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Abstract Finding a minimum is an essential part of mathematical models,
and it plays an important role in some optimization problems. Durr and Hoyer
proposed a quantum searching algorithm (DHA), with a certain probability of
success, to achieve quadratic speed than classical ones. In this paper, we pro-
pose an optimized quantum minimum searching algorithm with sure-success
probability, which utilizes Grover-Long searching to implement the optimal
exact searching, and the dynamic strategy to reduce the iterations of our algo-
rithm. Besides, we optimize the oracle circuit to reduce the number of gates by
the simplified rules. The performance evaluation including the theoretical suc-
cess rate and computational complexity shows that our algorithm has higher
accuracy and efficiency than DHA algorithm. Finally, a simulation experiment
based on Cirq is performed to verify its feasibility.

Keywords Quantum minimum searching algorithm · Sure-success proba-
bility · Grover-Long algorithm · Dynamic strategy · Circuit optimization ·
Cirq

1 Introduction

In recent years, the development of big data has made it urgent to deal
with more data with higher speed and better efficiency. Therefore, some re-
searchers have begun to try to use genetic algorithms(GA)[1], particle swarm
optimization(PSO)[2], and some other state-of-art searching algorithms[3,4,
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5] to improve search efficiency. Using the properties of quantum mechanics,
researchers have discovered some quantum algorithms to accelerate a series of
algorithms in quantum computers [6,7]. Besides, many researchers try to apply
quantum mechanics in other fields, such as quantum key agreement(QKA)[8,
9], quantum secret sharing (QSS)[10,11], blind quantum computation (BQC)[12,
13], quantum private query (QPQ) [14,15], and even quantum machine learn-
ing (QML)[16,17]. Shor’s factoring algorithm [18] is a well-known example
of a quantum algorithm outperforming the best known classical algorithm.
This algorithm can effectively find discrete logarithms and factor integers on
a quantum computer. In order to speed up the search problem, Grover pro-
posed a quantum search algorithm [19] in 1996. This algorithm can solve the
searching problem by using approximately

√
N operations rather than ap-

proximately N operations in classical algorithm. Later, the database search
algorithm gradually attracted wide attention of many scholars. In 2010, Diao
pointed out that only if the ratio of the solution M to the database size N is
1/4, a strict and accurate search can be performed [20]. Especially, the highest
failure rate is 50% when M/N = 1/2. To improve the efficiency of the Grover
algorithm, researchers have explored various generalized and modified ver-
sions of the Grover algorithm, including phase matching methods [21], for an
arbitrary initial amplitude distribution [22], recursion equations method [23],
Grover-Long algorithm [24,25] and fixed-point [26]. Among them, Grover-Long
algorithm has one adjustable phase that finds the target with zero failure rate
for any database and with exactly the same number of iterations as Grover
algorithm.

With the development of big data, finding a minimum or maximum is a
significant issue in many fields. Classically, approximately N operations are
required for searching the maximum or minimum problems. But its quantum
counterpart proposed by Durr and Hoyer [27] achieves quadratic speedup,
which was based on the quantum exponential searching algorithm [28,29,
30,31]. When the number of solutions is unknown, the quantum exponen-
tial searching algorithm reduces its failure rate at the expense of repeatedly
performing Grover’s algorithm with different number of iterations.However,
Grover algorithm is not a sure-success algorithm. Besides, the operation of
marking state in the repetition approach also takes time. To solve these prob-
lems, we propose an optimized quantumminimum searching algorithm (OQMSA).
The main contributions are as follows:

1. We utilize Grover-Long searching to implement the optimal exact search-
ing, and then propose a sure-success quantum minimum searching algorithm.

2. In order to improve the efficiency of our algorithm, a dynamic strategy
is proposed to reduce the iterations. The ratio of the solutions to the size of
dataset is different, then we use different minimum searching methods.

3. In terms of quantum circuit implementation, we propose two simplified
rules for the oracle operation, thereby reducing the number of quantum gates.

The remainder of this paper is organized as follows. In Section 2, we review
DHA algorithm. In Section 3, we present OQMSA based on Grover-Long algo-
rithm and the general quantum circuits of key steps. In Section 4, we analyze
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the success rate and complexity of OQMSA. In Section 5, an experiment based
on Cirq framework to solve a specific problem is presented, which shows that
OQMSA is indeed more efficient. In Section 6, we draw a conclusion and look
forward to its future applications.

2 Review of DHA Algorithm

DHA algorithm [27] can solve the problem of finding the minimum of un-
sorted database. It aims to find the index of a smaller item than the value
determined by a particular threshold index. Then the result is chosen as the
new threshold. This process repeats for times to increase the probability of
finding the index of the minimum. If there are t ≥ 1 marked table entries, the
quantum exponential searching algorithm will return one of them with equal
probability after an expected number of O(

√
N/t) iterations. If no entry is

marked, it will run forever. The steps of DHA algorithm are as follows:

Step 1: Choose threshold index 0 ≤ y ≤ N − 1 uniformly at random.

Step 2: Repeat the following and interrupt it when the total running time is
more than 22.5

√
N + 1.4lg2N .

(a) Prepare the initial state
∑

j
1√
N
|j⟩ |y⟩. Mark every item j when D[j] <

D[y] .
(b) Apply the quantum exponential searching algorithm on the initial state.
(c) Measure the first register: output y′ if D[y′] < D[y] , then set threshold

index y to y′ .

Step 3: Return the measure value y.
DHA algorithm provides a simple quantum algorithm which solves the

problem using O
√
N probes. The main subroutine is the quantum exponential

searching algorithm, which is a generalization of Grover algorithm. However,
we find the uncontrollability of deflection angle in origin Grover algorithm,
which result in the low success rate in DHA algroithm. In the meantime, the
construction of the oracle is so complicated that the complexity raises a lot. To
improve the success rate and decrease the complexity, we propose an optimized
quantum minimum searching algorithm.

3 An optimized quantum minimum searching algorithm with
sure-success probability

3.1 The proposed OQMSA algorithm

In order to conduct the exact searching i.e., obtain the minimum with a
success rate close to 1, we propose an optimized quantum minimum searching
algorithm. Suppose that D is an unsorted database with N items, D = {dj |0 ≤
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Algorithm 1 The Proposed OQMSA Algorithm for finding the minimum

Input: Database D = {dj |0 ≤ j < N}, a random item d′ ∈ D.
Output: The minimum item dmin.

1: for i = 0 to ⌈LogN⌉ do
2: tmax = [(π/2− arcsin(1/

√
N))/ arcsin(1/

√
N)] ;

3: t = 1, λ = 6
5
, and r → +∞;

4: while (t ≤ tmax && r > d′) do

5: Prepare the initial state |φ⟩= 1√
N

N−1∑
j=0

|dj⟩ according to N data items; ¡¡¡¡

6: if M
N

> 1
9
then

7: t′ = randint(0, ⌈t⌉);
8: Apply Grover-Long searching on |φ⟩ with t′ iterations → |φ′⟩;
9: t = t ∗ λ;
10: else
11: Apply Grover-Long searching on |φ⟩ with tmax iterations → |φ′⟩; ¡¡¡¡
12: end
13: Measure |φ′⟩ and assign the measurement result to r;

¡¡
14: end
15: if r < d′ then ¡¡¡¡¡¡¡¡
16: d′ = r;
17: i = 0; ¡¡¡¡

18: end
19: end
20: return dmin = d′.

Algorithm 2 Grover-Long searching

Input: initial state |φ⟩, t, d′.
Output: finial state |φ′⟩.

1: ϕ = 2arcsin(
sin π

4t+2√
M/N

);

2: |φ0⟩ = |φ⟩;
3: for k = 0 to t do
4: Apply the oracle operation on |φk⟩ → |φ̃⟩ = eiϕ

∑
dm≤d′

|dm⟩+
∑

dn>d′
|dn⟩

5: Apply the phase reverse operation on |φ̃⟩ → |φk+1⟩
6: end
7: Return |φ′⟩ = |φk+1⟩.

j < N}. All data items all are encoded into a n-qubit superposition state |φ⟩.
Algorithm 1 gives the specific steps of our OQMSA algorithm.

As shown in Algorithm 1, we firstly prepare the initial state |φ⟩ =

1√
N

N−1∑
j=0

|dj⟩ according to N data items. Then, the dynamic strategy is used

to increase the probability of target state. The dynamic strategy is as follows:
When M/N > 1/9, the number of iterations t′ is an integer chosen randomly
range from 0 to ⌈t⌉ (⌈t⌉ is max number of current iteration). And then, the
t′−iteration Grover-Long searching (as shown in Algorithm 2) is applied on
|φ⟩. If M/N < 1/9, the tmax−iteration Grover-Long searching is applied on
|φ⟩. Finally, we obtain the measure value r and compare r with d′, the d′
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Fig. 1 The schematic diagram of the first simplified rule. (a) The circuit for marking two
continuous states. (b) The circuit for marking 2r continuous states. (c) The circuit for
marking 2m continuous states.

will be replaced if r < d′. This process will repeat until we get same current
minimum for ⌈LogN⌉ times, and the algorithm will end with returning dmin.

3.2 Quantum circuit and its optimization

A. Oracle operation
The oracle operation plays a role in identifying and marking the target state

in the circuit. The oracle’s marker factor is a phase rotation that changes the
amplitude in front of the target state to eiϕ . The oracle can be described as
diagonal matrix that only has eiϕ and 1, as shown in Eq.(1)

O = eiϕ
∑

|υ⟩ ⟨υ|+
∑
τ ̸=υ

|τ⟩⟨τ |, (1)

where ν is the state which need to be marked.
Rule 1. When d′ = 2m − 1, where d′ is current minimum, the oracle can be
simplified as below:

O(m) =(eiϕ |00⟩ ⟨00|+ |10⟩ ⟨10|)⊗ I⊗m. (2)

Since d′ = 2m−1, we encode d′+1 into quantum state |10⟩⊗ |0102 · · · 0m⟩.
The first qubit of all solutions must be |0⟩, they can be marked only if we
ensure that the first qubit is |0⟩. The oracle will become an operation that
only change the amplitude of state where the first qubit is |0⟩ to eiϕ. The
schematic diagram is shown in Fig. 1.

Rule 2. When d′ ̸= 2m − 1, d′ + 1 =
n−1∑
i=0

ai · 2n−i−1, ai ∈ {0, 1}, the oracle

should be simplified iteratively through Algorithm 3.
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Algorithm 3 The iterative simplified algorithm

Input: The binary string of d′, (a0a1 · · · an−1).
Output: O.

1: i = 0;
2: while (i < n) do
3: if ai = 1 then
4: if i = 0 then ¡¡¡¡
5: Obtain O′(i) = O(n− i− 1) referring to Rule 1;
6: else
7: Obtain O′(i) = |a0a1 · · · ai−1⟩ ⟨a0a1 · · · ai−1| ⊗O(n− i− 1);

8: else
9: if i = 0 then ¡¡¡¡
10: Obtain O′(i) = |1⟩ ⟨1| ⊗ I⊗n−i−1;
11: else
12: Obtain O′(i) = |a0a1 · · · ai−1⟩ ⟨a0a1 · · · ai−1| ⊗ |1⟩ ⟨1| ⊗ I⊗n−i−1;

¡¡¡¡

13: i = i+ 1;

14: Obtain O′(i) = |a0a1 · · · an−1⟩ ⟨a0a1 · · · an−1|
15: return O =

∑
O′(i)

Fig. 2 A schematic diagram of the second equivalent simplified rule. (a) The original circuit.
(b) The simplified circuit.

For the case d′ ̸= 2m − 1, d′ + 1 =
n−1∑
i=0

ai · 2n−i−1, d′ + 1 is encoded into

|a1a2 · · · an−1⟩. Algorithm 3 will determine which states need to be marked by
iterating on a binary string of a1a2 · · · an−1. Then the corresponding quantum
circuit can be divided into many sub-circuits such as Fig. 2(a). Finally, we can
obtain the oracle which is used to mark all solutions after n iterations and it
can be simplified as Fig. 2(b). The general optimized oracle circuit is showed
in the Fig. 3.

For instance, when d′ = 31 = 25 − 1 and n=6, we simplify the oracle as
O(5) = (eiϕ |0⟩ ⟨0|+ |1⟩ ⟨1|)⊗I⊗5 according to Rule 1. We only need to operate
on the first qubit to mark all the items range from 0(000000) to 31(011111).
When d′ = 35 = 25 + 22 − 1, we can obtain the oracle((eiϕ |0⟩ ⟨0| + |1⟩ ⟨1|) ⊗
I⊗5 + |100⟩ ⟨100| ⊗ (eiϕ |0⟩ ⟨0| + |1⟩ ⟨1|) ⊗ I⊗2) according to Rule 2. Where
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Fig. 3 The optimized circuit for the oracle in OQMSA.

Fig. 4 The general circuit for I0 operation.

the oracle mark the items range from 0(000000) to 31(011111), and then mark
the items between 32(100000) and 35(100011). In this way, all states ≤ 35 are
marked out.

B. Phase deflection
The operation of phase deflection use eiϕ to distinguish the states, because

the oracle use eiϕ to mark the target states. Besides, this operation can be
divided into three parts:W−1, I0 andW , whereW is an operation of preparing
initial state, I0 is the core of the whole phase deflection. The operator of I0
can be described as a diagonal matrix, as shown in Eq. 3.

I0 = eiφ|0⟩ ⟨0|+
∑2n−1

τ=1
|τ⟩ ⟨τ | = diag

[
eiφ, 1, . . . , 1

]
2n

, (3)

where n is the number of qubits. I0 can be converted to the quantum circuit,
as shown in Fig. 4.
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4 Performance Evaluation

We analyze the performance of OQMSA from two aspects: the success rate
and the computation complexity.

4.1 Success Rate

As described in the literature [27], the success rate of the DHA algorithm
is slightly greater than 0.5. Through the following derive, we can know that
our algorithm has a higher success rate. First of all, if we want to obtain the
exact value of tmax, φ, β, we must know M/N . However, the dataset is not
directly available. When a random value d′, is selected, we do not know how
many solutions. We replace the exact valuesM,N with estimated values M̃, Ñ .
Therefore, the unknown database has Ñ = 2n non-repeating values and the
estimated number of marked states is M̃ = d′ + 1. The distribution function
of the estimated database is regarded as a uniform distribution, where the
probability density function is ρ̃(x) = 1√

N
. And the distribution function of

the real database is unknown. It is important to quantify the impact of the

gap between M̃

Ñ
and M

N on the failure rate εGL.

The cumulative distribution function of the estimated database in [0,d′] is
described as:

P̃ (x) =

∫ d0

0

p̃(x)dx =
M̃

Ñ
. (4)

Similarly, the cumulative distribution function of the real database P (x) is M
N .

Therefore, if the actual database follows the uniform distribution in [0, 2n] ,

then M̃

Ñ
: M

N ≈ 1. In other words, the success rate of our algorithm is close to
1.

4.2 Complexity

Note that the complexity of OQMSA is primarily composed of a total
number of Grover-Long iterations and the initial state preparation. So we
calculate the complexity without other steps. One main loop possesses tmax

Grover-Long iterations. tmax can be described as Eq. 5

tmax = floor

 π
2− arcsin

(√
M
N

)
arcsin

(√
M
N

)
+ 1. (5)

For convenience, we consider the case of an infinity database, so

lim√
M/N→0

arcsin

(√
M

N

)
≈
√

M

N
. (6)
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We can simplify the complexity of Grover-Long algorithm as Eq. 7.

tmax = (
π

2
− 1+1)×

√
N

M
=

π

2

√
N

M
. (7)

The total of Grover-Long iterations can be described as Eq. 8.

RG =

K−1∑
k=0

Jk =
π

2

K−1∑
k=0

√
N

Mk
. (8)

where K represents the total number of main loops, Mk represents the number
of marked states of the k-th main loop. Since the marked states have the same
amplitude after applying Grover-Long algorithm, the number of (k + 1)-th
main loop’s marked quantum states is nearly half of the (k)-th main loop’s.
Thus, the complexity of all Grover-Long algorithm iterations can be described
as Eq. (9):

RG = π
2

(√
N
M0

+
√

2N
M0

+ ...+
√

M0N
M0

)
= π

2

√
N
M0

×(1−
√
2M0)

1−
√
2

= π
2

(√
2 + 1

) (√
2N −

√
N
M0

)
.

(9)

Next, we consider the complexity of the initial state preparation. Since it
needs to be executed about log2N times and each execution takes log2N steps,
it can be described as Eq.(10)

Rinit = (log2N)2. (10)

We can calculate the complexity as Eq.(11)

R = RG +Rinit =
π

2

(√
2 + 1

)(√
2N −

√
N

M0

)
+ (log2N)2. (11)

As claimed in Ref. [27], the complexity of DHA is 22.5
√
N + 1.4(log2 N)2,

while the complexity of our algorithm is π
2 (
√
2+1)(

√
2N −

√
N
M0

)+ (log2N)2.

Because π
2 (
√
2 + 1)(

√
2N −

√
N
M0

) + (log2N)2 < 2 ∗ 3 ∗ 2
√
N + (log2N)2 <

22.5
√
N + 1.4(log2N)2, our algorithm has a smaller time complexity.

Finally, we compare DHA algorithm with our algorithm under the same
conditions. For convenience, we assume that M0 = 1

2N .The complexity com-
parison of the two algorithms is shown in the Fig. 5. It can be seen from the
figure that as the algorithm increases, our algorithm has a greater advantage
in the complexity of algorithm. Because OQMSA requires fewer gates in Or-
acle and decreases the number of iteration in dynamic construction of circuit
with two simplified rules.
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Fig. 5 Complexity comparison between DHA and our algorithms.

5 Experiment Simulation

Cirq[32], launched by Google in 2018, is a software library for writing, ma-
nipulating, and optimizing quantum circuits and then running them against
quantum computers and simulators. Cirq attempts to expose the details of
hardware, instead of abstracting them away, because, in the Noisy Intermediate-
Scale Quantum (NISQ) regime, these details determine whether or not it is
possible to execute a circuit at all. In order to verify the feasibility of our algo-
rithm, we choose cirq as the experiment simulation platform, and design and
implement a 6-qubits simulation experiment to perform the minimum search-
ing in a data set (such as Table 1 or Table 2 ). Our experiments are conducted
on a computer equipped with Intel Xeon 5218, double 2.3Ghz CPU, 64G RAM,
and the version of Cirq is 5.0 under python 3.6.5.

In beginning of simulation, a random item is selected to be the current
minimum d′, the unsorted database is encoded into n qubits according binary
encoding method, d′ is also encoded into auxiliary qubit |x0x1x2x3x4x5⟩, the
amplitude of each state is the same value 1√

N
. In the early stage of the al-

gorithm, because the current minimum is likely to be very large, we choose
the program of increasing the number of iterations dynamically to detect the
upper bound in one algorithm. The advantage of this scheme is that we can
get more accurate phase deflection without knowing how many solution sets
there are. When the current minimum value decreases gradually, the previous
scheme will cause the problem of building circuits many times. In this case, we
set a threshold 1/9. When d′/N is less than 1/9, the advantages of the original

algorithm are incarnated. We estimated the number of solutions M̃ = d′ + 1
and the estimated database size Ñ = 2n, where n = 6. At the end of an
algorithm, we can obtain a measurement result r. If r ≤ d′, we replace the
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Table 1 Dataset A for searching the minimum

Value After Encoding Value After Encoding Value After Encoding

2 000010 24 011000 44 101100
18 010010 40 101000 60 111100
34 100010 56 111000 14 001110
50 110010 10 001010 30 011110
6 000110 26 011010 46 101110
22 010110 42 101010 62 111110
38 100110 58 111010 3 000011
54 110110 12 001100 19 010011
8 001000 28 011100 35 100011
51 110011 7 000111 23 010111
9 001001 55 110111 39 100111
25 011001 41 101001 57 111001
43 101011 27 011011 11 001011
59 111011 13 001101 29 011101
15 001111 61 111101 45 101101
31 011111 47 101111 63 111111

Table 2 Dataset B for searching the minimum

Value After Encoding Value After Encoding Value After Encoding

45 101101 46 101110 42 101010
37 100101 38 100110 34 100010
21 010101 22 010110 18 010010
61 111101 62 111110 58 111010
53 110101 54 110110 50 110010
5 000101 6 000110 2 000010
44 101100 40 101000 47 101111
36 100100 32 100000 39 100111
20 010100 16 010000 23 010111
60 111100 56 111000 63 111111
52 110100 48 110000 55 110111
4 000100 0 000000 7 000111

current minimum with r and the algorithm is thought to operate successfully.
By constantly changing the current minimum value, we will finally get the
minimum value with a great probability. The complete circuit is shown in Fig.
6.

When the circuit is executed 1000 times, the average experimental results
are shown in Fig. 8, the minimum represents the result of finding the minimum
successfully and the others deputies the failure results of the experiment. As
shown in the chart, we get the minimum for 982 times in one thousand ex-
periments. Obviously, this consequence proves that our algorithm has a high
success rate. Even if we can’t find the minimum with 100 percent probability,
we still think that the algorithm is efficient under some conditions.The results
of 20 experiments are shown in Table 3.
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Fig. 6 A 12-qubits circuit of Grover-Long algorithm with 48 items.

Fig. 7 W and W−1 operation of Dataset B. (a) The W operation of Dataset B. (b) The
W−1 operation of Dataset B.

Table 3 The measurement results of 20 experiments

Dataset A Dataset B

sequence minimum others minimum others

1 984 16 985 15
2 987 13 979 21
3 986 14 980 20
4 982 18 986 14
5 984 16 976 24
6 984 16 982 18
7 988 12 985 15
8 985 15 980 20
9 987 13 978 22
10 986 14 983 17

6 Conclusion

Based on Grover-Long algorithm, we proposed OQMSA, which is an im-
proved version of DHA algorithm. Compared with classical algorithm, we have
show the advantages of quantum algorithms in finding the minimum values
to alleviate some of the challenges brought by the rapidly increasing amount
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Fig. 8 The average consequence of 20 experiments.

of data. Besided, as the size of the database increases, it has a higher prob-
ability of success and a greater advantage in terms of complexity than DHA
algorithm. In addition, we provide corresponding general-purpose quantum
circuits. The optimized circuits are easy to implement on any general-purpose
quantum computer. Meanwhile, the general circuit design methods can be im-
plemented on the quantum platform. We demonstrate the advantage of our
algorithm through a group 12-qubit experiment(6 of them are auxiliary bits)
which is executed on Cirq platform and a real issue that is numerical simulated.
In addition to the computational tasks we show in this paper, the algorithm
can be a subroutine in other quantum algorithms that need to find a minimum
value.

We hope that the theoretical and experimental results we present here
well push further research and motivate innovations of other mathematical
models. The paradigm combing classical steps and quantum steps may work
as an efficient solution in the era of big data.
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