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Abstract In the development process of a secure system

is essential to detect as early as possible the system’s

vulnerable points, the so called attack surfaces, and to

estimate how feasible it would be that known attacks

breach through them. Even if attack surfaces can be

sometimes detected automatically, mapping them against

known attacks still is a step apart. Systems and attacks are

not usually modelled in compatible formalisms. We de-

velop a practical framework that automates the whole

process. We formalize a system as SysML activity dia-

grams and in the same formalism we model libraries of

patterns taken from standard catalogues of social engi-

neering and technical attacks. An algorithm that we define,

navigates the system’s diagrams in search for its attack

surfaces; then it evaluates the possibility and the prob-

ability that the detected weak points host attacks among

those in the modelled library. We prove the correctness and

the completeness of our approach and we show how it

works on a use case scenario. It represents a very common

situation in the domain of communication and data security

for corporations.

Keywords Systems attacks � Attack patterns � Attack

surfaces � SysML activity diagrams � Socio-technical

security

1 Introduction

There are two distinct yet related challenges in the devel-

opment of secure software and systems. One is about dis-

covering vulnerabilities at as early as possible stages of the

system development’s life-cycle; the other is about

assessing and possibly quantifying the degree of vul-

nerability of an existing system when this is exposed to

known attacks.

A response to the first challenge requires to check

whether a model of the system satisfies a set of relevant

security properties. This check is performed in the presence

of an attacker, usually a Dolev Yao adversary (Dolev and

Yao 1983) that controls all the system’s communication

channels to interfere with the system’s functionalities. This

technique of analysis is known as model checking (Clarke

et al. 1983). It has been successfully applied to discover

insidious attacks and anomalies for the risk analysis and

security assessment of the model-based systems (Solhaug

and Seehusen 2014). However, although efficiently im-

plemented in specific cases (Clarke et al. 2012), model

checking’s worst-case time complexity is exponential in

the size of the system’s and of the property’s models. Large

systems may be beyond reach for this type of analysis. The

response to the second challenge, instead, is more prag-

matic. Considering only documented attacks—that is, pat-

terns of actions known to be used to compromise the

system’s integrity, availability, and confidentiality (Abrams

1998)—it consists in estimating the system’s degree of

vulnerability looking at the system’s attack surfaces

(Manadhata and Wing 2011). An attack surface is roughly

the set of system’s actions that are accessible externally

and the system’s resources which can be modified via those

actions. The more extensive the attack surface is, the more

vulnerable the system can be.
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This paper’s work is about this second challenge. It

proposes a formal framework to detect attack surfaces

automatically on systems modelled in SysML (OMG

2007a). SysML is a UML2.0-based formalism and a

prominent object-oriented graphical language which has

become de facto a standard in software and systems

modelling. Assuming that a system is modelled in SysML

is therefore a pragmatic choice, in order to be compliant

with the current engineering practices. SysML reuses a

subset of UML packages (OMG 2007b), namely the sub-

set already extensively used in modelling large and com-

plex systems, and it extends it with other features of

quantitative nature, such as probability. These diagrams

can call and communicate with other diagrams and allow

for probabilistic behaviour specification. Particularly,

SysML’s activity diagrams, the specific formalism that this

work adopts, can express a qualitative and quantitative

elements of a system’s behaviour and at various levels of

abstraction (Holt and Perry 2008).

Detecting attack surfaces requires to inspect a system’s

model and to find out if known attacks can reach the sys-

tem’s core procedures via the system’s exposed actions.

The literature offers a variety of ways to describe attacks:

attack tree (Mauw and Oostdijk 2005), attack graph

(Sawilla and Ottawa 2007), and network attack graph

(Sheyner 2004), to cite a few. Such models are used by

many organizations that have a special interest in collect-

ing, describing, and classifying attack patterns. For in-

stance, large taxonomies of comprehensive samples of

existing attacks have been built by security organizations,

such as the common attack pattern enumeration and clas-

sification (CAPEC)1, a sponsored by the National Cyber

Security Division of the U.S. Department of Homeland

Security, and the web application security consortium

(WASC)2. But existing techniques to model attacks are not

compatible with the techniques commonly used to model

systems. These last are not meant to be used to highlight

easily a system’s attack surfaces. Systems, on their side, are

not modelled to be interfaced with attack trees/graphs/

networks. There is so a gap between the way attacks and

the way systems are modelled. Detecting attack surfaces

against attack models is therefore not a process that can be

done fully automatically.

This paper proposes a solution to this problem. We

model both systems and attack patterns directly in SysML,

and we design an algorithm that, by traversing a system

model, collects all the system’s attack surfaces and links

them to the given library of attack patterns. We consider, as

a proof of concept, standard attacks among those proposed

by CAPEC, and we show how to model both technical

attacks and social engineering attacks in SysML: the result

is a rich library of socio-technical attack templates in such

a formalism. The library can be of course extended.

This paper is based on a previous conference paper that

the authors have published (Ouchani and Lenzini 2014).

However, it extends considerably that work: it models so-

cial engineering attacks, not studied in Ouchani and Len-

zini (2014), it improves the algorithm for searching attack

surfaces, and proves the algorithm’s correctness and com-

pleteness with respect to the library of attacks in input. The

whole presentation has also been restyled and improved.

Finally, the current paper applies the framework to a new

use case, more complex than the one presented in Ouchani

and Lenzini (2014) and more interesting from a socio-

technical perspective. It is, in fact, a typical scenario in the

domain of data and communication security for ICT-based

corporations.

Outline The remainder of this paper is organized as

follows. Section 2 reviews the existing related work. Sec-

tion 3 describes and formalizes SysML activity diagrams;

and Sect. 4 presents the concept of attack patterns. The

attack generation framework is detailed in Sect. 5. The

experimental results are described in Sect. 6. Finally,

Sect. 7 concludes this paper and provides the future works.

2 Related work

In this section, we survey the existing initiatives related to

system attacks modelling and to attack surfaces detection.

2.1 Attack modelling

A risk-based approach has been proposed to create modular

attack trees for each component in the system (Grunske and

Joyce 2008). These trees are specified as parametric con-

straints, which allow quantifying the probability of security

breaches that occur due to internal and external component

vulnerabilities. Another approach models probability met-

rics based on attack graphs as a special Bayesian network

(Frigault and Wang 2008). Each node of the network rep-

resents vulnerabilities as well as the pre and post condi-

tions. Jürjens and Shabalin (2004) and Houmb et al. (2010)

extract specific cryptography-related information from

UMLsec diagrams. Moreover, the Dolev–Yao model of an

attacker is included with UMLsec to model the interaction

with the environment. Further, Siveroni et al. (2010) ex-

tend UMLsec to model peer-to-peer applications along

with their security aspects. They rely on the concept of

abuse cases defined as UML use cases and state machine

diagrams to represent attack scenarios. Morais et al. (2013)

generate attack scenarios from the threat model of the

wireless security protocol. First, they collect attacks from

1 http://capec.mitre.org.
2 http://www.webappsec.org.
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vulnerabilities databases. Then, they classify them in terms

of violated properties. Finally, they generate the protocol

attack tree by relying to SecurelTree tool.

2.2 Attack surfaces detection

Gegick and Williams (2007) identify security vul-

nerabilities in code level by tailoring attack patterns based

on the software components. These patterns take the form of

regular expressions that are generic representations of vul-

nerabilities. Huang et al. (2011) distil attack surfaces of an

attack graph by shifting out the minimum cost in the graph.

They use SAT solver to view the minimum effort of an

attack to conquer critical assets in the system. Vijayakumar

et al. (2012) develop an approach based on runtime analysis

to compute attack surfaces by finding the system adversaries

in order to determine which program entry points access is

an adversary controlled objects. They use the system’s ac-

cess control policy to distinguish adversary controlled data

from trusted ones. Kantola et al. (2012) identify the com-

munication attack surfaces by considering intent-based at-

tacks on applications that do not hold common signature-

level permissions. Any component of the correct type with a

matching intent filter can intercept the intent. The possible

attacks enabled by such unauthorized intent receipt depend

on the type of the intent. Checkoway et al. (2011) analyse

the external attack surface of modern automobile systems.

Systematically, they synthesize the set of possible external

attack vectors as a function of the attackers ability to deliver

malicious input via specific modalities. For each modality,

they characterize the attack surface exposed in current au-

tomobiles with their set of channels.

3 SysML activity diagrams

SysML (OMG 2007a) is a general-purpose, graphical,

modelling language for specifying, designing, and verify-

ing complex hardware and software systems, as well as

organizative and procedural workflows. The language

provides a semantic foundation for modelling a system

structure and behaviour.

SysML activity diagrams are SysML’s elements that

focus on a system’s behaviour. Activity diagrams are

graphs: their vertices stand for activities (called activity

nodes) and their edges stand for connections among ac-

tivities (called activity edges) that define objects/data flow

or control flows. In particular, an activity node can be of

the following types:

• An activity invocation element: it sends or receives

signals or objects, or it calls an operation or calls a

behaviour.

• A control flow element: it defines the initial and the final

flow of the diagram, or the final flow of a path, or a

decision nodes. It can be a fork, a merge or a join node.

An activity edge can be of the following types:

• A control flow element: it shows the execution path

through the activity diagram. Incoming edges are called

input edges; outcoming edges are called output edges.

• An object flow element: it shows the object flow

between activity nodes. Incoming edges are called

input tokens; outcoming edges are called output tokens.

Branching is modelled with decision nodes and merge

nodes. A decision node specifies a choice between different

possible paths. The direction to take depends on the eval-

uation of a boolean guard, if the decision is boolean. It

depends instead on a probability distribution, if the deci-

sion is probabilistic. A merge node specifies a point from

where different incoming control paths start following the

same path.

Concurrency and synchronization are modelled with

fork nodes and join nodes. A fork node indicates the be-

ginning of multiple parallel control threads. In UML2.0, on

which SysML is based, fork nodes model unrestricted

parallelism: thus, a token evolves asynchronously accord-

ing to an interleaving semantics. A join node allows mul-

tiple parallel control threads to synchronize and rejoin.

Table 1 resumes the graphical artifacts of SysML ac-

tivity diagrams (left column) and the corresponding formal

expressions used to express the proposed framework

(middle column) all followed by an informal description of

the artifact (right column).

When a SysML activity diagram is invoked, its initial

node activates. It is custom to assume that the initial node

activates by possessing a token. A node activates, and thus

it takes the token, only if the preceding node de-activates

and if the condition guarding the node’s incoming edge is

satisfied. During execution, the action or the decision node

that has an associated call behaviour can consume its input

token and invoke its specified behaviour. SysML supports

two types of invocations: synchronous and asynchronous.

In the asynchronous invocation, the execution of the in-

voked behaviour proceeds without any further dependency

on the execution of the activity that invokes it. In the

synchronous invocation, the execution of the calling arti-

fact is blocked until it receives a reply token from the

invoked behaviour. In a decision node that has more than

one path enabled, the choice of which behaviour to activate

is done non-deterministically.

Definition 1 gives the formal definition of SysML ac-

tivity diagrams. Properties 1 and 2 express how the struc-

ture and the control flow are constrained in a SysML

activity diagram.
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Definition 1 (SysML Activity Diagram) A SysML ac-

tivity diagram is a tuple A ¼ ð�; fin;N;E;K;Prob; TokÞ,
where:

1. � is the initial node,

2. fin ¼ f�;�g is the set of final nodes,

3. N ¼ N1 [N2 [N3 is a finite set of activity nodes,

where N1, N2, and N3 are activity invocation, object

and control nodes, respectively.

4. E is a finite set of activity edges,

5. K is a finite set of tokens,

6. Prob : ðf�g [NÞ � E ! Dist ðN [ finÞ is a

probabilistic transition function that assigns for each

node a discrete probability distribution

l 2 DistðN [ finÞ,
7. Tok : N [ E ! K is a function that assigns for each

node or edge one token.

Property 1 (Structure Constraint) For a SysML activity

diagram A, let jEj be the number of edges, and jNj ¼
jN1j þ jN2j þ jN3j is the number of nodes. We have:

1. If N3 ¼ ;; then : jNj ¼ jEj � 1

2. If N3 6¼ ;; then : jNj\jEj � 1

Property 2 (Token Constraint) In a SysML activity dia-

gram A, let jEj represents the number of edges, and jKj is

the number of tokens. Then: jKj\jEj þ jNj.

4 Modelling attack patterns

The standard schema for describing attack patterns we refer

to is that devised by the software assurance strategic ini-

tiative CAPEC, the already mentioned common attack

patterns enumeration and classification. The schema con-

sists of primary and supporting elements. The primary

schema elements provides the following information: an

attack pattern ID, the description of the attack, its related

weaknesses, its typical severity, likelihood of exploitation,

and the attack’s abstraction level. The supporting schema

elements gives the description, the diagnosis, and other

enhancing information about the attack.

Inspired by these schemata we propose a SysML activity

diagram attack pattern template (see Fig. 1). Each concrete

attack pattern will be built by instantiating this template.

The instantiation specifies the call behaviour action that is

denoted by ‘‘Pattern Behaviour’’ in Fig. 1. The template’s

main control flow is a probabilistic decision. The prob-

ability that the attack does occur is P, whereas 1-P is the

probability that the attack does not occur.

The value P is estimated on the basis of the ‘‘typical

likelihood of exploitation’’ schema element provided

within CAPEC catalogue. However, this schema element is

a qualitative description of the likelihood (called CAPEC

term), that ranges from ‘‘low’’ to ‘‘high’’ (see Table 2). In

order to quantify these attributes, we propose to assign

Table 1 Formalization of

SysML Activity Diagram

Artifacts

Artifacts Formalization Description

i�N Initial node. It is activated when a diagram is invoked

� Activity final node. It stops the diagram’ execution

� � Flow final node kills its related path’ execution.

a�N Action node defines an atomic action

a " A�N Call behaviour node invokes a new behaviour

a!v�N Send node is used to send a signal/object

a?v�N Receive node is used to receive a signal/object

DðA; p; g;N;NÞ Decision node with a call behaviour A a convex distribution

fp; 1 � pg and guarded edges fg;:gg

MðxÞ�N Merge node specifies the continuation where x ¼ fx1; x2g is a

set of input pins

FðN1;N2Þ Fork node models the concurrency that begins multiple

parallel control threads. UML 2.0 activity forks model

unrestricted parallelism

JðxÞ�N Join node presents the synchronization where x ¼ fx1; x2g is a

set of input pins

364 S. Ouchani, G. Lenzini

123



ranges of probabilities to each qualitative description based

on the standard of security risk management (ISO 2008) in

combination with the Kent‘s Words of Estimative Prob-

ability (Sherman and the Board of National Estimates

2008), which proposes seven grades of likelihood. We

combine the two schemes, and we propose the probabilities

ranges as in Table 2.

The probability related to the instantiated pattern is

obtained by the average of the probability interval assigned

to a CAPEC term.

4.1 Instantiating the attack pattern: technical

attacks

There are two categories of attacks that we considered

relevant: software attacks (CAPEC-513), and communica-

tions attacks (CAPEC-512). The former is composed of

twenty five attacks, among which the brute force (CAPEC-

112), authentication abuse (CAPEC-114). We do not list

the all attacks, for sake of space, but they can be found in

the CAPEC taxonomy. The latter includes two attacks:

interception (CAPEC-117) and protocol manipulation

(CAPEC-272). In the following, we model a selected set of

these technical attacks.

• Spoofing (CAPEC-156): an attacker builds a message

to masquerade an authorized message from a trusted

principal. Consumers of these messages can be ma-

nipulated into responding or processing the deceptive

message. This attack may refer to spoofing the

message’s content (CAPEC-148) or to spoofing the

message’s senders or receivers (CAPEC-151). Their

pattern is depicted by the following figure such that P

(CAPEC-148) ¼ P (CAPEC-151) ¼ 0.8. We have

assigned the value of 0.8 since their severity is high.

This means that the average of 60 and 100 %.

• Data leakage (CAPEC-118): the attacker uses well-

formed requests to get sensitive information by ex-

ploiting weaknesses in the design. Three techniques are

used in this class: data excavation (CAPEC-116), data

interception (CAPEC-117), and sniffing (CAPEC-148).

CAPEC-116 and CAPEC-117 are presented by the first

control flow with P (CAPEC-116) ¼ 0.5 and ¼P

(CAPEC-117) ¼ 0.5. Also, CAPEC-148 is illustrated in

the second control flow with a probability value P

(CAPEC-148) ¼ 0.2.

• Resource depletion (CAPEC-119): the attacker depletes

a resource to the point that the target’s functionality is

affected. The result is usually the degradation or denial

of one or more services offered by the target. The

attacker can achieve his objective through flooding

(CAPEC-125), through leak (CAPEC-131) by upload-

ing a malicious file, or through allocation (CAPEC-

131) by sending a formatted request. The pattern of

these attacks is depicted by the following diagram

where n is the number of requests and m is a number

fixed by the designer. These attacks are launched by

these probability values: P(CAPEC-125) ¼ 0.8,

P(CAPEC-131) ¼ 0.8.

• Injection (CAPEC-152): The attacker is able to control

or disrupt the behaviour of a target through crafted

input data submitted using an interface functioning to

process data input. Different resource-dependent pat-

terns are detailed in CAPEC and abstracted to design

level such as SQL (CAPEC-66), email (CAPEC-134),

format string (CAPEC-135), LDAP (CAPEC-136),

resource injection (CAPEC-240), script injection

(CAPEC-242), and command injection (CAPEC-248).

Fig. 1 The SysML activity diagram of the attack pattern template

Table 2 Probability values scale

CAPEC terms Kent’s estimative terms Probability values

High Certain 100

Almost certain 93 % (�6 %)

Medium to high Probable 75 % (�12 %)

Medium Chances about even 50 % (�10 %)

Low to medium Probably not 30 % (�10 %)

Low Almost certainly not 7 % (�5 %)

Impossible 0
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All of them take the form of the following control flow

with a probability of 0.8.

• Exploitation of authentication (CAPEC-225): the at-

tacker exploits the weaknesses related to authentication

mechanisms including authentication bypass by spoof-

ing (CWE-290), authentication bypass by assumed

immutable data (CWE-302), and origin validation error

(CWE-346). Particularly, its descendant sub-category

CAPEC-21 aims at exploiting session variables, resource

IDs and other trusted credentials to exploit that some

software accepts user input without verifying its authen-

ticity. They have the following work flow with P ¼ 0.8.

• Fuzzing (CAPEC-28): of the probabilistic techniques

(CAPEC-223) and it is inspired by a software testing

method. The attacker provides randomly generated

input to the system and looks for an indication to

identify weaknesses in the system. The pattern of this

attack is depicted by the following control flow such

that P(CAPEC-28) ¼ 0.8 and P1, P2; . . ., Pn are

probability values (e.g. uniformly distributed).

4.2 Instantiating the attack pattern: social engineering

attacks

In this category fall attacks that use social engineering

techniques. Social engineering attacks target people and

persuade them to perform actions, usually divulging con-

fidential information that should not be shared. In this way

social engineering can gain access to a computer system

and its resources without hacking the system.

The CAPEC taxonomy has recently included social

engineering attacks too. From it we propose the classifi-

cation shown in Fig. 2. It consists of three categories of

attacks: social information gathering (CAPEC-404), in-

formation elicitation (CAPEC-410), and target influence

via social engineering (CAPEC-416). Each category has a

set of attacks and sub-class of attacks.

We select one of such attacks and we show how to

model it in SysML: spear phishing (CAPEC-163), which

uses phishing (CAPEC-98).

Spear phishing is a very common social engineering

attack. In fact, recent statistics show that 91 % of attacks

are phishing Corporation (2014), and about 95 % of cyber

espionage attacks started with a phishing email. By mod-

elling it therefore we have maximum relevance and de-

ceptive capability.

In spear phishing, the intruder starts by obtaining useful

information about the targeted user or organization. First,

the intruder conducts a web searching and identifies trusted

associates of target, pretexts the users, and collects social

information via dumpster diving, and traditional and non-

traditional sources. Then, the intruder creates a domain

name that looks similar to the legitimate one and a le-

gitimate SSL certificate for the new domain name. After,

the attacker develops a duplicate of the legitimate website,

for example, by use spidering software. The website may

include very specific user information such as local tem-

perature. Then, the intruder sends to the user a message

from a spoofed legitimate-looking e-mail address or post a

phishing link in an online forum that asks the user to click

on the included link. After that, the intruder convinces the

user to enter sensitive information on attacker’s site. Fi-

nally, the intruder uses the stolen credentials to log into

legitimate site.

Based on spear phishing description, the pattern of this

attack is depicted by the diagrams depicted in Fig. 3. The

first diagram has three call behaviour actions where each

one calls the appropriate diagram with respect to the dia-

grams order. Since in CAPEC, the typical severity and the

likelihood of this attack are evaluated high, then, the

probability value to launch this attack is: P(CAPEC-163) ¼
0.8.

5 Attacks generation framework

In this section, we detail our proposed framework that

automatically finds attacks that match a given system. The

schema of the framework is depicted in Fig. 4. It takes as

input a system modelled by a set of SysML activity dia-

grams that can be designed either by relying on the system

specification document, or by reverse-engineering the

system source code. To generate attacks specific to the

system under test, the framework uses the library of attack

templates that is proposed in Sect. 4. Then, the framework

proposes an algorithm to detect attack surfaces from where

an attack can damage the system. Further, the algorithm

assigns for each detected attack surface a set of potential

attacks. Based on them, the framework produces the pos-

sible application-dependent attacks that are instantiated

from the attack library. As a result, a set of concrete attacks

proper to the system under test is produced.
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5.1 Attack surfaces detection

A system’s attack surface relates with a system’s exposed

vulnerabilities, and then with an adversary’s ability to in-

terfere with the system and to damage it. The larger the attack

surface, the greater the vulnerability, the more potential at-

tacks the system may suffer. An attack surface is described as

a subset of a system’s resources, usually the system’s data,

variables, and actions, that an intruder can control and, in so

doing, to interfere with the system’s behaviour.

A key notion is that of untrusted objects.

Definition 2 (Untrusted object) An object v is untrusted

if it is acquired by an input action or if it depends on an

untrusted object. Object v depends on another object w, if v

is calculated from w.

Social En-
gineering

(CAPEC-403)

Social Information
Gathering

(CAPEC-404)

Information
Elicitation

(CAPEC-410)

Target Influence
(CAPEC-416)

via Research
(CAPEC-405)

via Dump-
ster Diving
(CAPEC-406)

via Pretexting
(CAPEC-407)

from Tradi-
tional Sources
(CAPEC-408)

from Non-
Traditional
Sources
(CAPEC-409)

Gathering via
Pretexting
(CAPEC-407)

Perception of
Reciprocation
(CAPEC-417)

Perception
of Scarcity
(CAPEC-420)

Perception
of Authority
(CAPEC-421)

Perception of
Commitment
and Consis-
tency (CAPEC-
422)

Perception
of Liking
(CAPEC-423)

Perception of
Consensus or
Social Proof
(CAPEC-424)

Manipulation
of Incentives
(CAPEC-425)

Manipulation
of Incentives
(CAPEC-426)

Psychological
Principles
(CAPEC-427)

Fig. 2 CAPEC taxonomy of

social engineering attacks
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Definition 3 formalizes the notion of attack surface in

SysML terms.

Definition 3 (Attack surface) Let A be SysML model.

An attack surface is a tuple x ¼ hN;X;O;Chi, where:

1. N is the set of entry points of A, all the artifacts except

send artifacts.

2. X is the set of exit points of A, the send artifacts.

3. O is the set of untrusted objects of A.

4. Ch : N [ X ! 2O maps entry or exit points to untrust-

ed objects.

To determine the attack surfaces of a SysML activity

diagram A, we parse, depth-first manner, the diagram.

Procedure N, illustrated in Algorithm 1, does this search,

and construct the attack surface X ¼ ðx1;x2;x3;x4Þ. Here

x1, x2, x3, and x4 are the entry points, the exit points, the

untrusted data, and the channels, respectively.

Herein is the description of Algorithm 1. First, the initial

node i of A is pushed into the stack of nodes, denoted by

nodes (line 11). While the stack nodes is not empty (line

12–39), the algorithm pops a node from the stack nodes,

denoted by cNode (line 13). If cNode has a call behaviour

(line 15), the called diagram is pushed in the stack Beh

(line 16). Then, the current node is added into the list

vNode of visited nodes (line 18), but only if it has not been

visited already (line 14). Its successors are stored in the list

nNode (line 19). The algorithm constructs the attack sur-

faces X (line 21, 24, 27, and 30) by checking the type of

cNode (lines 20, 23, 26, and 30, respectively). Notably,

objects that are inputted are inserted in the list of untrusted

objects directly. Each artifact that contains an untrusted

object or an objects that depends on any untrusted objects

is added to the attack surface and linked to the untrusted

object that determines its vulnerability. The artifact’s re-

lated object(s), in turn, are added to the list of untrusted

objects. The explored successors are pushed into the stack

nodes (line 33–35), then, they are erased from the list

nNode (line 36). The algorithm calls recursively itself (line

39) since there is a behavioural diagram in Beh (lines 38–

40). Finally, the algorithm calls the function K (line 41)

that assigns for each attack surface a set of attacks (detailed

in the next section). Then, it terminates since all nodes of

all diagrams are visited (lines 12 and 38).

5.2 Application-dependent attacks generation

Our objective is to assign the appropriate attack template for

each attack surface that is detected by Algorithm 1. Then,

we instate this template to be dependent to the system under

study. For that, we propose the function K that is described

in Listing 1 which assigns for each attack surface x 2 X at

least one attack k 2 K. The set of attacks K ¼ fk1; k2;

k3; . . .; k11g where the CAPEC id of a ki is given by Table 3.

For example, k1 is CAPEC-148 and k11 is CAPEC-163.

Fig. 3 Spear phishing template
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5.3 Correctness and complexity

Procedure N search exhaustively all attack surfaces.

Function K assigns to each detected attack surface the

appropriate attacks from the library. Our algorithm is

correct, in the sense that it points out all the model’s attacks

surfaces and assigns to each of them all the appropriate

attacks among the ones in the attack library. Proposition 1

proves such statements.

Proposition 1 (Correctness and completeness)

(a) Algorithm N is correct and complete, i.e. it detects

all and only the A’s artifacts that process or depend

on untrusted objects.

(b) Algorithm K is correct and complete, i.e. it assigns

to each node all and only the attacks that are

applicable to the node.

Proof To prove (a) we argue that procedure N is a depth-

first search. It exhaustively parses all nodes in A. The

while loop (line 12–39) pushes in the stack ‘nodes’ all A’s

nodes, pops them out one by one, and terminates only when

the stack is empty. Test conditions in lines 20, 23, and 26

checks all A’s artifacts, and build the attack surface.

Statement of line 26 tests for objects that are untrusted

because input objects. Line 29 checks artifacts for being

related with untrusted objects, maps them together, and add

those objects to the list of untrusted objects. Therefore N
correctly build set of entry points, the set of exit points, and

the function that maps points to their untrusted objects.

To prove (b), we argue about K. The correctness of K is

proved by induction on the structure of A’s artifacts. The

base case is obvious: K assigns to the final activity and flow

nodes the empty set (see Listing 1), which is correct since

no attack can be associated to those nodes. To prove that K
assigns to the artifacts in the attack surface just build all

and only the attacks that are applicable, we reason on case-

by-case bases. But, here, we give the argument only for

a?v ! N: the other cases are similar and are omitted. K
associates a?v with attack k1; k8, and k11 (see Listing 1).

All these attacks can send a message that will be received

in a?v, thus they are applicable. Besides, no other attacks is

applicable to this node. This can be proven by exclusion:

we show only the case concerning k7. The template of k7 is

a sniffing by a receive message, but no message can be

received from the a?v artifact. So k7 is not applicable. To

exclude all the other attacks we use similar arguments. By

inductive hypothesis, KðNÞ contains all and only appli-

cable attacks and consequently Kða?v ! NÞ ¼
fk1; k8; k11g [ KðNÞ contains all and only attacks which

SysML Activity
Diagrams

Source Code,
Specification

Application− Independent
Attacks−Library

Attack
Surfaces

Application−
Dependent
Attacks

Modelling

Detecting Instantiating

Using

Fig. 4 System attacks

generation framework
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are applicable to the artifact a?v ! N. The argument

about the correctness and completeness of K and the other

artifacts is similar and we omit it.

Point (a) and (b) together prove the correctness and

completeness of Algorithm 1.

Proposition 2 Algorithm 1 runs in time linear on the

number of A’s nodes.

Proof We count the number of steps of N: the algorithm’s

time complexity is proportional to this number. N traverses

all A’s nodes exactly once, and this takes OðjNjÞ steps,

where N are A’s nodes. Each tests/checks in N can be

done in constant time. The built attack surface is at most as

large as jNj, and so K, whose takes constant time to as-

sociate handful attacks to each nodes, runs OðjNjÞ time

too.

6 Case study

We analyse a use case scenario in our framework. The

scenario describes a very common situation. It regards a

corporate organizations, such as a company or an univer-

sity, whose employers use the information and communi-

cation technology (ICT) intensively to collaborate with

outside, national or international, partners. They commu-

nicate prevalently per e-mails and share documents in

repositories (or in the cloud) which they access remotely

through a browser or by SVN clients.

In such a scenario there are obvious concerns about the

security of confidential data. What employers share in

repositories may be sensitive information, as it happens

when such corporations are collaborating in partnership

projects. The access to such data should be protected by

authentication protocol but often, despite not always, it all

depends on a secret password. There are many points

where an attack can intrude. The password can be weak,

and he can guess it, or it he can target the human user by

sending phishing mails [e.g., (Francesco et al. 2013)] in the

hope to victim replies by giving up the password directly or

that he/she clicks on a link which will cause the download

of a trojan or of a similar digital malwares that give control

to the intruder. However, a pattern of an attack can be

complex and not so easily discoverable as we will show.

What we describe below has been taken from a real

situation, one of the many that happens in the domain of

communication and data security for ICT-based corpora-

tions. We have removed any reference to real names, ids

and domain names but the core is exactly the same.

6.1 Description

A corporate organization works in a research project called

‘‘XSPARS’’. The project has a public web page, say http://

www.xspars-project.eu, and a repository, available at

https://www.xspars-project.eu/repositories/xspars. The

repository access is protected by login and password. This

is a common choice which, is weakened further, when is

the host of the repository that generate the login and

password for anyone, and distribute the pair by email.

During the execution of the project, the researchers that

participate to the project receives emails, usually from a

mailing list such as xspars-all@xspars-project.eu. A typical

mail form that mailing list looks like the following:

Such mails, useful in their giving directly the link to

access to the document, are very common. The text quoted

above is actually taken from a real mail, posted in the

mailing list of an existing project. The scenario also con-

siders that xspars’s researchers may read their mails using a

tablet or a smart phone. With that device they also access

Table 3 Simplification of

CAPEC ids
ki 1 2 3 4 5 6 7 8 9 10 11

CAPEC-id 148 151 116 117 125 131 148 152 225 28 163
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the repository, download, read, write (or simply comment)

and re-upload documents.

The system that is part of this scenario consists of users

and their devices (a tablet or a smartphone), which run an

email client and a browser. (Indeed only a browser is

sufficient if we assume that the researchers are accessing

their mail via a webmail server). The system also include

two servers, the repository and the mail server. Figure 5

shows the SysML representation of a part of this system,

that concerning the access to the repository. The part about

reading emails is similar.

6.2 Analysis

Using our framework, the library of attacks, and the al-

gorithm presented we have found the following attack

surfaces. Each represents a possible attacks on the model of

the system. One of such attack surface, ðn; x; o; chÞ, is the

following:

n ¼ fEmail?emailbody; LoadpageðurlÞg
x ¼ fAuthentication!ðurl; login � passwordÞg
o ¼ femail � body; urlg
ch ¼ fðEmail?emailbody; emailbodyÞ; ðLoadpageðurlÞ; urlÞ;

ðAuthentication!ðurl; login � passwordÞ; urlÞg:

Here, we have give a name for the objects, but they are not

represented in Fig. 5. Object emailbody is untrusted

because that object is the object of an input artifact, and

url is untrusted because it depends on it: the url is taken

from the body of the email. Figure 6 shows an instance of

the attack k11 (CAPEC-163), which is associated to n and

to x.

An analysis of the attack surface, reveals that such an

attack is actually possible. Here how it works. To prepare

this attack, the intruder starts by doing a web search (Fig. 3,

top). He finds the project’s web page, and there the

members of the project and their names. He collects the

emails and information concerning the research topics.

This second step of the attack is shown in the Fig. 3,

middle. Knowing the public web page, the intruder clones

it, creates a similar url, say https://www.xpsars-project.eu

Fig. 5 XSPARS SysML

activity diagram

Fig. 6 SysML activity diagram of the attack for XSPARS system
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and get a self-signed certificate for it. It also creates a

repository there.

Then, it sends an email to one of the researcher with a text

that mirrows the text of an usual mail with a link to the made-

up repository https://www.xpsars-project.eu/repositories/

XSPARS/Meetings/2014/Agenda.doc (Fig. 3, bottom).

The intruder counts to phish those researchers that may

not be warned by browser’s alerting them because of self-

signed certificate [such as mini Opera, which only change

the visual icon of the lock but does not warns explicitly the

users (Bella et al. 2013)]. The intruder aims at having the

researcher logging in into its repository. It can engineering

the document in such a way to appear corrupt or empty, but

from this action he can steal the researcher login-password.

Here, reasoning further from what the attack surface shows,

we imagine the intruder accessing the real repository and

later mirroring the entire original repository into its own

repository so to make it look like the real repository. In this

way he can re-iterate the attack and hope to phish more

researchers from the consortium.

Of course this analysis just made on the basis of the

given attack surface gives an argument that the attack is

feasible. It does not necessarily happen, or happen in this

way. As a final remark, we note that, in this argument, we

avoided to talk about probabilities. They may be not easily

estimable.

7 Conclusion

One way to reduce the cost of system and software prod-

ucts is to detect vulnerabilities to attacks, technically called

attack surfaces, at early stages of the development life-

cycle. We presented a framework to detect attack surfaces

and the attacks that can exploit the surfaces. We developed

a library of system attacks that includes for the first time

the social engineering aspects. In addition, we devised an

algorithm that detects attack surfaces of the system and a

function that assigns for each attach surface a set of po-

tentially harmful attacks. We proved the correctness and

the completeness of the whole procedure. We also validate

the effectiveness and the efficiency of the presented

framework by applying it on a real case which is a system

of a research group from our institution. The results show

the potentiality of presented approach.

The presented work can be extended in the following

directions. First, we intend to apply our framework on

different real cases. Also, we would like to achieve more

complete catalogue that covers more type of attacks such

that related to product chain and cyber-physical systems. In

addition, as a next task is to implement the proposed al-

gorithm and deliver a prototype.
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