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Abstract
Different respiratory infections cause abnormal symptoms in lung parenchyma that show in chest computed tomography. 
Since December 2019, the SARS-COV-2 virus, which is the causative agent of COVID-19, has invaded the world causing 
high numbers of infections and deaths. The infection with SARS-COV-2 virus shows an abnormality in lung parenchyma 
that can be effectively detected using Computed Tomography (CT) imaging. In this paper, a novel computer aided framework 
(COV-CAF) is proposed for classifying the severity degree of the infection from 3D Chest Volumes. COV-CAF fuses tradi-
tional and deep learning approaches. The proposed COV-CAF consists of two phases: the preparatory phase and the feature 
analysis and classification phase. The preparatory phase handles 3D-CT volumes and presents an effective cut choice strategy 
for choosing informative CT slices. The feature analysis and classification phase incorporate fuzzy clustering for automatic 
Region of Interest (RoI) segmentation and feature fusion. In feature fusion, automatic features are extracted from a newly 
introduced Convolution Neural Network (Norm-VGG16) and are fused with spatial hand-crafted features extracted from seg-
mented RoI. Experiments are conducted on MosMedData: Chest CT Scans with COVID-19 Related Findings with COVID-19 
severity classes and SARS-COV-2 CT-Scan benchmark datasets. The proposed COV-CAF achieved remarkable results on 
both datasets. On MosMedData dataset, it achieved an overall accuracy of 97.76% and average sensitivity of 96.73%, while 
on SARS-COV-2 CT-Scan dataset it achieves an overall accuracy and sensitivity 97.59% and 98.41% respectively.
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1 Introduction

In December 2019, a novel disease related to coronavirus 
family spread between several people in Wuhan, in China’s 
Hubei Province (Chen et al. 2020). It had several clinical 
manifestations such as fever, cough, and dyspnea and affects 
the lung causing pneumonia (Chung et al. 2020). The lung 
becomes filled with fluid, inflamed and multiple plaque 

shadows and interstitial changes occur leading to Ground 
Glass Opacities (GGO) (Ardakani et al. 2020; Chen et al. 
2020). In severe cases, lung consolidations can occur pre-
senting a phenomenon called “white lung” (Chen et al. 
2020). In March 2020, the WHO declared COVID-19, 
caused by Severe Acute Respiratory Syndrome Coronavirus 
2 (SARS-CoV-2), to be a pandemic and a public health emer-
gency of international concern. By November 7th, 2020, the 
epidemic spread to more than 200 countries with more than 
49 million individuals contracted the virus worldwide and 
more than 1,200,000 reported deaths (WorldOmeter). There 
are four common methods to diagnose COVID-19 which 
are Reverse Transcription Polymerase Chain Reaction (RT-
PCR), Computed Tomography (CT), X-ray and C-Reactive 
Protein Level (CPR) blood test (Fan et al. 2020). CT can 
play an important role in the early detection and manage-
ment of COVID-19 pneumonia (Hani et al. 2020). It is more 
sensitive than RT-PCR and showed suggestive abnormalities 
even when the viral load is insufficient causing RT-PCR to 
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produce falsely negative results (Hani et al. 2020; Long et al. 
2020). It is more accurate than blood tests because some of 
the cases that tested by CPR blood test were tested twice 
as negative while the first CT test diagnosed these cases as 
positive (Radiopaedia). Moreover, the accuracies of CT were 
shown to be higher than that of X-rays as in early stages of 
COVID-19, a chest X-ray may be identified as normal, while 
CT conveys early signs of the disease (Rony Kampalath; Zu 
et al. 2020). In other cases of severe COVID-19, their X-ray 
findings may resemble that of pneumonia or acute respira-
tory distress syndrome (ARDS) (Rony Kampalath; Zu et al. 
2020). Thus, no confident diagnosis of COVID-19 disease 
is possible based on chest X-ray alone (Rony Kampalath; Zu 
et al. 2020). In CT, advert symptoms of COVID-19 can be 
seen, which aids more accurate timely diagnosis compared 
to X-ray (Rony Kampalath; Zu et al. 2020). Timely diag-
nosis can lead to better prognosis, especially if the severity 
of the infection could be assessed on a multilevel scale. A 
five-level scale was introduced (Chen et al. 2020; Hani et al. 
2020) (normal, early, moderate, advanced, severe) accord-
ing to percentage of GGO and consolidation in lung paren-
chyma to help identify the risk level. Due to the increase of 
the COVID-19 cases worldwide, the medical system suffers 
from high workloads that can result into inaccurate decisions 
(Doi 2007; Lodwick 1966). A computer-aided diagnostic 
system is needed to support the medical system to detect 
COVID -19 infections and determine the severity degrees 
of these infections (Doi 2007).

In this paper, a hybrid computer-aided framework (COV-
CAF), implementing a modified deep learning architecture, 
is proposed to detect COVID-19 infections and classify the 
severity of the infection based on the percentage of GGO 
and presence of consolidation in lung parenchyma. The 
model is based on fusion of automatically generated fea-
tures from modified deep learning architecture with human 
articulated features.

The contribution of the paper can be summarized as.

• Slice selection mechanism is proposed for selection of 
informative candidate frames from the 3D CT-volumes

• Region of Interest (RoI) segmentation phase using unsu-
pervised clustering is introduced.

• A modified deep learning architecture is proposed that 
achieved an outstanding performance in diagnosing CT 
compared to previously established deep learning archi-
tectures.

• A new robust hybrid machine learning system architec-
ture is compiled (COV-CAF) for accurately diagnosing 
COVID-19 and its severity level. The system is based on 
fusion of the new proposed deep learning architecture 
automatic features with generated human articulated fea-

tures, which noticeably improves the performance of pure 
deep learning architecture.

• The proposed models are validated on two benchmark 
datasets which are MosMedData: chest CT scans with 
COVID-19 related findings dataset (Morozov et al. 2020) 
with multi class classification of degrees of COVID-19 
infections and SARS-COV-2 CT-Scan Dataset (Soares 
et al. 2020) with binary classes for detection of COVID-
19 infections.

The paper is organized as follows: in Sect. 2, an over-
all literature background on using machine learning for 
COVID-19 disease diagnosis based on CT imaging is pre-
sented. Section 3 details the proposed system architecture 
and the implemented modules. In Sect. 4, a full description 
of the datasets used in the conducted experiments is given. 
Section 5 presents the experimental setup for conducting 
the experiments and the results of different experimental 
scenarios are shown and discussed. Finally, conclusions will 
be drawn in Sect. 6.

2  Related work

Automatic screening of COVID-19 through machine learn-
ing and chest scanning is a vital area of research. Chest scans 
directly assess the condition of the lungs (Alafif et al. 2021; 
Kamalov et al. 2021); thus, it can be effectively used for 
disease monitoring and control (Zu et al. 2020). In addi-
tion, machine learning can provide automated preliminary 
screening of COVID-19 saving physicians time and allowing 
them to focus on more critical cases (Doi 2007; Lodwick 
1966). Therefore, a lot of work has been dedicated recently 
to study the effectiveness of applying machine learning on 
chest scanning for COVID-19 diagnosis. In particular, deep 
learning -based systems have received the highest attention.

Jaiswal et al. (2020) applied and compared a range of 
standard deep learning architectures for classifying COVID-
19 infected patients. DenseNet201-based deep transfer learn-
ing was shown to achieve the highest accuracy of 96.25%. 
Ardakani et al. (2020) have extensively evaluated the perfor-
mance of ten DL architectures on CT images to distinguish 
COVID-19 from other atypical viral and pneumonia dis-
eases. The infection area was manually cropped and scaled 
with the aid of a radiologist, then input to the CNN. Transfer 
learning was applied to compensate for the limited dataset 
of size of 1020 slice. The best performance was attained 
by ResNet-101 with COVID-19 sensitivity of 100% and 
specificity of 99.02%. A similar study was conducted by 
Koo et al. (Koo et al. 2018) using various DL architectures 
to diagnose COVID-19. ResNet-50 showed the highest 
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diagnostic performance reaching sensitivity of 99.58% and 
specificity 100.00%, and accuracy 99.87%, followed by 
Xception, Inception-v3, and VGG16. Binary classification of 
positive COVID 19 cases vs normal was performed by Singh 
et al. (2020) CNNs were applied for the classification, where 
the initial parameters of CNN are adjusted using multi objec-
tive differential evolution (MODE). The model achieved a 
sensitivity of 90% given a training to testing percentage as 
9:1. The discussed systems directly applied standard clas-
sification techniques on ready to process 2D-CT slices. Nev-
ertheless, available datasets usually require manipulation of 
3D-CT volumes and/or segmentation for Region of Interest 
(RoI) localization.

Zhang et al. (2020) proposed a new model that starts with 
14-way data augmentation techniques applied on the training 
set. The augmented set was input to a 7-layer CNN network 
with enhanced stochastic max pooling, which was used to 
overcome the limitations of traditional max pooling tech-
niques. The model was used to diagnose positive COVID-
19 CT infections vs normal cases and achieved sensitivity, 
accuracy and specificity of 94.44%, 94.03% and 93.63% 
respectively. Another experiment proposed by Li et  al. 
(2020) that developed COVNet deep neural network frame-
work for extraction of two-dimensional local and 3D global 
representative features. The framework included RoI seg-
mentation using U-Net (Ronneberger et al. 2015) and data 
augmentation before feeding the slices into ResNet-50. The 
achieved sensitivity and specificity for COVID-19 were 90% 
and 96%, respectively. A similar approach was presented by 
Zheng et al. (2020), where a weakly supervised DL tech-
nique was proposed for diagnosis of COVID-19 patients 
using 3D CT scans. Pre-trained U-Net was also applied for 
segmentation of 3D lung images. The segmented regions 
were input to the DL architecture for prediction of infected 
regions. The accuracy obtained from their model was 95.9%. 
Another segmentation approach based on attenuation and 
HU value thresholding is introduced by Bai et al. (2020). In 
some cases, manual correction of the segmentation was per-
formed by a radiologist. Following the segmentation phase, 
EfficientNet B4 was used for separating COVID-19 cases 
from non-COVID or other non- COVID pneumonia. The 
model had higher test accuracy of 96%, sensitivity of 95% 
and specificity of 96% compared to radiologists 85%, 79% 
and 88% respective values. Kang et al. (2020) adopted a 
traditional machine learning approach of features extraction, 
latent multi-view representation and classification. V-Net 
was used for pre-segmentation. The latent representation of 
the features together with Neural Network classifier reached 
the highest sensitivity and specificity of 96.6% and 93.2% 
respectively. A hybrid learning approach was investigated 

by Hasan et al. (2020), where the CT-slices were segmented 
through histogram thresholding and subsequent morpho-
logical operations. They integrated a novel Q-Deformed 
entropy features and DL extracted features. Long Short-
Term Memory neural network was used as the classifier 
attaining 99.68% accuracy. Another COVID-19 model was 
proposed by Wang et al. (2021) to classify COVID-19 CT 
infection by introducing a new (L, 2) transfer feature learn-
ing (L2TFL) that was used to remove the optimal layer of 
pretrained CNNs before testing. A new selection algorithm 
was proposed to choose the best two retrained models to 
be fused using a deep CCT fusion discriminant correlation 
analysis (DCFDCA) method. The used fusion method got 
a better result compared to traditional fusion methods. The 
final model named CCSHNET achieved a micro-averaged 
F1 score of 97.04%.

All of the previously mentioned studies determine 
whether the CT scans present a negative or a positive case 
of COVID-19 or differentiate it from community acquired 
pneumonia. A step further, that is well needed, is to deter-
mine the severity of the infection and the degree of lung 
involvement. Hence, enable better support to the more seri-
ous cases.

Gozes et al. (2020) attempted to determine the severity 
of the infection using an off the shelf system to localize and 
provide measurements for nodules and opacities. The sys-
tem was able to trace the changes in nodules and opacities 
size over time. However, the system was not shown to auto-
matically classify patients based on severity level, which 
is a needed capability. In the work of Wang et al. (2020), 
a hazard value was predicted for each patient to indicate 
whether he/she was high or low risk. The hazard score was 
calculated given three prognostic features fed into Cox Haz-
ard Proportional model.

Despite the work of Gozes et al. (2020) and Wang et al. 
(2020), they did not automatically detect severity levels 
direct from the CT scans. Thus, the automated stratifica-
tion of COVID-19 severity remained under-studied, which 
mandates directing more efforts into this area of research.

3  Methods

In this section, COV-CAF a robust COVID-19 Integrative 
Diagnostic and severity assessment system architecture is 
proposed to detect COVID-19 infections and classify the 
severity of the infection. The system consists of two main 
phases which are: the preparatory phase and the feature 
analysis and classification phase. In the preparatory phase, 
data preprocessing and slice selection are performed to 
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handle the characteristics of different datasets, leading to 
the enhancement of image properties and improvement of 
the dependability of the dataset. The classification phase 
incorporates RoI segmentation, multi-view feature extrac-
tion and classification, which are responsible for produc-
ing an effective accurate diagnosis and severity assessment. 
RoI segmentation is performed using an unsupervised fuzzy 
clustering technique. Feature extraction is done through a 
hybrid technique which fuses the automatic features gener-
ated from a modified variant of an existing deep learning 
architecture named Norm-VGG16 (Ibrahim et al. 2020) and 
spatial features that are generated from the segmented RoI. 
The proposed system architecture is shown in Fig. 1. An 
illustration of each phase is presented followed by a descrip-
tion of each phase.

3.1  Preparatory phase

In this phase, a range of preprocessing steps are applied on 
the datasets to increase the system robustness and to limit 
the processing system requirements. This phase introduces 
two optional steps, which are Data preprocessing and Slice 
selection, that may be applied both or even none of them 
according to the nature of data used.

3.1.1  Data preprocessing

In case of 3D-CT volumes, the preparatory phase starts by 
converting the 3D-CT volumes to 2D-slices by using “med-
2image” library in python 3.7. The dataset volumes contain 
only axial view for lung as shown in Fig. 2 and all the 2D 
slices of each patient are saved in Joint Photographic Experts 
Group (jpeg) format.

Fig. 1  The proposed COV-CAF architecture

Fig. 2  2D-CT axial view
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3.1.2  Slice selection

Converting 3D-CT Volumes to 2D slices generates open and 
closed lung slices as shown in Fig. 3. Open lung slices refer 
to slices with lung parenchyma, while closed lung slices 
contain mainly bones. The reason of conversion to 2D slices 
is to efficiently select the correct candidate slices with infec-
tions from all slices in 3D image sequence (Hamadi and 
Yagoub 2018; Rahimzadeh et al. 2020). Slice selection is 
used to select the informative slices (open lung slices) and 
reject the remaining slices, which shall positively affect 
training time, model accuracy and precision to generate an 
efficient classification model (Hamadi and Yagoub 2018; 
Rahimzadeh et al. 2020). An automatic slice selection tech-
nique is needed to speed up slice selection stage to save a lot 
of time and effort in comparison to manually selecting the 
desired open lung slices based on medical expert decisions 
(Rahimzadeh et al. 2020).

Automated slice selection is proposed to separate open 
lung slices from closed lung slices. In the slice selection 
process, Histogram of Oriented Gradient features (HOG) 
descriptors are extracted from the CT images. Then, a 
subset of 2000 images of size 180 × 180 equally divided 
between open lung slices and closed lung slices is labeled. 
The labeled images are used to train SVM classifier. The 
remaining images are labeled using the trained model 

accordingly. The images classified as open lung slices are 
selected.

HOG descriptors are generated by normalizing colors 
then the image is divided into blocks. Each block is divided 
into smaller units called cells. Each cell includes number 
of pixel intensities. First, the gradient magnitude and direc-
tion of each cell’s pixel intensities is calculated. If (x, y) is 
assumed as a pixel intensity, then gradient magnitude is cal-
culated from Eq. (1) and gradient angle is calculated using 
Eq. (2) (Dalal and Triggs 2005).

After calculating magnitude and angle, the HOG is meas-
ured for each cell by calculating the histogram. Q bins for 
angles are selected with unsigned orientation angles between 
0 and 180. Normalization is then applied, since different 
images can have different contrasts (Srinivas et al. 2016). 
The pipeline of HOG can be shown in Fig. 4. In our imple-
mentation, a [4 × 4] cell size, [2 × 2] cells per block and 9 
orientation histogram bins.

After generating HOG descriptors for the slice set, the 
trained Support Vector Machine (SVM) classifier is used 

(1)G(x, y) =

√
Gx(x, y)

2 + Gy(x, y)
2

(2)�(x, y) = arctan

(
Gy(x, y)

Gx(x, y)

)

Fig. 3  Open lung slices vs closed lung slices
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to differentiate the opened lung slices from the closed lung 
slices. Moreover, sample output slices are inspected and 
verified by a medical expert to ensure opened lung slices 
are correctly separated from closed ones.

3.2  Feature analysis and classification phase

3.2.1  Feature analysis and classification

Automatic segmentation of medical image is considered 
the most important process for RoI extraction (Hawas et al. 
2019; Sengur et al. 2019). It divides images into areas 
based on a specified description, such as segmenting body 
tissues, border detection, tumor segmentation and mass 
detection (Hawas et al. 2019; Sengur et al. 2019). Most 
datasets do not have ground truth masks for lung paren-
chyma because creating masks requires intensive work 
from physicians. So, a common approach is to resort to 
unsupervised segmentation (Hasan et al. 2020; Wu et al. 
2020).

Unsupervised clustering-based segmentation is proposed 
for lung parenchyma segmentation in COV-CAF to eliminate 
the need for exhaustive manual annotation. In this stage, 
automatic unsupervised segmentation is based on cluster-
ing approach. Fuzzy C-means (FCM) and K-means cluster-
ing algorithms are applied and the appropriate clustering 

approach is chosen based on the clustering validity meas-
ures, namely Davis-Bouldin index, Silhouette Index and 
Dunn Index. FCM algorithm (Kang et  al. 2009) helps 
identify the boundaries of lung parenchyma from the sur-
rounding thoracic tissue in 2D-CT axial view slices. Hence, 
FCM is more likely to be used in this stage because of its 
known accurate RoI segmentation of irregular and fuzzy 
borders compared to different other techniques as K-means 
(Kang et al. 2009; Wiharto and Suryani 2020). Therefore, 
the FCM algorithm is presented in Algorithm 1. The algo-
rithm is based on the minimization of the objective function 
shown in Eq. (3) where D is the number of data points, N 
is the number of clusters, m is fuzzy partition matrix expo-
nent for controlling the degree of fuzzy overlap,  xi is the 
ith datapoint,  cj is the center of the jth cluster and and μij is 
the degree of membership of  xi (the sum of all membership 
values for all the clusters are 1) (Bezdek et al. 1984)

The whole segmentation process is described in 
Algorithm 2 which starts by selecting the best number 
of clusters (k) then image enhancement is applied. The 
best number of clusters is determined experimentally by 
applying a set of clustering quality measures which are 
Elbow method, Davis-Bouldin index, Silhouette Index 
and Dunn Index. Several number of clusters (k) are 
attempted and the number of cluster (k) with the best 
corresponding quality measures is selected for mask gen-
eration and segmentation. The used mask for Image (I) 
is the mask generated from the highest centroid value, 
which succeeds in identifying the boundaries of lung 
parenchyma correctly  (MC). Samples of the generated 
masks are shown in Figs. 5 and 6. After that, the centroid 
mask corresponding to each image is inversed producing 
 MI and background is subtracted to generate  MB image. 
The inversed mask with subtracted background  (MB) is 
preprocessed by a set of morphological operations filtered 
by different filtration masks giving intermediate images 
 MD and  MF respectively. Finally, the small, connected 
objects (due to deficiency of segmentation) are removed 
creating the final mask M. After generating the mask for 
all images in the dataset, the mask is multiplied by its 
corresponding image and the RoI is segmented. Samples 
of inverse mask after enhancement and segmented RoI is 
shown in Figs. 5 and 6.

(3)Jm =

D∑
i=1

N∑
j=1

�m
ij
||||xi − cj

||| |
2Fig. 4  Histogram of oriented gradients (HOG) descriptor pipeline
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Fig. 5  MosMedData: mask generation and RoI segmentation for different dataset samples for different classes

Fig. 6  SARS-COV-2: mask generation and RoI segmentation for different dataset samples for different classes
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Fig. 7  Modified NormVGG16 architecture
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3.2.2  Modified norm‑VGG16 deep learning architecture

Over the years, Deep leaning architectures have progressed 
rapidly. The main advantage of deep learning architecture is 
automatic generation of features without any human inter-
vention. However, one of the common concerns of deep 
learning architectures is the limited interpretability of the 
constructed models (Ibrahim et al. 2020) due to its black 
box nature which may lower the usability of the system by 
medical experts, who are keen on explainable decisions. One 
of the well-known deep learning architectures is the VGGs 
architectures. VGGs (Simonyan and Zisserman 2014) are 
known for their superior performance compared to different 
CNN architectures like AlexNet (Krizhevsky et al. 2017).

A modified version of VGG16 (Simonyan and Zisserman 
2014) is proposed “Norm-VGG16” which is adopted from 
(Ibrahim et al. 2020) due to its accurate results compared to 
other architecture like ResNets, Inceptions and MobileNet 
architectures. Before training the Norm-VGG16, the RoI 
area of lung parenchyma in 2D-CT slice is cropped by apply-
ing a bounding box between  Xinitial to  Xfinal pixels in the 
x-axis and  Yinitial to  Yfinal pixels in the y-axis  ([Xintial,Yinitial] 

to  [Xfinal,Yfinal]). The values of  Xinitial,  Xfinal,  Yinitial and  Yfinal 
are determined experimentally. The cropping of images is 
done to focus on the RoI in the images before passing it to 
the CNN and starting the training process. After image crop-
ping, all images are normalized because images may have 
highly varying pixel range that could cause differences in the 
resultant loss (Ibrahim et al. 2020). The high pixel range will 
always have a large number of votes in updating weights of 
kernels in CNN layers in comparison with low pixel range. 
So, normalization of images decreases the gap and make a 
fair competition between high pixel ranges and low pixel 
ranges (Ibrahim et al. 2020). The structure of the Norm-
VGG16 is modified to have an input of 180 × 180 followed 
by 16 convolution layers and each convolution layer is fol-
lowed by batch normalization layer. Max pooling layers and 
dropout layers are added between convolution blocks and the 
CNN ends with global average pooling layer and categorical 
dense layer with kernel regularizer as shown in Fig. 7.

(a) Convolution layers
  Its main role is automatic feature extraction by pass-

ing different number of kernels (feature maps) on the 
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input image (Srinivas et al. 2016). The kernel weights 
change during the training stage and are settled at the 
end of the training stage to be used in the testing stage. 
In Norm-VGG16, the kernel size is 3 × 3 and stride = 1. 
The number of kernels (feature maps) is different in 
each convolution layer as shown in Fig. 7. The pipeline 
of CNN starts with a convolution layer with 64 feature 
maps (3 × 3 × 64) and the last convolution layer of the 
pipeline has 512 feature maps (3 × 3 × 512).

(b) Sub-sampling (max pooling/global average pooling) 
layers

  Sub-sampling layers produce a down-sampled ver-
sion that is robust against noise and distortion (Srini-
vas et al. 2016). Norm VGG16 uses different types of 
sub-sampling layers which are max pooling layers and 
average pooling layers. The max pooling layers con-
sider the highest activation value of a window of size 
n × n of each feature map (Srinivas et al. 2016). Max 
pooling layers in NormVGG16 have [2 × 2] kernel size. 
The global average pooling layer computes the mean 
value of each feature map and forward it to the SoftMax 
in dense layer. The SoftMax in dense layer takes each 
value and converts it to a probability (with the probabil-
ity of all digits summing to 1.0) (Mohsin and Alzubaidi 
2020).

(c) Batch normalization and dropout layers
  NormVGG16 is a deep CNN which is prone to 

overfitting of training data (Ioffe and Szegedy 2015; 

Srivastava et al. 2014). Batch Normalization layers and 
Dropout layers prevent overfitting of Deep CNNs. In 
Dropout layers, the term “dropout” refers to dropping 
out units (hidden visible) in a neural network. Drop-
ping a unit out means it is temporarily removed from 
the network, along with all its incoming and outgo-
ing connections (Srivastava et al. 2014). The choice 
of which units to drop is random. Each unit is retained 
with a fixed probability p independent of other units 
(Srivastava et al. 2014). Batch Normalization allows 
using higher learning rates and reduces the depend-
ence on initialization. It also acts as a regularizer and 
helps dropout layers in avoiding overfitting (Ioffe and 
Szegedy 2015).

(d) Kernel regulaizers
  Kernel regularizers (L2) is added to the dense layer 

in NormVGG16. Kernel regulaizers is used to decrease 
overfitting by increasing the loss equation during train-
ing phase by a factor as shown in Equation 4 where a 
training function ŷ: f(x) should be first defined as a 
function that maps an input vector x to output ŷ where 
ŷ is predicted value for actual value y. Loss (L) can 
be computed as L((yi), ŷi) = L (f(xi),  yi) (Chris 2020). 
For all input samples  xi …  Xn. The sum of all loss 
functions between each input xi and its corresponding 
output ŷ. The factor of increasing loss is proportional 
to the square of the value of the weight coefficients.

Kernel regulaizers were first added in different layers but 
best performance was attained when it is added to the last 
layer (dense layer).

Over all, the proposed modifications in Norm-VGG16 can 
be summarized as increasing the number of convolution lay-
ers from 13 to 16 layers, addition of batch normalization 
layer after each convolution layer, addition of a dropout layer 
after each max pooling layer and integrating a kernel regu-
larizer to the global average pooling layer. The additional 
added layers (batch normalization and dropout) and kernel 
regularizer plays an important role in opposing overfitting of 
the standard VGG16 network during training process.

3.2.3  Spatial feature extraction and fusion

The benefit of feature fusion is the detection of correlated 
feature values generated by different algorithms (Ross 2009). 
The fusion of features of different properties and families 
creates a compact set of salient features that can improve 
robustness and accuracy of classification model (Ross 2009). 
In this stage, spatial feature descriptors of global and local 

(4)

L
(
f
(
xi
)
, yi

)
=

n∑
i=1

Llosscomponent
(
f
(
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)
, yi

)
+ �

n∑
i=1

w2

i

Fig. 8  DAISY descriptors layers of concentric circles
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features are extracted from CT images and fused with the 
automatic features generated from modified NormVGG16.

After automatic segmentation of lung from CT slices, 
all the segmented images are resized to 64 × 64 to decrease 
as much as possible the size of extracted spatial features 
from the segmented RoI. Two articulated spatial features 
are extracted from the slices which are HOG and DAISY 
descriptors. The HOG feature descriptors were explained in 
detail in Sect. 3.1.2.

The DAISY descriptor is used because it is designed 
for effective dense computation as it is faster than GLOH 
and SIFT feature descriptors (Tola et al. 2010) and can be 
computed effectively unlike SURF (Tola et al. 2010). The 
DAISY feature descriptors generate low dimensional invari-
ant descriptors from local image regions. Eight orientation 
maps, G, are generated for each direction and are computed 
for each image to generate its DAISY descriptors (Tola et al. 
2010). Gaussian kernels of different summation values con-
volve each orientation map several times to obtain convolved 
orientation maps (Tola et al. 2010). If G(u,v) is the image 
gradient at location (u, v) and the  h∑(u, v) is the vector made 
of values at location (u,v) in the orientation maps after con-
volution by gaussian kernels then the standard deviation can 
be calculated as in Eq. (5) (Tola et al. 2010).

where  G1
∑,  G2

∑…GH
∑ denote the Σ-convolved orientation 

maps (Tola et al. 2010). After that a normalization process 
occurs for each histogram independently to correctly repre-
sent the pixels near occlusions. The DAISY descriptors are 
calculated for different layers of concentric circles as shown 
in Fig. 8. The full DAISY descriptors D  (u0,  v0) for location 
 (u0,  v0) is then defined as a concatenation of h vectors at 
different layers of concentric circles as shown in Eq. (6).
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where Q is the number of convolved orientation layers with 
different ∑’s and Ij (u, v, R) is the location with distance R 
from (u,v) in the direction given by j when the directions 
are quantized into N layers of concentric circles as shown 
in Fig. 8.

HOG descriptors are from global features family that 
generates a compact texture features but they are most sen-
sitive to clutter and occlusion (Lisin et al. 2005). On the 
other hand, DAISY descriptors are from local features fam-
ily which generates key descriptors that are calculated in 
multiple interest points of local image and are not sensitive 
to clutter and occlusion (Lisin et al. 2005). The key point of 
extracting both, HOG and DAISY descriptors, is to combine 
different information of different families of features, which 
is expected to improve the results (Lisin et al. 2005).

After extracting spatial features, the 512 features, gener-
ated by the Norm-VGG16 from the global average pooling 
layer shown in Fig. 7, are fused with 8100 HOG descrip-
tors generated for each segmented image and 400 DAISY 
descriptors. After fusion of automatic generated features and 
hand-crafted features, the fused 9012 features are used for 
classification.

3.2.4  Classification

After the spatial features and automatic features are extracted 
and fused, the CT-slices are classified using Linear Support 
Vector Machine (SVM) based on the merged features. SVM 
finds the suitable hyperplane that maximizes the margin 
between classes (Cortes and Vapnik 1995). The SVM clas-
sifier has been chosen due to its robustness because SVM 
is trained by solving a constrained quadratic optimization 
problem (Cortes and Vapnik 1995). This means that each 
SVM parameter has only a unique optimal solution, unlike 
other classifiers, such as standard Neural Networks which 

Table 1  MosMedData: chest CT scans with COVID-19 related find-
ings dataset distribution of 3D-CT volumes studies

CT-0 CT-1 CT-2 CT-3 CT-4 Total

254 684 125 45 2 1110
22.88% 61.62% 11.26% 4.05% 0.18% 100%

Table 2  MosMedData: chest CT scans with COVID-19 related find-
ings dataset distribution of 3D-CT volumes studies after combination 
of CT-3 and CT-4 classes

CT-0 CT-1 CT-2 CT-3–4 Total

254 684 125 47 1110
22.88% 61.62% 11.26% 4.23% 100%
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are trained using backpropagation (Cortes and Vapnik 
1995). Due to the large size of fused features which is equal 
9012 × n, where n is the number of CT slices in dataset, the 
full dataset is too large and can’t fit completely in RAM. 
Incremental learning (Diehl and Cauwenberghs 2003) is 
used, which means dividing the dataset into batches during 

training of SVM, batch by batch is loaded from Hard disk to 
RAM to overcome the limited RAM bandwidth.

4  Materials

In the current study, two benchmark datasets are used in 
experiments of the proposed models. The two datasets are 
MosMedData: Chest CT Scans with COVID-19 Related 
Findings dataset and SARS-COV-2 CT-Scan dataset.

4.1  MosMedData: chest CT scans with COVID‑19 
related findings dataset

The MosMedData dataset (Morozov et al. 2020) was pro-
vided by medical hospitals in Moscow, Russia and col-
lected at Center of Diagnostics and Telemedicine. It com-
prises 1110 3D-CT (saved as NifTi format) lung volumes of 
anonymized human lung computed tomography (CT) scans 
with COVID-19 related findings, as well as without such 
findings. The dataset includes 42% males, 56% females and 
2% others of ages between 18 and 97 years old with median 
of 47 years old. Each 3D-CT NifTi volume corresponds to 
unique patient. The dataset is characterized by the availabil-
ity of labeled different severity levels. The levels indicate 
the impact of COVID-19 infection on lungs. Such charac-
teristic shall aid the precise diagnosis of COVID-19 and 
identification of subjects of high risk that need immediate 
intervention.

The 3D CT-volumes are divided into 5 classes depending 
on the state of the lung tissue which are:

• CT-0: normal lung tissue, no CT-signs of viral pneumo-
nia.

Fig. 9  Slices from 3D volumes of MosMedData dataset classes after merging classes CT-3 and CT-4 to CT-3–4

Table 3  Training dataset class distribution

CT-0 CT-1 CT-2 CT-3–4 Total

5746 14,792 2611 967 24,116
23.83% 61.34% 10.83% 4.01% 100%

Table 4  Testing dataset class distribution

CT-0 CT-1 CT-2 CT-3–4 Total

639 1,644 291 108 2682
23.83% 61.30% 10.85% 4.03% 100%

Table 5  Training Dataset class 
distribution

Training dataset Total

COVID Non-COVID

1126 1106 2232
50.45% 49.55% 100%

Table 6  Testing Dataset class 
distribution

Testing dataset Total

COVID Non-COVID

126 123 249
50.60% 49.40% 100%
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• CT-1: several ground-glass opacifications, involvement 
of lung parenchyma is less than 25%.

• CT-2: ground-glass opacifications, involvement of lung 
parenchyma is between 25 and 50%.

• CT-3: ground-glass opacifications and regions of con-
solidation, involvement of lung parenchyma is between 
50 and 75%.

• CT-4: diffuse ground-glass opacifications and consolida-
tion as well as reticular changes in lungs. Involvement of 
lung parenchyma exceeds 75%.

The distribution of volumes over the severity classes is 
shown in Table 1.

In accordance with clinical experts’ recommendation and 
due to the limited percentage of 3D subjects in CT-4, it is 
combined with the previous class CT-3 creating a composite 
class called (CT-3–4), which denotes the severe cases who 
have ground-glass opacifications and consolidation, involve-
ment of lung parenchyma exceeding 50%. As of this modi-
fication the new distribution of COVID-19 related findings 
severity is shown in Table 2. The four classes CT-0, CT-1, 
CT-2 and CT-3–4 are shown in Fig. 9.

After applying the Preparatory phase modules in Sect. 3, 
the dataset is divided into 90% as training dataset and 10% 
as testing dataset. The distribution of the classes within the 
training dataset is illustrated in Table 3 while the distribution 
of testing dataset is illustrated in Table 4.

4.2  SARS‑COV‑2 CT‑scan dataset

The SARS-COV-2 2D-CT-Scan dataset (Soares et  al. 
2020) consists of 2482 CT scan images. It is divided to 
1252 CT scans that are positive for SARS-CoV-2 infection 

(COVID-19) and 1230 CT scans for normal subjects, non-
infected by COVID-19. The dataset is collected from 120 
real patients in hospitals of Sao Paulo, Brazil, of which 60 
patients are infected by COVID-19 including 32 males and 
28 females, and the other 60 patients are not infected by 
COVID-19, which are 30 males and 30 females. The used 
dataset is publicly available on www. kaggle. com/ plame 
nedua rdo/ sarsc ov2- ctscan- datas et. The dataset is divided 
into 90% as training dataset and 10% as testing dataset. The 
distribution of the classes within the training set is illus-
trated in Table 5 while the distribution of testing dataset is 
illustrated in Table 6. The two classes of the dataset can be 
shown in Fig. 10.

5  Experimental results and discussion

5.1  Experimental environment: tools and setup

Automatic Segmentation is performed using MATLAB 
2019a, while model implementation, training, and testing 
are done using Python language v3.7.6 with Keras package 
(TensorFlow backend). Experiments are conducted on core 
i7, 2.21 GHz processor with 16 GB RAM and Nvidia GTX 
1050Ti with 4 GB RAM. All deep learning architectures are 
trained for 50 epochs from scratch using Adam optimizer 
with starting learning rate of 0.001. Inputs are divided into 
batches of size 32. Validation accuracy and cross-entropy 
loss are monitored for each epoch. In addition, the learning 
rate is reduced by factor of 0.2 for each three epochs without 
improvement in validation loss. The best model is defined as 
having minimum validation loss, then it is stored and applied 
on the testing set.

Fig. 10  Sample slices of SARS-COV-2 2D-CT-scan dataset (COVID and non-COVID)

http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset


5678 M. R. Ibrahim et al.

1 3

5.2  Performance metrics

A set of performance measures is used to evaluate the used 
unsupervised segmentation clustering techniques in terms 
of the segmentation partitions quality. In addition, various 
established metrics are used to contrast the performance of 
the proposed COV-CAF architecture to the state-of-the-art 
models.

5.2.1  Segmentation performance indicators

Different qualitative metrics are used to evaluate the com-
pactness and the degree of cluster separation for different 
unsupervised clustering algorithm to find the best clustering 
technique to be used with the best cluster numbers (Kovács 
et al. 2006; Youssef et al. 2007). After conducting the com-
parative experiments, the elbow method is used to ensures 
the appropriate number of clusters to be used.

(a) Davis-Bouldin Index
  The measure is used to measure the ratio of the sum 

of within-cluster scatter to between-cluster separation. 
For C =  (C1…Ck) be a clustering centroid for a group 
of data objects (D) (Kovács et al. 2006; Youssef et al. 
2007). So, Davis-Bouldin (DB) can be given as Eq. (7).

where  Rij is the similarity index that measures within-
to-between cluster distance ratio an in Eq. (8).

(7)DB =
1

k

k∑
i=1

RiwhereRi = max
j=1…n,i≠j

Rij

(8)Rij =
di + dj

di,j

  The scatter measure for the centroids  ci of the Clus-
ters  Ci can be given as in Eq. (9).

where ||  ci—cj || presents the cluster-to-cluster distance 
between centroids (c) of different clusters. The best 
value of DB is the low value of  Rij which generated 
from low value which represents low scatter value with 
high distance between cluster value (Youssef et al. 
2007).

(b) Silhouette Index
  It measures the average similarity of the objects 

within cluster and their distance to other objects in the 
other cluster (Wang et al. 2017) as shown in Eq. (10).

where a(i) is used to represents the average distance (d) 
of point i with respect to all other points belonging to 
same cluster  Ci (shown in Eq. 11) while b(i) represents 
the average distance (d) of point i with respect to all 
other points in the nearest cluster  Ck (shown in Eq. 12) 
(Wang et al. 2017).

  The calculation of index involves that we choose 
minimum of all the average distance of the point i with 
all the other points that don’t belong to another cluster. 
So, the general formula of Silhouette for Data points 
from 1…N can be written as shown in Eq. 13.

  So, it is concluded that the highest the ratio the better 
the clustering.

(c) Dunn Index
  It determines the minimal ratio between cluster 

diameter and inter cluster distance and is calculated 
for Cluster Set C = (c1…ck) as shown in Eq. (14).

where diam (c) is of cluster c computed as the maxi-
mum inner cluster distance and d(μc,μd), which is the 
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Fig. 11  Confusion matrix



5679Abnormality detection and intelligent severity assessment of human chest computed tomography…

1 3

distance between the centroids of clusters c and d, is 
maximized. So, the compact and well separated dataset 
must be expected to have large distance between clus-
ters and small diameter. It is concluded that the highest 
Dunn index value represents better clustering technique 
and best number of clusters.

(d) Elbow method
  After computing the clustering quality and validity 

measure, the Elbow method is applied to determine 
the best number of centroids for lung segmentation 
(Thorndike 1953). Elbow method is used to ensures 
the best number of clusters centroids to be used (Nan-
jundan et al. 2019; Thorndike 1953).

1. Compute clustering algorithm for different k values 
(1:10).

2. For each k, calculate the total within-cluster sum of 
square (wss).

3. Plot a wss curve by number of clusters k.
4. The location of a bend (knee) in the plot is consid-

ered as an indicator for the suitable clusters’ number.

5.2.2  Classification performance indicators

(a) Confusion matrix
  Confusion Matrix is a summarize table for visual-

izing and describing the performance of model in clas-
sifying a testing set of data as the shown in Figure 11. 
It is a summary of prediction results in a classification 
problem (Ibrahim et al. 2020). In confusion matrix, val-
ues of True Positive (TP), True Negative (TN), False 
Positive (FP) and False Negative (FN) are represented 
by assuming Ci one of the four classes in our dataset.

• TP  (Ci) = All the instance of  Ci, that are classified as 
 Ci.

• TN  (Ci) = All the non-Ci, instances that are not clas-
sified as  Ci.

• FP  (Ci) = All the non-Ci, instances that are classified 
as  Ci.

• FN  (Ci) = All the  Ci instances that are not classified 
as  Ci.

(b) Accuracy (Acc)
  It is calculated by dividing the number of images that 

are correctly labeled by the total number of test images. 
Equation (15) explain class accuracy measurements.

(c) Precision (Prec)
  It is a metric which quantifies the number of positive 

predictions correctly made (Brownlee). Equation 16 
explains single class precision measurements.

(d) Sensitivity (Sens)
  It is a metric which quantifies the number of correct 

positive predictions that could have been made from 
all the positive predictions (Brownlee). Equation (17) 
explains single class sensitivity measurements.

(e) F-measure
  F-Measure is a metric that provides a way to com-

bine both precision and sensitivity in a single metric 
to captures both properties (Brownlee). Equation (18) 
explains single class F-measure.

(15)Accuracy =
TP + TN

TP + TN + FP + FN

(16)Precision =
TP

(TP + FP)

(17)Sensitivity =
TP

(TP + FN)

Table 7  Davis-Bouldin index, 
Silhouette index and Dunn 
index for K-means and FCM for 
different number of clusters

No. of clusters 
(k)

Davis–Bouldin Index Silhouette Index Dunn Index

K-means FCM K-means FCM K-means FCM

2 0.27176 0.27997 0.84657 0.84839 0.39929 0.40432
3 0.17135 0.16057 0.93450 0.93920 0.62890 0.65713
4 0.36474 0.33448 0.87381 0.87908 0.21406 0.21948
5 0.46005 0.40427 0.84385 0.85726 0.16064 0.17965
6 0.47942 0.39610 0.78656 0.83318 0.14337 0.15385
7 0.46085 0.38838 0.77244 0.81777 0.13161 0.16337
8 0.45613 0.39438 0.77421 0.82022 0.12803 0.26181
9 0.45913 0.40567 0.77543 0.82778 0.12015 0.15875
10 0.46786 0.42155 0.78759 0.83192 0.11318 0.17251
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(f) Specificity (Spec)
  It is a metric that quantifies the number of correct 

negative predictions made from all negative predictions 
that could have been made (Brownlee). Equation (19) 
explains single class Specificity.

(18)F − measure =
(2 ∗ Precision ∗ Sensitivity)

(Precision + Sesitivity)

(19)Specificity =
TN

(TN + Fp)

5.3  Experimental scenarios

In this section, the performance of the proposed COV-CAF 
system architecture and Norm-VGG16 is evaluated. Norm-
VGG16 performance is reported as an independent pure DL 
classifier in the following experiments.

First, an ablation study is conducted on MosMedData: 
Chest CT Scans with COVID-19 Related Findings Data-
set to emphasize the effect of each feature category and 
the fusion of features. Moreover, the effectiveness of the 
COV-CAF architecture, its backbone DL network (modified 

Fig. 12  Evaluation curves for different unsupervised clustering techniques. a Davis-Bouldin Index Curve. b Silhouette Index Curve. c Dunn 
Index Curve
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Norm-VGG16) and fused spatial articulated features on 
MosMedData: Chest CT Scans with COVID-19 Related 
Findings Dataset is illustrated against four prominent CNN 
architectures, namely Xception, ResNet-50, MobileNet-
v2 and Inception-v3 applied on the entire CT image. In 
addition, the performance of COV-CAF is compared to 
traditional ML where SVM is applied on the extracted 

hand-crafted features only from the segmented ROI. COV-
CAF performance is contrasted to pure DL and traditional 
ML approaches to elucidate the effect of fusing both meth-
ods. The four CNNs have a common modification of adding 
an input layer of size 180 × 180 and an output layer was 
modified to four neurons representing four classes of Mos-
MedData: Chest CT Scans with COVID-19 Related Findings 

Fig. 13  FCM Elbow method 
using wss curve for optimal 
number of clusters (K)

Table 8  The pure DL 
architectures mean performance 
of five different bootstrapped 
partitions experiment applied 
on the entire MosMedData: 
chest CT scans with COVID-19 
related findings

Models Mean overall 
acc (%)

Mean prec (%) Mean sens (%) Mean 
F-measure 
(%)

Mean spec (%)

The proposed modi-
fied Norm-VGG16

96.64 96.92 93.65 97.2 95.26

Xception 94.89 94.00 90.63 92.58 96.58
ResNet-50 92.80 92.50 88.00 90.03 94.98
MobileNet-v2 92.72 92.77 88.00 89.80 95.80
Inception-v3 90.58 86.89 85.23 85.98 95.63

Fig. 14  Norm-VGG16 learning curves. a Training and testing accuracy curves. b Training and testing loss curves
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Dataset. The first experiment was conducted using Incep-
tion-v3 which is a model developed by google. It is a very 
deep network consists of 48 layers. It starts with 6 convolu-
tion layers and followed by 10 inception blocks. The full 
architecture is described in detail in (Szegedy et al. 2016). 
The Second experiment was conducted using MobileNet-v2 
which is a light-weight network. It has 53 layers which are 
divide to 52 convolution layers and the last is the dense layer. 

The network start with 16 residuals and bottlenecks blocks 
and ends with one convolution layer followed by dense layer 
(Ardakani et al. 2020; Sandler et al. 2018). Third Experi-
ment conducted by using ResNet-50 which is an architec-
ture with 50 convolution layers. The architecture is based on 
residual blocks of two types of residual networks which are 
identity residual networks and shortcut residual networks 
(Soares et al. 2020). The full architecture is explained in 

Table 9  The proposed modified 
Norm-VGG16 performance 
metrics calculated on MosMed 
dataset

Evaluation metric/class Acc (%) Prec (%) Sens (%) F-measure (%) Spec (%)

CT-0 96.08 97.15 96.09 96.62 99.12
CT-1 98.97 96.79 98.97 97.87 94.80
CT-2 91.07 98.88 91.07 94.81 99.87
CT-3–4 90.74 97.03 90.74 93.78 99.88
Macro average 94.22 97.46 94.22 95.77 98.42

Table 10  The proposed COV-
CAF architecture performance 
metrics calculated on MosMed 
dataset

Evaluation metric/class Acc (%) Prec (%) Sens (%) F-measure (%) Spec (%)

CT-0 97.65 96.30 97.65 96.97 98.83
CT-1 98.36 98.36 98.36 98.36 97.40
CT-2 95.53 97.54 95.53 96.52 99.71
CT-3–4 95.37 98.10 95.37 96.72 99.92
Macro average 96.73 97.58 96.73 97.14 98.97

Fig. 15  Confusion Matrices of ablation models applied on MosMed 
dataset. a HOG + SVM model confusion matrix. b DAISY + SVM 
model confusion matrix. c Spatial articulated feature fusion 
(HOG + DAISY) + SVM confusion matrix. d The proposed modified 

Norm-VGG16 confusion matrix. e The proposed modified Norm-
VGG16 + HOG confusion matrix. f The proposed modified Norm-
VGG16 + DAISY confusion matrix. g The proposed COV-CAF 
Model confusion matrix
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(Ibrahim et al. 2020). The last experiment is done with the 
Xception network which has 71 layers. It started by two con-
volution layers followed by depth separable convolution lay-
ers, four convolution layers and dense layer (Ardakani et al. 
2020). The full architecture and specification is explained in 
Chollet (2017). These four CNNs are chosen to implement 
and compare our proposed models because of their different 
depths, subsequent complexities and different theories of 
operations as was explained previously. Moreover, they are 
chosen because of their good results (Ardakani et al. 2020; 
Jaiswal et al. 2020).

Second, the effectiveness of the COV-CAF architecture 
and its backbone DL network (Norm-VGG16) is compared 
to Jaiswal et al. implemented deep learning models (Jaiswal 
et al. 2020) on SARS-COV-2 CT-Scan dataset.

5.4  Segmentation evaluation

Different number of experiments are applied on MosMed-
Data: chest CT scans with COVID-19 Related Findings 
Dataset using different clustering indicators are applied to 
compare between different clustering techniques with vary-
ing number of clusters to determine the best algorithm to 
apply and best cluster number.

First, the comparisons between k-means and FCM clus-
tering are shown in Table 7 and Fig. 12a, which depict that 
FCM always scores the lowest Davis-Bouldin values with 
different number of clusters (from 1 to 10 clusters) compared 
to k-means with the same number of clusters. Moreover, it 
was found that the best cluster number for FCM is (k) is 
three.

Second, it was depicted from Silhouette index results in 
Table 7 and Fig. 12b that the FCM algorithm achieves the 
highest score compared to k-means with different number 
of clusters (from 1 to 10 clusters) which confirms that FCM 
is more suitable for our segmentation with cluster number 
(k) equals to three.

Finally, Table 7 and Fig. 12c provide certainty in choos-
ing the FCM algorithm over the k-means as the highest Dunn 
index’s score achieved by FCM algorithm at number of 
clusters equals three that surpassed k-means with the same 
number of clusters.

Overall, the experimental findings stipulate on the supe-
riority of FCM algorithm compared to k-means in unsuper-
vised segmentation (Kang et al. 2009; Wiharto and Suryani 
2020). In addition, the results in Table 7 show that the best 
number of clusters (k) equals three for both algorithms on 
MosMedData: Chest CT Scans with COVID-19 Related 
Findings Dataset.

Table 11  Comparison between accuracies per class and over all accuracy for each proposed model applied on MosMed dataset for ablation study

Accuracy/class model CT-0 (%) CT-1 (%) CT-2 (%) CT-3–4 (%) Overall (%)

HOG + SVM 54.46 90.21 76.63 82.41 79.90
DAISY + SVM 55.87 91.55 90.03 75.93 82.25
Spatial articulated feature (HOG + DAISY) fusion  + SVM 53.36 95.92 94.85 93.52 85.57
The proposed modified Norm-VGG16 96.08 98.97 91.07 90.74 97.09
The proposed modified Norm-VGG16 + HOG + SVM 97.03 97.81 92.44 92.59 96.83
The proposed modified Norm-VGG16 + DAISY + SVM 96.55 97.93 91.41 90.74 96.01
The proposed COV-CAF model 97.65 98.36 95.53 95.37 97.76

Fig. 16  Confusion matrices of different CNN models applied on MosMed dataset. a Xception model confusion matrix. b ResNet-50 model con-
fusion matrix. c MobileNet-v2 model confusion matrix. d Inception-v3 model confusion matrix
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For more certainty for the best number of clusters cen-
troids, the elbow method is used to ensure the perfect num-
ber of clusters suitable for our experiments and it was found 
that the bend in the curve is at cluster number (k) equals to 
three as shown in Fig. 13.

5.5  Classification results

5.5.1  MosMedData: chest CT scans with COVID‑19 related 
findings dataset

A preliminary experiment is carried out to verify the candi-
dacy of Norm-VGG16 as the backbone (feature extractor) of 
the COV-CAF architecture. The mean performance metrics 
of five different bootstrapped partitions using the described 
DL architectures are shown in Table 8. Bootstrapping is used 
to show the performance stability and robustness across a 
set of different partitions. Overall, Norm-VGG16 achieves 
the best mean performance metrics except for specificity. It 
attained an overall accuracy of 96.64% and macro average 
of precision, sensitivity, specificity and f-measure of 96.92, 
93.65%, 97.2% and 95.26%, respectively. Hence, Norm-
VGG16 is used as the feature extractor within the COV-
CAF architecture.

The Norm-VGG16 learning (training and testing) curves 
of the best model partition are shown in Figure 14. The best 
model achieves a training accuracy of 99.98% and testing 
accuracy of 97.09%. The learning curves manifest that the 

testing accuracies and losses are stabilized around the 25th 
epoch. The gap between the training and testing curves, 
either in accuracy curves or in loss curve, can be due to the 
small amount of testing set compared to training dataset, 
thus a gap in performance might exist. To compensate for 
such possibility, the bootstrapping experiment is conducted 
to provide a robust illustration of the accuracy of the model 
and to ensure that the proposed modified Norm-VGG16 
is not overfitting on one partition of the bootstrapped 
experiments

The remaining experiments are conducted using 90/10 
percentage split. Tables 9 and 10 depict the calculated per-
formance metrics of Norm-VGG16 applied directly on the 
entire CT image and COV-CAF architecture, respectively. 
The results of Norm-VGG16 model and COV-CAF are 
calculated from the best generated confusion matrices in 
Fig. 15f, g, respectively. In Tables 9 and 10, the accuracy, 
precision, sensitivity, f-measure and specificity are calcu-
lated for each class separately and a marco average for each 
performance metric is calculated. The macro average com-
putes the performance metric independently for each class 
and then calculate their average. Tables 9 and 10 reveal that 
the hybrid model surpasses its counterpart Norm-VGG16 
in terms of macro average metrics: accuracy, sensitivity and 
F-measure. with differences of 2.51%, 2.51% and 1.37% 
respectively.

The performance of the proposed COV-CAF model 
and the effect of each feature of extracted features (HOG, 

Table 12  Comparison between 
accuracies per class and over 
all accuracy of different models 
applied on MosMed dataset

Accuracy/class model CT-0 (%) CT-1 (%) CT-2 (%) CT-3–4 (%) Overall (%)

Spatial articulated feature 
(HOG + DAISY) fusion  + SVM

53.36 95.92 94.85 93.52 85.57

Inception-v3 87.79 95.01 80.76 79.63 91.13
MobileNet-v2 89.51 96.53 85.22 84.26 93.14
ResNet-50 89.51 96.53 87.63 82.41 93.33
Xception 92.80 97.38 85.22 89.81 94.67
The proposed modified Norm-VGG16 96.08 98.97 91.07 90.74 97.09
The proposed COV-CAF model 97.65 98.36 95.53 95.37 97.76

Table 13  Comparison between 
macro average precision, 
sensitivity, f-measure and 
specificity for different models 
applied on MosMed dataset

Models Macro average

Prec (%) Sens (%) F-measure (%) Spec (%)

Spatial articulated feature (HOG + DAISY) 
fusion + SVM

73.45 84.41 72.92 95.82

Inception-v3 87.18 85.80 86.45 95.89
Mobilenet-v2 93.17 88.88 90.90 96.48
ResNet-50 92.80 89.02 90.80 96.54
Xception 94.42 91.30 92.78 97.30
The proposed modified Norm-VGG16 97.46 94.22 95.77 98.42
The proposed COV-CAF model 97.58 96.73 97.14 98.97
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DAISY and automatic features of proposed modified Norm-
VGG16) and their different combinations are illustrated 
through an ablation study, where several combinations are 
experimented and contrasted. The confusion matrices for 
different extracted features and fusions are shown in Fig. 15 
which is used in establishing Table 11 for accuracies com-
parison. From Table 11, it can be seen that fusion of the 
extracted spatial articulated features (HOG + DAISY) results 
in a significant increase in detecting the severe COVID-19 
classes by scoring 85.57% which exceeds the accuracies of 
HOG extracted features and DAISY extracted features by 
5.67% and 3.32% respectively. Comparing the accuracies 
of the fused spatial articulated features (HOG + DAISY) to 
the accuracies produced by HOG features, a difference of 
18.22% and 11.11% is found in CT-2 and CT-3–4 severe 
classes accuracies respectively. Also, the fused spatial artic-
ulated features scores higher accuracies compared to DAISY 
extracted features in CT-2 and CT-3–4 severe classes with a 
difference of 4.82% and 17.59% respectively. The proposed 
modified Norm-VGG16 surpasses the spatial articulated 
feature fusion with an increase in CT-0 and CT-1 classes by 
about 40% and 3.05% respectively, while the spatial articu-
lated features fusion produces an increase in the CT-2 and 
CT-3–4 severe infections by 3.78% and 2.78% respectively. 
In terms of the proposed COV-CAF model, it achieves the 
highest accuracies in COVID-19 most severe classes that 
need immediate medical interpretation which are CT-2 and 
CT-3–4 scoring 95.53% and 95.37% respectively as shown 
in Table 11. Only the proposed modified Norm-VGG16 
achieves a slight increase in cases of non-severe infection 
CT-1 class.

The spatial articulated features (HOG + DAISY) fusion 
model, COV-CAF model and its back bone the proposed 
modified Norm-VGG16 model are compared with different 
deep learning architecture with different subsequent com-
plexity which are Xception, Resnet-50, MobileNet-v2 and 
Inception-v3 models. The best confusion matrix for each 
model of the deep learning models on MosMed dataset is 
reported in Fig. 16a–d. The confusion matrices in Fig. 16 are 
used to calculate the performance metrics for each model. 
The best Xception model achieves a testing accuracy of 
94.67%, the best ResNet-50 model achieves a testing accu-
racy of 93.33%, the best MobileNet-v2 model achieves a 

testing accuracy of 93.14% and the best Inception-v3 model 
achieves a testing accuracy of 91.13%.

Table 12 depicts accuracy per class and overall accu-
racy of each of the seven implemented models. It can be 
noticed that COV-CAF and Norm-VGG16 outperform the 
other models. Norm-VGG16 surpasses the best per-class 
and overall accuracies of the four recognized architectures 
with the smallest differences being 3.28%, 1.59%, 3.44%, 
0.93% and 2.42% for classes CT-0, CT-1, CT-2, CT-3–4 and 
overall accuracy, respectively. Despite that traditional ML 
of spatial articulated feature (HOG + DAISY) fusion scores 
the worst CT-0 accuracy across all models, it surpasses the 
standard DL architectures in terms of the critical classes 
(high severity) accuracy which are classes CT-2 and CT 3–4. 
A possible explanation for the variation in performance of 
the spatial articulated features (HOG + DAISY) is that the 
lack of evident textural changes in the soft tissues of CT-0 
and CT-1 cases hinders the extraction of informative fea-
tures for these classes. However, the high concentration of 
GGOs in the high severity classes (CT-2 and CT-3–4) gen-
erates large number of key features that are captured eas-
ily by HOG and DAISY features which are representatives 
of local and global features families respectively (Ahmed 
et al. 2017; Walsh et al. 2019). When compared to the pro-
posed modified Norm-VGG16 deep learning architecture, 
it is found that traditional learning (HOG + DAISY) fusion 
model needs a smaller training dataset. Thus, spatial articu-
lated feature (HOG + DAISY) fusion produces better accu-
racy results from the limited training set of the high severity 
cases (CT-2 and CT-3–4) (Walsh et al. 2019). This finding 
explains the superior performance of COV-CAF model, as 
it combines both features’ categories (automatic deep learn-
ing features + spatial articulated features) resulting in better 
overall performance. The proposed COV-CAF model attains 
the highest per-class accuracies except for CT-1 with a min-
ute difference of 0.61% scored by Norm-VGG16. A remark-
able improvement is reached by COV-CAF architecture 
compared to the four standard DL architectures, especially 
in the highest severity classes of CT-2 and CT-3–4. The 
improvements in CT-2 range from 10.31 to 14.77%, while 
a bigger range exist for CT-3–4 from 5.56 to 15.74%. The 
results elucidate the capability of COV-CAF architecture 
in stratifying the critical minority cases in contrast to the 

Table 14  Comparison between 
proposed models and state-of-
the art models on SARS-COV-2 
Ct-scan dataset

Model Acc (%) Prec (%) Sens (%) F-measure (%) Spec (%)

VGG16 (Jaiswal et al. 2020) 95.45 95.74 95.23 95.49 95.67
Inception ResNet (Jaiswal et al. 2020) 90.90 90.15 92.06 91.09 89.72
ResNet-152V2 (Jaiswal et al. 2020) 94.91 92.92 97.35 95.09 92.43
DenseNet201 (Jaiswal et al. 2020) 96.25 96.29 96.29 96.29 96.21
The proposed modified Norm-VGG16 96.39 96.80 96.03 96.41 96.21
The proposed COV-CAF 97.59 96.88 98.41 97.63 97.82
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pure DL architectures. It also reveals a huge improvement 
over traditional ML in terms of CT-0 accuracy with 44.29% 
increase.

Table 13 shows a comparison between the COV-CAF 
architecture, the modified Norm-VGG16, The spatial 
articulated features (HOG + DAISY) fusion model and the 
implemented standard DL architectures. Similar findings 
to Table 12 show at Table 13, where it depicts the great 
improvement of the COV-CAF architecture relative to the 
rest of models, where COV-CAF achieves the highest pre-
cision, sensitivity, f-measure and specificity. It surpasses 
Norm-VGG16 in macro average sensitivity and F-measure 
by 2.51% and 1.37% respectively. The modified Norm-
VGG16, which comes second after COV-CAF, exceeded the 
results achieved by Xception in terms of precision, sensitiv-
ity, f-measure and specificity by 3.04%, 2.92%, 2.99% and 
1.12% respectively. Moreover, it is noteworthy that modi-
fied NormVGG16 architecture succeeded in attaining such 
significantly higher performance metrics, while maintaining 
much lower network depth and subsequent complexity com-
pared to Xception architecture.

5.5.2  SARS‑COV‑2 CT‑scan dataset

The performance of COV-CAF architecture and the proposed 
modified Norm-VGG16 on SARS-COV-2 CT-Scan Data-
set is compared to the results of the state-of -art of Jaiswal 
et al. (2020), who reported satisfactory results on the dataset. 
Table 14 shows the comparison between Jaiswal et al. (2020) 
implemented models and our models. The results show that 
the modified Norm-VGG16 model matched the results of the 
best model in the work of Jaiswal et al. (2020), DenseNet 
201, with much lower network depth and subsequent com-
plexity. Modified Norm-VGG16 consists of only 16 con-
volution layers, contrasted to the 201 convolution layers of 
Jaiswal et al. (2020) DenseNet201. Moreover, results show 
that COV-CAF got a considerable increase in sensitivity, 
F-measure, specificity than DesnseNet201 (Jaiswal et al. 
2020) by 2.12%, 1.3%, 1.61% and 1.34% respectively. The 
highest improvement is attained in sensitivity of COVID19 
group, which is a crucial measure in assessing the perfor-
mance of the model to be able to correctly identify subjects 
that need immediate medical attention.

6  Conclusion

In this paper, a novel hybrid computer aided diagnostic 
system COV-CAF is introduced. COV-CAF introduces a 
preparatory phase and feature extraction and classification 
phase. The preparatory phase starts with a preprocessing 
module for converting the 3D volumes to 2D slices followed 
by an effective slice selection module to select CT slices 

with COVID-19 symptoms. Automatic DL feature extraction 
is performed by a modified Norm-VGG16 CNN. An unsu-
pervised fuzzy c-means clustering is used to segment the 
RoI (lung parenchyma). Moreover, a feature fusion module 
is introduced where automatic features generated by Norm-
VGG16 is combined with spatial articulated features gener-
ated from RoI segmentation. The remarkable result achieved 
by the proposed COV-CAF model in detecting COVID-19 
infection and classifying the severity degree of infection 
from chest CT slices proves the robustness of the model 
and the importance of feature fusion phase. Our modified 
Norm-VGG16 and hybrid model surpassed traditional ML 
and the four well-known tested pure deep learning architec-
ture named Xception, ResNet-50, MobileNet-v2 and Incep-
tion-v3 on MosMedData dataset. Moreover, our COV-CAF 
surpassed Jaiswal et al. who implemented four deep learning 
models on SARS-COV-2 Ct-Scan dataset.

As for the future work, different unsupervised techniques 
can be tested on different datasets to have a full study on 
the best unsupervised segmentation technique with the best 
number of clusters. Moreover, experimenting with different 
articulated features to be fused to the system to test its effect 
on the model performance.

Overall, the proposed COV-CAF diagnostic framework 
is a robust framework that can aid physicians in stratify-
ing subjects into different risk groups according to their 
COVID-19 CT findings. Moreover, COV-CAF is a reusable 
framework that is expected to achieve competitive results on 
similar problems. It provides effective solutions to different 
common issues involved in CT lung diagnosis, such as slice 
selection, RoI segmentation and multi-view feature analysis.

7  Availability of data and material

MosMedData: Chest CT Scans with COVID-19 Related 
Findings Dataset is available via https:// mosmed. ai/ en/ and 
SARS-COV-2 CT-Scan Dataset is available via www. kaggle. 
com/ plame nedua rdo/ sarsc ov2- ctscan- datas et.

Author contributions Conceptualization, MRI, SMY and KMF; meth-
odology, MRI, SMY and KMF; software, MRI; validation, MRI, SMY 
and KMF; formal analysis, MRI; investigation, MRI; resources, MRI 
and KMF; writing—original draft preparation, MRI; writing—review 
and editing, SMY and KMF; visualization, MRI; supervision, SMY 
and KMF; project administration, SMY and KMF All authors have read 
and agreed to the published version of the manuscript.

Funding This research received no external funding.

Compliance with ethical standards 

Conflict of interest The authors declare no conflict of interest.

https://mosmed.ai/en/
http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset


5687Abnormality detection and intelligent severity assessment of human chest computed tomography…

1 3

Ethics approval Not Applicable Data are obtained from publicly avail-
able datasets https:// mosmed. ai/ en/ & www. kaggle. com/ plame nedua 
rdo/ sarsc ov2- ctscan- datas et.

References

Ahmed KT, Irtaza A, Iqbal MA (2017) Fusion of local and global 
features for effective image extraction. Appl Intell 47:526–543. 
https:// doi. org/ 10. 1007/ s10489- 017- 0916-1

Alafif T, Tehame AM, Bajaba S, Barnawi A, Zia S (2021) Machine and 
deep learning towards COVID-19 diagnosis and treatment: survey, 
challenges, and future directions. Int J Environ Res Public Health. 
https:// doi. org/ 10. 3390/ ijerp h1803 1117

Ardakani AA, Kanafi AR, Acharya UR, Khadem N, Mohammadi A 
(2020) Application of deep learning technique to manage COVID-
19 in routine clinical practice using CT images: results of 10 
convolutional neural networks. Comput Biol Med 121:103795. 
https:// doi. org/ 10. 1016/j. compb iomed. 2020. 103795

Bai HX et al (2020) Artificial intelligence augmentation of radiolo-
gist performance in distinguishing COVID-19 from pneumonia 
of other origin at chest CT. Radiology 296:E156–E165. https:// 
doi. org/ 10. 1148/ radiol. 20202 01491

Bezdek JC, Ehrlich R, Full W (1984) FCM: the fuzzy c-means clus-
tering algorithm. Comput Geosci 10:191–203. https:// doi. org/ 10. 
1016/ 0098- 3004(84) 90020-7

Brownlee J (2020) How to calculate precision, recall, and F-measure 
for imbalanced classification. https:// machi nelea rning maste ry. 
com/ preci sion- recall- and-f- measu re- for- imbal anced- class ifica 
tion/. Accessed 27 Nov 2020

Chen H, Ai L, Lu H, Li H (2020) Clinical and imaging features of 
COVID-19. Radiol Infect Dis 7:43–50. https:// doi. org/ 10. 1016/j. 
jrid. 2020. 04. 003

Chollet F (2017) Xception: deep learning with depthwise separable 
convolutions. In: IEEE conference on computer vision and pattern 
recognition, pp 1800–1807

Chris (2020) What are L1, L2 and elastic net regularization in neural 
networks? https:// www. machi necur ve. com/ index. php/ 2020/ 01/ 21/ 
what- are- l1- l2- and- elast ic- net- regul ariza tion- in- neural- netwo rks/. 
Accessed 15 November, 2020

Chung M et al (2020) CT imaging features of 2019 novel coronavirus 
(2019-nCoV). Radiology 295:202–207. https:// doi. org/ 10. 1148/ 
radiol. 20202 00230

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 
20:273–297. https:// doi. org/ 10. 1007/ BF009 94018

Dalal N, Triggs B (2005) Histograms of oriented gradients for human 
detection. In: 2005 IEEE computer society conference on com-
puter vision and pattern recognition (CVPR’05), 20–25 June 
2005, pp 886–893, vol 881. https:// doi. org/ 10. 1109/ CVPR. 2005. 
177

Diehl C, Cauwenberghs G (2003) SVM incremental learning. Adapt 
Optim. https:// doi. org/ 10. 1109/ IJCNN. 2003. 12239 91

Doi K (2007) Computer-aided diagnosis in medical imaging: historical 
review, current status and future potential. Comput Med Imag-
ing Graph 31:198–211. https:// doi. org/ 10. 1016/j. compm edimag. 
2007. 02. 002

Fan L et al (2020) Progress and prospect on imaging diagnosis of 
COVID-19. Chin J Acad Radiol 3:4–13. https:// doi. org/ 10. 1007/ 
s42058- 020- 00031-5

Gozes O et al (2020) Rapid AI development cycle for the coronavirus 
(COVID-19) pandemic: initial results for automated detection 
and patient monitoring using deep learning CT image analysis. 
abs/2003.05037

Hamadi A, Yagoub DE (2018) ImageCLEF 2018: semantic descriptors 
for tuberculosis CT image classification. In: CLEF, 2018

Hani C, Trieu NH, Saab I, Dangeard S, Bennani S, Chassagnon G, 
Revel MP (2020) COVID-19 pneumonia: a review of typical CT 
findings and differential diagnosis. Diagnos Intervent Imaging 
101:263–268. https:// doi. org/ 10. 1016/j. diii. 2020. 03. 014

Hasan A, Al-Jawad M, Jalab H, Shaiba H, Ibrahim R, Shamasneh A 
(2020) Classification of Covid-19 coronavirus, pneumonia and 
healthy lungs in CT scans using Q-deformed entropy and deep 
learning features. Entropy 22:517. https:// doi. org/ 10. 3390/ e2205 
0517

Hawas AR, Ashour AS, Guo Y (2019) Neutrosophic set in medical 
image clustering. In: Guo Y, Ashour AS (eds) Neutrosophic set 
in medical image analysis. Academic Press, pp 167–187. https:// 
doi. org/ 10. 1016/ B978-0- 12- 818148- 5. 00008-4

Ibrahim M, Fathalla K, Youssef S (2020) HyCAD-OCT: a hybrid com-
puter-aided diagnosis of retinopathy by optical coherence tomog-
raphy integrating machine learning and feature maps localization. 
Appl Sci 10:4716. https:// doi. org/ 10. 3390/ app10 144716

Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep net-
work training by reducing internal covariate shift

Jaiswal A, Gianchandani N, Singh D, Kumar V, Kaur M (2020) Clas-
sification of the COVID-19 infected patients using DenseNet201 
based deep transfer learning Journal of Biomolecular Structure 
and Dynamics:1–8 doi:https:// doi. org/ 10. 1080/ 07391 102. 2020. 
17886 42

Kamalov F, Cherukuri A, Sulieman H, Thabtah F, Hossain MA (2021) 
Machine learning applications for COVID-19: a state-of-the-art 
review

Kang H et al (2020) Diagnosis of coronavirus disease 2019 (COVID-
19) with structured latent multi-view representation learning. 
IEEE Trans Med Imaging 39:2606–2614. https:// doi. org/ 10. 1109/ 
TMI. 2020. 29925 46

Kang J, Min L, Luan Q, Li X, Liu J (2009) Novel modified fuzzy 
c-means algorithm with applications. Digital Signal Process 
19:309–319. https:// doi. org/ 10. 1016/j. dsp. 2007. 11. 005

Koo HJ, Lim S, Choe J, Choi S-H, Sung H, Do K-H (2018) Radio-
graphic and CT features of viral pneumonia. Radiographics 
38:719–739. https:// doi. org/ 10. 1148/ rg. 20181 70048

Kovács F, Legány C, Babos A (2006) Cluster validity measurement 
techniques. In: Proceedings of the 5th WSEAS international con-
ference on artificial intelligence, knowledge engineering and data 
bases

Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classifica-
tion with deep convolutional neural networks. Commun ACM 
60:84–90. https:// doi. org/ 10. 1145/ 30653 86

Li L et al (2020) Using artificial intelligence to detect COVID-19 and 
community-acquired pneumonia based on pulmonary CT: evalu-
ation of the diagnostic accuracy. Radiology 296:E65–E71. https:// 
doi. org/ 10. 1148/ radiol. 20202 00905

Lisin DA, Mattar MA, Blaschko MB, Learned-Miller EG, Benfield 
MC (2005) Combining local and global image features for object 
class recognition. In: 2005 IEEE computer society conference on 
computer vision and pattern recognition (CVPR’05)-Workshops, 
21–23 Sept., pp 47–47. https:// doi. org/ 10. 1109/ CVPR. 2005. 433

Lodwick GS (1966) Computer-aided diagnosis in radiology: a research 
plan. Investig Radiol 1:72–80. https:// doi. org/ 10. 1097/ 00004 424- 
19660 1000- 00032

Long C et al (2020) Diagnosis of the Coronavirus disease (COVID-19): 
rRT-PCR or CT? Eur J Radiol 126:108961–108961. https:// doi. 
org/ 10. 1016/j. ejrad. 2020. 108961

Mohsin Z, Alzubaidi L (2020) Convolutional neural network with 
global average pooling for image classification

Morozov S et al. (2020) MosMedData: chest CT scans with COVID-
19 related findings dataset. https:// doi. org/ 10. 1101/ 2020. 05. 20. 
20100 362

https://mosmed.ai/en/
http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
http://www.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
https://doi.org/10.1007/s10489-017-0916-1
https://doi.org/10.3390/ijerph18031117
https://doi.org/10.1016/j.compbiomed.2020.103795
https://doi.org/10.1148/radiol.2020201491
https://doi.org/10.1148/radiol.2020201491
https://doi.org/10.1016/0098-3004(84)90020-7
https://doi.org/10.1016/0098-3004(84)90020-7
https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalanced-classification/
https://doi.org/10.1016/j.jrid.2020.04.003
https://doi.org/10.1016/j.jrid.2020.04.003
https://www.machinecurve.com/index.php/2020/01/21/what-are-l1-l2-and-elastic-net-regularization-in-neural-networks/
https://www.machinecurve.com/index.php/2020/01/21/what-are-l1-l2-and-elastic-net-regularization-in-neural-networks/
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1007/BF00994018
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/IJCNN.2003.1223991
https://doi.org/10.1016/j.compmedimag.2007.02.002
https://doi.org/10.1016/j.compmedimag.2007.02.002
https://doi.org/10.1007/s42058-020-00031-5
https://doi.org/10.1007/s42058-020-00031-5
https://doi.org/10.1016/j.diii.2020.03.014
https://doi.org/10.3390/e22050517
https://doi.org/10.3390/e22050517
https://doi.org/10.1016/B978-0-12-818148-5.00008-4
https://doi.org/10.1016/B978-0-12-818148-5.00008-4
https://doi.org/10.3390/app10144716
https://doi.org/10.1080/07391102.2020.1788642
https://doi.org/10.1080/07391102.2020.1788642
https://doi.org/10.1109/TMI.2020.2992546
https://doi.org/10.1109/TMI.2020.2992546
https://doi.org/10.1016/j.dsp.2007.11.005
https://doi.org/10.1148/rg.2018170048
https://doi.org/10.1145/3065386
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1148/radiol.2020200905
https://doi.org/10.1109/CVPR.2005.433
https://doi.org/10.1097/00004424-196601000-00032
https://doi.org/10.1097/00004424-196601000-00032
https://doi.org/10.1016/j.ejrad.2020.108961
https://doi.org/10.1016/j.ejrad.2020.108961
https://doi.org/10.1101/2020.05.20.20100362
https://doi.org/10.1101/2020.05.20.20100362


5688 M. R. Ibrahim et al.

1 3

Nanjundan S, Sankaran S, Arjun C, Anand G (2019) Identifying the 
number of clusters for K-Means: a hypersphere density based 
approach

Radiopaedia COVID-19 pneumonia. https:// radio paedia. org/ cases/ 
covid- 19- pneum onia- 45. Accessed November 25, 2020

Rahimzadeh M, Attar A, Sakhaei SM (2020) A fully automated deep 
learning-based network for detecting COVID-19 from a new and 
large lung CT scan dataset. medRxiv:2020.2006.2008.20121541. 
https:// doi. org/ 10. 1101/ 2020. 06. 08. 20121 541

Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional net-
works for biomedical image segmentation. In: Navab N, Horneg-
ger J, Wells WM, Frangi AF (eds) Medical image computing and 
computer-assisted intervention: MICCAI 2015. Springer Interna-
tional Publishing, Cham, pp 234–241

Rony Kampalath M (2020) Chest X-ray and CT Scan for COVID-19. 
https:// www. veryw ellhe alth. com/ medic al- imagi ng- of- covid- 19- 
48011 78# citat ion-1. Accessed 20 Nov 2020

Ross A (2009) Fusion, Feature-Level. In: Li SZ, Jain A (eds) Ency-
clopedia of Biometrics. Springer US, Boston, MA, pp 597–602. 
doi:https:// doi. org/ 10. 1007/ 978-0- 387- 73003-5_ 157

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-CJICCoCV, 
Recognition P (2018) MobileNetV2: inverted residuals and linear 
bottlenecks, pp 4510–4520

Sengur A, Budak U, Akbulut Y, Karabatak M, Tanyildizi E (2019) 
A survey on neutrosophic medical image segmentation. In: Guo 
Y, Ashour AS (eds) Neutrosophic set in medical image analysis. 
Academic Press, pp 145–165. https:// doi. org/ 10. 1016/ B978-0- 12- 
818148- 5. 00007-2

Simonyan K, Zisserman A (2014) Very deep convolutional networks 
for large-scale image recognition. arXiv 14091556

Singh D, Kumar V, Vaishali KM (2020) Classification of COVID-19 
patients from chest CT images using multi-objective differen-
tial evolution-based convolutional neural networks. Eur J Clin 
Microbiol Infect Dis 39:1379–1389. https:// doi. org/ 10. 1007/ 
s10096- 020- 03901-z

Soares E, Angelov P, Biaso S, Higa Froes M, Kanda Abe D 
(2020) SARS-CoV-2 CT-scan dataset: a large dataset of real 
patients CT scans for SARS-CoV-2 identification. medR
xiv:2020.2004.2024.20078584. doi:https:// doi. org/ 10. 1101/ 2020. 
04. 24. 20078 584

Srinivas M, Roy D, Mohan CK (2016) Discriminative feature extrac-
tion from X-ray images using deep convolutional neural networks. 
In: 2016 IEEE international conference on acoustics, speech and 
signal processing (ICASSP), 20–25 March 2016, pp 917–921. 
doi:https:// doi. org/ 10. 1109/ ICASSP. 2016. 74718 09

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R 
(2014) Dropout: a simple way to prevent neural networks from 
overfitting. J Mach Learn Res 15:1929–1958

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna ZJ, Recognition P 
(2016) Rethinking the inception architecture for computer vision 
1:2818–2826

Thorndike RL (1953) Who belongs in the family? Psychometrika 
18:267–276. https:// doi. org/ 10. 1007/ BF022 89263

Tola E, Lepetit V, Fua P (2010) DAISY: an efficient dense descriptor 
applied to wide-baseline stereo. IEEE Trans Pattern Anal Mach 
Intell 32:815–830. https:// doi. org/ 10. 1109/ TPAMI. 2009. 77

Walsh J et al (2019) Deep learning vs. Traditional Computer Vision. 
https:// doi. org/ 10. 1007/ 978-3- 030- 17795-9_ 10

Wang F, Franco-Penya H-H, Kelleher J, Pugh J, Ross R (2017) An 
analysis of the application of simplified Silhouette to the evalua-
tion of k-means. Cluster Validity. https:// doi. org/ 10. 1007/ 978-3- 
319- 62416-7_ 21

Wang S-H, Nayak DR, Guttery DS, Zhang X, Zhang Y-D (2021) 
COVID-19 classification by CCSHNet with deep fusion using 
transfer learning and discriminant correlation analysis. Inf Fusion 
68:131–148. https:// doi. org/ 10. 1016/j. inffus. 2020. 11. 005

Wang S et  al (2020) A fully automatic deep learning system for 
COVID-19 diagnostic and prognostic analysis. Eur Respir J 
1:2000775. https:// doi. org/ 10. 1183/ 13993 003. 00775- 2020

Wiharto W, Suryani E (2020) The comparison of clustering algorithms 
K-means and fuzzy C-means for segmentation retinal blood ves-
sels. Acta Inform Med 28:42–47. https:// doi. org/ 10. 5455/ aim. 
2020. 28. 42- 47

WorldOmeter COVID-19 coronavirus pandemic. https:// www. world 
omete rs. info/ coron avirus/.

Wu X et al (2020) Deep learning-based multi-view fusion model for 
screening 2019 novel coronavirus pneumonia: a multicentre study. 
Eur J Radiol 128:109041. https:// doi. org/ 10. 1016/j. ejrad. 2020. 
109041

Youssef S, Rizk M, El-Sherif M (2007) Dynamically adaptive data 
clustering using intelligent swarm-like agents. Math Comput 
Simul 1:1

Zhang YD, Satapathy SC, Zhu LY, Górriz JM, Wang SH (2020) A 
seven-layer convolutional neural network for chest CT based 
COVID-19 diagnosis using stochastic pooling. IEEE Sens J 1:1–1. 
https:// doi. org/ 10. 1109/ JSEN. 2020. 30258 55

Zheng C et al (2020) Deep learning-based detection for COVID-19 from 
chest CT using weak label. medRxiv:2020.2003.2012.20027185. 
doi:https:// doi. org/ 10. 1101/ 2020. 03. 12. 20027 185

Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ (2020) 
Coronavirus disease 2019 (COVID-19): a perspective from China. 
Radiology 296:E15–E25. https:// doi. org/ 10. 1148/ radiol. 20202 
00490

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://radiopaedia.org/cases/covid-19-pneumonia-45
https://radiopaedia.org/cases/covid-19-pneumonia-45
https://doi.org/10.1101/2020.06.08.20121541
https://www.verywellhealth.com/medical-imaging-of-covid-19-4801178#citation-1
https://www.verywellhealth.com/medical-imaging-of-covid-19-4801178#citation-1
https://doi.org/10.1007/978-0-387-73003-5_157
https://doi.org/10.1016/B978-0-12-818148-5.00007-2
https://doi.org/10.1016/B978-0-12-818148-5.00007-2
https://doi.org/10.1007/s10096-020-03901-z
https://doi.org/10.1007/s10096-020-03901-z
https://doi.org/10.1101/2020.04.24.20078584
https://doi.org/10.1101/2020.04.24.20078584
https://doi.org/10.1109/ICASSP.2016.7471809
https://doi.org/10.1007/BF02289263
https://doi.org/10.1109/TPAMI.2009.77
https://doi.org/10.1007/978-3-030-17795-9_10
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1007/978-3-319-62416-7_21
https://doi.org/10.1016/j.inffus.2020.11.005
https://doi.org/10.1183/13993003.00775-2020
https://doi.org/10.5455/aim.2020.28.42-47
https://doi.org/10.5455/aim.2020.28.42-47
https://www.worldometers.info/coronavirus/
https://www.worldometers.info/coronavirus/
https://doi.org/10.1016/j.ejrad.2020.109041
https://doi.org/10.1016/j.ejrad.2020.109041
https://doi.org/10.1109/JSEN.2020.3025855
https://doi.org/10.1101/2020.03.12.20027185
https://doi.org/10.1148/radiol.2020200490
https://doi.org/10.1148/radiol.2020200490

	Abnormality detection and intelligent severity assessment of human chest computed tomography scans using deep learning: a case study on SARS-COV-2 assessment
	Abstract
	1 Introduction
	2 Related work
	3 Methods
	3.1 Preparatory phase
	3.1.1 Data preprocessing
	3.1.2 Slice selection

	3.2 Feature analysis and classification phase
	3.2.1 Feature analysis and classification
	3.2.2 Modified norm-VGG16 deep learning architecture
	3.2.3 Spatial feature extraction and fusion
	3.2.4 Classification


	4 Materials
	4.1 MosMedData: chest CT scans with COVID-19 related findings dataset
	4.2 SARS-COV-2 CT-scan dataset

	5 Experimental results and discussion
	5.1 Experimental environment: tools and setup
	5.2 Performance metrics
	5.2.1 Segmentation performance indicators
	5.2.2 Classification performance indicators

	5.3 Experimental scenarios
	5.4 Segmentation evaluation
	5.5 Classification results
	5.5.1 MosMedData: chest CT scans with COVID-19 related findings dataset
	5.5.2 SARS-COV-2 CT-scan dataset


	6 Conclusion
	7 Availability of data and material
	References




