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Abstract In this paper, we propose a novel approach for accurate detection of
the vowel onset points (VOPs). VOP is the instant at which the vowel begins
in the speech signal. Precise identification of VOPs is important for various
speech applications such as speech segmentation and speech rate modification.
The existing methods detect the majority of VOPs within 40 ms deviation,
and it may not be appropriate for the above speech applications. To address
this issue, we proposed a two-stage approach for accurate detection of VOPs.
At the first stage, VOPs are detected using continuous wavelet transform coef-
ficients, and the position of the detected VOPs are corrected using the phone
boundaries in the second stage. The phone boundaries are detected by the
spectral transition measure method. Experiments are done using TIMIT and
Bengali speech corpora. Performance of the proposed approach is compared
with two standard signal processing based methods. The evaluation results
show that the proposed method performs better than the existing methods.

Keywords Vowel onset point (VOP) - continuous wavelet transform (CWT) -
spectral transition measure (STM) - phone boundary - read and conversation
modes.

1 Introduction

Broadly, speech can be divided into two modes, namely, read and conversation
modes [1-3]. In read mode, an individual utters in restricted conditions, for
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instance, reading of books or TV news. However, in conversation mode, two or
more individuals are communicating in an unrestricted condition. In general,
conversation speech is spontaneous, informal, unstructured, and unorganized.
On the other hand, read speech is relatively less expressive and more organized.
Due to high dissimilarity, it’s important to study the impact of both the modes
on the vowel onset point (VOP) detection.

Vowel onset point represents the start of a vowel in a speech signal. VOP
is utilized for various speech applications such as (i) spotting consonant-vowel
(CV) units in a speech signal [4,5], (ii) identifying other speech events such as
formant transition, burst, aspiration, which help significantly in speech recog-
nition [6] (iii) dividing speech into vowel and non-vowel like regions [7], etc.
In general, the speech signals are processed at sub-word level such as mono-
phone and triphone for speech recognition. Gangashetty et al. [8], have shown
that syllables are the relevant sub-word units for speech recognition in Indian
languages. Syllable represents a group of consonants (C) and vowel (V) in the
form of C*VC*, where a and x indicate the count of consonants before and af-
ter the vowel, respectively. Among all the C*VC* combinations, the CV units
are the most common (about 90%) existing syllables in Indian languages [8].
The CV units can be identified by accurate detection of VOPs in a continuous
speech [9]. Therefore, the performance of the speech recognition system will
be affected by the accuracy of the VOP detection method [4]. In literature
[6,8,10-14], traditional vowel onset point detection methods are developed for
read mode of speech. However, in a realistic scenario, conversation speech is
more frequently observed than the read speech [15,16]. In terms of acoustic
and linguistic characteristics, conversation mode has significant variations than
the read mode [15,16]. Thus, the existing VOP detection methods may lead
to spurious detection as well as missing VOPs for conversation speech. Hence,
the performance of the traditional speech recognition system will be drastically
reduced for conversation speech. Therefore, it is required to accurately detect
the VOPs in conversation and read modes of speech for achieving the better
recognition accuracy. So, the current study is motivated by the recognition of
speech for Indian languages in read and conversation modes.

In previous studies, various methods are explored for VOP detection based
on statistical modeling and signal processing approaches. Different statistical
modeling methods are explained in [8,10,17] which utilizes multilayer feed-
forward neural network, hierarchical neural network, and auto-associative neu-
ral network for VOP detection. These networks are developed using the speech
features extracted from both sides of the VOPs. The predicted frame types
are used for detecting VOPs in a speech signal. On the other hand, the de-
tection of VOPs using signal processing methods is implemented by deriving
various speech features. In [6], VOPs are detected by finding the locations of
rapid growth in the vowel intensity. The change in the energy of each peak and
valley of a speech signal is representing the vowel intensity. Prasanna et al.,
[13] proposed a VOP detection method based on the fusion of evidence from
the excitation source, spectral peak energy, and modulation spectrum. The
performance of the combined approach is better than the individual methods
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for VOP detection. Vuppala et al. [14] utilized spectral energy present in glot-
tal closure regions of speech signal for VOP detection. The computed spectral
energy is robust and high around the glottal closure instants (GCIs).

Mostly, the statistical modelling methods and signal processing techniques
may falsely detect the VOPs in the presence of diphthongs and semivowel-
vowel transitions [18-20]. This is due to the similar acoustic characteristics
of the semivowels and vowels. Hence, in the recent works, various statistical
modelling [21,22], and signal processing [7, 18] methods have been evolved
for detecting the vowel-like region onset points (VLROP) instead of vowel
onset point. The VLROPs represents the start of the vowel, semivowel, and
diphthong speech regions [18]. But these methods may not be suitable for
speech applications where only vowel regions are needed to be identified, such
as consonant-vowel recognition, speech-rate modification, speaker recognition,
and so on.

The existing methods based on statistical modelling techniques depend on
a huge amount of training data. In these methods, at the first step, a classifier
is trained for detecting the vowel regions, and then the VOPs are detected
by locating the instant at which detected vowels are started. The accuracy
of the detected VOPs will depend on the performance of the vowel detection
algorithm. However, the signal processing methods can be directly applied
to speech signals for identifying VOPs as compared to statistical modelling
methods. The signal processing methods follow simple and less number of
steps, then the statistical modelling methods which follow the complex process.
In terms of accuracy, both methods are providing almost similar results. Hence,
in this work, we have proposed a signal processing based method for accurate
detection of VOPs. As the proposed method is signal oriented, so; the state
of the art signal processing methods [13,14] are included for performance
comparison. The existing methods [13, 14, 18-20] detect the majority of the
VOPs within 40 ms deviation. Therefore, attaining a better accuracy for VOP
detection at lower deviation is the primary goal of the proposed approach.

In this work, we have proposed a novel method to accurately detect the
VOPs in a speech signal. The proposed method is performed at two stages
for robust detection of VOPs. At the first stage, continuous wavelet transform
(CWT) is explored for determining the VOP evidence. Continuous wavelet
transform [23] is capable of detecting the instants of sharp transitions, includ-
ing steady regions in a speech signal. This is the motivation behind choosing
CWT for VOP detection. At the second stage, a new approach is explored
based on phone boundary information for correcting the positions of detected
VOPs. Spectral transition measure (STM) method [24-26] is applied for de-
tecting the phone boundaries. Dusan et al. [25] have shown that the STM is
accurately detecting 90% of phone boundaries under 20 ms deviation. In this
work, it is analyzed that the majority of VOPs detected using CWT coeffi-
cients are within 40 ms deviation. Therefore, to improve the accuracy of the
proposed method at low deviation, the location of the detected VOPs are cor-
rected with the help of detected phone boundaries. The proposed method is
significant for segregating the vowel onset points from the remaining speech
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regions. To validate this fact, the proposed method is compared with signal
processing techniques reported in [13,14] using TIMIT corpus. In addition to
that, the importance of the proposed method is shown by detecting VOPs for
read and conversation modes of Bengali speech.

The organization of the paper is as follows. Section 2 describes the baseline
VOP detection methods. The description of the proposed method for accurate
VOP detection is presented in Section 3. The performance and significance
evaluations of the proposed method using TIMIT and Bengali (read and con-
versation modes) speech corpora are presented in Section 4. Section 5, includes
the conclusions of the current study and works that need to be explored in the
future.

2 Baseline VOP Detection Methods

Performance of the proposed approach is compared with two standard signal
processing based methods. The first method combines the evidence from the
excitation source, spectral peaks energy, and modulation spectrum [13], and
the second method is based on spectral energy around glottal closure regions
[14]. The detailed description of these methods are presented below.

2.1 Combined evidences from excitation source, spectral peaks, and
modulation spectrum for VOP Detection

In this method, evidence from excitation source, spectral energy, and modu-
lation spectrum are combined at frame level for detecting VOPs. The Hilbert
envelope of LP residual contains the information about excitation source. The
sum of 10 major peaks of the DFT computed for each frame, represents the en-
ergy of spectral peaks. The modulation spectrum corresponds to the gradually
changing temporal envelope of speech. These methods contain different infor-
mation for VOP detection and thus can be combined. The combined method
leads to better performance than the excitation source, spectral energy, and
modulation spectrum methods, respectively. This method is titled as COMB-
ESM for the rest of the paper.

2.2 Spectral energy around glottal closure regions for VOP Detection

This method detects VOPs in a glottal closure regions of the speech signal
using evidence from the spectral energy. The spectral energies are more promi-
nent at GCIs. Therefore, the spectral energy is computed for the frames present
in the 30% of the glottal cycle around the GCIs. The zero frequency filter is
applied for detecting the glottal closure instants in a given speech sequence.
The spectral energies in the range of 500-2500 Hz are considered for VOP de-
tection. The spectral energy signal was smoothed over the window of 50 ms to
reduce the inconstancies. Further, the smoothed spectral signal is enhanced by
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computing the slope using first-order difference. In the enhanced signal, promi-
nent variations (peaks) are extracted by convolving with first-order Gaussian
difference operator of size 100 ms. The peaks in the convolved signal were
representing the vowel onset points. This method is named as SE-GCI for the
rest of the paper.

3 Proposed VOP Detection Method

In the proposed approach, continuous wavelet transform is explored along with
spectral transition measure to enhance the accuracy of the VOPs. Continuous
wavelet transform can predict smooth signal features as well as abrupt tran-
sitions [27]. For some phonemes such as /az/, /azr/ and /uz/, CWT may fail
to predict VOPs under 40 ms because of the very short and devoiced vowel.
However, STM will accurately provide 97% of phone boundaries within 40 ms
deviation. For that reason, we have incorporated the information carried by
STM along with CWT for further improving the performance of VOP detec-
tion. The details about VOP detection using CW'T is included in Section 3.1.
The detailed description of phone boundary detection using STM is provided
in Section 3.2. The combined model for improving the performance of detected
VOPs is described in Section 3.3.

3.1 VOP Detection using CWT

CWT gives a complete representation of a signal by varying the scale value of
the wavelets repeatedly. Mathematically, the CW'T of a speech signal x(¢) can
be represented as:

1 0 Jdt-p
Cx(p,q) = — x(t — |dt 1
(1. q) ﬁ[wo«p(q) 1)

where ¢(t) is the mother wavelet and ¢*(¢) is the complex conjugate of ¢(z).
Cx(p, q) is representing the wavelet coefficient for scale parameter g (¢ > 0)
and translation parameter p. The CWT coefficients computed in Eq. (1) can
be observed as the product of signal x(f) and wavelet (shifted and scaled)
O(t) : pg(t) = (1//q)¢((t — p)/q). In this work, VOPs are detected from the
mean signal derived using CWT coefficients. The mean signal can be computed
as follows:

A =5 Y Clpa) @

q€qs

where N is the number of scales and g5 is the set of chosen scale. In rest of
the paper, the mean signal derived from CWT coefficients is named as “mean-
signal”.
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Fig. 1: llustration of mean-signal and AAM of mean-signal. (a) Semi-vowel to
vowel transition, (b) nasal to vowel transition, (c) fricative to vowel transition
and (d) unvoiced to vowel transition.

For detecting the VOPs, mean-signal is segmented into frames of 20 ms
with 10 ms overlap. For every segment, we have calculated the average ab-
solute magnitude (AAM) of the mean-signal. Inconsistencies in the AAM of
the mean-signal are flattened by applying mean-smoothing for 40 ms segment.
For determining VOPs, an optimal threshold (¢4;) is fixed at 15% of the max-
imum of smoothed AAM. This threshold is decided by estimating the errors
for VOP detection. The VOP detection errors are representing the percentage
of missed and spurious VOPs. In this work, 5 distinct threshold values are
examined between 11% to 20% at the interval of 2% as displayed in Table 1.
These experiments are performed on a subset of TIMIT speech corpus [28].
The first column of the table contains the different threshold values, and the
second column represents the percentage of missed VOPs. The third column
indicates the percentage of spurious VOPs. The results shown in columns 2
and 3 are computed within 40 ms deviation. It can be observed from Table 1
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that the threshold value of 15% of the maximum of smoothed AAM is provid-
ing an appropriate decision for VOPs. In a similar manner, experiments are
performed with Bengali read and conversation speech signals and analyzed
that thy=15% is giving the minimum error. As per the experimental results,
threshold value of 15% is providing the global minimum error within given
data. Therefore, in the proposed method, 15% of the maximum of smoothed
AAM is considered for determining the VOPs in TIMIT and Bengali speech
signals.

Table 1: VOP detection errors for various threshold values.

Threshold Values (%) | Miss Rate  Spurious Rate
11 15 28
13 15 25
15 15 20
17 17 21
19 20 23

It is noticed from the literature survey that there is no work related to CWT
for VOP detection. This motivated us to explore vowel discriminative charac-
teristics of CWT for predicting VOPs in a speech signal. The well-known diffi-
culties in VOP detection are finding false VOPs in case of semi-vowels, nasals,
and fricatives as they are periodic in nature [18-20]. The AAM of mean-signal
for semi-vowel, nasal, fricative and unvoiced speech regions are illustrated in
Figure 1. The speech waveform and mean-signal of given speech regions are
displayed in Figures 1(a,b,c,d)(i and ii), respectively. However, for given speech
regions, the AAM of mean-signals are displayed in Figures 1(a,b,c,d)(iii). It
can be observed from the figure that the mean-signals are generally periodic
in vowels, semi-vowels, and nasals, and almost zero in fricatives and unvoiced
speech segments. This represents that the speech signal and mother wavelet
have the least correlation at all the scales in the fricative and unvoiced regions.
However, the CWT coefficients are higher and, shows a periodic shape at all
scales for speech regions such as vowels, semi-vowels, and nasals. As we can see
in Figure 1(a,b)(iii) that the peak amplitudes of vowel regions are significantly
higher than other speech regions. Thus, the unwanted peaks can be easily re-
moved using an optimal threshold parameter as well as using mean-smoothing.
Hence, it is clear that the CWT can significantly identify the VOPs in vowel
regions by suppressing the remaining speech regions.

The steps for the VOP detection using CWT based method are summarized
as follows:

1. Compute the CWT coeflicients of the speech signal.

2. Derive the mean-signal.

3. Determine AAM for each frame of the mean-signal where the length of a
frame is 20 ms and frame shift is 10 ms.
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4. Inconsistencies in the AAM of the mean-signal are flattened by applying
mean-smoothing of frame size 40 ms.

5. Detect local peaks of the smoothed AAM of the mean-signal.

6. For removing the undesirable peaks, an optimal threshold is fixed at 15%
of the maximum of smoothed AAM. Further, undesired peaks are removed
if two consecutive peaks are present within 50 ms window. On this basis,
the smaller amplitude peak is removed.

7. After removing the undesired peaks, frames whose AAM is larger than or
equal to the threshold value are chosen as VOP frames.

Figure 2 demonstrates the evidence of VOP detected using CWT for an
utterance /“She had your dark suit in greasy wash”/ from the TIMIT corpus
sampled at 16 kHz. Figure 2(a) displays the waveform of the speech signal.
Mean-signal derived from CWT is represented in Figure 2(b). The average
absolute magnitude (AAM) of the mean-signal is shown in Figure 2(c). The
local peaks are represented by the circle (o) symbol. Figure 2(d), shows the
smoothed AAM where mean-smoothing is applied for removing the fluctua-
tions present in the AAM of mean-signal. The undesirable peaks in Figure 2(d)
are omitted by applying the threshold value, which is 15% of the maximum
of smoothed AAM. The threshold value is empirically chosen based on several
experiments on a large volume of data. In addition to that if two consecutive
peaks are reported within 50 ms; the peak with smaller magnitude will be
omitted. This relies on the hypothesis that there will be only one VOP within
the window of 50 ms [14]. The detected peaks in Figure 2(e) after removing
the undesired peaks are representing the desired locations of VOPs.

3.2 Phone Boundary Detection using STM

The spectral transition measure provides an unsupervised way of detecting
phone boundaries in a speech signal. This is the key motivation for exploring
STM in this study. The 13-dimensional Mel Frequency Cepstral Coefficients
(MFCCs) along with A and AA coefficients are considered for deriving spectral
details of the speech signal. The A and AA coefficients corresponds to the first
and second order derivative of MFCCs, respectively. The spectral details are
extracted by considering a frame size of 25 ms and a frame shift of 10 ms using
the Hamming window.

The implementation of STM in this work is the same as that described in
[25]. STM can be understood as the degree of variation in the spectral value
of a speech signal. The spectral variation at the phone transition is maximum
compared to steady speech regions. Such higher spectral variations represent
peaks and these peaks are considered as detected phone boundaries in a speech
sequence. It can be observed from the STM contour (see Figure 3(c)) that
the phone boundaries have more spectral deviation. That is responsible for
producing high Mean Square Error (MSE) in linear regression [24]. The STM,
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Fig. 2: VOP detection using CWT for an utterance /“She had your dark suit
in greasy wash”/. (a) Speech waveform with actual VOPs, (b) Mean-signal,
(¢) AAM of mean-signal with peak locations, (d) Smoothed AAM with peak
locations, (¢) CWT detected VOPs at 15% of the optimal threshold of the
maximum of smoothed AAM. Actual VOPs are marked with the red line and
detected VOPs are marked with the black line.

at frame g, can be computed as a mean-squared value [26], i.e.,

13,
Sg = BZ"[ (g) (3)
i=1

where S, represents the STM at frame g, D is the dimension of the spectral
feature vector (39 in this case) and r;(g) shows the rate of variation in spectral
details MFCC; and defined as [25],

Zfl:_, MFCCi(n+g)+*n
Z£l=—1 n?

where n shows the frame index, i is the coefficient index, and I displays the
number of frames (on each side of the current frame) utilized for computing
the regression coeflicients. The considered value of I is 2 for calculating STM
[26]. The value of I greater than 2, result in missing desired phone locations,
whereas I smaller than 2, generate many unwanted phone locations.

In this work, phone boundaries are extracted from the STM contour of the
speech signal. Figure 3 illustrates the phone boundary detection for an utter-
ance /“She had your dark suit in greasy wash”/. Figure 3(a) represents the
speech signal with actual phone boundaries. The STM contour of the speech

ri(g) = (4)
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Fig. 3: Phone boundary detection using STM for an utterance /“She had
your dark suit in greasy wash”/. (a) Speech waveform with actual boundaries,
(b) STM contour with peak locations, (¢) Smoothed STM contour with peak
locations, (d) Detected phone boundaries at 12% of the optimal threshold
of the maximum of STM contour amplitude. Actual phone boundaries are
marked with the red line and detected phone boundaries are marked with the
black line.

signal is shown in Figure 3(b). The local peaks are marked as a circle (0). The
inconsistencies in the STM contour are flattened by applying mean-smoothing
for 20 ms frame represented in Figure 3(c). The noisy peaks present in Figure
3(c) are removed by implementing a threshold (zh2) of 12% of the maximum
of STM contour amplitude. The threshold value is decided after analyzing the
STM contour on a subset of TIMIT corpus. The performance of the detection
task is dependant on the selection of the optimal threshold. It is noted that the
threshold value smaller than ths generate more spurious boundaries, whereas
the threshold value higher than thy have missed phone boundaries. In Figure
3(b), it can be seen that the spectral value is varying significantly at phone
transition. This resulted in peaks which are considered as phone boundaries
in this study. The detected phone boundaries after eliminating the unwanted
peaks are detected at a fixed threshold (thy = 12%) is shown in Figure 3(d).
The process of phone boundary detection can be summarized as follows:

1. Extract 39-dimensional MFCC, A, and AA feature, with a frame size of 25
ms and frame shift of 10 ms,

2. Compute STM for each frame of a given signal,

3. Remove inconsistencies in the STM contour by applying mean-smoothing
of frame size 20 ms,



Title Suppressed Due to Excessive Length 11

4. Detect local peaks of the smoothed STM contour,

5. For eliminating the undesirable peaks, an optimal threshold is set at 12%
of the maximum of smoothed STM contour amplitude.

6. After removing the false peaks, frames whose amplitude is larger than or
equal to the threshold value are chosen as frames for phone boundary.

3.3 Two-Stage Method for VOP Detection

The proposed method for VOP detection is based on the evidence of two dif-
ferent methods discussed in Section 3.1 and 3.2. In the first method, VOPs are
hypothesized from AAM of CWT derived mean-signal. In the second method,
phone boundaries are detected from STM contour for correcting the position
of CWT detected VOPs. The block diagram of the proposed VOP detection
method is shown in Figure 4. Figure 5 demonstrates the VOP detection for an
utterance /“She had your dark suit in greasy wash”/. The speech waveform
with actual VOPs is shown in Figure 5(a). The detected VOPs using CWT as
well as actual VOPs are depicted in Figure 5(b). It can be analyzed that the
CWT detected VOPs are deviated from the actual VOPs. Due to this at low
deviation, some actual VOPs will be accounted as missed, and some of the
detected VOPs will be accounted as spurious. This will become the reason for
generating missed and spurious VOPs using CWT. In addition to that, CWT
will detect false VOPs in case of high energy voiced consonants; for example,
in Figure 5(b) the detected VOPs such as 3rd and 11th are noisy.

Table 2: Performance of VOP detection using CWT, and STM on TIMIT
corpus.

VOP VOPs Detected Spurious
Detection within ms (%) VOPs
Method 10 20 30 40 (%)
CWT 52 65 78 91 20
STM 90 91 96 98 70

Therefore, STM detected phone boundaries in Figure 5(c) are utilized for
eliminating noisy VOPs as well as for reducing the deviation between actual
and predicted VOPs. Intuitively, it is reported for a subset of TIMIT speech
corpus that detected VOPs are mostly occurring right side of the actual VOPs.
It can also be visualized in Figure 5(b) that each detected VOPs have unevenly
deviated towards the right side of actual VOPs. Hence, to correct the location,
the detected VOPs need to be relocated to its left side. One way to achieve this
is by shifting each VOP with the fixed length. However, this is not a feasible so-
lution because the VOPs have unevenly deviated. Hence, a method is required
to automatically adjust the detected VOPs to their accurate locations. In this
work, we have explored a new approach based on phone boundary details for
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VOP detection from CWT Phone boundary detection
derived mean-signal from STM contour
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phone boundary for each
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Fig. 4: Block diagram of proposed VOP detection method.

correcting the detected VOPs. Here, the STM method is explored for phone
boundary detection. Table 2 represents the accuracy of vowel onset point de-
tection using CWT and STM based methods. For performing this experiment,
50 utterances are randomly selected from TIMIT speech corpus. It is observed
from Table 2 that the percentage of detected VOPs using STM is better than
the CWT. However, the percentage of spurious VOPs is huge using STM than
the CWT. In this work, STM is evolved for phone boundary detection. Thus,
at the time of VOP detection using STM, vowel boundaries are considered
as VOPs, and remaining phone boundaries are considered as spurious VOPs.
For that reason, the percentage of spurious VOPs are overestimated in STM
based method. From experiments, it is noted that the performance of the pro-
posed two-stage method does not affected by the STM detected spurious phone
boundaries. Further, it can be seen from Table 2 that the percentage of STM
detected VOPs within 10 ms and 20 ms is much higher than the CWT detected
VOPs. This explains that STM can detect vowel boundaries (VOPs) better
than CWT. Therefore, the STM based vowel boundary details are incorpo-
rated with CWT based VOP detection, for improving the performance of the
proposed method at a smaller deviation. The detected VOPs in Figure 5(d)
after removing the spurious VOPs are depicting the desired location of VOPs.
These VOPs are within 10 ms deviation from the actual VOPs. Hence, the
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Fig. 5: VOP detection for an utterance /“She had your dark suit in greasy
wash”/. (a) Speech waveform with actual VOPs, (b) Actual VOPs and de-
tected VOPs using CWT coefficients, (c¢) Located phone boundaries using STM
contour, (d) Actual VOPs and detected VOPs using the proposed method.
Actual phone boundaries are marked with the red line and detected phone
boundaries are marked with the black line.

proposed method is suitable for speech applications where accurate VOPs are
required. The steps involved in correcting the detected VOPs using proposed
two-stage method are:

1. Detect the VOPs using the CWT based method.

2. Detect the phone boundaries using the STM based method.

3. For each detected VOP, find the left-most closest phone boundary (see in
Figure 5(c)).

4. The position of the detected phone boundary is marked as the location of
modified VOP, as shown in Figure 5(d).

4 Performance Evaluaion

In this work, the performance of the proposed method is compared with two
existing methods based on COMB-ESM and SE-GCI. Here, TIMIT corpus is
considered for evaluating the performance of VOP detection methods. How-
ever, Indian speech corpora in read and conversation modes are considered for
depicting the significance of proposed VOP detection method.



14 Kumud Tripathi, K. Sreenivasa Rao

o o o

AERINN AR IBNNE
wwij/vw v L e

i &AAAJ\AM ITRITI NN
RANEIRANIRLS

ML R

0 . 25
Time (second)

Amplitude

d)

o

Fig. 6: VOP detection using proposed and existing methods for an utterance
/“She had your dark suit in greasy wash”/. (a) Speech waveform with actual
VOPs, (b) Detected VOPs using COMB-ESM method, (c) Detected VOPs
using SE-GCI method, (d) Detected VOPs using proposed method. Actual
phone boundaries are marked with red line and detected phone boundaries
are marked with black line.

4.1 VOP Detection on TIMIT Corpus

Experiments are conducted on TIMIT speech corpus for performance analysis
of proposed and two existing VOP detection methods. About 120 randomly
selected utterances sampled at 16 kHz are used for analyzing the performance
of the explored VOP detection methods. The metrics considered for measuring
the performance of the various methods are identification rate (IR), average
deviation (AD), missing rate (MR), and spurious rate (SR). The percentage of
actual VOPs that correspond to the detected VOPs within the considered (10-
40 ms) time-resolutions is known as identification rate. The average deviation
(in ms) is demonstrating the average time difference between the actual and
predicted VOPs. The percentage of actual VOPs that are undetected within
the considered deviation is termed as missed rate. The percentage of detected
VOPs other than the actual VOPs is termed as spurious rate.

VOP detection accuracy of proposed, COMB-ESM and SE-GCI methods
in terms of IR, AD, MR, and SR is demonstrated in Table 3. The first column
contains the list of methods involved in analyzing the VOP detection perfor-
mance. Columns second to fifth represent the IR (%) within the mentioned
deviations. The sixth column specifies the AD (in ms) with respect to the
actual VOPs. Seventh and eighth columns, represent the missed and spurious
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Table 3: Performance of VOP detection using proposed method, COMB-ESM
and SE-GCI on TIMIT corpus.

VOP VOPs Detected Average Missed | Spurious
Detection within ms (%) Deviation | VOPs VOPs
Method 10 20 30 40 (» ms) (%) (%)
COMB-ESM | 51 59 74 90 18 10 6
SE-GCI 62 79 86 91 13 9 5
Proposed 82 8 91 92 7 8 3

rates, respectively. It is observed from the table that the overall performance of
the proposed method is better than the existing (COMB-ESM, and SE-GCI)
methods for VOP detection. The average deviation in the proposed method (7
ms) is significantly smaller than the COMB-ESM (18 ms) and SE-GCI (13 ms)
methods. The rate of missed and spurious VOPs is relatively higher in COMB-
ESM and SE-GCI methods (see Figure 6). In both COMB-ESM and SE-GCI,
the detection of VOPs relies upon the spectral energy and its enhancement. In
these methods, the spectral energy of a speech signal is enhanced by comput-
ing its slope value using first-order derivative (FOD). Further, the enhanced
features are convolved with first order Gaussian difference (FOGD) operator
for locating the VOP evidences. Here, enhanced feature help in improving the
identification rate but at the same time it highlighted the peaks for periodic
non-vowel regions such as semi-vowels, and nasals, which leads to spurious
detection of VOPs. The proposed method outperformed the existing meth-
ods in case of identification and spurious rates. It can be seen in Figure 6
that the existing spurious VOPs in COMB-ESM and SE-GCI methods are
removed in the proposed method. Additionally, it is noticed that the IR for
the proposed method is almost 30% higher within 10 ms as compared to other
existing methods. However, the proposed method is shown the significantly
better performance within 20 ms than the 10 ms deviation. This is due to the
cases where high energy voiced consonants are preceded by the vowels, which
resulted in the deviation of detected VOPs with respect to the genuine VOPs.

4.2 VOP Detection in Read and Conversation Modes of Bengali Speech
Corpora

In this work, the significance of the proposed method is demonstrated by de-
tecting the VOPs in read and conversation modes of Bengali speech. The Ben-
gali speech dataset is collected as part of consortium project titled Prosodically
guided phonetic engine for searching speech databases in Indian languages sup-
ported by DIT, Govt. of India [29]. In this study, read speech is collected from
news reading, and the conversational speech is collected from casual talks. The
speech signals are sampled at a rate of 16 kHz with the precision of 16 bits
per sample. Altogether, 20 utterances are collected from 5 distinct speakers,
where 3 male and 2 female speakers are considered for each mode. About 100
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Fig. 7: VOP detection for Bengali sentence /“Tomake abosi fael gulo muche
felte hobe”/ uttered in read mode. (a) Speech waveform with actual VOPs,
(b) Located VOPs using COMB-ESM method, (c) Located VOPs using SE-
GCI method, (d) Detected VOPs using the proposed method. Actual phone
boundaries are marked with the red line and detected phone boundaries are
marked with the black line.

utterances from each mode are selected for evaluating the performance of the
proposed and existing methods.

Mostly, VOP detection methods are studied for read mode of speech [6,
8,10, 12-14]. However, speech can be broadly divided into two modes, such
as read and conversation. The acoustic and linguistic characteristics of these
modes are very different. As conversation speech is a type of spontaneous and
unconstrained communication between two or more than two people. However,
the read speech includes planning before reading in constrained conditions such
as news reading. The conversation mode includes higher variations in activity
of vocal folds than the read mode. Due to the aforementioned variations, read,
and conversation modes are examined in this work for evaluating the accuracy
of VOP detection methods.

Table 4 demonstrates the performance of VOPs detected in read and con-
versation modes of Bengali speech using the existing and proposed methods.
The first column shows the modes of speech considered for detecting VOPs.
The second column signifies various methods used in the analysis of VOP
detection. Third, to sixth columns represent the IR (%) within the given de-
viations (10 to 40 ms). Seventh and eighth columns are specifying the average
deviation and spurious rates, respectively.
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Fig. 8: VOP detection for Bengali sentence /“Tomake abosi fael gulo muche
felte hobe”/ uttered in conversation mode. (a) Speech waveform with actual
VOPs, (b) Located VOPs using COMB-ESM method, (c¢) Located VOPs using
SE-GCI method, (d) Detected VOPs using the proposed method. Actual phone
boundaries are marked with the red line and detected phone boundaries are
marked with the black line.

Table 4: Performance of VOP detection using COMB-ESM, SE-GCI, and pro-
posed methods on read and conversation (Conv) modes of Bengali speech
corpora.

Speech | VOP VOPs Detected Average Spurious
Mode Detection within ms (%) Deviation VOPs
Method 10 20 30 40 (» ms) (%)
COMB-ESM | 44 63 78 87 20 8
Read SE-GCI 59 70 82 89 14 5
Proposed 75 81 88 89 13 4
COMB-ESM | 40 46 61 73 21 15
Conv SE-GCI 45 58 72 78 19 13
Proposed 72 79 83 8 15 7

It is noticed from Table 4 that the performance of detected VOPs is higher
under read mode compared to conversation mode. In conversation mode, per-
centage of detected VOPs is reduced by 14%, 11% and 4% (within 40 ms de-
viation) as compared to read mode using COMB-ESM, SE-GCI and proposed
method, respectively. It is important to note that the performance reduction
in conversation mode is minimum for the proposed method than the existing
methods. Hence, this result states that the proposed method is least influenced
by the speech mode discriminative characteristics. This analysis can be visu-
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alized in Figures 7 and 8 where, a Bengali sentence /“Tomake abosi fael gulo
muche felte hobe”/ is spoken in read and conversation modes, respectively.
For both the modes, the same female speaker has uttered the given sentence.
The speech recorded in conversation mode includes fear expression. However,
uttered speech in read mode contains a neutral expression. Here, Figures 7(a)
and 8(a) show the speech waveform with actual VOPs in read and conversa-
tion modes, respectively. The detected VOPs using COMB-ESM method in
read and conversation modes are respectively depicted in Figures 7(b) and
8(b). Figures 7(c) and 8(c) show the detected VOPs using SE-GCI method in
read and conversation modes, respectively. Figures 7(d) and 8(d) represent the
identified VOPs using the proposed method in read and conversation modes,
respectively. It is observed from the Figures 7 and 8, the energy variation is
highly dynamic in conversation mode than the read mode. This observation is
justified intuitively by analyzing the Bengali sentences in given modes. Further,
it is claimed that the spectral energy is significantly varying in conversation
mode than the read mode due to the presence of emotions. The involvement
of emotions leads to a small percentage of clean speech in conversation mode
than the read mode of speech. Therefore, the percentage of detected VOPs
are improved in read mode than the conversation mode. In addition to that,
while expressing emotions, some voiced consonants are also got emphasized
in conversation mode, which results in spurious VOPs. It is observed that the
duration of vowels is smaller in conversation mode as compared to read mode.
This is the reason for missing VOPs in conversation mode. The paralinguistic
aspects of the speech, such as gasp, sigh, and mhm are more often present in
conversation speech than the read speech. This resulted in spurious detection
of VOPs in conversation mode. For all these reasons, the overall performance
of VOP detection methods is reduced in conversation mode as compared to
read mode.

It can be noted from Table 4 that proposed method is performing better
than the existing methods for spotting VOPs in case of read and conversa-
tion modes. In read mode, the proposed method is detecting about 17% more
VOPs under 10-20 ms deviation as compared to COMB-ESM and SE-GCI.
Similarly, in conversation mode, the proposed method is extracting almost
35% more VOPs within 10-20 ms deviation than the COMB-ESM and SE-
GCI. The complete result represents that the performance of the proposed
method is relatively similar for read and conversation speech. The instants
of VOPs represent sharp energy transitions in both read and conversation
speech. The ability of CWT to confine these sharp energy transitions, help
in accurately detecting VOPs even in the presence of conversation speech.
Hence, the proposed method is providing better identification rate for both
the conversation and read modes of speech. Further, it can be noticed that
the proposed method has a significant reduction in the average deviation and
spurious rates. Percentage of spurious VOPs is reduced around 4% and 8%
in the proposed method as compared to COMB-ESM for read and conver-
sation modes, respectively. Similarly, the percentage of spurious VOPs using
the proposed method as compared to SE-GCI is reduced around 1% and 6%
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in read and conversation modes, respectively. This is because, at first step in
the proposed method, AAM of mean-signal obtained from CWT coefficients is
enhancing the voiced region and suppressing the unvoiced region of speech. At
second step, the detected VOPs are corrected using phone boundaries derived
from STM contour. The use of STM in proposed method helps in removing
the spurious VOPs as well as in reducing the deviation between actual and
predicted VOPs. The overall result indicates that combining CWT and STM
methods into a single framework can accurately detect the VOPs present in a
speech utterance spoken in any mode.

5 Conclusion

In this work, a novel method is proposed for accurate VOP detection. The
proposed method consists of two-stages. At the first stage, VOPs are detected
by using the AAM of mean-signal derived from continuous wavelet transform
(CWT) coefficients. At the second stage, the evidence of identified VOPs is cor-
rected with the presence of the nearest phone boundary detected using spectral
transition measure (STM) method. In the proposed method, CWT and STM
are utilized to obtain the sharp energy transitions around the VOPs. VOP
detection experiments are carried out with TIMIT corpus (read speech) and
Bengali corpus (read and conversation speech). Performance of the proposed
approach is compared with two standard methods: COMB-ESM and SE-GCI.
The proposed method was demonstrated to be significantly better in elimi-
nating spurious VOPs and for accurately detecting the VOPs within 10 ms
deviation as compared to COMB-ESM and SE-GCI methods. The efficiency
of the proposed method is demonstrated by detecting VOPs in two acousti-
cally and linguistically different speech modes such as read and conversation
modes. The results achieved for read and conversation modes signify that the
performance of the proposed method is insignificantly affected by the acoustic
variation among the modes and achieved almost similar performance for both
the modes. As the proposed approach demonstrates accurate computation of
VOP locations in a speech signal, this can be utilized for consonant-vowel
recognition, speech rate modification, voiced-unvoiced classification, and so
on. Further, the robustness of the proposed method can be explored for noisy
speech corpora. In this work, we have explored two broad modes of speech
for examining the significance of the proposed method; one can explore other
emotional modes of speech like anger, happy, sad, etc. The proposed method
is explored for VOP detection and in future, it may be examined for detecting
the vowel end points (VEPs) in read and conversation modes.
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