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Abstract Nowadays large amounts of GPS trajectory

data is being continuously collected by GPS-enabled

devices such as vehicles navigation systems and mobile

phones. GPS trajectory data is useful for applications

such as traffic management, location forecasting, and

itinerary planning. Such applications often need to ex-

tract the time-stamped Sequence of Visited Locations

(SVLs) of the mobile objects. The nearest neighbor

query (NNQ) is the most applied method for labeling

the visited locations based on the IDs of the POIs in

the process of SVL generation. NNQ in some scenar-

ios is not accurate enough. To improve the quality of

the extracted SVLs, instead of using NNQ, we label the

visited locations as the IDs of the POIs which geometri-

cally intersect with the GPS observations. Intersection

operator requires the accurate geometry of the points

of interest which we refer to them as the Geometries
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of Interest (GOIs). In some application domains (e.g.

movement trajectories of animals), adequate informa-

tion about the POIs and their GOIs may not be avail-

able a priori, or they may not be publicly accessible and,

therefore, they need to be derived from GPS trajectory

data. In this paper we propose a novel method for es-

timating the POIs and their GOIs, which consists of

three phases: (i) extracting the geometries of the stay

regions; (ii) constructing the geometry of destination

regions based on the extracted stay regions; and (iii)

constructing the GOIs based on the geometries of the

destination regions. Using the geometric similarity to

known GOIs as the major evaluation criterion, the ex-

periments we performed using long-term GPS trajec-

tory data show that our method outperforms the exist-

ing approaches.

Keywords Trajectory Data, Spatio-Temporal Par-

titioning, Geometry of Interest, Time-Value, Time-

Weighted Centroid, Destination Extraction

1 Introduction

In recent years, GPS trajectory data has become abun-

dant due to the many GPS enabled devices used on a

daily basis. Mining these GPS trajectories for gather-

ing useful information for applications has received a

growing amount of attention in the recent literature. In

this field, researchers have tried to derive knowledge for

solving practical problems (e.g. traffic and transporta-

tion management systems (Min and Wynter, 2011), an-

imal migration and movement monitoring (Handcock

et al, 2009), location prediction (Gidófalvi and Dong,

2012), transportation mode estimation (Zheng et al,

2010), and location-based social networks (Zheng et al,

2012)).
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The applications dealing with data analysis on tra-

jectory data often need to have access to information

about the significant places which a mobile object fre-

quently travels and stay. These significant places are

referred to as the points of interest (POIs). The loca-

tions of the POIs are often used in projecting the trajec-

tory of a mobile object into a meaningful time-stamped

Sequence of Visited Locations (SVL). The constructed

sequences are used in various machine learning applica-

tions dealing with trajectory data (Yan et al, 2011).

Therefore, the quality and accuracy of the sequence

have very significant impact on the performance of the

machine learning applications.

In the process of constructing the SVL of a tra-

jectory, the applications often use Nearest Neighbor

Queries (NNQ) to label each GPS observation with the

ID of a POI. Fig. 1(a) presents an overview of the SVL

construction process. Given a GPS trajectory (depicted

with green arrows), and a set of destinations showed as

polygons, the NNQ based labeling method labels each

GPS observation (depicted in red points) with the ID

of the nearest POI (centroid of the destination poly-

gons) in chronological order. Although this process is

quite simple and efficient, it has a few significant limi-

tations which have a dramatic impact on the quality of

the generated time-stamped SVL.

As an example, consider the GPS point covered by

destination d3. The labeling process labels the destina-

tion with the ID of the nearest destination d4, while in

the real world, the GPS coordinate intersect with the

geometry of d3. Therefore, the resulting SVL for the

depicted trajectory using NNQ based labeling method

is d1 → d1 → d1 → d2 → d3 → d4. This scenario fre-

quently happens especially in environments with a high

number of POIs located near each other. The problem

has a dramatic impact of the quality of the constructed

SVLs.

One solution to the problem is to label each of the

GPS points with the ID of the POIs which intersect

with them instead of performing NNQ. Fig. 1(b), shows

the estimated geometry of each of the POIs which we re-

fer to them as the Geometries of Interest (GOIs). More-

over, the GOIs must not be overlapping. Otherwise, the

intersection operator would not be able to label a GPS

point intersecting with more than one GOI. This so-

lution requires having access to the real world GOIs

stored in a spatial database.

The information about the GOIs might be publicly

available in the spatial databases (e.g. geometries of

the famous places in a city). However, in applications

such as those processing the motion patterns of animals

or the movement patterns of the troops in a battlefield,

(a) Nearest Neighbor
Based

(b) GOI Based

Fig. 1 Labling Approaches in the Process of Generating the
Sequence of Visited Locations (SVL)

GOIs are not available and are required to be extracted

from the trajectory data.

In this paper, we address the problem of extracting

the GOIs of a mobile object, without using any infor-

mation other than the GPS trajectory of the mobile

object. We propose a method to partition the trajec-

tory area, which is defined by the minimum bounding

rectangle (MBR) of the trajectory, into a grid contain-

ing the GOIs of the moving object. Using the extracted

GOIs and the partitioned trajectory area, we can ex-

tract the trajectory SVL by only using intersection ge-

ometric operator. The quality and accuracy of the SVL

highly depend on the accuracy of the estimated GOIs.

Aiming for that, we extend the spatio-temporal par-

titioning techniques proposed in (Ye et al, 2009; Har-

iharan and Toyama, 2004). The partitioning methods

have three phases. Firstly, they extract the stay re-

gions within which a moving object has stayed for a

time duration greater or equal than a predefined mini-

mum time threshold and within a predefined Euclidean

vicinity distance. Secondly, they cluster the resulting

stay points (the centroids of the stay regions) to ex-

tract the destinations of the moving objects. Thirdly,

they implicitly partition the trajectory area based on

the coordinates of the centroids of the extracted des-

tinations by using NNQ in the process of labeling the

GPS points with the identifications of the POIs.

Our proposed method improves the baselines, in

each of the three phases. Given a GPS trajectory

(Fig. 2(a)), in the stay extraction phase, we propose

a novel clustering method for constructing the stay re-

gions (Fig. 2(b)). In the destination construction phase,

we propose a geometry based hierarchical agglomera-
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(a) GPS Trajectory (b) Extracted Stay Regions
(First Phase)

(c) Extracted Destination
Regions (Second Phase)

(d) Final Partitioned Area
(Third Phase)

Fig. 2 The Results of the Spatio-Temporal Partitioning Phases.

tive clustering method for clustering (merging) the stay

regions based on a geometric similarity measure and

construct the geometries of the destinations (Fig. 2(c)).

In the third phase, we extract the GOIs based on the

geometries of the destinations and include them in the

final grid which is composed of the GOIs and the cells

with fixed sizes (Fig. 2(d)).

The performance of our approach is evaluated based

on comparing the similarity of the derived GOIs from

our approach to know geometries of the POIs. Our ex-

perimental results performed on a long-term GPS tra-

jectories show that, in the stay extraction phase, our

method outperforms the existing methods by making

the higher number of valid stay regions with geometries
more related to the real world POIs. In the destination

extraction phase, the performance and the accuracy of

our method are considerably higher than the baseline

methods, considering the geometric similarity between

the geometries of the extracted destination to the real

world POIs. Moreover, our method is able to partition

the trajectory area based on the extracted destinations

resulting in a grid which guarantees the characteristics

of a validly partitioned area. Using the resulting grid,

we can easily generate the SVL of the mobile object by

using intersection geometric operator instead of using

the nearest neighbor queries or Voronoi diagrams (Au-

renhammer, 1991).

1.1 Contributions

The main contributions of this research can be summa-

rized as follows:

• Proposing a novel spatio-temporal stay extraction

method to extract the stay regions of a mobile ob-

ject by incorporating the introduces concepts of

time-value and time-weighted centroid.

• Introducing a novel agglomerative hierarchical clus-

tering method to merge the stay regions of a mobile

object based on their geometries and constructing

the geometries of the destinations of the mobile ob-

ject.

• Developing a spatio-temporal partitioning method

to partition the trajectory area of a mobile object

into a grid with inhomogeneous cells containing the

GOIs of the mobile object.

1.2 Paper Organisation

The remaining part of the paper proceeds as follows: In

section 2, the related works focused on the partitioning

of the trajectory area of mobile objects are discussed.

In section 3, our problem is preliminarily defined. We

introduce the concepts of time-value and time-weighted

centroid in a GPS trajectory in section 4. In section 5.1,

we present our proposed stay region extraction method

and compare it with the related works. In section 5.2,

a novel geometric similarity based agglomerative hi-

erarchical clustering method for merging the similar

stay regions and extracting the destination geometries

is discussed and compared with the related works. In

section 5.3, our partitioning method which constructs

a grid with inhomogeneous cells using the destination

geometries constructed in the previous phase is intro-

duced. In section 6, we analyze the computational com-

plexity of our method compared to the baselines. In
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section 7, the quality of our method compared to the

related works is evaluated compared to the previous

works. Finally, in section 8, the introduced method is

summarized, and the achieved results and the future

works are discussed.

2 Related Works

In recent years, various works have considered trajec-

tory data pre-processing, indexing, storage, and anal-

ysis (Zheng and Zhou, 2011). These trajectories could

be collected by social networks (Cho et al, 2011), sen-

sor networks (Ji and Zha, 2004), RFIDs (Kourogi et al,

2006), WI-FI (Song et al, 2006), simulators (Mousavi

et al, 2007), internet of things (Macagnano et al, 2014),

and cellular networks (Si et al, 2010). Among all of

these kinds of trajectories, our work is focused on the

trajectories collected by GPS sensors. GPS trajectories

have been used in various research works in different ap-

plications (Zheng and Zhou, 2011), however, our work

is a pre-processing prerequisite for all of the applica-

tions which attempt to extract the GOIs of the mobile

objects.

2.1 Partitioning Approaches

In the related works aiming to partition the trajec-

tory area of a mobile object, five approaches have been

taken. Following, we discuss the approaches and their

capabilities and limitations.

2.1.1 Grid with homogeneous cells

The first approach is to partition the trajectory area

into a homogeneous grid to represent the regions of in-

terest (e.g. (Xue et al, 2013)). The shape of the cells

is often considered as triangular, square, rectangular,

or hexagonal polygons. The main drawback of this ap-

proach is the degree of granularity of the cell. Coarse

granularity leads to each of the grid cells cover a wide

area which might include various POIs. The fine gran-

ularity results in the geometry of one POI to lie into

different cells. These problems have significant draw-

backs on the quality of the SVL extracted based on

such grids.

2.1.2 Coverage Area Based

The second approach defines the POIs as the area

being covered by a wireless accesspoint (Song et al,

2006) in wireless networks or the area covered by base

transceiver stations (BTS) of a cellular network (Si

et al, 2010). The geometries of the POIs are constructed

using circular area or hexagonal polygons around the

access points or the BTS. The main problem with this

approach is that estimating a fixed geometry for the

area covered by a wireless access point or a BTS is not

straight forward due to various reasons such as signal

power, noise, and obstacles, particularly in the urban

areas. Also, the problems, above-mentioned, related to

the granularity of the grid cells remains. For example,

the covered area by a BTS in a cellular network might

cover a very wide area which includes various POIs, or

a the covered area of an access point might not cover

the whole area of a POI (covered by more than one

access points).

2.1.3 Spatial Clustering Based

The third approach is to construct the geometries of

the POIs based on the GPS track points in the tra-

jectory datasets using simple spatial clustering meth-

ods without considering the temporal aspects of the

GPS trajectories. Spatial clustering methods perform

very similar to the classic clustering schemes such as

KMeans (Ashbrook and Starner, 2003), Gaussian mix-

ture model (GMM) (Banfield and Raftery, 1993), and

DBSCAN (Zhou et al, 2004). These methods simply

cluster the GPS points using measures such as the dis-

tance between GPS points or density connectivity in

a two-dimensional Cartesian space, without taking the

third dimension time into consideration, and partition

the trajectory area based on the destination geometries

constructed based on that clusters.

Another class of research works which can be catego-

rized into spatial clustering based approach are research

works (Scellato et al, 2011; Li et al, 2011) which have

used frequency map based spatial clustering methods

for extracting significant places in the trajectory area.

They partition the area into the very fine grid with equi-

sized cells and assign a weight to each cell around each

GPS point based on the duration of the GPS staying

at that point. This weight assigned to each cell is com-

puted based on the assumption that the real position of

a mobile object has a normal distribution with standard

deviation σ = 10m (Scellato et al, 2011). Then they

generate a frequency map which contains peaks that

give information about the region of significant places.

They consider regions that are above a predefined visit

frequency threshold as POIs. The main problem in the

spatial clustering based partitioning approaches is the

inaccuracy in the number and the geometries of the ex-

tracted POIs. They merely consider the density of the

GPS track points in a neighborhood in the trajectory

area as an indicator of a significant place or a POI. This
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assumption that the places which have more density of

GPS track points are more significant for the user than

the places with less density is not always true. Con-

sider a mobile object often moves on a road network

between its POIs regularly and repetitively. Obviously,

during the journies between the POIs, there are some

places which are being frequently visited and, therefore,

have higher GPS track point density, while they are not

the mobile objects POIs. For example, the conjunctions

with traffic lights or the road segments with higher traf-

fic loads often have a high density of GPS track points.

These two approaches consider these kinds of places as

POIs because they are not able to distinguish between

POIs (with high density) and the non-POI places with

nearly the same GPS point density.

2.1.4 Speed Based

The fourth partitioning approach is taken by incorpo-

rating the speed restrictions in finding the stop and

moves (E.g. (Palma et al, 2008; Bhattacharya et al,

2012)). This approach assumes the clusters with the

GPS track points with lower speed are more likely to

be stop points. This approach is not applicable in GPS

datasets where the GPS speed is not available, or the

speed is not easily computable (e.g. in trajectories with

low sampling rate or with large time gaps). Moreover,

there are some scenarios where defining a threshold for

maximum speed is not straight forward. For example,

assume a mobile object carrying a GPS-enabled mobile

phone. During the daily traveling activities, he might

have different transportation modes (e.g. walk, bike,

train, car, bus, etc.) (Zheng et al, 2010). In each of

the transportation modes the speed threshold should

be different since the average walking speed is different

to driving. Furthermore, even if we assume the same

transportation mode for the mobile object throughout

the trajectory (e.g. walk), places like shopping centers,

zoos, parks, campuses, and so many other POIs exist

where the mobile object stays in their geometry while

keeping moving (speed is greater than zero).

2.1.5 Spatio-Temporal Clustering Based

The fifth approach (Ye et al, 2009; Xiao et al, 2010)

employes time restricted spatio-temporal clustering in

extracting the stay regions and the destinations. They

extract the stay regions based on predefined spatio-

temporal restrictions. Then, they merge the stay re-

gions to construct the destinations.

They define a valid stay region (a vicinity distance

with radius ∆D ≤ Dmax) within which the mobile ob-

ject has strayed (stopped or kept moving) for a time

span ∆T ≥ Tmin, where Tmin, is a time span thresh-

old. The destinations which represent the POIs are ex-

tracted by clustering (merging) the stay centroid points

of the extracted stay regions using density-based clus-

tering methods such as OPTICS (Ye et al, 2009). This

approach is highly used in research works such as (Ye

et al, 2009; Xiao et al, 2010; Zheng et al, 2009, 2008;

Xiao et al, 2014) conducted in Microsoft Research Asia.

This approach effectively incorporates the temporal as-

pects of the mobile object trajectory into extracting the

stay regions and as a result into the extracted destina-

tion regions. As a result, the places which the mobile

object stays for a considerable time are selected, and

the other places are filtered although they might have

high point densities.

The research presented in (Hariharan and Toyama,

2004) has a similar approach in the extraction of the

stay regions with the difference that defines the time

and vicinity distance based on the diameter of the ex-

tracted stay regions. The destinations are extracted

based on the predefined maximum diameter of the des-

tinations by merging the stay regions.

The fifth approach extracts the most meaningful

and valid stay and destination regions because of their

specific spatio-temporal definition of a valid stay region.

Therefore, among all the works discussed above, in this

paper, we choose the works discussed in the fifth ap-

proach as the baseline to compare the performance of

our proposed partitioning method.

3 Problem Definition

Definition 1 The trajectory of a moving object is a

sequence of time stamped GPS observations ( points),

T = {p1, p2, ..., pn}, where pi = (ti, xi, yi) indicates the

spatio-temporal data of the moving object at time ti.

The parameters ti, xi, and yi, are the time stamp and

(x, y) ∈ R2 Cartesian plane of the moving object re-

spectively. in our GPS trajectories, ∀p ∈ T , i, j =

1, 2, . . . , tpi > tpj ⇐⇒ i > j. There are no other

guarantees such as constant sampling rate.

Definition 2 The geometric similarity between a set

of real GOIs R = {r1, r2, ..., rn} and a set of estimated

GOIs G = {g1, g2, ..., gm} is defined as:

GS(R,G) =
1

n

n∑
i

m∑
j

Area(ri ∩ gj)
Area(ri ∪ gj)

. (1)

Given a GPS trajectory T , and a set of geome-

tries of the real POIs R = {r1, r2, ..., rn} covered

by the MBR of T , our objective is to propose the

best (optimal) partitioning method to partition the
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MBR of the trajectory, fo : T → G which maxi-

mizes the geometric similarities between the real GOIs

R = {r1, r2, ..., rn} and their corresponding extracted

GOIs G = {g1, g2, ..., gm}.

fo = argmax
fi∈F

GS(fi(T ), R), (2)

where F = {f1, f2, ..., fk} is the set of different par-

titioning methods, e.g., {diameter based, density based,

geometric similarity based}.
Subject to

X ∀gj and gk ∈ G : if j 6= k then Area(gj ∩ gk) = 0,

X ∀pt ∈ T ,∃gj ∈ G | pt ∩ gj 6= Ø.

The first constraint guarantees that the geometries

of extracted partitions are mutually disjoint. The sec-

ond constraint ensures that all the GPS points in the

trajectory can be assigned to one and only one parti-

tion.

4 Concepts of Time-Value and Time-Weighted

Centroid in Trajectory Data

In this section, we briefly introduce the concepts of

time-value and time-weighted centroid which will be

used in the first phase of our partitioning method to

improve the performance of the stay region extraction.

In the process of collecting GPS observations which

are often done by GPS devices installed on vehicles or

mobile phones, ideally, we would like to collect each

GPS observation with constant sampling rate. For ex-

ample, we would like to have one sample point ev-

ery 10 seconds or every one minute. However, due to

various reasons, it is not always applicable. GPS sen-

sors installed on mobile phones consume a considerable

amount of power. So people usually tend to keep their

GPS sensor off. This fact has a dramatic impact on the

quality of the collected GPS trajectories. Another rea-

son is poor GPS coverage in places such as urban envi-

ronments and particularly in indoor locations. Besides,

the process of GPS data collection is often terminated

by the user for long periods (e.g. in the car parks).

The time gap between two consecutive GPS obser-

vations can be short or considerably long. The long time

gaps often take place when a vehicle is parked at a car

park, or a mobile device is switched off. We consider

the time gap between two consecutive GPS points in a

trajectory as a significant influencing factor.

Definition 3 For a GPS point pi in the trajectory T ,

we define the time-value as:

tvpi = tpi+1 − t
p
i i = 0, 1, ..., n. (3)

where tpi indicates the time stamp of point pi.

As an example, we can consider the simple problem

of computing the centroid of a set of GPS points to

address the effectiveness of considering the time-value

of GPS points in trajectory data processing.

Definition 4 The centroid ci = (cxi , c
y
i ) of a set of

points PS = {pm, pm+1, ..., pn}, is often computed as:

cxi =

∑n
i=m xpi
|PS|

, cyi =

∑n
i=m ypi
|PS|

(4)

where, xpi and ypi are the x and y coordinates of point

pi, and |PS| is the cardinality of the point set PS.

In Eq. 4, the values of all the GPS points are con-

sidered the same in computing the centroid. Contrary

to the previous works, we incorporate the time-value of

each GPS point tvpi in computing the centroid resulting

in the time-weighted centroid of the set of GPS points.

Definition 5 The time-weighted centroid (twcxi , twc
y
i )

of a set of points PS = {pm, pm+1, ..., pn} is defined as:

twcxi =

∑n
i=m xpi × tv

p
i∑n

i=m tvpi × |PS|
twcyi =

∑n
i=m ypi × tv

p
i∑n

i=m tvpi × |PS|
(5)

where, tvpi is the time-value of point pi computed using

Eg. 3, and |PS| is the cardinality of the point set PS.

In Eq. 5, the time-value of each GPS point is con-

sidered as the weight or degree of significance of each

point in computing the centroid. By this, we discrimi-

nate our GPS points based on the value of information

they give us about the location of the mobile object. By

incorporating the time-value, the centroid will be more

biased to and closer to the locations where long term

stops have taken place.

5 Methodology

Our partitioning method has three phases. (i) Spatio-

temporal extraction of stay regions, (ii) Constructing

the destination regions based on the extracted stay

regions, (iii) Partitioning the MBR of the trajectory

based on the extracted destinations. Following, we dis-

cuss each phase of the method and compare them with

the related works in detail.

5.1 Spatio-Temporal Extraction of Stay Regions

Extraction of the stay regions of a mobile object is the

first phase of our spatio-temporal partitioning method.

Aiming for that as the first step We convert the GPS
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trajectory into a sequence of stays and moves. We define

a stay si as an event which has been taken place within

the trajectory period of a mobile object. The event has

happened in a geometric region or neighborhood called

a stay region. A stay region is an area in which the

mobile object spends some time ∆t ≥ Tmin. During

this time, the mobile object can be either moving or

stopping provided that it does not pass the boundary

of the region. The boundary of the region is calculated

based on the roaming distance ∆d ≤ Dmax which is the

maximum distance that a moving object can stray from

the centroid of the stay region. For example, if a vehicle

has stopped in a car park for 8 hours starting from 9

AM to 5 PM, the event is the visit to the car park, the

starting time of the event is 9 AM (arrival time) and the

ending time of the event is 5 PM (departure time). Each

stay has a set of GPS points (point set) which indicates

the GPS observations which were collected within the

stay period.

Definition 6 We define stay si, i = 1, 2, ...n as si =

(idi, gi, psi, ci, ati, dti), where idi, psi, gi, ci, ati, dti are

the identification, geometry, point set, centroid, arrival

time and departure time of of si, respectively. psi is

a sub trajectory of the mobile object trajectory which is

defined as a set of consecutive points {pm, pm+1, ..., pn},
where ∀k,m < k ≤ n, Dist(ci, pk) ≤ Dmax, and

Dist(ci, pn+1) > Dmax. The parameter ci referes to the

centroid of the points in psi and gi is the the convex

polygon of the point set psi.

The definition of a ∆d in our approach is different to

the previous work (Hariharan and Toyama, 2004) and

(Ye et al, 2009). In (Hariharan and Toyama, 2004), ∆d

is defined as the Euclidean diameter of the coordinates

of elements of a stay. This means that the diameter

(the longest Euclidean distance between two points in

the set) of a stay must not be greater than ∆d. They

iteratively add a point to the sub-trajectory pi and re-

compute the diameter of pi. If the diameter, remains

less than Dmax after adding the new point, they keep

the point in pi. Otherwise, they remove the point from

pi, store si, and start constructing a new stay. Ye et al.,

in (Ye et al, 2009) have taken the very first chronolog-

ical point in each stay as the reference point and have

defined ∆d as the Euclidian distance between each new

point and the reference point. They do not refresh the

reference point coordinate when adding a new point to

the stay. While in our method, ∆d is defined as the

Euclidian distance between the time-weighted centroid

of the stay (reference point) to the new point which is

being examined (line 11 in Alg. 1). In other words, we

use the time-weighted centroid of the point set in the

Algorithm 1: Time-Weighted Centroid Based

Stay Region Extraction (Our Method)

input : P (A set of GPS points), vicinity distance
threshold Dmax, time span threshold Tmin

output: A set of Stays S where
sk = (idk, gk, psk, ck, atk, dtk)

Data: Coordinate twc

1 ∆d← 0, ∆t← 0, i← 0, j ← 0, token← 0
2 foreach pi ∈ P do
3 pi.tv ← ComputeTimeValue(pi)
4 end

5 while i < |P | do
6 psk.insert(pi)
7 twc ← TimeWeigtedCentroid(psk)
8 j ← i+ 1
9 token← 0

10 while j < |P | do
11 ∆d← EucDistance(twc, pj)
12 if ∆d > Dmax then

13 ∆t← (tpj + tvpj )− tpi
14 if ∆t ≥ Tmin then
15 idk ← k

16 gk ←
ComputeConvexHull(PS)

17 ck ← GeometryCentroid(gk)
18 atk ← tpi
19 dtk ← tpj + tvpj
20 sk = (idk, gk, psk, ck, atk, dtk)
21 S.insert(sk)
22 i← j

23 token← 1
24 k ← k + 1
25 break

26 end

27 end

28 psk.insert(pj)
29 twc ← TimeWeightedCentroid(psk)
30 j ← j + 1

31 end

32 if token 6= 1 then
33 i← i+ 1
34 end

35 end
36 return S

current stay as the reference points instead of the very

first point of the stay.

The calculation of the parameter ∆t in our method

is different to the previous works as well. In the previ-

ous works, the parameter is defined as ∆t← (tpj )− tpi ,

which means the time difference between the first and

the last GPS observation in the stay. In our method we

incorporate the time-value of the last point (tvpj ) and

define the ∆t as: ∆t← (tpj + tvpj )− tpi . This means that

we consider the time gap between the last point and its

successor point in the trajectory to compute ∆t.

In our method (presented in Alg. 1), having a cur-

rent stay, for each new GPS observation in the trajec-

tory, if the condition ∆d > Dmax and ∆t > Tmin, are
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true, we close the current stay, store it, and make a

new stay with the GPS observation as the first point

in its point set. Otherwise, we add the new GPS obser-

vation to the point set of the current stay, update the

time-weighted centroid of the current stay, and keep

examining the next points in the trajectory. In other

words by adding each point to the stay, we refresh the

coordinate of the reference point as the time-weighted

centroid of the points of the current stay. We assign a

unique numeric identification idi to each stay si. The

parameter ati indicates the arrival time of stay si which

is the time that the moving object has arrived in the

region (gi). Similarly, dti is the departure time of stay

si.

To calculate the geometry of the region gi within

which the stay si has taken place, we compute the con-

vex hull of the set of points psi = {p1, p2, ..., pn}. The

convex hull of a set of points is the smallest polygon

that contains all of the points (Andrew, 1979). Then,

we add a predefined geometric buffer around the con-

vex hull polygon to compensate for the GPS noise. The

width of the buffer is set to 10 meters (Navstar, 2008).

Fig. 3(b) shows the extracted stay regions based on the

trajectory shown in Fig. 3(a).

5.2 From Stay Regions to Destination Regions

Assume a moving object visits a certain place every day

(e.g. home). If we extract every stay throughout a tra-

jectory period with a long time duration, e.g., one year

or more, we would have at least 365 extracted stays

with approximately the same geometry. At this stage,

we need to merge the duplicated stays which represent

the same destination region (e.g. car park). Aiming for

that, we detect the stays that have approximately the

same geometry and merge (cluster) them together re-

sulting in a set of destinations with unique geometries

and Identification.

In related works, there are two major schemes for

merging the stay regions. They cluster the stay points

(the centroids of the GPS points stored in each stay)

such that the stay points that have close distance are

clustered into the same destination. Ye et al. in (Ye

et al, 2009), have used the density of neighborhood of

stay points in a group as a measure of similarity in

the clustering process. In other words, the stay points

which have more dense neighbors (stay points with

many nearby neighbors closely packed together) make

a cluster (destination) and stay points that lie alone

in low-density regions are considered as outliers. The

result of running OPTICS (Ankerst et al, 1999) clus-

tering algorithm on the set of stay points is a set of

destinations (each destination is a set of stay points).

One major problem of density-based clustering

methods such as OPTICS is that it is required to define

two parameters neighborhood distance ε eps (neighbor-

hood distance) and the (minPts) (minimum number

of points required to form a dense region). The perfor-

mance and output of the methods are strongly sensi-

tive to the values chosen for these two parameters. For

instance, in our application, if we choose a relatively

big value for parameter (minPts), the density-based

clustering methods will consider lots of stay points as

noise or outliers in the clustering and eliminate them

because they have the lower density of neighbors than

(minPts).

Hariharan et al., in (Hariharan and Toyama, 2004)

have used a clustering method which finds each pair

of stay points which have maximum similarity to each

other and merge them together iteratively. They have

defined a similarity criterion which indicates if the di-

ameter of the resulting region of merging two stay

points is less than or equal to a given threshold Dmin,

these two stay points will be merged. This process con-

tinues until all similar stay points are merged.

In our method, we incorporate the geometries the

stay regions in extracting the destinations instead of

only considering the density or distance of the stay

points. In the process of clustering, we define a crite-

rion that helps us control our merging process in our

hierarchical clustering method.

Alg. 2 presents the pseudo-code of our method. We

use R-Tree indexing method to index the geometry of

each stay gi ∈ S. Subsequently, at each step, we send

a query to the R-Tree to find only the clusters which

their geometry intersects with the current stay geome-

try. The result is a list of stays (interList). Then, we

compute the most similar stay geometry in interList

to our current stay region (gi). After finding the sim-

ilarity of all pairs in S, if JSimmax = 0, this means

that there is no intersecting pair of stay regions in S.

If JSimmax > 0, then there is still, at least, a pair of

interesting stay regions in S. smaxIndex represents the

stay region that has the highest similarity to our current

stay si in the second loop in Alg. 2. To decide whether

we need to merge the current stay si and smaxIndex,

we compare their similarity coefficient (JSimmax) with

Jmin. If (JSimmax > Jmin), we merge the two stays by

adding all the GPS points in stay smaxIndex to si and

computing the new region geometry of our current stay

gi as the geometric union of two geometries.

After merging stay region pairs, we compute the

visit frequency of the resulting stay region as the sum of

visit frequency of the current stay fi and the most simi-

lar stay region smaxIndex. We consider the frequency of

visits to each destination as a useful criterion for select-
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(a) GPS Trajectory (b) Stay Regions (c) Jmin = 0 (d) Jmin = 0.10 (e) Jmin = 0.20

Fig. 3 Results of the Destination Extraction Phase With Different Values of Jmin.

ing the significant destinations (POIs). As a result, we

can decide whether we consider a cluster of stay regions

(destination) as a POI or consider it as a trivial cluster

(noise). The last loop in Alg. 2 removes the destina-

tions which have been visited with the frequency less

than Fmin.

We define the similarity of two geometries (gi, gj) as

the measure of similarity of two stay regions as follows:

GS(gi, gj) =
Area(gi ∩ gj)
Area(gi ∪ gj)

. (6)

Fig 3 shows the destinations extracted from the a

set of stay regions using different values for parameter

Jmin. The higher value of Jmin leads to higher num-

ber of overlapping destination regions being extracted.

Interestingly, if we set Jmin = 1, we will have exactly

all the stay regions extracted as destination regions be-

cause the probability that two stay regions have identi-

cal convex hulls (and accordingly JSim = 1) is approx-

imately zero.

5.3 From Destination Regions to Geometries of

Interest (GOIs)

Having extracted the destination regions and their esti-

mated geometries, as the final phase of our partitioning

method, based on the geometries of the destination re-

gions, we partition our trajectory area into a grid area

with inhomogeneous cells such that both characteris-

tics of a valid partitioning (discussed in section 3) are

guaranteed.

Firstly, we make a grid called micro-grid MG with

equi-sized rectangular shaped cells with very fine granu-

larity. The grid covers the area minimum bounding rect-

angle (MBR) of our GPS trajectory T . Also we make a

grid composed of geometries of all destination regions.

We refer to this grid as destination-grid (DG). Then

we convert the destination-grid (DG) to a grid called

GOI-Grid (GG) with mutualy disjoint cells. Aiming for

that, for each cell mi ∈MG, we find the cell in dj ∈ DG
which maximizes the geometric similarity (Eq. 6) with

mi.

dj ∈ DG = argmax
dj

GS(ci, dj).

We also defined and examined an alternative sim-

ilarity metric as the Euclidean distance between the

centroid of the polygon of cell i in micro-grid (cmi ) to

the centroid of the polygon of cell j in destination-grid

(cdj ). We call this similarity as polygon centroid simi-

larity (PCS).

PCS(mi, dj) =
1

EucDistance(cmi , c
d
j )
.

Next, we label mi ∈MG as a cell that represents a

tiny part of the destination dj in the destination-grid.

We continue this process until there are no remaining

unlabeled cells in MG which have an intersection with

any of the cells in DG. By merging the geometries of

all the cells in MG labeled with ID of each cell in DG,

we make the GOI-Grid (depicted in Fig 4(d)).

Since we find the most similar destination for each

cell mi ∈ MG and label it to be a part of the geome-

try of only one destination, all GOIs in the GOI-Grid

are mutually disjoint, the first condition of a valid spa-

tial partition is guaranteed. However, the grid does not

cover all of the area of the MBR of the trajectory.

This means that there might be a GPS observation

that does not lie in the geometry of one of the GOI-

Grid cells. To tackle this problem, we insert all the cells

mi ∈ MG, which were not already been labeled, into

the GOI-Grid. The resulting grid in referred to as final-

grid (Fig. 4(e)) which is composed of the GOIs of the
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(a) Micro-Grid (b) Destination-Grid (c) GOI-Grid (PCS) (d) GOI-Grid (GS) (e) Final-Grid (GS)

Fig. 4 Partitioning Results Using Two Geometric Similarity Metrics.

mobile object, and the tiny cells with unique IDs. As a

result, all of the area of the MBR of the trajectory T
are covered by either a GOI or a tiny cell in final-grid.

Fig. 4(d) and Fig. 4(c) show the performance of both

similarity metrics (GS and PCS) in the partitioning. As

is seen, the resulting GOI-Grid using geometric similar-

ity resembles the Destination-Grid much better because

the PCS based method is biased to the centroid of the

polygon and makes the shape of the resulting polygon

less similar to the corresponding cell in the destination-

grid.

6 Computational Complexity

In the stay extraction phase, in the worst case, the time

complexity of our method is O(n2) for n track points

in the trajectory. However, in practice, since the sum

of the track point of the extracted stays are consider-

ably fewer than n. Note that, the inner loop in Alg. 1

deals with computing the centroids of the stay regions

which depends on the number of the track points in

each stay. Since a large number of track points in the

trajectory are not clustered in the stays (due to restric-

tions of a valid stay), the sum of the track points of

the stays is much lower than n. Computing the diam-

eter of the stays in the work proposed by (Hariharan

and Toyama, 2004) is more complex than computing

the centroid in our method, since for computing the di-

ameter, we need to compute the distance of each point

to all of the other points in the cluster with the time

complexity of O(n2). Therefore, we can consider the

complexity of the method, in the worst case, O(n3) for

n track points in the trajectory. The time complexity of

the method proposed by (Ye et al, 2009) is O(n) which

is lower than our method since they do not refresh the

coordinate of the reference point while making the stay

region.

In the destination extraction phase, Zheng et al.,

in (Ye et al, 2009) have used OPTICS (Ankerst et al,

1999) clustering method. The time complexity of OP-

TICS algorithm is O(n2). The time complexity of the

hierarchical clustering method provided by Hariharan

et al. (Hariharan and Toyama, 2004) is O(n3) in the

worst case. The complexity of our method (Alg. 2)

in the worst case, is O(n3). We use R-Tree indexing

method to reduce the runtime of our method in find-

ing the intersecting cells. The most costly part in our

method is finding the degree of similarity between two

geometries (Eq. 6).

In the partitioning phase, in the process of assign-

ing each of the cells in micro-grid to the cells in GOI-

Grid, in the worst case, the complexity of the method is

O(nm), where n is the number of cells in the MG and

m is the number of cells in the destination-grid. There-

fore, the granularity of MG has a significant impact on

the runtime of our method. To increase the efficiency of

the method we use R-Tree indexing to index the cells

in the destination-grid.

7 Experimental Results

In this section, we analyze the performance of our pro-

posed method in comparison with the baselines. In our

evaluations, we use a dataset of GPS trajectories col-

lected in Anchorage, Alaska, USA as a part of the

project FreeSim (Miller and Horowitz, 2007; Miller,

2009). The trajectory we use in this paper has been

collected from a vehicle for the duration of about 42

months from 2010 to 2013 with varying sampling rate

from one sample every 10 seconds to one sample ev-

ery two minutes. We used ELKI machine learning li-
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Stay Extraction Method Number of Extracted Stay Regions Number of Single Sized Stay Regions

Reference Point Based (Ye et al, 2009) 3568 0
Diameter Based (Hariharan and Toyama, 2004) 3587 0
Time-Weighted Centroid Based (Our Method) 4127 292

Table 1 Spatio-temporal Stay Region Extraction Results (Tmin = 60min)

Algorithm 2: Geometric Similarity Based

Destination Detection Method
input : A set of stay regions S, Jaccard similarity

threshold Jmin visit frequency threshold
Fmin

output: A set of destination regions D
Data: Destination d, InterList, RTreeIndex

1 JSimmax ← 0, JSim← 0, firstSimIndex← 0,
secondSimIndex← 0

2 foreach si ∈ S do

3 fi ← 1
4 end

5 while (JSimmax < Jmin) do

6 RTreeIndex.Update(S)
7 i← 0, JSimmax ← 0
8 while (i < |S|) do
9 interList←

RTreeIndex.FindIntersectingStays(si)
10 j ← 0
11 JSim← 0
12 JSimmax ← 0
13 while (j < |interList|) do
14 JSim←

Area(gi
⋂

interList[j])/Area(gi
⋃

interList[j])

15 if (JSim > JSimmax) then
16 JSimmax ← JSim

17 maxIndex←
FindIndex(S, interList[j])

18 end
19 j ← j + 1

20 end

21 i← i+ 1

22 end

23 if (JSimmax > Jmin) then
24 si.MergePoints(smaxIndex)
25 gi ← gi ∪ gmaxIndex

26 fi ← fi + fmaxIndex

27 S.remove(smaxIndex)

28 end

29 else
30 break
31 end

32 end
33 foreach (si ∈ S) do

34 D.insert(si)
35 end
36 foreach (dk ∈ D) do

37 if fk < Fmin then

38 D.remove(di)
39 end

40 end

41 return D

brary (Schubert et al, 2015), to implement the OPTICS

clustering algorithm. Following we discuss the results in

each of the three phases.

7.1 Stay Extraction Experimental Results

We implemented the method presented in Alg. 1 and

two methods proposed in (Hariharan and Toyama,

2004), and (Ye et al, 2009). Table 1 presents a com-

parison of the experimental results for each stay extrac-

tion method. As it is seen, our time-weighted clustering

method outperforms the other two methods in the num-

ber of extracted clusters. Moreover, our method detects

and report the stay regions with the single point while

the other methods simply lose the stay regions.

Fig. 5 shows a visual perspective of the extracted

stay regions by each of the stay region extraction meth-

ods in a selected area of the main GPS trajectory.

We selected this particular region (Fig. 5(b)) because

it contains clearly depicted places which indicate the

car parks. We consider the car park geometries as the

ground truth for our empirical observation and geomet-

ric similarity analysis. We cropped the GPS trajectory

only to cover the selected area by removing all the GPS

track point lie outside the geometry of the selected area.

As it is seen in Fig. 5(c), the extracted stay regions

by diameter based method does not have acceptable

results. Although some of the exacted stay regions in-

tersect with the car park regions, they cover the consid-

erable areas outside the car parks. The reference point

based stay extraction method (Ye et al, 2009) depicted

in Fig. 5(d) has much better performance compared

to diameter based method since most of the extracted

stay regions intersect with the car parks. However, on

the bottom left side of the area, some irrelevant stays

are evident. Fig. 5(e) shows the extracted stays using

our proposed method. Although there are some minor

stay regions extracted outside the car parks geometries

(in places the same as those in Fig. 5(d)), the extracted

stay regions are more compact and more biased to the

car parks geometries.

Table 1 reports that our method has extracted 292

stay regions with only one GPS points (cluster with

one member) whereas, the two baseline methods were

not able to detect them. The baseline methods compute
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(a) Map of the Selected Area in Anchorage, Alaska, USA (Bing)

(b) Map of the Selected Area in Anchorage, Alaska, USA
(Mapnik)

(c) Diameter Based Stay Extraction Method (Tmin =
60min,Diammax = 200m)

(d) Reference Point Based Based Stay Extraction Method
(Tmin = 60min,Diammax = 200m)

(e) Time-Weighted Centroid Based Stay Extraction Method
(Tmin = 60min,Dmax = 100m)

Fig. 5 Stay Region Extraction Results
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Destination Extraction Method Parameters Number of Stays Number of Destinations

Diameter Based (Hariharan and Toyama, 2004) Diametermin = 200m 3587 304
Diameter Based Diametermin = 300m 3587 166
Diameter Based Diametermin = 400m 3587 128

Density Based (Ye et al, 2009) eps = 100m,minPts = 3 3566 456
Density Based eps = 100m,minPts = 6 3566 206
Density Based eps = 100m,minPts = 9 3566 120

Geometric Similarity Based (Our Method) Jmin = 0 4127 364
Geometric Similarity Based Jmin = 0.05 4127 434
Geometric Similarity Based Jmin = 0.10 4127 490

Table 2 Destination Regions Extraction Results (Tmin = 60min, Fmin = 1)

the value of ∆t as the time distance between two con-

secutive points because need at least two GPS points

in a cluster to make a valid stay region. However, our

method incorporates the time-value of the current track

point in computing ∆t. The time-value of the current

track point compensates the cases where the next point

lies outside the current stay region (∆d > Dmax) but

the time gap is long enough (∆t ≥ Tmin), resulting

in the stay points with only one track point being de-

tected.

Table 1 also shows that our method has extracted

a considerably higher number of stay regions compared

to the baselines. The reason is, there might be clus-

ters which have members more than one but the time

duration of the stay is less than Tmin without consider-

ing the time-value. In this case, the stay is considered

invalid. The duration of the same stay might become

more than or equal to Tmin by considering the time-

value of the last point in the cluster. In such scenario,

our method detects these clusters while the other two

methods miss them.

In our method, after adding a point to point set of a

stay, we update the coordinate of the reference point of

the stay by computing the time-weighted centroid of the

points in the stay. Therefore, the points extracted in a

stay become more biased and closer to the places which

longer stops have taken place. Whereas, reference point

based method considers the first point of the stay as

the reference point does not update it iteratively. The

diameter based method (Hariharan and Toyama, 2004)

does not use a centroid point or a reference point and

instead uses the diameter of the stay region as the con-

dition of a valid stay. So, it performs much less accurate

than both methods.

7.2 Destination Extraction Experimental Results

In this section, we examine and compare our method

with two baseline destination extraction methods us-

ing the stay regions extracted in the previous section.

Table 2 shows the results for three methods. It is ev-

ident that the parameters Diametermin, minPts, and

Jmin have a significant impact on the number of ex-

tracted destinations in all three methods. In the diam-

eter based method, the larger Diametermin leads to

a fewer number of destinations since destinations with

the larger area are constructed. The parameter minPts

has a significant impact on the number of destinations

in density based method. The higher minPts leads to a

fewer number of destinations. The greater Jmin in our

method leads to higher number of destinations.

Fig. 6 shows the results of the destination extrac-

tion methods on the map. As it is evident, the diame-

ter based method (Fig. 6(a)) does not have acceptable

performance in extracting the geometries of the destina-

tions. Although the extracted destinations do cover the

car parks, they have areas much larger than the car park

areas, and also, they have significant overlaps. Density

based method has more acceptable performance that

diameter based method. However, it loses two of the

car parks. Moreover, it covers places not related to the

car parks. Fig. 6(c) shows the destinations extracted by

our geometric similarity based method. It is evident our

method has constructed destination regions with much

more acceptable geometric similarity to the car parks.

As it is evident in figures 6(c) and 6(e), in our

method with with Fmin = 1, the value Jmin = 0 leads

to all the geometries of all the destinations being dis-

joint while the number of extracted destination using

Jmin = 0.1 is much higher. The destinations are over-

lapping, and even some destinations are fully covered

by the other destinations.

Figures 6(d) and 6(f) illustrate the extracted des-

tinations with Fmin = 6. Comparison of the figures

with figures 6(c) and 6(e) clearly indicates the effect of

parameter Fmin in our destination extraction method.

In the latter figures, the destinations with fewer visit

frequencies have been eliminated from the destination-
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(a) Destination Grid, Diameter Based (Tmin =
60min,Diametermax = 300m)

(b) Destination Grid, Density Based (Tmin = 60min,Dmax =
100m,minPts = 6, eps = 100m)

(c) Destination Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0, Fmin = 1 )

(d) Destination Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0, Fmin = 6)

(e) Destination Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0.10, Fmin = 1)

(f) Destination Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0.10, Fmin = 6 )

(g) GOI Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0.10, Fmin = 6)

(h) Final-Grid, Geometric Similarity Based (Tmin =
60min,Dmax = 100m,Jmin = 0.10, Fmin = 6)

Fig. 6 Destination-Grid, GOI-Grid, and Final-Grid Extraction Results
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GOI Extraction Method Parameters Degere of Geometric Similarity

Diameter Based Diametermin = 200m 0.415
Diameter Based Diametermin = 300m 0.097
Diameter Based Diametermin = 400m 0.130

Density Based eps = 100m,minPts = 3 0.310
Density Based eps = 100m,minPts = 6 0.329
Density Based eps = 100m,minPts = 9 0.314

Geometric Similarity Based Jmin = 0 0.623
Geometric Similarity Based Jmin = 0.05 0.628
Geometric Similarity Based Jmin = 0.10 0.650

Table 3 GOI Extraction Extraction Results (Tmin = 60min, Fmin = 6)

grids, and only the destinations which have more geo-

metric similarity to car park areas have been left.

Comparing two figures 6(d) and 6(f) reveals the ef-

fect of the value of Jmin on the extracted destinations.

The extracted destinations in both figures are quite sim-

ilar except for the destination in the middle of the area.

Fig. 6(d) has merged the area of the two neighboring

car parks together while Fig. 6(f) has extracted two dis-

tinct geometries for the same destination. This shows

the better performance of the method with parameter

Jmin = 0.1.

7.3 Paritioning Experimental Results

The GOI-Grid, which is the result of constructing the

GOIs based on the destinations in Fig. 6(f) is illus-

trated in Fig. 6(g). It is clearly seen that the parti-

tioning method has resolved the problem of two desti-

nations having a geometric overlap. The two destina-

tion regions in the middle of the Fig. 6(f) have been

partitioned into two distinct cells in GOI-Grid without

having any intersection.

The Final-grid, which is depicted in Fig. 6(h) is the

last result of our partitioning. It is evident that the

final-grid guarantees both characteristics of a valid par-

tition. None of the cells overlap each other and all the

GPS points in the mobile object trajectory can be la-

beled with the ID of a cell in the final grid.

7.4 Geometric Similarity Evaluation Results

In this section, we use the geometric similarity as a

quantitive metric to analyze the quality of our parti-

tioning method compared to the baselines. We use Eq. 1

for analyzing the performance of the similarity of the

real GOIs and the estimated GOIs. This metric uses

the proportion of the area of the intersection of two

geometries (gi and gj) to the area of the union of them.

Table 3, presents the calculated degree of geomet-

ric similarity between the geometries of the real GOIs

(the red colored polygons in figure 6(g)) and their corre-

sponding extracted GOIs (the blue colored polygons in

figure 6(g)). As it is evident, our method has the highest

values for the geometric similarity. Table 3 also shows

that the values of geometric similarities vary based on

different values for the parameters Jmin, minPts, and

Diamatermin.

Among the evaluated methods with different pa-

rameters, our method with Jmin = 0.15 has the best

results. Therefore, the partitioning method which max-

imizes the geometric similarity (discussed in section 3)

is our method with Jmin = 0.15.

8 Conclusion and Future Work

In this paper, we addressed the problem of finding the

Geometries of Interest of a mobile object and partition-

ing the trajectory area into a grid through analyzing

its GPS trajectories. The research shows that consider-

ing the concept of time-value of the GPS points signifi-

cantly improves the accuracy of stay region extraction.

Moreover, the results of this study support the idea that

considering the geometries of the stay regions, makes

the geometries estimated GOIs remarkably more simi-

lar to the real world GOIs.

This research has opened up many questions in need

of further investigation and will serve as a base for fu-

ture studies. It would be interesting to focus on improv-

ing the performance and the accuracy of our proposed

partitioning method by aggregating the trajectory data

of other mobile objects moving in the same area of our

particular mobile object. Other improvements such as

using outlier detection methods to detect and remove

the outlier points from the point set of the destinations

could improve the results further. Finding the best ge-

ometric similarity metric to improve the performance

of the destination extraction phase would be another



16 Seyed Morteza Mousavi et al.

interesting research problem that could be addressed in

the future.
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