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Abstract
Antiviral drugs have benefited public health officers to elucidate outbreak risks by controlling influenza pandemics effica-
cious, especially effective in the early stage of epidemic outbreaks. To limit explosive strain on hospitals, commercial phar-
macies have joined, as antiviral drug-dispensing partners, in governments’ pandemic response plans. Existing researches 
focus on site selection by optimizing the single objective of access to the target population. However, there are substantial 
inevitable but essential social factors (such as social unbalance, spatial unbalance and resource unbalance) needed to consider 
to benefit the society best. In this paper, we propose a network-perspective optimization model across multiple social scales 
(e.g, access, social unbalance, spatial unbalance and resource unbalance) to assign antiviral drugs to the urban dispensing 
pharmacies. In the network-based frame, we transfer these considerations to the constraints of group, edge, and node. The 
constrained optimization model is studied and solved using methods of willingness-to-travel model, L

12
 norm and network 

lasso, corresponding to each considerations. Taking Shanghai in a cohort of 11 million individuals as an example, we have 
shown the flexibility of the proposed multi-objective model, comparing with the traditional methods. For example, we found 
that there are 29 pharmacies needed with covering 81% districts by tradition single-objective method. In the contrast, only 
12 pharmacies are needed with similar access ability but can still cover 75% districts. Or more pharmacies are assigned with 
covering 87% districts. This research can supply an initial exploration of pharmacy-based distribution of antiviral drugs for 
the studying construction of strategic national stockpile in some countries.
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1  Introduction

In the early twenty-first century, people have already suf-
fered several global epidemic influenzas [such as pandemic 
H1N1 in 2009 (Centers for Disease Control and Prevention 
2010) and H7N9 in 2013 (Centers for Disease Control 
and Prevention 2014)] with enormous life and property 
losses. The risk of a future pandemic influenza outbreak 
is expected to increase in the coming decades (US Agency 
for International Development 2016), resulting in health 
burdens to infected individuals, societal economic burdens 
to their families and the whole society. Once there is an 
influenza pandemic, public health officers will take both 
antiviral drugs and vaccines as the primary response strat-
egies to control influenza pandemics efficacious (Couch 
1999; Monto 2006; Bai et al. 2017; Du et al. 2015; Zhan-
wei and Yongjian 2015; Du and Bai 2018). However, the 
developing and delivering vaccines for diseases may need 
several months (Bregu et al. 2011), antiviral drugs are thus 
particularly critical and taken as the major pharmaceutical 
intervention in the early stage of the pandemic influenza 
outbreak.

In preparation for coming influenza pandemics, the US 
governments have maintained a large Strategic National 
Stockpile (SNS) of antiviral drugs as a major compo-
nent in their pandemic response plans (US Department 
of Health and Human Services 2005). To limit strain 
on hospitals and improve convenience, the commercial 
pharmacies have been taken as antiviral drug-dispensing 
partners in some state pandemic response plans [such as 
Virginia (Virginia Department of Health 2009) and Loui-
siana (Office of Public Health 2011)]. It is thus urgent to 
optimize the current response strategy for the dispensing 
of antiviral drugs. The goal of this paper is to explore an 
optimization method to assign a given amount of antiviral 
drugs to the chosen location of dispensing points (such as 

pharmacies) within a city, to match practical demand with 
supply (Fig. 1).

In the existing research of optimizing pharmacy-based 
response strategy, there are a number of researches (Canoyer 
1946; Brown 1992; Hernandez and Bennison 2000), study-
ing the social factors (such as traffic and consumption envi-
ronment) that a consumer might consider when choosing a 
pharmacy to buy medicines. The pharmacy site selection 
problem can be considered as the traditional location prob-
lem in theory of combinatorial optimization. However, the 
site location selection becomes increasingly complex once 
we consider it additionally from the social perspective. Spe-
cifically, with the existing pharmacies, an optimization prob-
lem is how to assign the limited dose of drug into different 
pharmacies in order to benefit the society best. In the related 
existing mathematical models, they are mostly data driven 
to help the government to choose pharmacies for antiviral 
drugs through 0–1 integer linear programming (Singh et al. 
2015). In their modeling, the single objective is to maximize 
the access of the target population to pharmacies. However, 
there are substantial inevitable but essential social scales 
needed to be considered:

•	 The access is investigated via the distance in many ret-
rospective studies (Singh et al. 2015). However, except 
the geographical condition, the access, denoted as the 
tendency of pharmacy visit by people, is additionally 
influenced by people’s willingness, depending on social 
factors [such as the pharmacy reputation (Tao and Liu 
2015)].

•	 The social unbalance for management areas should be 
considered (Singh et al. 2015). The small management 
areas should also be assigned, while the previous single-
objective modeling process cannot reflect the balance 
between the multiple optimization objectives (access and 
social unbalance).

•	 The spatial unbalance, as the pharmacy-to-pharmacy 
distance, should be also taken into consideration. Two 

Fig. 1   Drug distribution frame 
based on practical demand. 
Antiviral drugs can be accessed 
by most population, distributed 
on sparsely populated areas and 
pharmacies who are geographi-
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close pharmacies may be chosen at the same time. While 
in reality, the distribution of pharmacies should be in a 
sparse spatial network (edges with long pharmacy-to-
pharmacy distance) to supply more opportunities for 
people.

•	 The resource unbalance, as the quantitative analysis, is 
necessary, especially important in resource allocation 
during the outbreak of pandemics. The amounts of anti-
viral drugs assign to each chosen pharmacy should in a 
reasonable range.

To sum up, we model the above considerations in the 
network-based frame, taking pharmacies as nodes, edges 
weighted by nodes’ distance. The concept of group infers 
the cluster of nodes located in a same management area. In 
addition, to maximize the people’s access to the pharmacies, 
there are at least three other objectives needed to be consid-
ered: first is the social unbalance from the group perspective. 
Each target areas, even small, should be assigned to antiviral 
drugs. Second is the spatial unbalance from the edge per-
spective. The chosen pharmacies should not be too close to 
each other. The last is the resource unbalance from the node 
perspective. The volume of antiviral drug assigned to a phar-
macy should be in larger than a certain threshold, to avoid 
too many administrative works for the trivial assignment, 
and smaller than another threshold, to limit the unpractical 
huge amount of drugs assigned.

Thus to assign the optimized amount of antiviral drug 
for each pharmacy, we propose a network-based model 

by maximizing multiple objectives (access, social unbal-
ance, spatial unbalance, and resource unbalance). Here the 
access is based on a willingness-to-travel model to reflect 
people’s tendency to a pharmacy according to its distance 
and reputation. As for social unbalance, it is modeling 
with L12 norm to make even small areas have antiviral 
drugs supplied. Besides, to meet the spatial unbalance 
between any two pharmacies, the concept of network 
lasso (Hallac et al. 2015) is introduced here to constrain 
the choices of pharmacies. For the resource unbalance, 
we limit the volume range of antiviral drugs designed for 
a pharmacy. Taking the city of Shanghai in 2015 as an 
example, we use this model to optimize the commercial 
pharmacy distribution network, given a fixed amount of 
antiviral drugs. For example of five pharmacies (as plot-
ted in Fig. 2), the 1st and 2nd are in the blue district, and 
the other three are in the orange district. When we target 
the optimized group of pharmacies, the balance is stud-
ied in terms of meet multiple objectives (access, social 
unbalance and sparsely spatial distribution) by consider-
ing their popularity, distances and sparsity. This research 
can supply an initial exploration of pharmacy-based dis-
tribution of antiviral drugs for the studying construction 
of strategic national stockpile in China’s Twelfth 5-year 
plan (Development Center of Science and Technology of 
Chinese Pharmaceutical Association 2014), as well as the 
diverse applications in computer science (Li et al. 2018a; 
Liu et al. 2018a, b, 2016; Cui et al. 2016).

Fig. 2   Spatial map of districts 
and pharmacies in Shanghai. a 
From the group level, Shanghai 
is divided into different districts 
represented by colors. For 
example of five pharmacies, 
the 1st and 2nd are in the blue 
district, and the other three are 
in the orange district. When 
we target the optimized group 
of pharmacies, the balance is 
studied in terms of meet mul-
tiple objectives (access, social 
unbalance and sparsely spatial 
distribution) by considering 
their popularity, distances 
and sparsity. b From the node 
level, the sites of pharmacies 
considered here are shown with 
circles. (Color figure online)

(a) (b)
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2 � Methods

2.1 � Data

2.1.1 � Subway

To describe the population distribution of Shanghai, we 
use the travel smartcard dataset (collected by Shanghai 
Public Transportation Card Co. Ltd) in Shanghai, China 
during 30 days in April 2015. This dataset involves 313 
subway stations, 11 million individuals and 123 million 
events of trips. Once people travel through the subway sta-
tions by their smart card, when and where this event hap-
pens will be recorded automatically (Seasson Information 
Technology Co. Ltd 2015). With these records, we mainly 
consider the volume of check-in passengers for each sta-
tion to reveal the population distribution.

2.1.2 � Pharmacy

To get the spatial information of pharmacies in Shang-
hai, we use the API of Baidu Map to get their names and 
spatial positions (Baidu Inc. 2014). Specifically, there are 
around 5600 pharmacies, in which there are 2036 phar-
macies marked by 11 famous brands (which have more 
than 50 pharmacies in Shanghai). As for their ratings of 
popular, they can be found on the website of Dianping, one 
of China’s leading O2O platforms for urban and lifestyle 
services (Dianping 2016).

With this information of both network and individual 
nodes shown in Fig. 2, our aim is to find the optimized 
group of pharmacies to meet multiple objectives (access, 
social unbalance and sparsely spatial distribution).

2.2 � Willingness‑to‑travel model

We use the gravity model (Zipf 1946; Barthélemy 2011; 
Erlander and Stewart 1990) to estimate the effect of dis-
tances on individuals’ willingness to travel in Shanghai to 
get antiviral drugs from pharmacies. Besides, the influence 
of distances on people’s willingness, pharmacies’ own 
social profiles (such as reputation and scale) also show 
obvious effect (Tao and Liu 2015). Such the probability of 
people’s willingness to the ith pharmacy can be modeled 
by the following equation: p(i) =

∑
j pijSiRi Here pij is the 

effect of distances on the willingness by gravity model. Si 
denotes the scale of the ith pharmacy, as the number of 
drug pharmacys in the brand which the ith drug pharmacy 
belongs. Ri denotes the reputation of the ith drug phar-
macy, as the rating of popular by individuals.

2.3 � Optimization model

We mainly consider three items for the multi-objectiveness 
of access, social unbalance, spatial unbalance and resource 
unbalance.

1.	 The access is used to reflect people’s tendency to a phar-
macy according to its distance and popularity. For a 
pharmacy, the tendency is proportional to the number of 
people living around and the popularity (such as the 
scale and reputation) of this pharmacy. Specifically, let 
� be the access measure of the assigned volume of drug, 
denoted as xi , for the ith drug pharmacy. We set � with 
element �i =

∑
j popjpijSiRi . Here popj is the population 

for the jth station, Si is the scale of the ith drug pharmacy 
and Ri denotes the reputation of the ith pharmacy. Let 
pij =

1

r2
ij

 , where rij represents the distance between the jth 

station and the ith drug pharmacy.
2.	 As for the social unbalance, l12 norm is commonly used 

as the exclusive Lasso for multi-view feature selec-
tion (Bach et al. 2012), which is suitable for us to bal-
ance the resources in different management areas. Thus 
no area is assigned without resources. The only differ-
ence between areas is the dose of the drug distributed.

3.	 To meet the request of spatial unbalance as the sparsely 
spatial distribution, a network-lasso penalty operator 
D (Hallac et al. 2015) is introduced here, which is used 
to describe the relationships between two nodes. In our 
case, the closer two chosen pharmacies are, the larger 
the penalty tends to be.

4.	 The resource unbalance is modeled by constraining the 
volume range of antiviral drugs designed for a pharma-
cies. We limit xi in the range of [�, �i],

To sum up, with the above multi-objectiveness, we propose the 
following optimization model for the pharmacy-based distribu-
tion of antiviral drugs:

max
�

i

�ixi − �‖x‖12 − �D

s.t. �i =
∑

j popjpijSiRi

∑
i xi = Mmed

xi ∈ [�, �i]

‖x‖12 =
∑

w∈K

�∑
m∈w x

w
m

�2

D =
∑

i,k

1xi≤�
1xk≤�

dik
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Here, xi represents the volume of drug assignment for the 
ith drug pharmacy. D is the network-lasso penalty operator, 
constraining each pair of pharmacies. �i is the access influ-
ence and also the upper bound of xi . � infers the influence 
of social unbalance. � denotes the influence of spatial influ-
ence. ‖x‖12 denotes l12 norm of groups of drug pharmacies. 1∙ 
is the indicator function. 1xi denotes whether xi is larger than 
� drug pharmacy. xw

m
 denotes the volume of drug assignment 

for the mth station in the wth management area among the 
K management areas. dik means the distance between the ith 
drug pharmacy and the kth drug pharmacy. � is the lower 
bound of xi . Mmed denotes the total dose of drugs.

The above model can be considered as a constrained 
nonlinear multivariable function, which can use Hessian-
based (the second derivatives of the Lagrangian) method 
by a dense quasi-Newton approximation (Haelterman et al. 
2009). Besides, to show the social and spatial unbalances 
intuitively, we consider the following two rates to measure 
them respectively:

•	 Rate of spatial relations within 1 km, which denotes the 
ratio between the number of pharmacies pairs (whose 
spatial distance is less than 1 km) and the total number 
of pharmacies pairs.

•	 Coverage rate of districts, which means the ratio between 
the number of districts (who have at least one pharmacy 
assigned) and the total number of districts.
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Fig. 3   Density distribution of access for each pharmacy and distance 
between two pharmacies

0 1000 2000 3000
0

1

2
x 10

4 λ=0.01,µ=0.01

 

 

0 1000 2000 3000
0

1

2
x 10

4 λ=0.01,µ=10

0 1000 2000 3000
0

5

10
x 10

4 λ=0.01,µ=10000

 

 

0 1000 2000 3000
0

1

2

3
x 10

4 λ=10,µ=0.01

0 1000 2000 3000
0

1

2

3
x 10

4 λ=10,µ=10

0 1000 2000 3000
0

5

10
x 10

4 λ=10,µ=10000

0 1000 2000 3000
0

1

2
x 10

4 λ=10000,µ=0.01

0 1000 2000 3000
0

1

2
x 10

4 λ=10000,µ=10

0 1000 2000 3000
0

1

2
x 10

4 λ=10000,µ=10000

α  (willingness to travel)

x (dose of drug assigned)

Fig. 4   Dynamics of pharmacies’ access with varying lambda ( � ) and 
mu ( � ) from 0.01 to 10,000. When lambda and mu are small in sub-
graph a, many pharmacies are chosen for drug assignment. As for the 
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3 � Results

During early 2016, there are 2036 pharmacies in Shanghai 
from 11 famous in 15 administrative districts. To charac-
terize the properties of pharmacies’ network, we start by 
analyzing the density distribution of access and distance, 
shown in Fig. 3. To be specific, the density distribution of 
logarithmic access follows the Gamma distribution, while 
the logarithmic distance follows the Normal distribution. 
These distributions tell us that the pharmacies with high or 
low access are in the minority, the same with the distances.

Next, we begin to evaluate the optimization model for the 
pharmacy-based distribution of antiviral drugs. Assuming 
there are 105 dose of antiviral drugs for assignment, which is 
more than any single pharmacy’s access, but not enough for 
the full coverage of all pharmacies. We estimate the spatial 
network of pharmacies shown in Figs. 4 and 6 by varying the 
influence of social unbalance and spatial unbalance, given 
resource unbalance as a fixed threshold for the minimum of 

pharmacies’ drug for assignment. With increasing influence 
of social unbalance (represented by � ), decreasing number 
of pharmacies are assigned with drugs across different dis-
tricts, showing the social unbalance to avoid the unbalance 
assigned resources of across management areas. In contrast, 
with the increasing spatial influence (denoted by � ), the 
doses of drugs tend to be in only one pharmacy, which has 
the highest access influence. Comparing with the traditional 
single objective (where � and mu are all 0), the drug distribu-
tion of pharmacies is fixed, as shown in Figs. 5 and 6. Many 
pharmacies locate at the city center, and close to each other.

We additionally explore the relationship between the 
number of chosen pharmacies and the desirable objectives 
(access, social and spatial unbalances) achieved, shown in 
Table 1 and Fig. 7. The social and spatial unbalance are both 
increasing with the number of chosen pharmacies. While for 
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Fig. 5   Pharmacies’ antiviral drug distribution without considering 
social and spatial unbalances. The x-axis is indexed by the pharma-
cies. Comparing with � , the top 29 pharmacies with highest access 
are chosen
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Fig. 6   Spatial map of chosen pharmacies for varying � and � . Each blue point denotes a pharmacy chosen. The indexes of subgraph are corre-
sponding to the IDs in Table 1
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peak, the normalized spatial unbalance tends to show its influence
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the access, there is a peak. Too little or too many pharma-
cies are leading the access influence decreasing. Specifically, 
there are 29 pharmacies needed with high social unbalance 
(covering 81% districts) by the traditional single-objective 
method of access. In the contrast, only 12 pharmacies are 
needed with similar access ability but smaller social unbal-
ance (covering 75% districts). Or more pharmacies are 
assigned with covering 87% districts. As for the spatial 
unbalance, the rates of spatial relations within 1 km in the 
proposed optimization model are still improved in conditions 
of less or more pharmacies assigned. From this, we can see 
the trade off among social unbalance, spatial unbalance and 
the access to the dynamic number of pharmacies assigned.

4 � Discussion

Increasing governments take the pharmacies in their plans 
for the dispensing of antiviral drugs. Whether and how much 
this strategy can benefit the society is needed to study, espe-
cially for the constructing strategic national stockpile. In this 
paper, we study an optimization method to assign a given 
amount of antiviral drugs to pharmacies within a city. A 
network-based method is proposed by maximizing multiple 
objectives (access, social unbalance, spatial unbalance and 
resource unbalance). We can see how these objectives influ-
ence the number of pharmacies chosen. The improvements 
of social and spatial unbalance are in the cost of access.

Our studied results can help deepen the understanding 
of antiviral drug distribution in the network of pharmacies 
within cities by evaluating this interesting strategy in dif-
ferent perspectives. The methods used might be specific, 
but the questions raised can be valuable on their own and 

motivate research using other types of data (Lin et al. 2017a, 
b; He et al. 2017; Yuan et al. 2017; Li et al. 2018b, c; Cai 
et al. 2017; Shen et al. 2018; Jia et al. 2017; Liu et al. 2018c; 
Huang et al. 2018; Wang et al. 2018).
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