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Abstract
Geolocation is a powerful source of information through which user patterns can be extracted. User regions-of-interest, 
along with these patterns, can be used to recognize and imitate user behavior. In this work we develop a methodology for 
preprocess-ing location data in order to discover the most relevant places the user visits, and we propose a Probabilistic Finite 
Automaton structure as mobility model. We analyse both location prediction and user identification tasks. Our model is 
assessed with two evaluation metrics regarding its predictive accuracy and user identification accuracy, and compared 
against other models.

Keywords Geolocation · User identification · Location Prediction · Probabilistic finite automaton · Learning from 
observation

1  Introduction

Nowadays geolocation has become a quite common task 
performed by a variety of electronic devices, such as smart-
phones, tablet computers, vehicles or wearable devices. 
Geolocation consists in the estimation of the geographic 
location of an object (Roxin et al. 2007). To this end, loca-
tion inference can generate different position data, like 
geographic coordinates, time stamp, street address, shop 
names, postal code, country, etc. Later, this information is 
used to register route tracks, traffic logs, running trails, travel 
records or geotagged photos. In this domain, the size of these 
recordings can grow fast as geolocation is made anytime 
anywhere. As a result, it is a valuable source of trends, statis-
tics, patterns of movement, fitness, traffic and travel behav-
iors, but its large dimensions must be handled in some way 
to harness its potential benefits. The field of Trajectory Data 
Mining (Feng and Zhu 2016) gathers the specific methods 
to exploit position data. Using those methods, geolocation 
offers a wide range of interesting applications in ambient 

intelligence environments (Cook et al. 2009), like recom-
mender systems, location prediction, activity recognition 
or individual profiling. Even though these techniques can 
be applied to other types of individuals (e.g., animals) and 
objects, in this work we focus on human user geolocation.

Within the analysis of this phenomenon, the extraction of 
user mobility behavior (known in broader terms as behavior 
recognition and behavior cloning (Argall et al. 2009)) poses 
a great challenge. As a user moves through its environment, a 
complex structure of habits and preferences arises over time. 
This process is not completely deterministic nor completely 
random, but involves the appearance of patterns. Therefore, 
appropriate statistical models can be used to capture the 
behavior represented in those patterns. After that, the behav-
ior learned is useful not only to predict location but also to 
produce artificially generated data similar to the user data. 
We study both tasks in this work, since both could be seen 
as forms of behavior imitation. The second task allows us 
to accomplish a more advanced goal: the user identification 
from geolocation records, since the comparison between gen-
erated and real data serves to recognize each user’s behavior. 
In ubiquitous environments, user identification allows tech-
nology to adapt to the user automatically, without an explicit 
interaction, in order to improve the user experience.

In this paper, we propose a methodology to capture indi-
vidual behavior by preprocessing trajectories and building 
probabilistic models. Our approach involves detecting vis-
ited points, identifying relevant locations and finally con-
structing a stochastic model that represents the behavior of 
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the user. The preprocessing steps enable a reduction and 
discretization of the trajectory data to facilitate the model 
learning. The stochastic model captures the probability dis-
tribution of movement between locations over time (i.e., the 
model considers the evolution of this behavior), admitting, 
as well, additional temporal information. Then, we use the 
trained models to generate new trajectories, and next we 
perform user identification by comparing them with real 
traces. This way, by comparing the imitated traces to the 
original trajectories, we determine if the model trained is 
good enough to describe the user’s daily routines. For this 
comparison, we propose an evaluation metric more appropri-
ate to behavior recognition and user identification goals. In 
the experimentation phase, we employ an open repository 
of geolocated routes published by Microsoft Research Asia 
(Zheng et al. 2009).

The paper is structured as follows. Section 2 introduces 
some definitions we use throughout this document. Section 3 
highlights the contributions in Trajectory Data Mining and 
Behavior Inference that are relevant to our development. 
Section 4 describes our methodology for the formulated 
problem. In Sect. 5 we report on the results obtained by 
conducting experiments on a real dataset. Finally, in Sect. 6 
we present some concluding remarks and further work ideas.

2 � Theoretical background

In this article, we use several concepts from geolocation 
and mobility. For the reader’s convenience, we include here 
those definitions that are essential for a better comprehen-
sion of our work.

Definition 1  Location (also geographical point) is a tuple of 
coordinates p = (latitude, longitude) that identifies a point on 
the Earth’s surface unambiguously according to the Global 
Positioning System (GPS).

Definition 2  Trajectory is a sequence of tuples 
� = [(p1, ts1), ..., (pn, tsn)] ordered chronologically by the
time stamp tsi , where each pi is a location. For simplicity, we
will refer to each component of a trajectory point as �i.lat , 
�i.lon and �i.ts.

Definition 3 Semantic trajectory is an enhanced trajec-
tory � such that each component has assigned a discrete 
label or class that we denominate �i.C . The labels could be 
street addresses, road names, Points-of-Interest or POI (use-
ful locations for one or more users), Regions-of-Interest or 
ROI (regions that may contain multiple POI) or other marks 
with semantic relevance (for example, user-specific spaces 
like “home” and “workplace”).

Definition 4  Stay point (also “stationary point”, “stay” or 
“stop”) is a 4-tuple s = (lat, lon, tsarv, tslev) that represents 
a location (lat, lon) where the user stayed within a distance 
radius d < distLim , and for a time lapse t > timeLim between 
the arrival and leaving time stamps, tsarv and tslev , respec-
tively. The thresholds distLim and timeLim depend on the 
particular application and data.

Definition 5  Location routine is a sequence of locations 
(p1,… , pk) of size k that appears with relevant frequency 
among the set of user’s trajectories and that is repeated on a 
daily basis (contrary to a weekly pattern, monthly pattern, 
etc.).

Definition 6  We use mobility model to refer to a proba-
bilistic model that estimates the probability distribution of 
the user’s locations and it is capable of imitating the user’s 
behavior (i.e., the model is generative (Bishop and Lasserre 
2007), so it can reproduce the user’s daily movements).

3 � Related work

Behavior inference is a problem with multiple applications 
from different fields, like robotics (Billard et al. 2008), 
autonomous driving (Pomerleau 1989) and computer games 
(Ontañón et al. 2008). For this reason, it has been studied 
within several domains, with different terminology, as stated 
in (Argall et al. 2009) and (Ontañón et al. 2014). Learning 
from Observation (LfO), Learning from Demonstration, Pro-
gramming by Demonstration, Imitation learning, Behavioral 
Cloning (BC) or Behavioral Recognition (BR) are just a few 
terms that have been used to refer to the problem of behavior 
inference: extraction and imitation of an individual behav-
ior from observational traces. This approach differs from 
the Reinforcement Learning strategy, where the behavior 
is learned through reward optimization instead of directly 
cloning the patterns in user data. Within the LfO paradigm, 
the behavior has been modeled through Hidden Markov 
Models in a real-time strategy video game (Dereszynski 
et al. 2011), Dynamic Bayesian Networks and Probabilistic 
Finite Automata to replicate vacuum cleaner robot strate-
gies (Ontañón et al. 2014; Tîrnăucă et al. 2016) or through 
Neural Networks to imitate a set of tasks (Duan et al. 2017).

In the geolocation context, there are many studies that 
aim at understanding mobility patterns and mobility behav-
ior. The authors of (González et al. 2008) show that human 
mobility follows reproducible patterns with regularity; 
their study is based on the analysis of passive data from 
Call Detail Records (CDR). Also, (Lu et al. 2013) find that 
it is possible to obtain very high, but limited, accuracy in 
predicting location with CDR data, and they accomplish this 
using Markov models.
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In the field of Communication Systems, research about 
mobility models (see (Munjal et  al. 2012) for a survey) 
attempts to capture human movement in order to build adap-
tive mobile networks (e.g., Opportunistic Networks (Batabyal 
and Bhaumik 2015)). These are classified mainly as synthetic 
(mathematical models that do not extract data patterns) or 
trace-based (models constructed from real movement traces). 
All of these models are designed to generate artificial traces, 
trying to simulate human-like behavior of users as a commu-
nity. However, the problem we address in this paper requires 
capturing the particularities of the users behavior in order to be 
able to later identify each of them from their individual traces.

In pattern recognition from spatio-temporal traces (with 
GPS and WiFi sources), there are several different approaches 
for data preprocessing as well as user modeling. One approach 
uses association rule learning methods to extract patterns and 
routines (Giannotti et al. 2007; Amirat et al. 2018), represent-
ing the user as a set of rules instead of a probabilistic model. 
(Gambs et al. 2012) use adapted Markov Chains to predict the 
next location. On the same problem, (Do et al. 2015) apply a 
probabilistic kernel method to estimate the probability distri-
bution of future location depending on temporal and spatial 
information. (Liu et al. 2016) propose a Recurrent Neural 
Network designed specifically for spatio-temporal data and 
location prediction. (Lv et al. 2017) build two Hidden Markov 
Models to predict current location at a specific time, and the 
next destination for a specific location, respectively.

To the best of our knowledge, there are no current studies 
of mobility from an LfO perspective where the user model 
aims to replicate the learned behavior from the observations. 
In this research, we work with continuous spatio-temporal 
data and, after a preprocessing phase, we train for each user 
a stochastic model (a Probabilistic Finite Automaton) to 
replicate the user’s mobility behavior. We test our mobility 
model on location prediction, as well as on user identifica-
tion through the comparison of replicated and real traces.

4 � Methodology

Our objective is to model user mobility behavior from user 
location history. To achieve this goal, we first transform the 
sequence of trajectories into semantic trajectories, out of 

regions-of-interest discovery and time segmentation. After 
that, we build our mobility model and assess it with two 
different evaluation metrics, one of them being the usual for 
location prediction, and the other one being more appropri-
ate for the goal of user identification.

4.1 � Detection of stay points

The first step in our methodology is designed to remove, for 
each trajectory � , transit points (those places covered by the 
user while moving between locations) and points corrupted 
with noise (such as GPS errors), therefore keeping only vis-
ited places for the remaining of the preprocessing phase. This 
gives us sequences of points when the user is at home, shop-
ping at the mall, in the workplace, etc. Thus, we reduce data 
size significantly without losing relevant information of user 
routines. We address the task of stay points detection with 
an algorithm initially introduced in (Li et al. 2008) that has 
a certain relevance in Trajectory Data Mining literature (Lin 
and Hsu 2014; Zheng 2015; Jiang et al. 2017). The input of 
the algorithm consists in a trajectory and two parameters: 
a distance threshold distLim and a time elapsed threshold 
timeLim . This procedure groups every sequence of one or 
more points within distLim distance with respect to the first 
of them and as long as the difference between the first point 
following this sequence and the initial one is greater than 
timeLim , and generates a stay point as the centroid of the 
group. The two thresholds will be set depending on the appli-
cation. So, whenever the user moves around the same area 
enough time, this will be marked as stay point. Our adapta-
tion of this method is presented in Fig. 1. We have decided 
to keep the number of points in each group as a measure of 
density for the stay point. Another difference with respect to 
the original algorithm is that we do not include in the stay 
group the point that exceeds the thresholds in order to avoid 
possible outliers introducing high noise to the position of the 
centroid. Also, we allow single points in data to be consid-
ered as a potential stay point. This algorithm has a worst-case 
time complexity of (m2) and a space complexity of (m) , 
where m is the number of points in the input trajectory.

The distance function in the Stay Points Detection Algo-
rithm is calculated using the haversine formula:

where (lat1, lon1) and (lat2, lon2) are the coordinates in radi-
ans of two geographical points (latitudes range from −�∕2 to 
�∕2 and longitudes range from −� to � ) and r is the Earth’s
radius (6371 for kilometers). The haversine formula was
introduced in (Rios et al. 1797).

r ∗ 2 ∗ arcsin

(√
sin2

lat2 − lat1

2
+ cos (lat1) ∗ cos (lat2) ∗ sin2

lon2 − lon1

2

)

which our mobility model extracts location routines. The 
semantic trajectories will allow us to process the behav-
ior with discretized locations in a meaningful way. This 
transformation includes the steps of stay point detection, 
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Instead of applying this method to the whole trajectory 
data from a user directly, or separately to the trajectory of 
each calendar day in data, we use subtrajectories without too 
much uncertainty for input, i.e., sequences with no lapses 
bigger than maxElapse without information. This way we 
avoid making assumptions over long periods of inactivity. 
Again, the maxElapse parameter has to be set such as to 
serve the needs of a specific application.

Thus, as the final step of the stay point detection phase, 
we replace every subtrajectory � = [(p1, ts1),… , (pm, tsm)] 
by a sequence sp = [s1,… , sn] with each stay point as 
si = (lat, lon, tsarv, tslev, density).

4.2 � Discovery of regions of interest

The stay points extracted could be stops at the user’s home, 
workplace, etc. However, that high-level information is not 
directly observable from the dataset, as our observations only 
include the latitude, longitude and time stamps of the stay 
points. We wish to categorize the continuous spatial features 
into classes (or, equivalently, assign them labels) in order to 
make the study of the user’s location patterns feasible. We can 
assume that multiple entries of stay points will occur at the 
user’s relevant places. Thus, we generate the classes in terms of 
data distribution and density. Therefore, we apply the density-
based clustering algorithm DBSCAN (Density Based Spatial 
Clustering of Applications with Noise), introduced by (Ester 
et al. 1996), to the spatial features (latitude and longitude) to 
detect dense groups of stay points as Regions-of-Interest (ROI) 

for the user. This algorithm assigns stay points very close in 
space to the same cluster. To run the DBSCAN algorithm, it 
is required to set at least one parameter: the maximum dis-
tance radius between points of the same cluster. Optionally, the 
minimum number of points of a cluster can be specified. The 
values of these parameters depend on the data and the specific 
application. The stay points that cannot be grouped in a cluster 
are considered outliers (we understand that these points are 
just occasional stops). As a result, with this method, we group 
visits to the same place at different times with the same label 
of ROI, and ignore isolated stay points.

The next step is intended to filter irrelevant locations, given 
that the DBSCAN algorithm retrieves even places visited just a 
few times (for example, locations from a vacation trip), which 
cannot possibly lead to valuable patterns in the user’s daily 
routine. For this, we compute the number of different days and 
the total amount of points for each cluster (we obtain this num-
ber by adding together the densities of the stay points in the 
cluster), and we only keep those clusters that contain enough 
days and points within.

As a result of this step, the set SP =
⋃

j sp
j of all stay points

of a given user will be partitioned into k clusters C1,… ,Ck . 
Moreover, we denote by ci the centroid of cluster Ci and by ri 
its radius, with i in {1,… , k}.

ci =

�∑
s∈Ci

s.lat

�Ci�
,

∑
s∈Ci

s.lon

�Ci�

�

ri =max
s∈Ci

distance(ci, (s.lat, s.lon))

Fig. 1   Stay points detection 
algorithm
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Lastly, to be able to compare different users’ behaviors, it 
is advisable to unify the regions of interest of all users in 
a single set without duplicated regions. This way, a region 
label Ci will be the same region of interest for every user. For 
that purpose, the centroids of all detected regions of interest 
are grouped together with DBSCAN clustering to establish 
the full label set  = {C1,… ,CK}.

4.3 � Segmentation by time intervals

Once again, we want to discretize continuous values (in 
this case, time values) by assigning them different labels. 
Thus, we group initial time stamps with small differences 
and facilitate the generation of a mobility model according 
to daily routines. We introduced in (Salomón et al. 2017) 
three different strategies to address segmentation based 
on the time interval of the day: by fixed size values (e.g., 
each interval of one-hour size), by means of data distribu-
tion (e.g., computing percentiles to obtain intervals with an 
equally distributed number of records) or by means of data 
density (e.g., using a clustering algorithm). In Example 1 we 
present the three strategies applied to the same time stamps 
set.

Example 1  Let us assume that we want to have three time 
intervals and that the time stamps recorded for one user in 
one particular day are 10:00, 11:00, 15:00, 21:00, 22:00 and 
23:00. Then, the three different approaches mentioned above 
will result in three distinct intervals (see Fig. 2).

In this work we employ a fixed equally sized segmen-
tation, as we wish to finally accomplish user identifica-
tion through the mobility models and this approach will 
give us the same intervals for all the users in the dataset. 
Thus, we set  = [I1,… , IH] to be the partition of the 
[0 : 00 : 00, 23 : 59 : 59] range into H intervals of equal 
length. We assign the initial and final time stamps of each 
stay point to the corresponding intervals that we refer to as 
Iarv and Ilev ( si.tsarv ∈ Iarv and si.tslev ∈ Ilev ). Therefore, we 
can work on the same trajectory data with variable granular-
ity, depending on the chosen size of the intervals.

4.4 � Mobility model

Once the preprocessing steps are carried out, we can extract 
user behavior from the obtained semantic trajectories. For 
this task, we train a Probabilistic Finite Automaton (PFA), 
which is a 5-tuple  = (�,Q,�, �, �) where � is a finite set 
of symbols, Q is the set of states, � ∶ Q × � × Q → [0, 1] is 
the transition probability function (i.e., �(q, s, q�) will give 
the emission probability of the symbol s in the transition 
between the states q, q′ ), � ∶ Q → [0, 1] is the initial state 
probability function and � ∶ Q → [0, 1] is the final state 
probability function.

To build a PFA that simulates a user’s mobility behavior, 
we define Q to be the set  of detected regions-of-interest, 
� to be the time intervals  derived from time segmentation,
and �, �, � to be different probability distributions over the
regions: the transition distribution between each pair of
regions, the distribution of initial regions on each daily tra-
jectory, and the distribution of final regions on each daily
trajectory, respectively. In PFA training we will have to
determine those distributions from the sequences of stay
points recorded each day by the respective user. More pre-
cisely, let us assume that after the preprocessing phase, a
trajectory of a given user on day j is mapped into the follow-
ing sequence of stay points: {sj

1
, s

j

2
,… , s

j

kj
} . We build the 

trace Tj of this user on day j by keeping only partial informa-
tion: [(Ij

1
,C

j

1
),… , (I

j

kj
,C

j

kj
)] , where Ij

i
 is the time interval to 

which sj
i
.tslev belongs, and Cj

i
 is the cluster to which sj

i
 

belongs. We thus create sequences of observations T1,… , TL 
as learning traces for the L different days in data.

Next, we compute #(C, I,C�) , the number of occurrences 
of transitions between regions C and C′ at time interval I, 
as follows.

With the previous definition, we compute transition distri-
bution �(C, I,C�) by means of the Maximum Likelihood 

#(C, I,C�) = |{(j, i)∕Ij
i

= I,C
j

i
= C,C

j

i+1

= C�, 1 ≤ j ≤ L, 1 ≤ i ≤ kj − 1}|

Fig. 2   Three strategies for time 
segmentation

(a) Fixed equally sized intervals

10 11 15 21 22 23

(b) Data distribution intervals

10 11 15 21 22 23

(c) Data density intervals

10 11 15 21 22 23
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Estimation (MLE). We use Laplace smoothing in this dis-
tribution to avoid zero probability values.

Thus, �(C, I,C�) represents the probability of moving to the 
next location given the current location and time interval.
Also, 

∑
C�∈

∑
I∈ �(C, I,C

�) equals one for any fixed C (i.e.,
the probability of going anywhere anytime adds up to one 
for any given origin).

The initial and final state distribution are computed, as 
well, based on the MLE principle.

Note that for H = 1 (only one time interval), the PFA is 
equivalent to a first-order Markov chain.

In Example 2 we show how a PFA describing a user’s 
mobility model is built from semantic trajectories.

Example 2  Assume that we have the following data from 
three consecutive days of a certain user.

– Day 1: [(I1,C1), (I1,C2), (I2,C3), (I3,C1)]

– Day 2: [(I1,C1), (I2,C3), (I3,C1), (I3,C1)]

– Day 3: [(I1,C1), (I2,C2), (I3,C3)]

We can observe three different regions of interest ( C1,C2 and 
C3 ) and three time intervals ( I1 , I2 and I3 ), with probability 
values given by � , in this case calculated without smooth-
ing to make the example easier to follow (see Table 1 and 
Fig . 3).

For instance, the transition C2 → C3 appears within the 
intervals I1 and I2 with probability 1/2 and it never appears 
in the I3 interval. Although initial states are not indicated, the 
regions where the user begins the trajectories would be given 
by the probability distribution �(Ci) . For the final states, 
�(Ci) distribution would be used.

�(C, I,C�) =
#(C, I,C�) + �

∑
I�∈

∑
C��∈ (#(C, I

�,C��) + �)

=
#(C, I,C�) + �

�KH +
∑

I�∈

∑
C��∈ #(C, I

�,C��)

�(C) =

|||{j ∈ {1,… , L}∕C
j

i
= C}

|||
L

�(C) =

|||{j ∈ {1,… , L}∕C
j

kj
= C}

|||
L

4.5 � Model evaluation

We evaluated the trained mobility model with respect to two 
different tasks: prediction of the next user location and imi-
tation of user’s behavior. The first task is a standard evalu-
ation method for statistical models, where the performance 
is measured through the accuracy of the model and the error 
made. The second one is more usual within the LfO field, 
the goal being to measure the similarity between artificially 
generated data and real user traces.

For predictive accuracy, the model should guess the next 
location from the available set of regions of interest. The 
input features for prediction are represented by the current 
time interval and current region. The prediction is made for 
each real stay point in the testing set. Finally, accuracy is 
computed for each trajectory as acc = # hits

# points
 , and then a 

user average accuracy (evaluated considering the total num-
ber of available trajectories for that user) is used to deter-
mine the average accuracy for the model.

While predictive accuracy is a rather usual metric for clas-
sification problems, we observe that it is not the ideal measure 
to assess how well the model can reproduce the user mobil-
ity behavior. We can assume user location to be a stochastic 
phenomenon, as user movements are not deterministic or 
too complex to be seen as deterministic. For example, if we 

� =
[
3

3
, 0, 0

]
, � =

[
2

3
, 0,

1

3

]

Table 1   The values of the 
probability distribution function 
�

I
1

C
1

C
2

C
3

I
2

C
1

C
2

C
3

I
3

C
1

C
2

C
3

C
1

0 2 1 C
1

0 0 0 C
1

1 0 0
C
2

0 0 1 C
2

0 0 1 C
2

0 0 0
C
3

0 0 0 C
3

2 0 0 C
3

0 0 0

C1

C2

C3I3 : 1/4

I1 : 2/4

I1 : 1/4

I1 : 1/2
I2 : 1/2

I2 : 2/2

Fig. 3   Example of a PFA mobility model with time intervals 
{I

1
, I

2
, I

3
} and regions {C

1
,C

2
,C

3
}
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consider the stay points after leaving a very frequent region 
like the user’s home, the next location may be different even in 
the same time interval. But in this scenario, the location with 
highest probability will always be the same, and by using pre-
dictive accuracy as evaluation metric we implicitly evaluate a 
stochastic process from a deterministic perspective.

Therefore, we believe that comparing real data with arti-
ficially generated data represents a more appropriate test to 
evaluate a mobility model. Thus, for this second task, the 
model will generate a new trace for each original daily tra-
jectory through the sampling of its estimated probability 
distribution. Just like in the earlier case, predicting the next 
location will be done knowing the current time interval and 
region of interest. The distance used to measure how much 
the generated traces depart from the real data is a Monte Carlo 
approximation of the cross entropy between probability dis-
tributions, also known as Vapnik’s risk (Tîrnăucă et al. 2016). 
This metric estimates empirically the divergence between the 
original data distribution and the one learned by the model 
in the absence of full knowledge about the exact probability 
distribution behind the user’s behavior. When the data gener-
ated by our model is more similar to the real one, the com-
puted Monte Carlo distance will be smaller. Ideally, the model 
learned from a given user will generate data at minimal dis-
tance to the user’s training data when compared with distances 
with respect to other user’s data. This way, we can identify, 
for each trained model, the most similar user, and measure 
the success at recognizing the correct one. The Monte Carlo 
distance is calculated with the following formula:

Here, T = [o1,… , on] and T � = [o�
1
,… , o�

m
] are two traces to 

be compared, with observations for each trace oi = (Ii,Ci) 
and o�

j
= (I�

j
,C�

j
) , Ii, I�j ∈  , Ci,C

�
j
∈  . �{o�

j
} is the indicator 

function of the tuple o′
j
 . If we apply Laplace smoothing, the 

Monte Carlo distance becomes:

5 � Results

We apply the proposed methodology to the GeoLife GPS tra-
jectory dataset (Zheng et al. 2009). “GeoLife” is an open data 
repository from a location-based social network, collected by 
the Urban computing group of Microsoft Research Asia. This 
dataset provides 18670 trajectories from 182 different users 
over five years, with a total of over 24 million points. Data 
is distributed mainly around China and most of the records 

dist(T , T �) = −
1

n

n∑

i=1

log

[
1

m

m∑

j=1

�{o�
j
}(oi)

]

dist(T , T �) = −
1

n

n∑
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are located in Beijing, but there are also trajectories located 
in Europe and USA. It contains multiple kinds of activities 
like life routines, shopping, traveling and sports. The data-
set includes the features of latitude and longitude (in decimal 
degrees), altitude (in feet) and date-time values (UTC).

In the next subsections we describe the parameter selec-
tion for our methodology, some remarks on the preprocess-
ing results, and the evaluation of the mobility model with 
both predictive accuracy and Monte Carlo distance. The PFA 
mobility model is assessed against three other benchmark 
models for comparison purposes: a random choice of the 
user’s regions (referred to as RND), the most frequent region 
choice (referred to as MODE) and a first-order Markov chain 
model (referred to as MC) as one of the most used state-of-
the-art models (Lu et al. 2013; Jahromi et al. 2016).

5.1 � Preprocessing and parameter selection

Since the altitude sometimes presents high levels of noise, 
we discard it and keep the latitude, longitude and time stamp 
variables. We also remove instances with missing data (if 
any) and points where one of the coordinates has an inva-
lid value ( −180 ≤ longitude ≤ 180 , −90 ≤ latitude ≤ 90 ). 
Finally, we convert the time value in the date field to use the 
time zone from Beijing (UTC+8), since this is the place that 
most of the data comes from.

Choosing the right values for all the parameters involved 
is by far not a trivial task. For the Stay Points Detection 
algorithm, we have experimented with different thresholds 
(some used in the literature, others chosen by us), and finally 
fixed distLim to 200 m and timeLim to 10 min (these values 
were suggested in (Jiang et al. 2017)), which avoid capturing 
false stay points (e.g., when waiting at traffic lights), while 
keeping a reasonable amount of interesting regions. The data 
is split by a maxElapse value of 6 h (which means that if we 
do not have data for more than 6 h, the algorithm continues 
with the next subsequence). In identification and unification 
of regions-of-interest, we choose experimentally a maximum 
radius of 50 m for DBSCAN, since larger values tend to gen-
erate clusters that are too wide. Given that we want to ignore 
irrelevant regions, we also set five (because most countries 
have a five day workweek) as the minimum number of points 
to form a cluster, as afterwards we use a minimum num-
ber of five days to consider relevant regions (and a cluster 
with less than five points cannot possibly have enough dif-
ferent days). For this dataset, we do not use a threshold for 
the minimal amount of points in each cluster because some 
users have very few data. In time segmentation, we choose 
to have eight intervals ( H = 8 ), as we consider this number 
of intervals to provide enough detail capturing user routines. 
Higher number of intervals would require much more data 
in order to avoid having mostly “close-to-zero” probability 
distribution values, and a smaller number may oversight the 
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user’s movement habits. Finally, we keep those users with 
enough data (i.e., at least three different regions-of-interest 
and ten different days).

As one can see from Table 2, there is a high heterogene-
ity in the data. Initially, there are users with very few days 
(the minimum being one) or with more than three years of 
data (maximum is 1251 days). Also, the number of initial 
points varies between 17 and more than two millions. After 
the preprocessing phase, the resulting dataset is consider-
ably reduced, the maximum number of stay points for a user 
amounting to almost 2500 and the number of classes not 
exceeding 30 per user.

5.2 � Model analysis

The evaluation of predictive accuracy of the next location 
for all the compared models give us the results shown in 
Fig. 4.

Here, we present the mean accuracy for all users of each 
model. We can see that, while MODE already significantly 
improves RND accuracy, the best results are obtained from 
the Markov model and the PFA model. The relatively high 
accuracy obtained using MODE is due to the fact that the 
most common region (as could be the user’s home or 
workplace) appears very frequently in most of the users 
of the dataset. Between MC and PFA models we see that 
the Markov model reaches a higher mean accuracy, but 
both get very similar results with a significant variance in 
the accuracy. We find by inspecting the data that the reason 
for this is user and data heterogeneity. While the MC and 
the MODE models work better in the case of more regu-
lar users, the PFA seems to have higher predictive ability 
for more complex users. This is shown in Table 3, where 
we present six users with relevant accuracy differences 
between MC and PFA, and with the best three accuracy 
results for each model.

For the user identification evaluation, we first compute 
the Monte Carlo distances between the user’ real traces 
and the data generated by each model. In Fig. 5 we observe 
the mean distances distributions. In this case, PFA and MC 
give better and almost identical distance results.

In Fig. 6 we can see the results obtained when perform-
ing user identification.

The diagonal of the distance matrix between the user 
(on the abscissa axis) and the trained model (on the ordi-
nate axis) represents correct user identification. The iden-
tification outcomes of the two models are very similar. 
Note that the distance matrix is nearly-symmetric, which 
means that if the artificially generated trace from the 
model trained using data from user k is similar to the trace 
of user h, then the converse also holds (i.e., the artificially 
generated trace from the model trained using data from 
user h is similar to the trace of user k).

Table 2   Summary of the preprocessing results

Min Max Mean Median

Number of available days (L) 1 1251 61.275 21
Number of initial points (M) 17 2156994 136686.7 35182
Mean sampling period (secs) 1.128 547.348 65.239 14.623
Number of stay points (N) 0 2494 186.3 49
Number of clusters (k) 0 30 2.49 0
Compression ratio N/M 0.0 0.0678 0.00692 0.00163
Compression ratio k/N 0.0 0.0625 0.00795 0.0

Fig. 4   Accuracy of each model (from left to right: PFA, MC, RND 
and MODE) on the prediction of the next location

Table 3   Example users with 
significant accuracy differences 
between MC and PFA and best 
accuracy scores

Example users with significant accuracy differences between MC and PFA (maximum score between the 
two models in bold)

User L M N k MODE MC PFA

u
3

237 485226 1348 21 0.565 0.570 0.586
u
5

62 109046 247 4 0.805 0.802 0.673
u
35

69 312042 412 9 0.295 0.580 0.715
u
41

138 1057043 910 12 0.745 0.746 0.709
u
44

52 76846 187 3 0.709 0.713 0.782
u
71

61 123850 142 3 0.778 0.796 0.668
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In Table 4 we present the identification results for each 
model according to the identified and misidentified users.

6 � Conclusions and future work

Geolocation technology in our daily lives is a valuable 
source of information on our routines and life style pref-
erences. Nevertheless, these records are quite sensitive to 
noise and tend to reach huge dimensions. In this work, we 
present a methodology to preprocess this type of data in 
order to infer hidden and useful information such as relevant 
regions-of-interest. From our automatic data transformation, 

we build a mobility model able to predict the user’s next 
location and to generate new location traces by means of the 
estimated probability distribution given by a Probabilistic 
Finite Automaton. Besides standard predictive accuracy, we 
propose another evaluation metric using an approximation 
of the cross entropy between user data distribution and the 
artificially generated data from the mobility model. This 
alternative metric is more useful for performing user iden-
tification based on the similarity between users and models. 
We compared our model with a first-order Markov model, 
observing many similarities in user identification accuracy 
(recall that the Markov model is equivalent to a PFA trained 
with a unique time interval), while the PFA turned out to be 
more precise whenever the user’s routines were dependent 
on the specific time interval. For ubiquitous environments, 
our methodology allows technology to recognize the user 
while unobtrusively tracking his moves.

As future work, we plan to include other latent variables 
in our methodology, such as the user activity or intentional-
ity. Additionally, we would like to perform a more in-depth 
analysis about the user heterogeneity and regularity.

Fig. 5   Cross entropy between each model (from left to right: PFA, 
MC and RND) and real data distribution

Fig. 6   Distance matrix for user identification with the MC model (left) and the PFA model (right). The color indicates the distance value 
(brighter means lower)

Table 4   User identification by each model

MC PFA

Correct identification 39 41
Wrong identification 5 3
Accuracy 0.89 0.93
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