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Abstract
In this paper, the Red Deer algorithm (RDA), a recent population-based meta-heuristic algorithm, is thoroughly reviewed. 
The RD algorithm combines the survival of the fittest principle from the evolutionary algorithms and the productivity and 
richness of heuristic search techniques. Different variants and hybrids of this algorithm are presented and investigated. All 
the applications that were solved with this algorithm are presented. It is crucial to analyze the performance of this algorithm, 
therefore, the paper sheds light on the algorithm unique features and weaknesses covering the applications that are primarily 
suitable for it. The conclusions are presented, and further recommendations are suggested based on the review and analysis 
covered. The readers of this paper will have an understanding of the RD algorithm and its variants and, consequently, decide 
how suitable this algorithm is for their own business, research, or industrial applications.

Keywords  Red Deer Algorithm · Meta-heuristics · Evolutionary · Productivity · Exploitation

1  Introduction

The search for optimal solutions is one of the most challeng-
ing topics in Artificial Intelligence (Abualigah et al. 2021). 
Industry, businesses, and all types of service providers are 
keen to find optimal solutions for their processes, maintain-
ing the quality and the high performance of their standards. 
Machine learning, features extraction, regression, and clas-
sification operations are built on optimum parameters selec-
tion (Burke et al. 2013). Recently, hybrid techniques that 
are meta-heuristic-based are showing great success in dif-
ferent applications (Hussain et al. 2019). They are iterative 

techniques with several parameters that can be tuned to fuel 
their search engine and span the search spaces locally, glob-
ally, and collectively (Osman and Laporte 1996).

There are many types of metaheuristic search techniques 
(Blum and Roli 2003): nature/inspired vs. non/nature-
inspired, single vs. various neighborhood structures, and 
memory usage vs. memory-less, single objective vs. multi-
ple objective-based techniques, stochastic vs. deterministic, 
discrete vs. continuous, population-based vs. single point 
search techniques, dynamic vs. static objective functions, 
and so many. Recently, nature-inspired algorithms are clas-
sified into several categories such as evolutionary algorithms 
(EAs), swarm intelligence, physical-based, chemical-based, 
Local Search Algorithms (LSA), and human-based algo-
rithms (Fausto et al. 2020; Meraihi et al. 2020), and many 
other application customized algorithms such as feature 
extraction-GWO (Alomari et al. 2021), COVID 19-optimi-
zation (Dalbah et al. 2021), JAYA-machine learning (Zitar 
et al. 2021), load dispatch-salp swarm (Alkoffash et al. 
2021), and mathematical optimization (Al-Muhammed and 
Zitar 2018). Neural based techniques also are extensively 
used in optimization and machine learning (Ren et al. 2020). 
Other techniques that are norm based such as in Yan et al. 
(2020), where Linear Discriminant Analysis (LDA’s) with 
edge classes that are based on norm maximization is inves-
tigated. It also proved to be an efficient algorithm for clas-
sification and optimizing distances between classes.
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The paper is arranged as follows: the inspiration and the 
description of the RDA is described in Sect. 2, including 
theoretical analysis and mathematical modeling. In Sect. 3, 
all the applications available in literature regarding the RDA 
were presented including all the variants and the hybridisa-
tions used. In Sect. 4, comparative studies are shown cover-
ing comprehensive testing suite of mathematical functions 
for the RDA and a group of the most popular metaheuristic 
algorithms. In Sect. 5, the outcomes of the paper are summa-
rized with recommendations for future work and invitations 
for researchers to invest in this recently proposed algorithm.

2 � Basic concepts of RD algorithm

2.1 �  Inspiration of RD algorithm

The inspiration of this algorithm started by observing the 
mating activities of the red deer species that live in Britain. 
A harem will be formed when a male succeeds in absorbing 
a group of hinds. The strongest male will be the commander 
of the harem. Commanders protect their territories and the 
harem. The roaring is implemented during the mating sea-
son, which is mostly Autumn. Only the strongest male after 
a fierce fight with the other males will be the commander 
of the harem. It is the only one allowed to mate with the 
females. The roaring could be followed by an approacher 
(another male) coming to the roaring male. A fight could be 
ignited, and the winner will take over the harem.

2.2 � Procedural steps of RD algorithm

The RDA, like other meta-heuristics, begins with a random 
population, which is the RDs’ counterpart. The best RDs in 
the population are chosen and dubbed the “male RD”, while 
the remainder is dubbed the “hinds”. First and foremost, 
the male RD must roar to be classified. They are classified 
into two groups based on the strength of a roaring phase 
(i.e., commanders and stags). After then, each harem’s com-
mander and stags fight it out to own their harem. Command-
ers subsequently form the harems. The quantity of hinds in 
harems is proportional to the leaders’ roaring and fighting 
ability. As a result, commanders in harems mate with a large 
number of hinds. The other males (i.e., stags) mate with the 
nearest hind without regard for the harem’s limitations. As 
a result, the RDA’s stages, by mating with nearest hinds, are 
participating in the exploitation and exploration phases. All 
the previous steps are employed in a flowchart and math-
ematical model as shown next.

Figure 1 depicts the RDA’s flowchart (Fathollahi-Fard 
et al. 2021) showing the flow of the RDA steps. The iterative 
behavior of the algorithm is presented in the flowchart. The 
initial and random population provides rich field for initial 

solutions. A random guided selection for the highest roaring 
males is done next. The winner between the commander and 
the stags get to form the harems. Mating with own harem 
and another harem provides a production phase for more 
innovative solutions. The stag is allowed to mate with near-
est hind for more richness and unexpected good solutions.

The steps of the algorithm are mathematically described 
based on the models offered by Fathollahi-Fard et al. (2021). 
The steps are shown briefly since the goal here is to present 
some revisions.

To mathematically model the RDA we start by Eq. (1) in 
which an initial population for the RDs is created:

Then the fitness of every member in the population is calcu-
lated according to Eq. (2):

Male RDs are attempting to boost their grace by roaring in 
this step. As a result, the roaring process may succeed or fail, 
just as it does in nature. Notably, in this algorithm, male RDs 
are the best options. In terms of the solution space, we look 
for the neighbors of the solution. If the objective functions of 
the neighbors are male RD, it is replaced by the preceding if 

(1)RD = X1,X2,X3,… ,XNvar

(2)Value = f (RD) = f (X1,X2,X3,… ,XNvar)

Fig. 1   The flowchart of the RD algorithm (Fathollahi-Fard et al. 2021)
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it is better than the previous male RD. The following infor-
mation is provided to keep males up to speed on their status. 
The following equation is proposed:

UB and LB limit the search space in order to develop a suit-
able male neighborhood solution. They are, respectively, 
the top and lower boundaries of search space. Note that the 
present position of male RD is maleold , and its next position 
is malenew . In terms of randomization; a1, a2, and a3 are 
the three stages of the roaring process in nature derived at 
random from a uniform distribution between zero and one.

The number of male commanders is computed as 
follows:

where NC is the number of commanders that are naturally 
males, � is a random number between 0 and 1, and Nmale 
is the number of total males. It’s worth noting that � is the 
algorithm model’s beginning value. It has a value range of 
zero to one. Finally, the number of stags is estimated using 
the following formula:

The fighting process are modeled by the following two math-
ematical formulas:

The two new solutions developed by the fighting process 
are new1 and new2 . The symbols for commanders and stags, 
respectively, are C and S. UB and LB the set upper limits 
on the feasibility of the new solutions. The search space’s 
upper and lower bounds b1 and b2 are formed as a result of 
the randomization of the fighting process between zero and 
one using a uniform distribution function. Considering four 
options: C, S, new1 and new2 , only the best one in terms of 
the OF will be chosen (see below).

To form harems groups, we split hinds among com-
manders to construct harems, in proportion to:

where Vn is the normalized value of the nth commander’s 
power (i.e., its OF), and vn is the power of the nth commander 
(i.e., its OF). The following equation can be used to calculate 
commanders’ normalized power.

(3)malenew =

{
maleold + a1(UB − LB) ∗ a2 + LB), if a3 ≥ 0.5

maleold − a1((UB − LB) ∗ a2 + LB), if a3 < 0.5 is less than 0

(4)N
C
= round(� .N

male
)

(5)Ns = Nmale − NC

(6)new1 = (C + S)∕2 + b1((UB − LB) ∗ b2 + LB)

(7)new2 = (C + S)∕2 − b1((UB − LB) ∗ b2 + LB)

(8)Vn = vn −max vi

The number of hinds of a harem can be calculated as follows:

where Nhind is the total number of hinds.
This deer mating action is carried out by a commander with 

a percentage of hinds in his harem.

The number of hinds in the nth harem that mate with their 
leader is N.haremmate

n
 . In terms of the solution space, we 

choose N.haremmate
n

 of theN.haremk at random. In general, 
the mating process is described as follows:

We pick a harem at random (call it k) and allow the male 
commander to mate with � percent of the harem’s hinds. 
In fact, in order to expand his area, the commander can 
launch an attack on other harems. Assume � is the algo-
rithm model’s initial parameter value with range of values 
between zero and one. The number of hinds in the harem 
that mate with the commander is calculated using the fol-
lowing formula:

where N.haremmate
k

 is the number of hinds in the kth harem 
that mate with the commander. It’s worth noting that the 
mating procedure is carried out using Eq. (12). The distance 
between a stag and all hinds in J − dimension space should 
be computed as follows:

where di is the distance between the ith hind and a stag. As a 
result, the hind picked is represented by the minimum value 
in this matrix. The mating process begins after a hind is 
chosen. In this calculation, a stag is considered instead of a 
commander.

(9)Pn =
�
�
�
�

Vn
∑ai

i=1
Vi

�
�
�
�

(10)N.haremn = round(Pn ⋅ Nhind)

(11)N.haremmate
n

= round(� ⋅ N.haremn)

(12)offs =
C + Hind

2
+ (UB − LB) x c

(13)N.haremmate
k

= round(� ⋅ N.haremk)

(14)di =

{∑

j�J

(stagj − hindi
j
)2
}1∕2
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3 � Applications of RD algorithms

Authors in Fard and Hajiaghaei-Keshteli (2016) com-
pared the RDA with 12 standard algorithms using a set of 
real-world engineering applications and multi-objective 
optimization problems such as SMSP, TSP, FCTP, and 
VRP. A multi-objective NRP evaluated four assessment 
metrics to analyze Pareto optimal sets. They concluded 
that the RDA was more accessible to tune than other 
algorithms, and the interactions between intensification 
and diversification phases can be easily employed. In 
Fazli et al. (2019) the RDA was used to solve the Coor-
dinated Quay Crane Scheduling and Assignment Problem 
(CQCSAP). The verification was conducted through eight 
numerical instances in small and large sizes. The range of 
the parameters used in the tests was based on Lourenço 
et al. (2003). A comparison was made between RDA and 
Genetic Algorithm (GA). The results in Fazli et al. (2019) 
exhibited the high performance of RDA. In Dey et al. 
(2021), authors proposed Modified Red Deer Algorithm 
(MRDA) to find optimum thresholds of publicly avail-
able grayscale images. The performance of the MRDA 
was compared with RDA and classical Particle Swarm 
Optimization (PSO). Experiments were conducted using 
two publicly accessible real-world benchmark images. The 
results exhibited that MRDA outperformed both RDA and 
PSO. Moreover, in De et al. (2020), MRDA has been com-
pared with RDA and Classical Genetic Algorithm (CGA). 
Experiments in De et al. (2020) were conducted on real-
life gray-scale images. Both the t-test and Friedman Test 
were used to check which algorithm is the best. MRDA 
outperformed both RDA and GA and achieved competitive 
results.Authors in Brammya et al. (2019), introduced a 
meta-heuristic algorithm named DHOA, slightly different 
from RDA. It is based on the hunting behavior of humans 
toward deer. In DHOA, the hunters behave differently 
from DRA, where the two hunters move their best posi-
tions, termed as leader and successor. The experiments on 
DHOA show competitive results compared to other algo-
rithms such as GWO, WOA, FF, PSO, etc. The hybrid 
model referred to Red Deer Adopted Wolf Algorithm 
(RDAWA) was introduced in Alotaibi (2021). The authors 
assess the potential movement of the financial exchange’s 
stock value using the RDAWA. The RDAWA is a hybrid 
optimization model of two standard optimization models: 
RDA and GWO, respectively. The proposed stock market 
prediction model with three phases: feature extraction, 
optimal, feature selection, and prediction. The RDAWA 
model exhibited better results than other FF + Ensemble 
Classifiers and GWOC Ensemble Classifier approaches. 
The authors of Dogani et al. (2020) proposed a hybrid 
meta-heuristic algorithm RDA-SA, which is a combina-
tion of the Red Deer Algorithm) and Simulated Annealing. 

They analyzed the uncertain parameters in the water sup-
ply system remodeling and restoration. They found that the 
RDA-SA algorithm outperformed NSGA-II through differ-
ent criteria and analyses. The red deer algorithm was also 
used to solve the real-world size case of truck schedul-
ing problems in cross-docking with product time window 
(Zhou and Zong 2021). The lower bound of the problem is 
based on both the Lagrangian relaxation problem and the 
NP-hard nature of the truck scheduling problem. A modi-
fied RDA was proposed with a heuristic oscillating local 
search algorithm and adaptive memory programming. 
This modified RDA could overcome the original RDA’s 
inferior capability concerning local search and run time. 
In another application, Sensor nodes in Wireless Sensor 
Networks (WSN) are responsible for collecting the data, 
and an efficient routing protocol is needed for data collec-
tion. An efficient routing protocol must be able to allocate 
resources with a low minimum rate of packet transmission 
loss. In Ambareesh and Madheswari (2021), a Hybrid Red 
Deer Salp Swarm (HRDSS) was proposed for routing in 
WSN. HRDSS is a hybrid of RDA and the salp swarm 
optimization algorithm. The experiments conducted in 
Ambareesh and Madheswari (2021) showed that DRDSS 
exhibited the best optimal routing path in comparison to 
other Routing Protocols. For WSN, RDA was also used 
in Nguyen et al. (2020) for energy-efficient and secure 
clustering-based data transmission in pervasive wireless 
networks. The clustering in WSN was implemented using 
block-chain enabled secure data transmission and the RDA 
(RDAC-BC). The experiments showed that RDAC-BC 
outperformed other algorithms in terms of energy, network 
lifetime, packet delivery ratio (PDR), and throughput.

The cross-docking system is for the purpose of product 
distribution from manufacturers to markets (Berghman et al. 
2015). These products are transferred to the outbound dock 
in order to be loaded into shipping trucks (Fathollahi-Fard 
et al. 2020). Long-term storage is not permitted in cross-
docking (Zuluaga et al. 2017). Additionally, cross-docking 
can remove products’ retrieval costs. Therefore, an efficient 
cross-docking will lead to better distribution systems which 
result in the satisfaction of customers (Boysen and Flied-
ner 2010). Modified Red Deer Algorithm was proposed to 
Solve a Truck Scheduling Problem Considering Time Win-
dows and Deadline for Trucks’ Departure (Fathollahi-Fard 
et al. 2020). The main feature of MRDA is fewer control-
ling parameters needed, and therefore a better designation 
is achieved of search phases to find the global solution. The 
performance of MRDA was compared with four techniques: 
SA, GA, PSO, and ICA, and MRDA outperformed all of 
them. An Improved RDA (IRDA) was used as an Engineer 
design for Direct Current (DC) brushless motor (Fathol-
lahi-Fard et al. 2019). The performance of IRDA was also 
compared through simulation with the other 12 algorithms. 
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IRDA was able to reduce time consumption and provide bet-
ter efficiency compared with different algorithms.

4 � Comparative results and discussions

This section presents comprehensive experiments and analy-
sis for the RD algorithm and compares its results with other 
well-known optimization methods published in the litera-
ture.The details of the tested 10 classical benchmark func-
tions are given in Table 1. This table presents the functions 
equations, specifications, dimension size, and the best fit-
ness values of each problem of the 10 classical benchmark 
functions (Alsalibi et al. 2021; Shehab et al. 2020; Eid et al. 
2021). The given test functions are separated into two main 
sections: (1) Unimodal functions with varying dimensions 
(F1–F7)and (2) Multimodal functions, which have varying 
dimensions (F8–F10). Many previous papers have employed 
these functions to test the effectiveness of different optimiza-
tion methods.

The studied algorithm (i.e., Red Deer Algorithm Fathol-
lahi-Fard et al. 2021) is compared with other recent and 
well-known methods, including:

•	 Whale Optimization Algorithm (WOA) is proposed by 
Mirjalili and Lewis (2016).

•	 Sine Cosine Algorithm (SCA) is proposed by Abualigah 
and Diabat (2021).

•	 Dragonfly Algorithm (DA) is proposed by Mirjalili 
(2016).

•	 Grey Wolf Optimizer (GWO) is proposed by Safaldin 
et al. (2021).

•	 Particle Swarm Optimization (PSO) is proposed by Eber-
hart and Kennedy (1995).

•	 Ant Lion Optimizer (ALO) is proposed by Mirjalili 
(2015).

•	 Marine Predators Algorithm (MPA) is proposed by Al-
Qaness et al. (2020).

•	 Equilibrium Optimizer (EO) is proposed by Faramarzi 
et al. (2020).

•	 Aquila Optimizer (AO) is proposed by Abualigah et al. 
(2021).

•	 Arithmetic Optimization Algorithm (AOA) is proposed 
by Premkumar et al. (2021).

In the experiments listed here, Table 2 represents the 
results of the comparative methods in terms of the worst 
(Max), mean, best (Min), and standard deviation (STD) 
of fitness functions. Moreover, the Friedman ranking test 
(Mack and Skillings 1980) is implemented to rank the 
tested methods according to the obtained results in the 
overall the tested problems. For fairness, all applied opti-
mization methods run using the same environment and 
with the same test conditions. Note that the parameters of 
the tested algorithms are taken from the original papers. 
All algorithms are tested on 30 runs and 500 iterations. It 
is exceptionally challenging for optimization algorithms 
to address numerical functions because of their original 
complex nature. Addressing such problems needs a pre-
cise equilibrium between its exploration and exploitation 
search processes. Table 2 shows the results of the tested 
algorithms to solve 10 benchmark functions when the 
dimension size is fixed to 10. Investigating the results in 
Table 2 explains that the RDA can give very competitive 
outcomes on small dimensional functions, mainly sig-
nificantly improving in F7 and F10 and others. Accord-
ingly, it can be decided that the RDA searches close to the 
optimum solution effectively and comparable to several 
other methods. Based on the Friedman ranking test, RDA 
got the fourth-ranked.According to the obtained results 
summarized in Table 2, RDA can also produce excellent 
results using the fixed-dimension multi-modal functions. 
These results confirm that the studied RDA is competitive 

Table 1   Unimodal and 
multimodal benchmark 
functions

Function Description Dimensions Range f
min

F1 f (x) =
∑n

i=1
x2
i

10, 100 [− 100, 100] 0
F2 f (x) =

∑n

i=0
�xi� +

∏n

i=0
�xi� 10, 100 [− 10, 10] 0

F3 f (x) =
∑d

i=1
(
∑i

j=1
xj)

2 10, 100 [− 100, 100] 0

F4 f (x) = maxi{|xi|, 1 ≤ i ≤ n} 10, 100 [− 100, 100] 0
F5 f (x) =

∑n−1

i=1
[100(x2

i
− xi+1)

2 + (1 − xi)
2] 10, 100 [− 30, 30] 0

F6 f (x) =
∑n

i=1
([xi + 0.5])2 10, 100 [− 100, 100] 0

F7 f (x) =
∑n

i=0
ix4

i
+ random[0, 1) 10, 100 [− 128, 128] 0

F8 f (x) =
∑n

i=1
(−xisin(

√
�xi�)) 10, 100 [− 500, 500] − 418.9829× n

F9 f (x) =
∑n

i=1
[x2

i
− 10cos(2�xi) + 10] 10, 100 [− 5.12, 5.12] 0

F10
f (x) = −20exp(−0.2

�
1

n

∑n

i=1
x2
i
)

−exp(
1

n

∑n

i=1
cos(2�x

i
)) + 20 + e

10, 100 [− 32, 32] 0
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regarding exploration search. RDA method obtained a set 
of good results for solving such problems, compared to 
several new and highly efficient algorithms. This confirms 
the ability of the studied RDA to solve complex problems 
and achieve good results as well.

Figure 2 presents the convergence rate of the RDA and 
the other well-known comparative methods over 500 itera-
tions. The illustrated curves show that the RDA can converge 
quicker and smoother than most of the tested methods, as 
shown in F5 and F6 figures. Besides, most of the analyzed 

Fig. 2   The convergence curves of the tested optimization algorithms using 10 benchmark functions
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optimization methods show stagnation for some of the tested 
functions. Thus, the RDA exceeds the most recently pro-
posed optimization methods (i.e., WOA, SCA, PSO, and 
ALO), in terms of solutions and convergence speed. The 
curves also reveal that the studied RDA has significant 
changes in the first iterations and small changes in the final 
iterations where convergence and stability is expected.

Table 3 presents the results of the tested algorithms on 
four problems (F1–F4) through one second of simulations, 
where the used dimension is 10. We have taken 1 s, which is 
approximately equivalent to 500 repetitions. These observa-
tions are carried out to show the tested methods’ time per-
formance. It is evident from Table 3 that the RDA obtained 
more accurate and reliable results compared to other similar 
methods when the execution is implemented within the same 
time period. The same machine and operating system was 
used in all the simulations.

The limitations of this algorithm stem from its complex-
ity. This is the case with all other meta heuristic techniques 
that are based on evolutionary methods. Moreover, the algo-
rithms that are based on search populations are parallel in 
nature, and applying them on a sequential machine with a 
sequential programming language, as it is the case with most 
of our simulations, adds more limitations on the RDA capa-
bilities to run faster and more efficiently. On the other hand, 
adding local operators to enhance exploitation capabilities, 
may induce more complexity and reduce execution speed. It 
is always the optimum trade off we try to seek between speed 
and accuracy. Optimum tuning the parameters for the algo-
rithm is another challenge. Adaptive operators for tuning 

are beneficial but they add more burden on the complexity 
and speed.

5 � Conclusion and future trends

This paper presented a study for a relatively new algorithm 
called the Red Deer Algorithm (RDA) (first introduced in 
2016). It tackled aspects such as its procedure, applications, 
and optimization results. All the papers that have been pub-
lished until this minute and all presented applications of this 
algorithm are reviewed in this work. These studies focused 
on various topics, showing the ability of the Red Deer Algo-
rithm in solving various types of problems.

The main contribution of this work was to present all 
applications available in the literature until this minute for 
the RDA. Those applications include solutions for engineer-
ing, computer science, and business problems. The paper 
also covered all variants and hybrids presented so far in 
the literature for the RDA. Moreover, deep analyses of the 
algorithm based on optimizing standard benchmark math-
ematical functions of different dimensions and modes were 
conducted. It showed competitive performance for the RDA 
compared to other more famous and well-known optimiza-
tion techniques of different types. The convergence behavior 
of the RDA was presented and its potential for further use in 
different applications was apparent. Section 3 summarized 
the applications and the different variants and hybrids of 
the RDA.

Table 3   The results of the tested algorithms on 4 problems (F1–F4) through 1 second

Function Measure Algorithms

AOA PSO AO SCA MPA GWO WOA RDA

F1 Worst 1.88E−02 2.29E+00 2.71E−02 7.65E+01 6.53E−28 7.63E−06 1.32E+03 2.32E−182
Average 9.85E−03 1.64E+00 1.34E−02 1.91E+01 1.63E−28 1.97E−06 8.45E+02 5.80E−183
Best 1.67E−05 9.76E−01 2.07E−03 4.00E−147 2.84E−196 1.49E−63 3.76E−01 0.00E+00
Rank 4 6 5 7 2 3 8 1

F2 Worst 2.51E−02 4.95E+00 2.50E−59 1.73E+00 2.63E−02 2.27E−04 1.00E+01 1.29E−10
Average 1.73E−02 4.36E+00 6.26E−60 5.22E−01 1.52E−02 7.93E−05 6.40E+00 5.09E−11
Best 1.28E−02 3.69E+00 8.26E−201 9.34E−18 2.75E−03 1.01E−07 4.13E+00 2.12E−42
Rank 5 7 1 6 4 3 8 2

F3 Worst 3.98E−02 7.15E+00 9.07E−08 8.53E+03 2.70E−02 5.45E+03 3.26E+03 2.09E−02
Average 2.24E−02 5.91E+00 2.27E−08 3.98E+03 6.74E−03 4.02E+03 1.97E+03 1.66E−02
Best 1.24E−02 4.52E+00 2.13E−50 9.93E+02 1.65E−14 1.39E+03 6.78E+02 1.39E−02
Rank 4 5 1 7 2 8 6 3

F4 Worst 9.01E−02 1.07E+00 1.10E−34 1.62E+01 8.97E−02 1.42E+01 2.29E+01 3.82E−11
Average 4.18E−02 9.37E−01 2.74E−35 7.73E+00 6.22E−02 6.28E+00 1.74E+01 9.63E−12
Best 6.61E−03 8.14E−01 4.22E−107 1.28E−02 3.78E−02 1.21E+00 1.19E+01 6.70E−33
Rank 3 5 1 7 4 6 8 2

Final ranking 4 6 1 7 3 5 8 1
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Based on the experimentation done in Sect. 4, the RDA 
proved to be competitive to comparative methods when 
applied to optimize different types of benchmark functions. 
Those functions had different modes, with multiple variables 
and many local minima. The standard F test showed that the 
RDA is ranked 4 among the comparative algorithms. Most 
of those algorithms are well-known and frequently used in 
different applications. Most of those algorithms, if not all, are 
metaheuristic-based algorithms that could be swarm intelli-
gence-based, local search-based, physical-based, chemical-
based, human-based, and others. The RDA proved its pres-
ence among them. The RDA, based on its procedure, behavior, 
and simulation results, showed exploration and exploitation 
capabilities.

Future work may include investigating other optimization 
techniques such as rank-constrained spectral clustering with 
flexible embedding framework (Li et al. 2018). In this tech-
nique, irrelevant information and noise are suppressed using a 
flexible embedding scheme used to unravel the intrinsic cluster 
structure. Other techniques (Li et al. 2019), exploit the seman-
tic correlation between the concept and an event in case their 
was inadequacy of information for optimization or learning. 
In Li et al. (2018), the RDA can have interesting application 
in optimizing the affinity weights for solving the problem of 
selecting optimum features for computer vision problems.

The door is wide open for further applications for the algo-
rithm. Starting from mathematical optimization, scheduling, 
all disciplines of engineering search and optimization appli-
cations; discrete or continuous, optimum control, trajectories 
tracking, all recognition problems, applications in business, 
management, operation research, inventory, including machine 
learning, training and learning, optimum features selection, 
computer science problems such as routing, optimum con-
figurations, and the list could be extended more and more. 
The fact that the algorithm population members values could 
be mapped to any domain of continuous or discrete variables 
makes it highly applicable in many fields.

Finally, the RDA is still a a new and rich algorithm to 
explore and study. Many variants, adaptive, and hybridized 
versions of the algorithm yet to be discovered and explore. 
Future work will include improvising variants of this algo-
rithm and applying it to engineering problems in optimiza-
tion and machine learning. As with all other meta-heuristic 
techniques, the RDA needs more theoretical analysis and 
mathematical modeling using suitable stochastic processing 
techniques. It will become imperative to understand the behav-
ior of these algorithms and be able to prove their convergence 
under certain conditions. The RDA is another artifact that 
came as a result of the capabilities of researchers to observe 
God-created behavior and to model it in a manner to serve 
science and human.
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