(9):40-47  
48. P. Davidsson, L. Henesey, L. Ramstedt, J. Tornquist, F. Wernstedt (2005), Agent-

Based Approaches to Transport Logistics, Whitestein Series in Software Agent 
Technologies and Autonomic Computing, pp.: 1-15. 

49. R. Davis, H. Shrobe, P. Szolovits (1993), What is a Knowledge Representation? AI 
Magazine, 14(1):17-33 

50. K. Decker, K.Sycara (1997), Intelligent adaptive information agents. Journal of 
Intelligent Information Systems, 9(3):239—260. 

51. K. Dellschaft, S. Staab (2006), On How to Perform a Gold Standard Based 
Evaluation of Ontology Learning, Proc. Of the 5th International Semantic Web 
Conference, Athens, GA, USA, pp. 173-190  

52. D. DeVault, M. del Rey, M. Stone (2009), Learning to interpret utterances using 
dialogue. Proc. of the 12th Conference of the European Chapter of the Association 
for Computational Linguistics, pp. 184-192 

53. L. Devroye, L. Györfi, G. Lugosi (1996), A Probabilistic Theory of Pattern 
Recognition. New York: Springer. 

54. E. Dijkstra, Go To Statement Considered Harmful, Communications of the ACM, 
11(3) (March 1968): 147–148 

55. V. Di Lecce, M. Calabrese, R. Dario (2010), Computational-based Volatile Organic 
Compounds discrimination: an experimental low-cost setup, Proc. of the 2010 IEEE 
International Conference on Computational Intelligence for Measurement Systems 
and Applications, pp. 54-59 

56. V. Di Lecce, A. Amato, M. Calabrese, A. Quarto, Multi Agent System to promote 
electronic data interchange in port systems (2008), Proc. of IEEE 21st Canadian 
Conference on Electrical and Computer Engineering, pp. 729 – 734 

57. V. Di Lecce, M. Calabrese (2008), Taxonomies and Ontologies in Web Semantic 
Applications: the New Emerging Semantic Lexicon-Based Model, Proc. Of the IEEE 
International Conference on Intelligent Agents, Web Technologies and Internet 
Commerce (IAWTIC'08), pp. 277-283  

58. V. Di Lecce, M. Calabrese, D. Soldo (2009), Semantic Lexicon-based Multi-Agent 
System for Web Resources Markup, Proc. of the 4th  International Conference on 
Internet and Web Applications and Services (ICIW 2009), pp. 143-148 

59. V. Di Lecce, M. Calabrese, D. Soldo (2009), Semantic Lexicon-Based Multi-Agent 
System for Web Resources Markup, Proc. of the Fourth International Conference on 
Internet and Web Applications and Services (ICIW 2009), pp. 143-148. 

60. V. Di Lecce, M. Calabrese, D. Soldo (2009), Fingerprinting lexical contexts over the 
Web, Journal of Universal Computer Science, 15(4): 805-825 

61. V. Di Lecce, C. Pasquale, V. Piuri (2004), A Basic Ontology for Multi Agent System 
Communication in an Environmental Monitoring System, Proc. of the International 
Conference on Computational Intelligence for Measurement Systems and 
Applications (CIMSA 2004), pp. 45-50 

62. A. Di Stefano, C. Santoro, G. Pappalardo, E. Tramontana (2004), Enforcing agent 
communication laws by means of a reßective framework. In H. Haddad, A. Omicini, 
R. L. Wainwright, and L. M. Liebrock, editors, 2004 ACM Symposium on Applied 
Computing (SAC), pages 462—468 

63. F. Doctor, H. Hagras, V. Callaghan, A fuzzy embedded agent-based approach for 
realizing ambient intelligence in intelligent inhabited environments, 35(1): 55 - 65 

64. N.J. van Eck, L. Waltman, J. van den Berg, U. Kaymak (2006), Visualizing the 
computational intelligence field, IEEE Computational Intelligence Magazine, 1(4):6-
10. 

65. D. Dubois, H. Prade (2009), Formal representations of uncertainty, in D. Bouyssou, 
D. Dubois, M. Pirlot, H. Prade (2009), Concepts and Methods of the Decision-
Making Process, ISTE, London, UK & Wiley, Hoboken, N.J. USA. 



 115

66. F. Esposito, A. Giordana, L. Saitta (2006), Machine Learning and Data Mining, 
AI*IA Intelligenza Artificiale 3(1): 63-71 

67. C. Fellbaum (1998), WordNet: An electronic lexical database, MIT Press, 
Cambridge. 

68. J. Ferber (1999), Multi-Agent Systems: An Introduction to Distributed Artificial 
Intelligence, Addison Wesley Longman 

69. FIPA - Foundation for Intelligent Physical Agent - (2002), FIPA specifications, 
http://www.fipa.org. 

70. K. Fischer, M. Schillo, J. Siekmann (2004), Holonic Multiagent Systems: A 
Foundation for the Organisation of Multiagent Systems, Lecture Notes in Computer 
Science, Springer, Vol. 2744: 1083-1084 

71. M. Fleetwood, D.B. Kotak, W. Shaohong, H. Tamoto (2003), Holonic System 
architecture for scalable infrastructures, Proc. of the IEEE International Conference 
on Systems, Man and Cybernetics, Vol. 2, pp.  1469- 1474. 

72. M. Fletcher, E. Garcia-Herreros, J.H. Christensen, S.M. Deen, R. Mittmann (2000), 
An open architecture for holonic cooperation and autonomy, Proc. of the 11th 
International Workshop on Database and Expert Systems Applications, pp. 224-230 

73. M. Fletcher, S.M. Deen (2001), Fault-tolerant holonic manufacturing systems, 
Concurrency and Computation: Practice and Experience, Special Issue on High 
Performance Agent Systems, 13(1): 43 – 70 

74. R. A. Flores-Mendez (1999), Towards a standardization of multi-agent system 
framework, ACM Crossroads, 5(4): 18-24 

75. N. Fornara, F. Viganò, M. Verdicchio, Marco Colombetti (2008), Artificial 
institutions: a model of institutional reality for open multiagent systems, Artificial 
Intelligence and Law, Springer, 16 (1): 89-105 

76. Fujita N. (2001), Holonic controller and assembly task planning, Proc. of the IEEE 
International Symposium on Assembly and Task Planning, pp. 67-72. 

77. A. Gangemi, N. Guarino, A. Oltramari, R. Oltramari (2001), Conceptual Analysis of 
Lexical Taxonomies: The Case of WordNet Top-Level, Proc. of the International 
Conference on Formal Ontology in Information Systems (FOIS-2001), pp. 285-296 

78. G.S. Gardiner, M.J. Gregory (1996), An audit based approach to the analysis, 
redesign and continuing assessment of a new product introduction system, Integrated 
Manufacturing Systems, 7: 52–59 

79. A. Giret, V. Botti (2004), Holons and agents; Journal of Intelligent Manufacturing, 
15: 645-659. 

80. F. Giunchiglia, T. Walsh (1992), A theory of abstraction, Artificial Intelligence,    
57(2-3): 323 – 389, ACM 

81. A. Greasley (2004), Simulation Modelling for Business, Ashgate Press, London, UK 
82. T. R. Gruber (1993), A Translation Approach to Portable Ontology Specifications, 

Journal of Knowledge Acquisition, Academic Press, 5(2): 199 - 220. 
83. T. R. Gruber (1995), Toward principles for the design of ontologies used for 

knowledge sharing, International Journal of Human and Computer Studies, 43: 907–
928 

84. W. A. Gruver, D. Kotak, E. van Leeuwen, D. H. Norrie (2003), Holonic 
manufacturing systems: Phase II, in Holonic and Multiagent Systems for 
Manufacturing, V. Marik, D. McFarlane, P. Valckenaers, (eds.), Berlin, Germany: 
Springer-Verlag, HoloMAS 2003, LNAI 2744: 1-14 

85. Y. Gurevich (2000), Sequential Abstract State Machines Capture Sequential 
Algorithms,  ACM Trans. Computational logic, 1(1): 77 – 111 

86. H. Hagras (2007), Type-2 FLCs: A New Generation of Fuzzy Controllers, IEEE 
Computational Intelligence Magazine, 2(1): 30-43 

87. H. Hagras, V. Callaghan, M. Collry (2001), Outdoor mobile robot learning and 
adaptation, IEEE Robotics & Automation Magazine, 8(3): 53 – 69 

88. H. Hagras, F. Doctor, V. Callaghan,  A. Lopez (2007), An Incremental Adaptive Life 
Long Learning Approach for Type-2 Fuzzy Embedded Agents in Ambient Intelligent 
Environments, IEEE Transactions on Fuzzy Systems, 15: 41 - 55   

89. J. Han, J. Dong (2007), Perspectives of Granular Computing in Software 
Engineering, Proc. of the IEEE International Conference on Granular Computing, 
pp. 66-71 



 116

90. Y. Hayashi, T. Ishida (2006), A Dictionary Model for Unifying Machine Readable 
Dictionaries and Computational Concept Lexicons, Proc. of the 5th international 
conference on Language Resources and Evaluation (LREC 2006), pp.1-6 

91. J.R. Hobbs (1985), Granularity, Proc. of the 9th International Joint Conference on 
Artificial Intelligence, pp. 432-435 

92. Hoang Thi Thanh Ha, M.  Occello, Nguyen Thanh Binh (2009), Applying Type 
Theory to Formal Specification of Recursive Multiagent Systems, Proc. of the 
International Conference on Computing and Communication Technologies, pp. 1-8  

93. Fu-S. Hsieh (2008a), Holarchy formation and optimization in holonic manufacturing 
systems with contract net, Automatica, 44: 959-970 

94. Fu-S. Hsieh (2008b), Robustness analysis of holonic assembly/disassembly 
processes with Petri nets, Automatica, 44: 2538–2548 

95. Fu-S. Hsieh (2009), Collaborative reconfiguration mechanism for holonic 
manufacturing systems, Automatica, 45: 2563-2569 

96. E. Hutchins (1995), Cognition in the Wild (Chapter 9), MIT Press  
97. D. Inkpen (2001), Building A Lexical Knowledge-Base of Near-Synonym 

Differences, Proc. of the Workshop on WordNet and Other Lexical Resources: 
Applications, Extensions and Customizations, pp. 47-52 

98. M.C. Jackson, P. Keys (1984), Towards a system of system methodologies, Journal 
of Operations Research, 35, 473–486 

99. A. K. Jain, M. N. Murty, P. J. Flynn (1999), Data clustering: a review, ACM 
Computing Surveys, 31(3): 264-323       

100. N.R. Jennings (1994), The ARCHON system and its applications, Proc. of the 2nd  
International Working Conference on Cooperating Knowledge Based Systems 
(CKBS-94), pp. 13-29 

101. N.R. Jennings, P. Faratin, M. J. Johnson, T. J. Norman, P. O Brien, M. E. Wiegand 
(1996), Agent-based business process management, International Journal of 
Cooperative Information Systems , 5(2-3): 105-130 

102. N. R. Jennings, M. Wooldridge (1998), Applications of intelligent agents. In Agent 
technology: foundations, applications, and markets, pp. 3-28. Springer-Verlag New 
York, Inc., Secaucus, NJ, USA 

103. J.J. Jiang, D.W. Conrath (1997), Semantic Similarity Based on Corpus Statistics and 
Lexical Taxonomy, Proc. of the International Conference on Research in 
Computational Linguistics, pp. 19-33. 

104. J. Kegl (1995), Machine-readable dictionaries and education, Walker, Donald E., 
Antonio Zampolli and Nicoletta Calzolari, eds., Automating the Lexicon: Research 
and Practice in a Multilingual Environment, Oxford University Press, New York, pp. 
249 – 284 

105. M. Klusch (2001), Information agent technology for the Internet: a survey, Data 
Knowledge Engineering, 36(3): 337—372 

106. A. Koestler (1967), The Ghost in the Machine, (1st Edition) Hutchinson, London 
107. A. Koestler (1969),  Some General Properties of Self-Regulating Open Hierarchic 

Order (SOHO), Panarchy, @http://www.panarchy.org/koestler/holon.1969.htm 
108. N. L. Komarovaa, M. A. Nowak (May 2001), The Evolutionary Dynamics of the 

Lexical Matrix, Bulletin of Mathematical Biology, 63(3): 451-485, Springer 
109. P. Kopacek (1999), Intelligent Manufacturing: Present State and Future Trends, 

Journal of Intelligent & Robotic Systems, 26(3-4): 217-229, Springer 
110. R. Kremer, D. Norrie (2000), Architecture and design of a holonic visual interface, 

Proc. of the IEEE Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 1715-
1720 

111. Yu-K. Kwok, I. Ahmad (1998), Benchmarking the Task Graph Scheduling 
Algorithms, Proc. of the 12th. International Parallel Processing Symposium on 
International Parallel Processing Symposium, pp. 531-537 

112. J. Lagorse,  M.G. Simoes,  A. Miraoui (2009), A Multiagent Fuzzy-Logic-Based 
Energy Management of Hybrid Systems, IEEE Transactions on Industry 
Applications, 45(6): 2123-2129 

113. P. Langley (2000), The science of machine learning. Preface, In Proc. of the 
Seventeenth International Conference on Machine Learning (ICML-2000), Morgan 
Kaufmann 



 117

114. P. Leitão, F. Restivo (2008), Implementation of a Holonic Control System in a 
Flexible Manufacturing System, IEEE Trans. Syst., Man, Cybern., Part C 38(5): 699-
709 

115. T. Y. Lin (1997), From Rough Sets and Neighborhood Systems to Information 
Granulation and Computing in Words, Proc. of European Congress on Intelligent 
Techniques and Soft Computing, pp. 1602-1607. 

116. M. Ljungberg, A. Lucas (1992), The OASIS air-traffic management system, Proc. of 
the 2nd  Pacific Rim International Conference on Artificial Intelligence (PRICAI’ 92) 

117. S. A. Long, A. C. Esterline (2000), Fuzzy BDI Architecture for Social Agents, Proc. 
of the IEEE Southeastcon 2000, pp.: 68 – 74 

118. G. Ma, C. Shi (2000), Modelling Social Agents in BDO Logic, Proc. of the Fourth 
International Conference on MultiAgent Systems, pp. :411 - 41 

119. A. Maedche, S. Staab (2001), Ontology Learning for the Semantic Web, IEEE 
Intelligent Systems, 16(2): 72 – 79 

120. B. Magnini, C. Strapparava, F. Ciravegna, and E. Pianta (1994), A Project for the 
Construction of an Italian Lexical Knowledge Base in the Framework of WordNet, 
IRST Technical Report #9406-15 

121. V. Marik, Michal Pechoucek (2002), Holons and agents: Recent developments and 
mutual impacts, Proc. 12th International Workshop on Database Expert Systems 
Applications, in Multi-Agent Systems and Applications II, LNCS, Springer, Vol. 
2322: 89-106  

122. T.J. McCabe (1976), A Complexity Measure, IEEE Transactions on Software 
Engineering, 2(4): 308-320 

123. J.M. Mendel (2007), Computing with Words: Zadeh, Turing, Popper and Occam, 
IEEE  Computational Intelligence Magazine, 2(4): 10-17 

124. J. M. Mendel, R. I. B. John (2002), Type-2 Fuzzy Sets Made Simple, IEEE 
Transactions on Fuzzy Systems, 10(2): 117-127 

125. J. Mendel, L. Zadeh, E. Trillas, R. Yager, J. Lawry, H. Hagras, S. Guadarrama 
(2010),   What Computing with Words Means to Me, IEEE Computational 
Intelligence Magazine, 5(1): 20-26 

126. E. Mendelson (1964), Introduction to Mathematical Logic, D. Van Nostrand 
Company -Princeton, New Jersey 

127. J. Mennis, J.W. Liu (2005), Mining association rules in spatio-temporal data: An 
Analysis of Urban Socioeconomic and Land Cover Change, Transactions in GIS, 
9(1): 5–17 

128. M.D. Mesarović, D. Macko, Y. Takahara (1970), Theory of Hierarchical Multilevel 
systems, New York, Academic Press 

129. B. Meyer (2009), Touch of Class: Learning to Program Well with Object and 
Contracts, Springer-Verlag. 

130. G. Miller (1995), WordNet: a lexical database for English, Communications of the 
ACM, 38(11): 39-41 

131. Minghua He, Ho-fung Leung, N.R  Jennings, A fuzzy-logic based bidding strategy 
for autonomous agents in continuous double auctions, IEEE Transactions on 
Knowledge and Data Engineering, 15(6): 1345 - 1363 

132. M. Minsky (1961), Steps toward Artificial Intelligence, Proc. of the Institute of 
Radio Engineer (IRE), 49(1): 8-30 

133. M. Minsky (1967), Computation: Finite and Infinite Machines. New Jersey: 
Prentice-Hall 

134. M. Minsky (1988), The Society of Mind, Simon and Schuster, New York 
135. E. Motta, J. Domingue, L. Cabral, and M. Gaspari (2003), Irs-ii: A framework and 

infrastructure for semantic web services. In D. Fensel, K. P. Sycara, and J. 
Mylopoulos, editors, 2nd International Semantic Web Conference, volume 2870 of 
LNCS, pages 306—318, Springer. 

136. J. Mylopoulos (1980), An Overview of Knowledge Representation, Workshop on 
Data Abstraction, Databases and Conceptual Modelling, pp. 5-12 

137. R. Navigli, P. Velardi (July 2005), Structural Semantic Interconnections: a 
knowledge-based approach to word sense disambiguation, Special Issue - Syntactic 
and Structural Pattern Recognition, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, 27(7)  



 118

138. R. Navigli. Word Sense Disambiguation: a Survey (2009). ACM Computing Surveys, 
41(2): 1-69 

139. E. Nichols, F. Bond, D. Flickinger (2005), Robust ontology acquisition from 
machine-readable dictionaries, In Proc. of the International Joint Conference on 
Artificial Intelligence (IJCAI-2005), pp. 1111–1116. 

140. H. Ning., D. Shihan, Structure-Based Ontology Evaluation (2006), Proc. Of the 
International Conference on e-Business Engineering, 2006. IEEE, pp. 132 – 137 

141. Object Management Group (2007), Documents associated with Architecture-Driven 
Modernization (ADM)/ Knowledge Discovery Meta-Model (KDM), v1.0,  
@http://www.omg.org/spec/KDM/1.0/ 

142. Object Management Group (2007), OMG Unified Modelling Language, 
Infrastructure, V2.1.2, @http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF 

143. J. Odell, H. Van Dyke Parunak, M. Fleischer, S. Brueckner (2003), Modelling 
Agents and their Environment: The Physical Environment, Journal of Object 
Technology, 2(2): 43-51  

144. S. Okamoto, P. Scerri, K. Sycara (2008), The Impact of Vertical Specialization on 
Hierarchical Multi-Agent Systems, Proc. of the 23rd AAAI Conference on Artificial 
Intelligence, pp. 138-143. 

145. A. Omicini, A. Poggi (2006), Multiagent Systems, AI*IA Intelligenza Artificiale 
3(1): 79-86 

146. N. Ordan, S. Wintner (2005), Representing Natural Gender in Multilingual 
Databases, International Journal of Lexicography, 18(3): 357-370  

147. H. V. D. Parunak (1987), Manufacturing experience with the Contract Net. In M. N. 
Huhns, editor, Distributed Artificial Intelligence, pages 285—310, Pitman 

148. H. V. D. Parunak, J. Odell (2002), Representing Social Structures in UML, 
International Workshop on agent-oriented software engineering, Vol. 2222, pp. 1-16. 

149. M. J. Pazzani (2000), Knowledge discovery from data? IEEE Intelligent Systems and 
their Applications, 15(2): 10-12 

150. Z. Pawlak (1982), Rough sets, International Journal of Computer and Information 
Sciences, 11: 341-356 

151. M. Pechoucek, Vladimir Marik (2008), Industrial Deployment of Multi-Agent 
Technologies: Review and Selected Case Studies, International Journal on 
Autonomous Agents and Multi-Agent Systems, Springer, AAMAS 17:397-431 

152. W. Pedrycz (2001), Granular computing: an introduction, Proc. of the Joint 9th IFSA 
World Congress and 20th NAFIPS International Conference, pp. 1349 - 1354    

153. W. Pedrycz (2002), Computational intelligence as an emerging paradigm of software 
engineering, Proc. of the 14th international conference on Software engineering and 
knowledge engineering, pp. 7-14    

154. W. Pedrycz, P. Rai (2008), A Multifaceted Perspective at Data Analysis: A Study in 
Collaborative Intelligent Agents, IEEE Transactions on Systems, Man, and 
Cybernetics—part b: Cybernetics, 38(4): 1062-1072 

155. F. Pichler (2000), Modelling Complex Systems by Multi-Agent Holarchies, Lecture 
Notes in Computer Science, Computer Aided Systems Theory - EUROCAST’99, 
Springer Berlin / Heidelberg, pp. 154-168 

156. A. Poggi, M. Tomaiuolo, G. Vitaglione (2005), A security infrastructure for trust 
management in multiagent systems. In R. Falcone, K. S. Barber, J. Sabater-Mir, and 
M. P. Singh, editors, Trusting Agents for Trusting Electronic Societies, volume 3577 
of LNCS, pages 162-179. Springer 

157. D. Poole, A. Mackworth, R. Goebel (1998), Computational Intelligence: A Logical 
Approach, Oxford University Press, New York 

158. T. Qian, B. Van Durme, L. Schubert (2009), Building a Semantic Lexicon of English 
Nouns via Bootstrapping, In Proc. of the NAACL HLT Student Research Workshop 
and Doctoral Consortium, pp. 37–42. 

159. S. Robinson (2003), Simulation: The Practice of Model Development and Use, John 
Wiley and Sons, Chichester, UK. 

160. S. Russell, P. Norvig (2003), Artificial Intelligence: A Modern Approach, 2nd ed., 
Prentice Hall 

161. J. R. Searle (1969), Speech Acts: An Essay in the Philosophy of Language. 
Cambridge University Press, Cambridge. 



 119

162. J. Searle, (1980), Minds, Brains and Programs, Behavioral and Brain Sciences 3 (3): 
417–457 

163. W. Shen, D. H. Norrie (1999), Agent-based systems for intelligent manufacturing, A 
state-of-the-art survey, Knowledge Information Systems, 1(2): 129-156 

164. M. Schillo, K. Fischer (2003), Holonic Multiagent Systems, Zeitschrift für 
Künstliche Intelligenz, No. 3 

165. S. Shafaei, N.G. Aghaee (2008), Biological Network Simulation Using Holonic 
Multiagent Systems, 10th International Conference on Computer Modelling and 
Simulation, pp.: 617 – 622. 

166. G. Shafer (1976), A Mathematical Theory of Evidence, Princeton University Press, 
1976 

167. J.M. Simao, C.A. Tacla, P. C. Stadzisz (2009), Holonic Control Metamodel, IEEE 
Trans. Syst., Man, Cybern., Part A 39(5): 1126-1139. 

168. V. Snasel, P. Moravec, J. Pokorny (2005), WordNet Ontology Based Model for Web 
Retrieval, Proc. of International Workshop on Challenges in Web Information 
Retrieval and Integration (WIRI ‘05), pp. 220-225. 

169. K. Sycara (1998), MultiAgent Systems, AI Magazine 19(2): 79-92 
170. A.S. Tannenbaum (2006), Structured Computer Organization, 5th Edn, Pearson 

Education 
171. D. Thompson, D.R. Hughes (1998), Holonic Modelling, Manufacturing Engineer, 

77(3) pp. 116-119 
172. P. Tichy, P. Slechta,  R.J. Staron, F. Maturana, K.H. Hall (2005), Multiagent 

technology for fault tolerance and flexible control, IEEE Trans. Syst., Man, Cybern. 
C, Appl. Rev., 36(5): 700–705 

173. L. van der Torre (2003), Contextual deontic logic: normative agents, violations and 
independence, Annals of Mathematics and Artificial Intelligence 37: 33–63, Kluwer 
Academic Publishers, the Netherlands.  

174. A. M. Turing (1950), Computing machinery and intelligence, Mind, 59: 433-460 
175. M. Ulieru, R. W. Brennan, S.S. Walker (2002), The holonic enterprise: a model for 

Internet-enabled global manufacturing supply chain and workflow management, 
Integrated Manufacturing Systems, 13(8): 538-550 

176. M. Ulieru, M. Cobzaru (2005), Building Holonic Supply Chain Management 
Systems: An e-Logistics Application for the Telephone Manufacturing Industry, 
IEEE Transactions on Industrial Informatics, 1(1): 18-30 

177. M. Ulieru, R. Doursat (2010), Emergent Engineering: A Radical Paradigm Shift, 
ACM Transactions on Autonomous and Adaptive Systems (submitted April 2010) 

178. M. Ulieru, R. Este (2004), The Holonic Enterprise and Theory of Emergence, 
International Journal Cybernetics and Human Knowing (Imprint Academic), 11(1): 
79-99 

179. M. Uschold, M. Gruninger (1996), Ontologies: Principles, methods and applications, 
Knowledge Engineering Review, 11(2): 93-155 

180. M. Uschold, M. King, S. Moralee, Y. Zorgios (1998), The enterprise ontology, The 
Knowledge Engineering Review, Vol. 13: 31–89 

181. J.S. Valacich, J.F. George, J.A. Hoffer (2006), Essentials of Systems Analysis and 
Design, 3rd edn. Prentice Hall, Upper Saddle River, NJ, USA 

182. V. Vapnik (1979), Estimation of Dependencies Based on Empirical Data. Nauka, 
Moscow, (In Russian). English translation. New York. Springer Verlag, 1982 

183. P. Velardi, A. Cucchiarelli, Michael Pétit (2007), A Taxonomy Learning Method and 
its Application to Characterize a Scientific Web Community, IEEE Transaction on 
Data and Knowledge Engineering (TDKE), 19(2): 180-191 

184. C. Wagner, Hani Hagras (2010), Toward General Type-2 Fuzzy Logic Systems Based 
on zSlices, IEEE Transactions on Fuzzy Systems, 18(4): 637-660 

185. S. S. Walker, R.W. Brennan, D.H. Norrie (2005), Holonic Job Shop Scheduling 
Using a Multiagent System, IEEE Intelligent Systems, 2: 50-57 

186. Y. Wang (2008), A Hierarchical Abstraction Model for Software Engineering, Proc. 
of the International Conference on Software Engineering,  pp. 43-48 

187. W. Wang, V. Portnoy,  I. Pollak (2007), A Stochastic Context-Free Grammar Model 
for Time Series Analysis, Proc. Of the IEEE International Conference on Acoustics, 
Speech and Signal Processing, III: 1245-1248 



 120

188. M. Winikoff (2005), JACK intelligent agents: An i ndustrial strength platform, In R. 
Bordini, M.Dastani, J.Dix, and A. E. Fallah-Seghrouchni, editors, Multi-Agent 
Programming, pages 175-193. Springer, Berlin, Germany 

189. M. Wooldridge, N. R. Jennings (1995), Intelligent Agents: Theory and Practice, 
Knowledge Engineering Review, 10(2): 115-152 

190. M. Wooldridge (2009), An Introduction to Multi Agent Systems, 2nd ed. , John Wiley 
& Sons 

191. World Wide Web Consortium (W3C), RDF Vocabulary Description Language 1.0: 
RDF Schema, @http://www.w3.org/TR/rdf-schema/ 

192. World Wide Web Consortium (W3C), OWL 2 Web Ontology Language Primer, 
@http://www.w3.org/TR/2009/REC-owl2-primer-20091027/  

193. T. Wu (2005), Granular Computing in Programming Language Design, Proc. of the 
IEEE International Conference on Granular Computing, pp. 296 – 302. 

194. Z. Xiaokun, D.H. Norrie (1999), Dynamic reconfiguration of holonic lower level 
control, Proc. of the Second International Conference on Intelligent Processing and 
Manufacturing of Materials, 2: 887-893 

195. Y. Yao (2005), Perspectives of Granular Computing, Proc. of 2005 IEEE 
International Conference on Granular Computing, 1: 85-90  

196. L. A. Zadeh (1965), Fuzzy sets, Information Control, 8: 338-353 
197. L.A. Zadeh (1979), Fuzzy sets and information granularity, in: Advances in Fuzzy 

Set Theory and Applications, Gupta, N., Ragade, R. and Yager, R. (Eds.), 
Amsterdam: North-Holland, pp.: 3-18 

198. L.A. Zadeh (1996), Fuzzy logic = computing with words, IEEE Transactions on  
Fuzzy Systems, 4(2): 103-111 

199. Zadeh LA (1997) Toward a theory of fuzzy information granulation and its centrality 
in human reasoning and fuzzy logic, Fuzzy Sets and Systems, 90: 111-127 

200. L. A. Zadeh (1998), Some reflections on soft computing, granular computing and 
their roles in the conception, design and utilization of information/intelligent 
systems, Springer-Verlag Soft Computing (2): 23—25 

201. L.A. Zadeh (2004), Soft computing and fuzzy logic, IEEE Software, 11(6): 48-56 

 


