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Abstract

Activity recognition in smart environments is an evolving research problem due to the 

advancement and proliferation of sensing, monitoring and actuation technologies to make it 

possible for large scale and real deployment. While activities in smart home are interleaved, 

complex and volatile; the number of inhabitants in the environment is also dynamic. A key 

challenge in designing robust smart home activity recognition approaches is to exploit the users' 

spatiotemporal behavior and location, focus on the availability of multitude of devices capable of 

providing different dimensions of information and fulfill the underpinning needs for scaling the 

system beyond a single user or a home environment. In this paper, we propose a hybrid approach 

for recognizing complex activities of daily living (ADL), that lie in between the two extremes of 

intensive use of body-worn sensors and the use of ambient sensors. Our approach harnesses the 

power of simple ambient sensors (e.g., motion sensors) to provide additional ‘hidden’ context 

(e.g., room-level location) of an individual, and then combines this context with smartphone-based 

sensing of micro-level postural/locomotive states. The major novelty is our focus on multi-

inhabitant environments, where we show how the use of spatiotemporal constraints along with 

multitude of data sources can be used to significantly improve the accuracy and computational 

overhead of traditional activity recognition based approaches such as coupled-hidden Markov 

models. Experimental results on two separate smart home datasets demonstrate that this approach 

improves the accuracy of complex ADL classification by over 30 %, compared to pure 

smartphone-based solutions.

1 Introduction

Smart environment has the potential to revolutionize the way people can live and age 

gracefully in their own environment. The growing number of aging baby boomers and 

increasing healthcare costs accelerate the need for smart home technologies for healthy 

independent living. Wireless sensor networks, be it ambient, wearable, object, or smart 

phone sensors open up an avenue of smart home services, if implemented successfully, that 
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help older adults to live in their own environment for a longer period of time. The wearable 

sensors could collect the biometric data, and help update the patient's electronic health 

records or monitor the activities, behavior or location of the inhabitants over space and time 

to help design the novel activity recognition algorithms in complex smart home situations.

Activity recognition can be investigated to explore healthy living, societal interaction, 

environmental sustainability and many other human centric applications. Simple activity 

recognition, while proven to be useful, need to be scaled to encompass fine-grained 

exploration on microscopic activities over the space, time, number of people and data 

sources to help design more robust and novel activity recognition techniques. Scaling the 

activity recognition approaches beyond a single user, home or an uni-modal data source 

brings up innovative research challenges. Human activities are interleaved. For example, 

cooking activities may concurrently happen while an individual is also watching television 

and may continue even after the watching TV activity ends. Similarly many activities of 

daily living (ADLs) are complex. For example, the high-level cooking activity is composed 

of low-level activities, like standing and walking in the kitchen and perhaps sitting in the 

living room. Multiple residents can be present at a given time with underlying 

spatiotemporal constraints in a smart environment and make it obviously hard to infer who is 

doing what (Roy et al. 2013)?

Activity recognition research in smart environments (e.g., homes or assisted-living facilities) 

traditionally falls into two extremes:

• Body-worn In the wearable computing paradigm, multiple body-worn sensors (such 

as accelerometers, sound, gyro sensors) are placed on an individual's body to help 

track their locomotive and postural movements at a very fine-granularity (e.g., 

Wang et al. 2011).

• Ambient In this alternate model, the environment itself is augmented with a variety 

of sensors, such as RF readers, object tags, video cameras, or motion sensors 

mounted in different rooms.

Unfortunately, the evidence of the last decade of research suggests that these two extremes 

both face steep operational and human acceptability challenges. In particular, individuals 

[even elderly patients (Bergmann and McGregor 2011)] appear reluctant to continually wear 

multiple sensors on the body. In addition, such sensors are often susceptible to placement-

related artifacts. On the other hand, embedding sensors on myriad objects of daily living, 

such as microwaves and kitchen cabinets (Intille et al. 2006) or mounting them on the 

ceiling has challenging operational costs and battery-life issues. Video sensors are often 

viewed as too intrusive to be acceptable in assisted living homes due to privacy concerns.

Driven by these observations, we ask a basic question: does there exist a middle ground for 
sensing in smart environments, especially one that can combine an everyday personal device 
(the smartphone) with low-cost, coarsegrained ambient sensors? If so, what advances in 

activity recognition and learning algorithms do we need to jointly harness the power of these 

diverse sources of sensor data? Our research is motivated by the emergence of the 

smartphone as a de-facto pervasive and personal device, and its demonstrated use for 

detecting basic low-level activities (such as sitting, walking etc.) through simple feature-
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based classification of smartphone-embedded accelerometers (e.g., Gyorbiro et al. 2008; 

Kwapisz et al. 2010). Likewise, simple infrared based occupancy or motion sensors are now 

widely deployed, and accepted by consumers, in many indoor environments (often to 

automate simple tasks such as lighting control).

While this idea of combining body-worn and infrastructural sensing certainly is not new, our 

unique differentiator lies in the fact that we explicitly consider multi-inhabitant settings, 

where multiple individuals simultaneously occupy the smart environment and engage in 

individual and collective ADLs. In this case, the key challenge is to effectively disambiguate 

the association between the infrastructure sensor observations and each individual, 

especially when the infrastructure sensors measure ambient conditions that are inherently 
non-person specific. For example, when individual phone-mounted accelerometers suggest 

that both persons A and B are walking around, and occupancy sensors indicate that both the 

kitchen and living room are occupied, how do we map individuals to specific locations—i.e., 

decide if A is located in the kitchen, and B is in the living room, or vice versa? Resolving 

such location context, as an exemplar, in a multi-inhabitant environment, is key to more 

accurately profiling and classifying the activities of each individual, for various applications, 

such as wellness monitoring, timely in-situ reminders (e.g., medication reminder when 

sitting down for dinner) and lifestyle recommendations (Bergmann and McGregor 2011).

In this paper, we consider the challenge of discerning such ‘hidden’ or ‘ambiguous’ 

individual context, by appropriately combining both low-level person-specific individual 

context and person-independent ambient context. At a high-level, we model each 

individual's activity context as a multi-dimensional set of attributes, some of which are 

observable from the smartphone (e.g., whether the individual is walking, standing or sitting) 

and some of which are ‘hidden’ (e.g., is the person in the kitchen vs. living room, is she 

alone or with other occupants?). The temporal evolution of each person's activity is jointly 

modeled as a coupled hidden Markov model (CHMM); our unique innovation lies in the 

specification of a set of constraints to this model, arising from the presence of a combination 

of mobile and ambient sensing data. The constraints are both intra-personal (an individual is 

more or less likely to follow a certain activity pattern) and interpersonal (the ‘hidden 

context’ of different individuals is often likely to possess some mutual exclusionary 

properties). We then build such a CHMM through appropriate modifications to the standard 

expectation maximization algorithm, and use a modified Viterbi algorithm during the testing 

phase to determine the most likely temporal evolution of each person's activity.

Our investigations in this paper address several key research questions. First, given the 

reality of an indoor multi-inhabitant environment with cheap ambient sensors, what sort of 

constraints, both inter-personal and intra-personal, arise due to the combination of mobile 

sensing and ambient environmental data? Second, how can we combine such constraints 

across multiple users, across both time and space, to infer the ‘hidden context attributes’ of 

each individual, in a computationally efficient fashion? Finally, how much quantitative 

improvement do we observe in our ability to infer complex ADLs via such ‘hidden context’, 

as compared to alternatives that rely solely on the mobile sensing or the ambient 

observations?
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We believe that our innovations and results provide strong preliminary evidence that such a 

hybrid model, where mobile sensing is augmented with ambient context from cheap 

everyday sensors (and, in the medium-term future, sensing via wearable devices), can prove 

to be an attractive and practically viable alternative. Specifically, we show how the set of 

viable ‘hidden context states’ is associated with a set of possible spatial and temporal 

constraints, generated as a consequence of the available combination of mobile and ambient 

sensing. Besides a generic formulation, we specifically combine smartphone-based activity 

recognition with motion/occupancy sensor-based ambient monitoring to help identify the 

indoor location or space inhabited by different users. Such location context is crucial to 

correctly classifying ADLs, and this overcomes a challenge of indoor localization in smart 

homes (as opposed to commercial spaces blanketed by Wi-Fi APs). In addition, we develop 

a modified coupled HMM to express the temporal evolution of the context of multiple 

individuals subject to such constraints, and then present a computationally-efficient, 

modified Viterbi algorithm to determine the most likely temporal evolution of each 

individual's context. We provide results that show that this approach can be viable at least for 

multi-inhabitant environments, such as assisted living facilities, where the number of 

individuals is relatively small (e.g., below 5). Finally, we use test data, generated by 

appropriately synthesizing real-life activity traces, to quantify the performance of our 

algorithms and show that the intelligent fusion of such mobile plus ambient context data can 

improve the accuracy of ‘hidden’ context estimation by over 70 %, and the accuracy of ADL 

classification by ≈30%.

2 Related work

We cover the work on activity recognition that is closest to our focus in this paper.

Activity recognition and mobile sensing

Most of the existing work on multi-user activity recognition used video data only. HMMs 

and CHMMs for modeling and classifying interactions between multiple users are addressed 

in Oliver et al. (2000) and Wang et al. (2011), while Gong and Xiang (2003) has developed a 

dynamically multi-linked HMM model to interpret group activities based on video 

observations. Activity recognition in smart environments using unsupervised clustering of 

data collected by a rich set of wearable sensors has been explored in Clarkson et al. (2000). 

The recent proliferation of sensor-equipped smartphones suggests that a vast amount of 

individual-specific data can be collected via the phone's microphone, accelerometer, gyro, 

and magnetometer (Gyorbiro et al. 2008; Kwapisz et al. 2010; Khan et al. 2015b). A zero-

configuration infrastructure-less occupancy detection techniques based on smartphone's 

accelerometer, microphone and magnetometer sensor have been proposed in Khan et al. 

(2015a). Microphone senor based acoustic noise detection has been used to count number of 

people in a gathering or meeting place whereas accelerometer sensor based locomotive 

context detection has been augmented in absence of conversational data. Roy and Kindle 

(2014) has investigated simple classification algorithms for remotely monitoring patient 

recovery using wireless physiotherapy devices while Roy and Julien (2014) has articulated 

the challenges for smart living environments and inclusive communities for immersive 

physiotherapy applications.
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Classifying ADLs

Sensor-based activity recognition strategies are typically probabilistic and can be categorized 

into static and temporal categories (Chen et al. 2012). Naive Bayes (Logan et al. 2007), 

decision trees (Logan et al. 2007), K-nearest neighbors (Huynh et al. 2007) and SVM 

(Huynh et al. 2007) have been used extensively as static classifiers; temporal classification 

approaches infer the values of hidden context states using approaches such as HMMs (Lester 

et al. 2006), dynamic Bayesian network (Philipose et al. 2004), conditional random fields 

(Kasteren et al. 2008) and CHMM (Wang et al. 2011). SAMMPLE (Yan et al. 2012) is a 

recent attempt at classifying ADLs using only accelerometer-data via a layered (two-tier) 

approach, where the lower layer first classifies low-level micro-activities, whereas the higher 

level uses micro-activity based features to classify complex ADLs. We believe our approach 

is distinct from these approaches, in its judicious combination of available smartphone 

sensors and minimal usage of ambient sensors. A dynamic Bayesian networks (extended to a 

CHMM) based multi-resident activity model has been proposed in Yi-Ting et al. (2010). 

While this work categorized the sensor observations based on data association and semantic 

information, our work exploits the underlying microscopic features of the activities and the 

spatiotemporal nature of the state spaces with an ambient augmented mobile sensing based 

methodology to model the multi-residents activity patterns (Roy et al. 2006). An active 

learning based scalable sleep monitoring framework has been proposed in Hossain et al. 

(2015). A factorial hidden Markov based model has been proposed for acoustic based 

appliance state identifications for fine grained energy analytics in building environment 

(Pathak et al. 2015; Khan et al. 2015c).

Combining body-worn and ambient sensor data

The notion of using simple, ambient sensors (such as motion sensors) to infer individualized 

context in a multi-inhabitant smart environment was first studied in Wilson and Atkeson 

(2005), which uses a particle filtering approach to infer the evolution of coupled HMMs, 

based on events generated by multiple infrastructure-embedded sensors. Unlike Wilson and 

Atkeson (2005), we exploit the pervasiveness of body-worn smartphone sensors to infer 

some amount of person-specific context; additionally, while Wilson and Atkeson (2005) 

focuses only on inferring whether an individual is in movement or stationary, our focus is on 

inferring complex ADLs. We explore the technical feasibility of a vision where the sensing 

capabilities of ambient sensors are combined with the smartphone sensing of user finer 

movements to provide significantly greater insight into the microscopic activities of daily 

activities of individuals in smart home environment. While the empirical investigations 

carried out in this paper utilize smartphones (that may or may not be always carried around 

inside a home), an eventual embodiment will likely rely on wearable devices [e.g., 

smartwatches (Android Wear: Information 2015); smart-bracelets (Huawei Smart Bracelet 

2015)] that are now gaining wider market acceptance and that a user will likely wear almost-

continuously (Intel Make it Wearable 2014). A smartphone and iBeacon sensor based real 

time activity recognition framework has been proposed in Alam et al. (2015). A bagging 

ensemble learning and packaged naive bayes classification algorithm have been proposed for 

high level activity recognition on smartphone. In Roy et al. (2015), smartphone sensing 

based activity recognition approaches help reduce the set of appliances usage at a time 

which then combined with powerline sensing in green building environment for fine-grained 

Roy et al. Page 5

J Ambient Intell Humaniz Comput. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



appliance usage and energy monitoring. Alam and Roy (2014) proposed a gestural activity 

recognition model for predicting behavioral health based on a smart earring.

Techniques and technologies for activity recognition

Activity recognition is an interdisciplinary research problem spanning across multiple 

research domains, such as internet of things (Sheng et al. 2014; Yan et al. 2014), cloud 

computing (Rahimi et al. 2012, 2014), wireless sensor networks (Hayajneh et al. 2014), 

machine learning, context-awareness and modeling (Zhou et al. 2010) etc. Ambient and 

artificial intelligence based methodologies have been investigated for discovery, recognition, 

and learning activity models (Acampora et al. 2013). Body-area sensor networks based 

physiological signal detection and their augmentation with the ADL to help older adults live 

independently has been proposed in Chen et al. (2011) while the data collected using the 

wearable devices around the users have been encrypted in Zhang et al. (2012). Integrating a 

multitude of ambient and wearable devices and making them interoperable are key research 

tasks for building wireless sensor networks based health and activity recognition model and 

tool kit (Lin et al. 2015b). While body-area sensor networks help gather meaningful data 

based on user movements, activities, and contexts, but storing and processing data on the 

cloud have become inevitable components in activity recognition pipeline (Fortino et al. 

2014; Almashaqbeh et al. 2014). Accessing data on real time (Zheng et al. 2013) and 

labeling data through crowd sourcing (Feng et al. 2014) are of great importance for realizing 

scalable activity recognition model across multiple users and premises while providing just-

intime intervention and proactive healthcare decision to the target population. Meeting the 

quality of service for inferring the activity of the users and trading the delicate balance 

between cost and accuracy in presence of multiple healthcare activity recognition 

applications have also been investigated in Roy et al. (2009, 2011, 2012), Lin et al. (2015a) 

and Lee et al. (2013).

3 The constrained multi-user activity model

We first mathematically describe the evolution of the context state of an individual, and then 

consider the various spatiotemporal constraints associated with the combination of 

smartphone-based and ambient sensing observations. We also outline how these ‘micro-

context’ observations and inferences can then be used to derive the higher-layer ADLs, using 

a variant of the two-tier SAMMPLE approach (Yan et al. 2012).

Consider a smart environment (such as an assisted living facility) with N distinct individuals. 

The ith individual's micro-context, at a given time instant t, is captured by a M-dimensional 

tuple , where each of the M elements of the tuple 

corresponds to a specific type of context attribute. In the canonical case considered in this 

paper, context is viewed as a 〈microactivity, location〉 tuple, where microactivity refers to an 

individual's postural state (such as {walking, sitting, standing, …,}) and location can assume 

values such as {bedroom, bathroom, kitchen,…}. In general, assuming time to be discretely 

slotted, an individual i's activity pattern may be represented by a micro-context stream, i.e., 

Contexti(t), Contextj(t + 1), … An important characteristic of our model is that a subset of 

the M elements are ‘observable’. They may be inferred (with varying levels of estimation 
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error) using solely the sensors embedded within individual's body-worn and personal mobile 

device. For example, the determination of postural microactivity can be made using the 3-

axis accelerometer (Gyorbiro et al. 2008; Kwapisz et al. 2010) universally available in 

modern smartphones. The remaining elements of each tuple are, however ‘hidden’. The 

user's location is not directly revealed by the smartphone accelerometer data. The key goal 

of our research is to propose a technique to infer these hidden attributes.

Our smart environment is also assumed to possess J different types of inexpensive ambient 

sensors. Assume that the environment has a total of K such sensors, each of which is 

deployed at a well-known location. The kth : k = 1, …, K sensors, located at an a-priori 

known location Loc(k), is assumed to provide some measure of ambient context, denoted by 

ConAmbient(k) for the ambience. For example, as a canonical exemplar, the environment 

consists of K = 10 different motion sensors (J = 1), each of which is placed in a location 

such as {bedroom, bathroom, kitchen, …}.

3.1 Two-tier inferencing for individual/multiple inhabitants

Given our formulation above, the evolution of the micro-activities of the ith user can be 

represented by a state transition matrix over Contexti(t). More specifically, we assume that 

the evolution of the state is Markovian (Rabiner 1989) with order 1 (higher order Markovian 

models are conceptually similar, but mathematically more elaborate), so that the 

P(Contexti(t)|; Contexti(t – 1)) denotes the likelihood of the current context state, given the 

past context state.

Our context extraction process is illustrated in Fig. 1 and consists of two tiers [similar to the 

conceptual stages of the SAMMPLE approach (Yan et al. 2012)]. The first goal of our 

research (illustrated in the “lower tier” of Fig. 1) is to infer the ‘hidden states’ (specifically 

location in our experiments), given the observable (or directly inferrable) values of postural 
activity. In Fig. 1, the smartphone sensor data of an individual are first transformed into 

corresponding low-level ‘observable’ context (e.g., using the accelerometer data to infer the 

postural states). Note that this transformation is not the focus of this paper: we simply 

assume the use of well-known feature based classification techniques to perform this basic 

inferencing. The core contribution of the paper lies in the next step: inferring the hidden 
states of an individual's low-level context, based on the combination of phone-generated and 
ambient sensor data. As shown in Fig. 1, this lower-tier's challenge is to infer the ‘hidden 

states’ of multiple individuals concurrently, utilizing both their observable low-level 

individual context and the non-personal ambient context.

After inferring these hidden states, we now have a complete set of Contexti(t) observations 

for each individual. In the next step of the two-tier process (the “higher tier” in Fig. 1), the 

entire set of an individual's context stream is then used to classify his/her ‘higher level’ (or 

so-called ‘complex’) ADLs. More specifically, based on the inferencing performed in the 

lower-tier, the joint (postural activity, location) stream is used to identify each individual's 

complex activity. The interesting question that we experimentally answer is: how much 
improvement in the accuracy of complex activity classification do we obtain as a result of 
this additional availability of the hitherto ‘unobservable’ location context?
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3.2 Capturing spatial and temporal constraints

Our process for performing the ‘lower-tier’ of context recognition is driven by a key 

observation: in a multi-inhabitant environment, the context attributes of different individuals 

are often mutually coupled, and related to the environmental context sensed by the ambient 

sensors. In particular, we observe that the ‘unobserved’ components of each individual's 

micro-level context are subject (probabilistically) to both temporal and spatial constraints. 

As specific examples, consider the case of two users occupying a smart environment. We 

can see the following constraints (also shown in Fig. 3):

a. Intra-user temporal constraints For a specific user i, if Contexti(t – 1) = (sitting, 

livingroom), Contexti(t) cannot equal (sitting, bathroom); i.e., the user cannot 

simply change rooms while remaining in a ‘sitting’ state!

b. Inter-user spatial constraints Given two users i and j, both Contexti(t) and 

Contextj(t) cannot be (sitting, bathroom); i.e., both the users are very unlikely to be 

sitting in the bathroom concurrently.

3.3 Coupled HMM for multiple inhabitants

We investigate the CHMM (Brand 1996) which has been used for inferring the users' 

activities in a multi-resident environment. A basic block diagram of CHMM is shown in Fig. 

2 which represents the temporal interaction between the two users given their respective 

observation sequences. Given our assumption of Markovian evolution of each individual's 

context, and the demonstrated constraints or ‘coupling’ that arise between the various 

‘hidden’ contextual attributes of different individuals, we can then model the evolution of 

each individual's ‘low-level context’ [i.e., Contexti(t)] as a CHMM (Brand 1996). To define 

this HMM, let O(t) denote the “observable stream” (in our canonical example, this consists 

of the accelerometer readings on the smartphone and the motion readings reported by the 

occupancy sensors).

If the environment was inhabited by only a single user i, the most probable context 

sequence, Contexti(t), given an observed sequence, is that which maximizes the joint 

probability P(Oi|Contexti) as shown by:

(1)

In our case, there are multiple users inhabiting the same environment with various 

spatiotemporal constraints expressed across their combined context. In this case, assuming N 
users, we have an N-chain coupled HMMs, where each chain is associated with a distinct 

user as shown below:

(2)
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where a different user is indexed by the superscript.  is the emission probability 

given a state in chain n,  is the transition probability of a state in chain n given a 

previous state in chain d and  is the initial state probability.

Simplifying the N chain couplings as shown in Eq. 2 by considering two users, the posterior 

of the CHMM for any user can be represented as follows.1

(3)

where πs1 and  are initial state probabilities; Pst|st–1 and  are intra-user state 

transition probabilities;  and  are inter-user state transition probabilities; Pst(ot) 

and  are the emission probabilities of the states respectively for User i and User j. 
Incorporating the spatial constraints across users as shown in Fig. 3, we modify the posterior 

of the state sequence for two users by:

(4)

where  and  denote the inter-user spatial state transition probabilities (constraints 

can be modeled with zero or low probability values) at the same time instant.

4 Solving the coupled activity model

Having defined the CHMM, we now discuss how we can solve this model to infer the 

‘hidden’ context variables for multiple occupants simultaneously. Unlike prior work (-Brand 

1996) which only considers the conditional probabilities in time (i.e., the likelihood of an 

individual to exhibit a specific context value at time t, given the context value at time t – 1), 

we consider both the spatial effect on conditional probabilities (coupled across users) as well 

as the additional constraints imposed by the joint observation of smartphone and ambient 

sensor data. We first show (using the case of two simultaneous occupants as a canonical 

example) how to prune the possible state-space based on the spatiotemporal constraints. We 

then propose an efficient dynamic programming algorithm for multiple users, based on 

forward–backward analysis (Rabiner 1989) to train a model during the training phase and 

subsequently describe a modified Viterbi algorithm to infer context during the regular testing 

phase.

1We interchangeably use Context as a state s in our HMM model. For brevity we denote Contexti(t) = st and  in 
equations.
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4.1 State space filtering from spatial/temporal constraints

In this section we introduce a pruning technique for accelerating the evaluation of HMMs 

from multiple users. By using the spatiotemporal constraints between the micro-activities (of 

different users) across multiple HMMs, we can limit the viable state space for the micro-

activities of each individual, and thereby significantly reduce the computational complexity. 

Unlike existing approaches (e.g., Plotz and Flink 2004) where such pruning is performed 

only during the runtime estimation of states, we perform our pruning during the offline 

building of the CHMM as well.

To illustrate our approach, consider the state-trellis for two users, User-1 and User-2, 

illustrated in Fig. 4. In this figure, User-1 is assumed (for illustration purposes) to have 3 

possible values for its context tuple [i.e., (postural activity, location)] at each time instant, 

whereas User-2 is assumed to have four such values for her context tuple; each such context 

tuple is denoted by a node qi in the trellis diagram. Assume that User-1's postural activity 

(inferred from the smartphone accelerometer) at time t – 2 is ‘sitting’, while User-2's 

postural activity equals ‘standing’. Furthermore, we observe that the living room 
infrastructure sensor was activated at time stamp t – 2, indicating that the living room was 

occupied at t – 2. In this case, of the three possible values: {(sitting, living room), (sitting, 

bathroom), (sitting, kitchen)} in the trellis for User-1, only the (sitting, living room) state is 

possible at time t – 2. Likewise, of the four possible values: {(standing, living room), 

(standing, bathroom), (standing, kitchen), (walking, corridor)} for User-2, only the 

(standing, living room) state is possible. Clearly, in this case, the ambient context has 

enabled us to prune the state space for each user unambiguously.

Continuing the example, imagine now that two infrastructure sensors, say kitchen and living 
room, are observed to be triggered at time stamp t – 1, while User-1's postural activity 

remains ‘sitting’, while User-2's activity is now ‘walking’. In this case, while an individual 

HMM may allow (2 × 2 =) 4 possible state pairs (the Cartesian product of {(sitting, kitchen), 

(sitting, livingroom)} for User-1 and {(walking, kitchen), (walking, livingroom)} for 

User-2), our coupled HMM spatially permits the concurrent occurrence of only some of 

these context states (namely, the ones where both User-1 and User-2 inhabit different 

rooms). In effect, this reduces the possible set of concurrent context states (for the two users) 

from 4 to 2. Furthermore, now considering the temporal constraint, we note that User-1 

cannot have the state (sitting, kitchen) at time t – 1, as she cannot have changed location 

while remaining in the ‘sitting’ state across (t – 2, t – 1). As a consequence, the only 

legitimate choice of states at time t – 1 is (sitting, living room) for User-1, and (walking, 

kitchen) for User-2.

Mathematically, this filtering approach can be expressed more generically as a form of 

constraint reasoning. In general, we can limit the temporal constraint propagation to K 
successive instants. If each of the N individuals in the smart environment have M possible 

choices for their context state at any instant, this constraint filtering approach effectively 

involves the creation of a K-dimensional binary array, with length M × N in each dimension, 

and then applying the reasoning process to mark each cell of this array as either ‘permitted’ 

or ‘prohibited’. In practice, this process of exhaustively evaluating all possible (M × N)K 

choices can be significantly curtailed by both (a) starting with those time instants where the 
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context is deterministic (in our example, the t – 2 choices are unambiguous as shown in Fig. 

4) and (b) keeping the dimension K small (for our experimental studies, K = 2 provided 

good-enough results).

4.2 Model likelihood estimation

To intuitively understand the algorithm, consider the case where we have a sequence of T 
observations (T consecutive time instants), with M̄ underlying states (reduced from the M × 

N original states by the pruning process) at each step. As shown in Fig. 4, this reduced trellis 

can be viewed as a matrix of Context tuple, where α[i, t] is the probability of being in 

Context tuple i while seeing the observation at t. In case of our coupled activity model, to 

calculate the model likelihood P(O|λ), where λ = (transition, emission probabilities), two 

state paths have to be followed over time considering the temporal coupling, one path keep 

track of the head, probable Context tuple of User 1 in one chain (represented with subscript 

h) and the other path keep track of the sidekick, Context tuple of User 2 with respect to this 

head in another chain (represented with subscript k) as shown in Fig. 4. First, for each 

observation Ot, we compute the full posterior probability α*[i, t] for all context streams i 
considering all the previous trellis α*[j, t – 1] in User 1 and inter-chain transition 

probabilities of sidekick trellis for User 2 (line 14 in Fig. 5).

In each step of the forward analysis we calculate the maximum a posterior (MAP) for 

{Contexti(t), Contextj′(t – 1) = head, sidekick} pairs given all antecedent paths. Here there 

are multiple trellises for a specific user. We use i, j for User 1 and i′, j′ for User 2, where hi, 

hj and ki, kj ∈ Contexti, Contextj and ki′, kj′ and hi′, hj′ ∈ Contexti′, Contextj′. Every 

Contexti(t) tuple for User 1 sums over the same set of antecedent paths, and thus share the 

same Contextj′(t – 1) tuple as a sidekick from User 2. We choose the Contextj′(t – 1) tuple in 

User 2 that has maximum marginal posterior given all antecedent paths as a sidekick (line 10 

in Fig. 5). In each chain, we choose the MAP state given all antecedent paths. This is again 

taken as a sidekick to heads in other chains. We calculate a new path posterior given 

antecedent paths and sidekicks for each head. We marginalize the sidekicks to calculate the 

forward variable α[i, t] associated with each head (line 18 in Fig. 5). This forward analysis 

algorithm pseudocode is articulated in Fig. 5 and explained with a pictorial diagram in Fig. 4 

where hi,t and ki,t represents the heads and sidekicks indices at each time stamp t, α*[i, t] is 

the probability mass associated with each head and pp[i, t] is the partial posterior probability 

of a state given all α*[j, t – 1].

4.3 Determination of most-likely activity sequence

Subsequent to state pruning and model likelihood determination through forward analysis, 

the inference of the hidden context states can be computed by the Viterbi algorithm, which 

determines the most likely path (sequence of states) through the trellis. Given the model 

constructed as described above, we then use the Viterbi algorithm to find the most likely 
path among all unpruned state paths through the trellis. For our coupled activity model, we 

calculate the MAP value given all antecedent paths. Given our coupled model, for each head 

at time t, the Viterbi algorithm must also choose an antecedent path in t – 1 for a single 

HMM, as well as a sidekick in t. This can be achieved in two steps: (1) select MAP 

sidekicks in t for each antecedent path in t – 1 and (2) select the antecedent path and 

Roy et al. Page 11

J Ambient Intell Humaniz Comput. Author manuscript; available in PMC 2016 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated sidekick that maximizes the new head's posterior for each head in t. Figure 6 

presents the pseudocode for our modified Viterbi algorithm, developed for multi-inhabitant 

environments.

5 Implementation and results

In this section, we report on our experiments that investigate the benefit of this proposed 

approach for recognizing complex ADLs using a combination of smartphone and simple 

ambient testing. Our experiments are conducted using ten participants at the WSU CASAS 

smart home.

5.1 Data collection

To validate our approach, we collected data from ten subjects (a.k.a PUCK dataset), each of 

whom carried an Android 2.1 OS based Samsung Captivate smart phone (containing a tri-

axial accelerometer and a gyroscope) (Dernbach et al. 2012). Each subject carried the phone 

while performing different ADL. The location and orientation of the phone was not 

standardized and was left to the convenience of the subject though most of the users were 

encouraged to keep it in their pant pockets. However, orientation information was taken into 

consideration while extracting the different data features. We utilized a custom application 

on the phone to collect the corresponding accelerometer sensor data; while the 

accelerometer sampling rate could be varied if required, our studies are conducted based on 

a sampling frequency of 80 Hz. In tandem, we also collected data from ceiling-mounted 

infrared motion sensors (embedded as part of the SHIMMER platform), providing us a 

combination of concurrent smartphone and ambient sensor data streams. Using a 

smartphone-based application, subjects could stop and start the sensor data that was being 

collected, as well as manually input the activity they were about to perform. As each 

individual performed these tasks separately from the others, the multi-user sensor stream 

(for the ambient sensors) was then obtained by synthetically combining (for each time slot) 

the readings from all the simultaneously activated ambient sensors. We superimposed the 

data-traces of two randomly chosen users to generate the multi-user sensor data streams.

5.2 Enumeration of activities

Consistent with our proposed two-tier architecture, the activities we monitored consist of 

two types: (1) low-level (or micro): these consist of the postural or motion activities that can 

be classified by a phone-mounted accelerometer. For our study, the micro-activity set 

consisted of six labels: {sitting, standing, walking, running, lying, climbing stairs}. (2) 

High-level (or complex): these consisted of semantically meaningful ADLs, and included six 

labels:

• Cleaning Subject wiped down the kitchen counter top and sink.

• Cooking Subject simulated cooking by heating a bowl of water in the microwave 

and pouring a glass of water from a pitcher in the fridge.

• Medication Subject retrieved pills from the cupboard and sorted out a week's worth 

of doses.
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• Sweeping Subject swept the kitchen area.

• Washing hands Subject washed hands using the soap in the bathroom.

• Watering plants Subject filled a watering can and watered three plants in living 

room.

Note that each instance of the ADL had definite (start, end) times, manually annotated by 

each subject. Thus, in this paper, we assume that we have a priori knowledge of the exact 

mapping between an instance of a complex activity and the underlying set of micro-

activities. The subjects repeated execution of these complex activities four times.

5.3 Micro-activity classification

Our goal is to apply feature-based classification techniques for the micro-activities, and then 

apply the micro-activity stream in a two-tier manner to understand the impact on complex 

activity classification. To classify the micro-activities, the 3-axis accelerometer streams and 

the 3-axis gyroscope data were broken up into successive frames (we experimented with 

frame lengths of {1, 2, 4, 8, 12} s and report results here for the representative case of 4 s), 

and a 30-dimensional feature vector (see Table 1) was computed over each frame. The 

ground-truth annotated training set (aggregated across all ten users) was then fed into the 

Weka toolkit (Witten and Frank 1999) and used to train six classifiers: multi-layer 

perceptron, naive Bayes, Bayesian network, decision table, best-first tree, and K-star. The 

accuracy of the classifiers was tested using tenfold cross-validation. Figure 7 plots the 

average classification accuracy for the micro-activities: we see that, except for naive Bayes, 

all the other classifiers had similar classification accuracy of above 90 %. Our experimental 

results confirm that the smartphone-mounted sensors indeed provide accurate recognition of 

the low-level micro-activities. For subsequent results, we utilize the best-first tree classifier 

(as this provides the best results for the Naive-Mobile approach described in Sect. 5.6).

5.4 Location classification

As explained previously, the subject's indoor location is the ‘hidden context’ state in our 

studies. Accordingly, we fed the combination of individual-specific micro-activity streams 

features (not accelerometer sensor features as shown in Table 1 but micro activity features as 

explained as Naive-SAMMPLE in Sect. 5.6) and the infrastructure (motion sensor) specific 

location feature into our activity recognition (ar version 1.2) code (Activity Recognition 

Code 2014) on our multi-user datasets to train each individual HMM model. Our Viterbi 

algorithm then operates on the test data to infer each subject's most likely location trajectory. 

Figure 8 reports on the accuracy of the location estimate of 4 individuals randomly chosen. 

The location accuracy for each individual user has been calculated by taking the average of 

all pair-wise combinations of that specific user. The standard deviation of the average 

location accuracy of all the users remains within 2–4% as shown in Fig. 8. We see that our 

use of additional intra-person and inter-person constraints results in an overall accuracy of 

room-level location inference of approx. 72 % on average. In contrast, given the presence of 

multiple occupants, a naive strategy would be able to declare the location unambiguously for 

only those instants where either (a) only one inhabitant was present in the smart home, or (b) 

all the occupants were located in the same room. We found this to be the case for only ≈5–
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6 % of our collected data set, implying that our constrained coupled-HMM technique is able 

to achieve over a 12-fold increase in the ability to meaningfully infer individual-specific 

location.

5.5 Micro activity feature assisted macro activity classification

The goal of this study is to take the data frames gathered from users performing complex 

“macro” activities and reclassify them as simple “micro” activities (as referred as Naive-

Mobile approach described in Sect. 5.6). We count the occurrences of micro activities within 

a certain window size, and use those counts as attributes in a new data frame. We perform 

the micro-classification step because micro classifications tend to be more accurate than 

trying to directly classify macro activities. In other words, we are attempting to identify the 

micro activities that make up a more complex activity and use these to correctly classify the 

complex activity being performed. The first set of experiments was performed on the PUCK 

data set, collected at WSU as referred before. The composition of the PUCK set activity 

frames are shown in Tables 2 and 3.

We created an application which reads a file containing data for a single complex activity, 

averages the frames within a window size of 5, prints the averaged frames to a new 

condensed file as unlabeled frames, reclassifies the condensed, unlabeled frames as micro 

activities using a classifier trained by our micro training set, counts the occurrences of micro 

activities within a second window size of 4, 8, or 12, and prints out these numbers of 

occurrences as attributes in a new frame with the original complex activity as a label. We 

perform this process on each individual complex activity and then combine the resulting 

files into one file. We then use this file as a training set for multiple classifiers and test the 

classifiers on the training set.

Figure 9 shows results from the PUCK study data. We notice that there is a strong bias in the 

model towards classifying complex frames as the micro activity ‘climbing’, and so we 

design a second experiment in which we remove ‘Climbing’ from the training set to observe 

if there is an improvement. Figure 10 represents that the classification accuracy has been 

improved from 40 to 50 % by excluding the micro activity ‘Climbing’. While the confusion 

in the classifier is albeit reduced by removing the activity ‘climbing’, but a new bias towards 

the micro activity ‘running’ has become apparent. Removing the attribute ‘running’ resulted 

in a loss of accuracy, suggesting a certain minimum number of micro-activities are necessary 

to model the macro-activities.

We conclude that the micro activities included in our training set do not correctly represent 

the complex activities which we are attempting to model. Many of our macro activities 

involve a large amount of hand motion whereas our micro activities are predominately foot 

or lower body motions. We confirm this by isolating a few of the more distinctive macro 

activities which could possibly be modeled with the micro activities available. Of course, the 

improved accuracies must stem in part from the reduced number of classification options. 

However, from these results it appears that the micro activities we have do not correctly 

represent the micro activities that make up the complex activity. With the goal of correcting 

this, we repeat our experiments on a second data set, Activity Recognition Challenge-

Opportunity dataset (Activity Recognition Challenge 2013).
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5.5.1 Opportunity dataset—We tried our approach on the Opportunity data set (Activity 

Recognition Challenge 2013). The opportunity dataset comprises the readings of motion 

sensors recorded while users executed typical daily activities at the micro and macro-level as 

shown in Tables 4 and 5. The following sensors and recordings have been used to 

benchmark human activity recognition algorithms (Chavarriaga et al. 2013).

• Body-worn sensors: seven inertial measurement units, 12 3D acceleration sensors, 

four 3D localization information.

• Object sensors: 12 objects with 3D acceleration and 2D rate of turn.

• Ambient sensors: 13 switches and eight 3D acceleration sensors.

• Recordings: four users, six runs per users.

We used a single sensor from the Opportunity set to simulate the data which we would be 

able to collect using a phone—specifically the Inertial Measurement Unit. The raw data in 

the Opportunity set was preprocessed by selecting a time window in which to calculate 

features used as attributes in our arff frames. These include the mean, maximum, minimum, 

standard deviation, and correlation of the acceleration and orientation measures on the x, y, 

and z axes over the chosen time frame. The preprocessed data frames from the Opportunity 

set has been shown in Tables 4 and 5.

Figure 11 represents a significant improvement (almost a twofold increment) in micro-

feature assisted macro activity classification. We believe here the micro activities were more 

closely related to the macro activities and thus help produced the improved results. However 

there still exists confusion between similar activities like coffee making and sandwich 
making. It is possible that difference in the micro activities which make up these similar 

complex activities are primarily small variations in the hand motions which are not captured 

by phone sensors.

We conclude that in order to achieve reliable accuracy levels, our approach must ensure that 

our micro activities accurately model the macro activities and that the macro activities are 

distinct enough for phone sensors to pick up differences in the data. The improvement in 

accuracies with the Opportunity data set over the PUCK data set suggests that a broader 

range of micro activities including distinctive hand motions would be helpful to accurately 

classifying the complex activities in question.

5.6 Macro/complex activity classification

Finally, we investigate the issue of whether this infrastructure-assisted activity recognition 

approach really helps to improve the accuracy of complex activity recognition. In particular, 

we experimented with four different strategies, which differ in their use of the additional 

infrastructure assistance (the motion sensor readings) and the adoption of a one-tier or two-

tier classification strategy:

1. Naive-Mobile (NM) In this approach, we use only the mobile sensor data (i.e., 

accelerometer and gyroscope-based features) to classify the complex activities. 

More specifically, this approach is similar to the step of micro-activity classification 

in that the classifier is trained with features computed over individual frames, with 
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the difference lying in the fact that the training set was now labeled with the 

complex activity label.

2. Naive-SAMMPLE (NS) In this two-tier approach, we essentially replicate the 

approach in Yan et al. (2012). In this approach, instead of the raw accelerometer 

data, we use the stream of inferred micro-activity labels as the input to the 

classifier. More specifically, each instance of a complex activity label is associated 

with a six-dimensional feature-vector consisting of the number of frames 

(effectively the total duration) of each of the six micro-activities considered in our 

study. For example, if an instance of ‘cooking’ consisted of three frames of 

‘sitting’, four frames of ‘standing’ and seven frames of ‘walking’, the 

corresponding feature vector would be [3 4 7 0 0 0], as the last three micro-

activities do not have any occurrences in this instance of ‘cooking’.

3. Infra-Mobile (IM) This is the first infrastructure-augmented approach. Here, we 

associate with each frame of complex activity instance, a feature vector 

corresponding to the accelerometer data, plus the location estimated by our Viterbi 

algorithm. This is effectively a one-tier approach, as we try to classify the complex 

activity directly based on accelerometer features.

4. Infra-Mobile-SAMMPLE (IMS) This combines both the two-tier classification 

strategy and the additional ‘location’ context inferred by our Viterbi algorithm. This 

is effectively an extension of the Naive-SAMMPLE approach, in that we now have 

a seven-dimensional feature vector, with the first six elements corresponding to the 

frequency of the underlying micro-activities and the 7th element corresponding to 

the indoor location inferred by our Viterbi algorithm.

Figure 12 plots the accuracy of the different approaches (using tenfold cross validation) for a 

randomly selected set of five subjects. (The other subjects have similar results and are 

omitted for space reasons.) We see, as reported in prior literature, that classifying complex 

activities (which can vary significantly in duration and in the precise low-level activities 

undertaken) is very difficult using purely phone-based features: both Naive-Mobile and 

Naive-SAMMPLE report very poor classification accuracy—an average of 45 and 61 %, 

with values as low as 35 and 50 % respectively. In contrast, our ability to infer and provide 

the room-level location in the smart home setting leads to an increase (over 30 %) in the 

classification accuracy using the one-tier Infra-Mobile approach, as high as 79 %. Finally, 

the Infra-Mobile-SAMMPLE approach performs even better by using micro-activity features 

for classification, attaining classification accuracy as high as 85 %. The results indicate both 

the importance of location as a feature for complex ADL discrimination in smart homes (not 

an unexpected finding) and the ability of our approach to correctly infer this location in the 

presence of multiple inhabitants (a major improvement). Figure 13 represents the standard 

errors depicting a measure of variability of the sampling distributions of Naive-Mobile, 

Naive-SAMMPLE, Infra-Mobile and Infra-Mobile-SAMMPLE approach across the five 

users. The confidence intervals for Naive-Mobile, Naive-SAMMPLE, Infra-Mobile, and 

Infra-Mobile-SAMMPLE has been varied in between 97.24 and 96:78 %.

Table 6 provides the best-first tree confusion matrix for the six pre-defined complex 

activities, for both the Naive-Mobile approach and our suggested Infra-Mobile-SAMMPLE 
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approach. We can see that pure locomotion/postural features perform very poorly in 

classifying complex activities (such as medication, washing hands or watering plants) in the 

absence of location estimates; when augmented with such location estimates, the ability to 

classify such non-obvious activities improves.

5.7 Multiple users complex activity recognition

We also report the complex activity recognition accuracy in presence of multiple users. The 

observation sequences obtained from each user based on the ambient and smartphone 

sensors are used for training and testing purpose. The feature vectors from these observation 

sequences are derived based on our one tier and two-tier classification respectively for Infra-

Mobile and Infra-Mobile-SAMMPLE approach along with the location information as 

obtained from our constraint reasoning. The activity models for each user are trained and 

built separately using the corresponding feature vectors. In case of multiple users the 

features vectors corresponding to all the users are fed into the CHMM model. The model is 

first trained from multiple training sequences associated with multiple users using the 

forward–backward algorithm and then tested in presence of combined testing sequences to 

infer the most likely activities of individual users based on the Viterbi algorithm. Figure 14 

plots the complex activity recognition accuracy in case of Infra-Mobile and Infra-Mobile-

SAMMPLE based methods considering a group of two users jointly. Figures 15 and 16 also 

plot the complex activity recognition accuracy respectively for a group of three and four 

users respectively. We do observe that as the number of users being considered in a group 

has been increased the complex activity recognition accuracy for the Infra-Mobile and Infra-

Mobile-SAMMPLE based approaches has been decreased. Nevertheless, the Infra-Mobile-

SAMMPLE approach performs better by using the micro-activity features and location 

metric obtained from the Viterbi algorithm, attaining a classification accuracy as high as 

90 % in presence of a group of two, three and four users in the smart home setting. Figures 

17, 18 and 19 plot the confidence interval for complex activity recognition accuracy in case 

of Infra-Mobile and Infra-Mobile-SAMMPLE based methods in presence of a group of two, 

there and four users respectively. It is noted that the confidence interval has been 

deteriorated for both the ambient-augmented mobile sensing based approaches, namely 

Infra-Mobile and Infra-Mobile-SAMMPLE, as the number of users inhabiting in the smart 

home environment has been increased.

In our future work we have been planning to exploit the correlations between multiple users 

to prune the state space model. We plan to combine the spatiotemporal correlations and 

constraints across multiple users to build an effective state space model for our activity 

model building, training and testing phase. While a rule based mining approach helps build 

the correlations in presence of multiple users and their contexts, a probabilistic graphical 

model will be augmented with the prior to jointly harness the state space reduction as the 

number of users increase in a smart home environment.

5.8 Computation complexity of Viterbi algorithm

We now report some micro-benchmark results on the performance of the Viterbi algorithm. 

In particular, we show the performance of our constrained pruned-HMM approach and 

evaluate it using two metrics: (a) estimation accuracy, measured as the log likelihood of the 
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resulting model predictions (effectively indicating how much improvement in accuracy the 

constraint-based pruning provides). (b) Execution speed (effectively indicating how much 

computational overhead may be saved by our pruning approach).

Figure 20 depicts the training and testing log-likelihoods of our coupled model which 

establishes that train-test divergence is very minimal. Figure 21 shows the computation time 

of our algorithms with a fixed number of states and increasing number of data sequences, 

whereas Fig. 22 plots the computation time with a fixed number of data sequences and 

increasing number of states. Clearly, pruning the state space can reduce the computational 

overhead. For example, if the joint number of states is reduced from 10 × 10 = 100 to 7 × 7 

= 49, we would obtain a fivefold savings in computation time (2500 → 500 ms).

6 Conclusions

In this work, we have outlined our belief in the practicality of a hybrid mobile-cum-

infrastructure sensing for multi-inhabitant smart environments. This combination of smart-

phone-provided personal micro-activity context and infrastructure-supplied ambient context 

allows us to express several unique constraints, and show how to use these constraints to 

simplify a coupled HMM framework for the evolution of individual context states. Results 

obtained using real traces from a smart home show that our approach can lead to ∼ 70 % 

accuracy in our ability to reconstruct individual-level hidden micro-context (‘room-level 

location’). This additional context leads to significant improvements in the accuracy of 

complex ADL classification.

These initial results are promising. However, we believe that the additional sensors on 

smartphones can provide significantly richer observational data (for individual and ambient 

context). We plan to explore the use of the smartphone audio sensor to enable capture of 

different ‘noise signatures’ (e.g., television, vacuum cleaner, human chat); such additional 

micro-context should help to further improve the accuracy and robustness of complex ADL 

recognition.
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Fig. 1. Illustration of our two-tier approach to combining smartphone and ambient sensor data
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Fig. 2. CHMM structure
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Fig. 3. CHMM with inter-user and intra-user constraints
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Fig. 4. Search through the state trellis of a 3-state HMM for User-1 and 4-state HMM for User-2 
for state probabilities, transition, coupling and spatial probabilities and most likely path
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Fig. 5. Forward algorithm pseudocode for coupled activity model
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Fig. 6. Viterbi algorithm psuedocode for multiple users
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Fig. 7. 
Micro-activity classification accuracy based on mobile sensing
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Fig. 8. Location inferencing accuracy using ambient sensor data
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Fig. 9. Micro assisted macro activity recognition accuracy (PUCK dataset)
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Fig. 10. Pruned micro assisted macro activity recognition accuracy (PUCK dataset)
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Fig. 11. Micro assisted macro activity recognition accuracy (opportunity dataset)
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Fig. 12. Complex activity classification: mobile vs. ambient-augmented mobile sensing for 
multiple users
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Fig. 13. Standard errors of mobile and ambient-augmented sensing for multiple users
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Fig. 14. Complex activity classification accuracy: ambient-augmented mobile sensing for a group 
of two users
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Fig. 15. Complex activity classification accuracy: ambient-augmented mobile sensing for a group 
of three users
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Fig. 16. Complex activity classification accuracy: ambient-augmented mobile sensing for a group 
of four users
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Fig. 17. Confidence interval of ambient-augmented mobile sensing for a group of two users
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Fig. 18. Confidence interval of ambient-augmented mobile sensing for a group of three users
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Fig. 19. Confidence interval of ambient-augmented mobile sensing for a group of four users
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Fig. 20. Coupled activity model: training and testing log-likelihoods with # of joint states
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Fig. 21. Time of forward algorithm/Viterbi analysis with increasing # observation sequences
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Fig. 22. Time of forward algorithm/Viterbi analysis with increasing # states
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Table 1
Feature extracted from the RAW data

Feature name Definition

Mean AVG(Σxi); AVG(Σyi); AVG(Σzi)

Mean-magnitude

Magnitude-mean

Max, min, zero-cross max, min, zero-cross

Variance VAR(Σxi); VAR(Σyi); VAR(Σzi)

Correlation
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Table 2
Micro activity frames

Micro activities Number of frames

Sitting 54

Standing 109

Walking 324

Running 118

Lying 289

Climbing 165
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Table 3
Macro activity frames

Macro activities Number of frames

Cleaning kitchen 904

Cooking 1485

Medication 1658

Sweeping 1366

Washing hands 758

Watering plants 843
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Table 4
Opportunity micro activity frames

Micro activities Number of frames

Door 183

Fridge 57

Dishwasher 14

Drawer 60

Clean table 53

Drink 267

Toggle switch 1
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Table 5
Opportunity macro activity frames

Macro activities Number of frames

Relaxing 326

Coffee time 701

Early morning 1084

Cleanup 650

Sandwich time 1239
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