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Abstract

Autonomous mission capabilities with optimal path are stringent requirements for Unmanned Aerial Vehicle (UAV) naviga-
tion in diverse applications. The proposed research framework is to identify an energy-efficient optimal path to achieve the
designated missions for the navigation of UAVs in various constrained and denser obstacle prone regions. Hence, the present
work is aimed to develop an optimal energy-efficient path planning algorithm through combining well known modified ant
colony optimization algorithm (MACO) and a variant of A*, namely the memory-efficient A* algorithm (MEA*) for avoiding
the obstacles in three dimensional (3D) environment and arrive at an optimal path with minimal energy consumption. The
novelty of the proposed method relies on integrating the above two efficient algorithms to optimize the UAV path planning
task. The basic design of this study is, that by utilizing an improved version of the pheromone strategy in MACO, the local
trap and premature convergence are minimized, and also an optimal path is found by means of reward and penalty mechanism.
The sole notion of integrating the MEA* algorithm arises from the fact that it is essential to overcome the stringent memory
requirement of conventional A* algorithm and to resolve the issue of tracking only the edges of the grids. Combining the
competencies of MACO and MEA*, a hybrid algorithm is proposed to avoid obstacles and find an efficient path. Simulation
studies are performed by varying the number of obstacles in a 3D domain. The real-time flight trials are conducted experi-
mentally using a UAV by implementing the attained optimal path. A comparison of the total energy consumption of UAV
with theoretical analysis is accomplished. The significant finding of this study is that, the MACO-MEA* algorithm achieved
21% less energy consumption and 55% shorter execution time than the MACO-A*. moreover, the path traversed in both
simulation and experimental methods is 99% coherent with each other. it confirms that the developed hybrid MACO-MEA*
energy-efficient algorithm is a viable solution for UAV navigation in 3D obstacles prone regions.

Keywords Path planning - UAV - Modified ant colony - Memory efficient a* - Energy efficient - Autonomous and obstacle
avoidance
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List of symbols

rl;.(t) Modified heuristic function

w; (1) The weight of edge

d;(1) The Manhattan distance

a[.’;“’w(t +1) The updation of pheromone deposition
1 Co-efficient of pheromone intensity

8y [wy(t. (¢ + 1))
6,by(t, (t + 1))]

Rewarding factor
Penalized factor

Nr The number of ants to be rewarded.

Np The number of ants to be penalized.

Ir The path length for rewarding

Ip The path length for penalizing

F(n) Cost function

G(n) Cost from initial to present node

H(n) The heuristic estimation cost from pre-
sent to end node

P, Power consumption during forward
motion

v Induced velocity

v The average ground speed of UAV

§ Pitch angle

T The thrust generated from a motor

m The mass of UAV( including battery)

g The gravitational constant

Ja Drag force

r&q The diameter and number of UAV
rotors

p The density of air

P,(n) Actual power consumption.

N The power efficiency of the UAV

E; The total flying energy

P, Actual power consumption for hovering
of UAV

1 Introduction

Unmanned Aerial Vehicles are becoming popular to carry
more payloads for a wide range of applications and navi-
gate dangerous and hazardous environments. They should
possess good manoeuvrability and flexibility to adapt in
a cluttered environment for effective navigation. In these
circumstances with stringent energy requirements, autono-
mous UAV navigation is a great concern for deploying
UAVs in multifaceted environments and applications
(Aggarwal and Kumar 2020). Very few instances are traf-
fic monitoring, highway infrastructure assessment (Outay
et al. 2020), post-disaster search and rescue operations
(Shakhatreh et al. 2019), spraying the pesticides in the vast
farm fields (Radoglou-Grammatikis et al. 2020), inspection
of mines (Park and Choi 2020) and other long-range sur-
veillance (Valsan et al. 2020) and reconnaissance defence
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missions (Sigala and Langhals 2020). In this regard, multi-
rotor UAVs (MUAV5s) are considered to be the prominent
solutions due to their inherent hovering capabilities, swift
and fast manoeuvring abilities, and nowadays capable of
carrying heavier payloads, including transport of human
beings (Liu et al. 2021). MUAVs of various sizes with
different payload capacities can be effectively deployed
by replacing human beings to perform designated tasks.
Autonomous navigation in an optimal path by avoiding the
obstacles to achieving safe navigation in a 3D environment
is a challenging problem. Optimal path planning plays a
significant role in enhancing the autonomous capabilities
of UAV. During the actual flight conditions of UAV, many
static and dynamic obstacles influence the navigation. An
efficient path planning strategy is much needed to avoid
the obstacles and find the shortest and the safest path to
achieve the desired mission. Many pioneering works dealt
with a 2D environment (Khan et al. 2021a, b) and very
few works focused on path planning in a 3D environment
by avoiding the obstacles (Vashisth et al. 2021; Zhang
et al. 2021). In the event of low-altitude flight of UAVs,
many static obstacles obstruct the UAV and an efficient
path planning algorithm is very much needed. Path plan-
ning aims to find an optimal path and be of a collision-
free path in a dense environment. In order to navigate the
UAVs in the desired trajectory for the specific mission,
optimal decisions have to be taken to reach the destination
in the shortest time. It finds great potential in the delivery
of parcels, medical kits, terrain-following flight and dis-
aster relief activities etc. The other issues pertaining to
these UAVs are suffering for their flight endurance due to
limited battery storage capacity. Hence, energy-efficient
optimal path planning (Monwar et al. 2018; Ahmad et al.
2017; Yacef et al. 2020) is a viable solution to achieve
the designated missions with a given energy constraint.
In order to address these issues, this article focused on
developing an energy-efficient path planning algorithm in
a global and local sense to navigate in a 3D environment
by avoiding the obstacles.

2 State-of-the art

UAV path planning is to find the best possible path in a
cluster environment to fly from the source to destination
without colliding with obstacles in the airspace. It is an envi-
ronment-based modeling process, which should consider
static obstacles in the given airspace and possible dynamic
threats that abruptly intrude the same airspace. In order to
find an optimal path in static and dynamic environments,
efficient path planning algorithms (Shin and Chae 2020;
Qian et al. 2016) is necessary. Many pioneering works on
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path planning and autonomous navigation of ground vehicles
(Lipp and Boyd 2014; Herrmann et al. 2020a, b; Ozatay et al.
2017). They focused on optimising the speed of a vehicle over a
fixed path for minimum time traversal, generating optimal trajec-
tory, and determining optimal energy trajectory. However, for
the case of UAVs, path planning algorithms are classified into
graph-based, population-based evolutionary algorithms, and dis-
tributed approaches. Among these categories, Ant Colony Opti-
mization (ACO) (Dorigo and Stiitzle 2019) and A* algorithms
(Debnath et al. 2021) are widely used for various applications
including UAV path planning. ACO is well utilized because of
the positive feedback mechanism of each and through depositing
pheromones on the visited places and nodes. It is very useful
for other ants to follow the path defined by other ants and find
the destination effortlessly in a short span. ACO has a robust
global searching ability to find an optimal path, perform superior
computing capabilities in a parallel and distributed sense, quick
convergence to the solutions and strong adaptability to the varied
environments (Zheng et al. 2017). Based on these advantages,
ACO has been used for path planning problems in mobile robot
and UAV applications. Howeyver, in order to improve the effi-
ciency of ACO further, modified ACO (MACO) algorithm has
been developed for various applications (Chowdhury et al. 2019;
Ebadinezhad 2020; Hou et al. 2020; Hamad and Hasan 2020).
The main drawbacks of the conventional ACO algorithm are
local trap and poor convergence. It is effectively addressed in
(Wang et al. 2020) by updating heuristic information and ignor-
ing the worst path through implementing the pheromone update
strategy. In this work, a similar strategy is considered for finding
an optimal path in a global sense. In addition, the grid-based
algorithm, namely the A* algorithm, has gained significant
interest in UAV path planning to avoid obstacles efficiently. It
combines Dijkstra’s Algorithm (Lin et al. 2018) competencies
that consider the favoring points near the start point and the
greedy best-first search algorithm that accounts for the point that
is close to the destination (Zammit and Van Kampen 2018). It
is a heuristic search algorithm that computes the cost for each
path and the minimum cost function is a determining factor for
selecting the next node to move forward and reach the destina-
tion point. However, due to its heuristic nature, it may not be
able to find an optimal path efficiently in the sense that it may
not consider a path even though it is short in nature (Noreen
etal. 2019). A* works with respect to tracking the grid cell edges
and may not traverse into the complex environment (Noreen
et al. 2019). The memory requirement to store the earlier visited
nodes is also challenging for intricate surroundings. Hence, in
order to overcome the aforementioned issues, several variants
of A* algorithms have been presented.

The iterative-deepening A* (IDA*) was proposed (Bu
and Korf 2021) to address the vast memory requirements
imposed by the A* algorithm. However, the IDA* was not
performing well in identifying and selecting subsequent pos-
sible nodes. It is used to select the same node multiple times,

making slower performance than A*. In addition, in order
to resolve the issue of following the grid edges of individual
grid cells to determine an optimal path, a Theta* (Daniel
et al. 2010; Wu et al. 2020) algorithm was proposed. It was
found that Theta* performance is much slower than A* in
finding an optimal path. However, another variant of A*,
namely Field D* (FD*), was formulated (Ferguson et al.
2006) to avoid following the edges of the grid cell. It was
observed that FD* made more unnecessary turns than the
A* algorithm (Ferguson et al. 2006; Warren 1993; Botea
et al. 2004). Aghababaie et al. (2017) proposed Convolu-
tional Neural Network (CNN) with non-linear multi-layer
mapping using super-resolution techniques to improve the
image quality for superior UAV navigation. The simulation
results show that the proposed method performs much better
than the other benchmark techniques in terms of peak signal-
to-noise ratio (PSNR). KhazaeiPoul et al. (2017) improved
the quality of images collected using UAV by incorporating
super-resolution techniques. Khisheh et al. (2016) devel-
oped two hybrid algorithms, Ant-lion:Neural Network and
Biogeography-Based Optimization Algorithm: Neural net-
work, to select the sensors for improving the performance of
Autonomous Underwater Vehicle. Recently, many path plan-
ning algorithms have been developed for Unmanned system
applications, and Table 1 compares various path planning
algorithms with their merits, demerits, and applications.
The recent survey on various UAV path planning and
collision avoidance algorithms can be seen in (Basiri et al.
2022; Khan et al. 2021a, b). In order to solve the high
dimensional problems with good accuracy and avoid sud-
den changes in its path for UAV applications, the aforemen-
tioned algorithm may not be an efficient choice. In order to
overcome these issues, the Memory Efficient A* (MEA*)
algorithm (Noreen et al. 2019) is implemented for efficient
path planning. It is becoming popular because it does not
require large memory and avoids the edges of the grid cells
in contrast to other algorithms as discussed in the afore-
mentioned table for finding an optimal path. It was proven
to be an efficient algorithm to determine an optimal path
in fewer turns with very minimal execution time and the
main advantage is less memory requirement. Hence, in this
work combining the competencies of MACO and MEA*
algorithms, a hybrid MACO-MEA¥* algorithm is proposed
to avoid obstacles in a 3D environment and efficiently deter-
mine an optimal path for UAV applications. In general,
UAVs are suffering from less endurance (flight time), and
energy-efficient UAVs are in high demand for navigating in
the multifaceted environments, including disaster missions,
surveillance and reconnaissance operations, an inspection
of civil infrastructures and societal applications etc. Energy
management is the main concern (Herrmann et al. 2019;
Herrmann et al. 2020a, b) in autonomous vehicles. There are
quite a few works focused on energy-efficient path planning
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of Unmanned Surface Vehicle (USVs) using particle swarm
optimization (Ding et al. 2018), a deep learning approach for
UAV path planning (Nie et al. 2020) and addressed energy
constraint of UAVs (Monwar et al. 2018; Abeywickrama
et al. 2017; Yang et al. 2018) discussed energy calculation
for the forward and hovering flight of UAVs. Hence, the
present work envisaged integrating the energy calculation
with an optimal path planner for flying and hovering UAV in
determining the energy-efficient optimal path. The mission
can be planned prior with respect to the optimal energy-
efficient conditions by which one can understand the strin-
gent energy requirement for deploying the UAV in real-time.

Based on the state-of-the-art, the main contribution,
novelty and application of this work are:

e Development of Hybrid MACO-MEA* algorithm inte-
grated with the energy requirement to determine an
energy-efficient optimal path

e The novelty of the work lies on the integration of MACO
and MEA* algorithm for effective global and local path
planning which is not combined in the prior art.

e The developed framework provides an effective solution
for planning and executing critical missions effectively
by navigating in a clustered environment, such as in dis-
aster-prone regions, goods delivery, etc.

The rest of the sections are organized as follows. Section 2
discusses briefly about ACO, A* and MEA* algorithms. Sec-
tion 3 focuses on the energy requirement of UAV during flying
and hovering conditions. Section 4 discusses the simulation
results of MACO without obstacles and Hybrid MACO-A*
and MACO- MEA* with obstacles. Section 5 describes about
the experimental platform and implementation of the Hybrid
MACO-MEA* and MACO-A* algorithm and a comparative
analysis of these algorithms. Section 6 provides concluding
remarks and future aspects.

3 UAV path planning algorithms

Path planning in UAV applications (Zhang et al. 2014) is
challenging to avoid obstacles in a constrained environment.
The present research focused on combining MACO and A*/
MEA* algorithms' competencies to find an optimal path to
avoid obstacles. The A* /MEA* algorithm is utilized to avoid
obstacles and travel with a minimal distance, which is con-
sidered a local path planning. MACO is employed to find the
shortest path for the entire region and considered as a global
pathfinder in the present study. Hence, a hybrid approach is
dealt with to find an optimal path by avoiding obstacles and

finding the optimal path. An overview of MACO, A* and
MEA* algorithms are explained below.

3.1 Modified ACO algorithm

The basic idea of the ant algorithm (Dorigo and Stiitzle 2019;
Zhang et al. 2014) is that in a colony of ants, the individual ants
will move in a different directions to find their shortest path.
While moving in their path, they deposit pheromone, which
will affect other ants' activities. The ant maintains the tabu list,
which is nothing but a list of modes the ant has visited. The
pheromone deposition will determine the number of ants that
have travelled on the path. The shortest path will be completed
quickly and more frequently by the ants, and the intensity of
the pheromone will also be high. Hence, other ants change their
path of travel and start to move on the high-intensity pheromone
path. ACO can be well exploited to find an optimal flight trajec-
tory in a large mission area considered a large scale optimiza-
tion problem. ACO has strong global search ability, can perform
parallel and distributed computing, and has fast convergence
speed and strong adaptability compared to other algorithms.
However, it has poor premature convergence and loss of sig-
nificant paths to be visited by the ants based on the updated
tabu list. Hence, it is challenging to arrive at an efficient path.
In order to address these issues, Wang et al. (2020) introduced
two frameworks for improving path efficiency.

Firstly, they adopted a modified heuristic function to
improve the directional search which is given by

T(f) = 1 1)
Y w;i(t) + d(1)

where i and j are node locations; w(7) is the weight of edge

ij, d;i(1) is the Manhattan distance.

Secondly, they considered a reward/penalty mechanism in
which the best path is stored and the worst path is ignored,
avoiding the local trap.

The updation of pheromone deposition is given by,

al(r + 1) =ay(t + 1) + N, X & [wy(t, (t + 1))
— N, X 8, [by(1, (t + 1))]

ZL, if(i,]) € the best path

0, otherwise

8, [wy(t. (¢ + 1) = {

I . ..
=, if(i,)) € the worst path
83 [wy (e, (¢ + 1))] = { LAY P

0, otherwise

where [ is the co-efficient of pheromone intensity,
o, [w[j(t, (t+ 1))] is a rewarding factor and 6,[b;(z, (r + 1))]
is penalizefactor. N, is the number of ants to be rewarded,
and N, is the number of ants to be penalized. /, is the path
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length for rewarding and /, is the path length for penalizing,
respectively. These two tasks are updated in the conventional
ACO to improve the algorithm's efficiency for arriving at the
best possible path.

3.2 MEA* algorithm

MEA¥* algorithm is a variant of the A* algorithm that pri-
marily focuses on the stringent memory requirement of the
A* algorithm and solving high dimensional grid environ-
ment (Noreen et al. 2019). A* also has an issue of track-
ing the edges of grids, and it may not provide an efficient
optimal path. In order to overcome these bottlenecks for
determining an optimal path in high dimensional space, the
MEA* algorithm is developed. It has three lists, an empty
list containing the nodes to be explored, a close list that has
already explored nodes, and the parent list has the parent
node of the current node. At the initial stage, all lists are
set to empty.
Its cost function is given by

F(n) =G(n)+ H(n) 3)

where G(n) is cost from initial to present node and H(n) is the
heuristic estimation cost from present to end node. Initially,

G(n) is set to zero for the start point, and all other nodes in
the map are assumed to be infinity. The minimum F-Value
is considered and added to the open list and other nodes are
ignored during each iteration. Due to this, execution time
and memory requirements are minimized. However, A* con-
siders all the neighbouring nodes that are unnecessary for
an optimal path, which causes more memory requirements
and increases execution time. Unlike A*, the MEA* algo-
rithm uses Euclidean distance with a due consideration of
obstacles to make a next move which avoids more number of
turns as occurs in A* algorithm. Hence, it finds the next best
possible node with one iteration itself and other nodes are
ignored. Due to which, large memory storage is eliminated
and time consumption is minimized.

The UAV path planning with and without obstacles in
2D and 3D environment (Ghambari et al. 2020; Zhang et al.
2020) is a significant concern in real-world applications.
Here, in this work path planning in a 3D environment with
static obstacles is envisaged for the simulation and experi-
mental studies. The Hybrid algorithms such as MACO-A*
and MACO-MEA* are considered for the simulation and
their performance is compared. The Fig. 1 shows the sche-
matic of the proposed Hybrid algorithm in determining an
optimal path through avoiding the obstacles.

Fig.1 Hybrid MACO with A*/
MEA*

Load prebuilt map

'

Define boundary

Define obstacle Define ‘N’ inspection nodes

A 4

Avoid obstacles using A* /MEA* algorithm and
optimize the path between every two inspection nodes

!

Formulate square cost matrix (N x N)

4

Integration of hovering and flying energy

calculations into ACO

Finding an energy efficient optimal path

using ACO
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4 Energy consumption during forward
and hovering flight

Autonomous inspection of large geographical areas is a cru-
cial requirement for landslide monitoring, an inspection of
infrastructures, water quality and environmental monitor-
ing. The energy requirement for the UAVs are major bottle-
neck (Stolaroff et al. 2018). In order to overcome this issue,
energy-efficient UAVs have to be deployed (Ahmed et al.
2016; Kumbhare et al. 2017; Pereira de Carvalho 2018). The
energy consumed by a UAV is mainly due to the drag force
with respect to wind conditions during forward flight and it
pitches down at an angle. The following relations are suit-
able for calculating the energy consumption during forward
flight conditions (Ahmed et al. 2016).

Power consumption during forward motion against the
drag force is given by

P.in =@ +vsin )T 4)

where ¥ is induced velocity, v is the average ground speed
of UAV, f is pitch angle and T is the thrust generated from
a motor.

T=mg+f, (5)

where m is the mass of UAV, including battery, g is the
gravitational constant and f; is a drag force.
The induced velocity is given by,

~ 2T
y =

= 6
qrzﬂp\/(v cos #)? + (vsin f + v)? ©

where r and q are the diameter and number of UAV rotors,
p is the density of air.
The actual power consumption by a UAV is given by,

P ( ) P min
\n) = —— 7
Ny 2
1, is the power efficiency of the UAV.
The total flying energy that an arbitrary UAV to traverse
distance d is given by,

P.d
E; =

®)
v

In order to achieve a hovering flight, the all-up weight of
the UAV has to be balanced with the summation of thrust
generated by all rotors.

Actual power consumption for hovering of UAV is given
by,
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Table 2 Various levels of parameters
Parameters Levels

1 2 3 4
A 0.25 0.75 1 1.5
B 0.25 0.75 1 1.5
P 0.5 0.75 0.95 1
Table 3 Experimental results with Mean Square Error
Experiment Parameters MSE
number
a B P

1 0.25 0.25 0.5 4104.96
2 0.25 0.75 0.75 1909.98
3 0.25 1 0.95 1139.27
4 0.25 1.5 1 1536.26
5 0.75 0.25 0.5 3031.59
6 0.75 0.75 0.75 836.62
7 0.75 1 0.95 65.91
8 0.75 1.5 1 462.90
9 1 0.25 0.5 2977.52
10 1 0.75 0.75 1300.57
11 1 1 0.95 11.84
12 1 1.5 1 408.82
13 1.5 0.25 0.5 3279.78
14 1.5 0.75 0.75 1084.81
15 1.5 1 0.95 314.10
16 1.5 1.5 1 711.08

VT

Py = C))

M\ 0.5zqr?p

5 Comparison of simulation
and experimental results

The MACO algorithm is primarily used for finding an opti-
mal path in obstacle-free zones. It has three parameters such
as exponent on pheromone (), exponent on distance (p),
and pheromone decay rate (p) which influence the algorithm
majorly. These parameter settings vary depending on the
applications, and the optimal value has to be arrived for each
case. In order to obtain optimal parameters in finding the
shortest distance, sensitivity analysis is performed through
varying these three parameters.
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Fig.4 Distribution of model parameters and its performance

Table 4 Various parameters of proposed model

Exponent on distance (B)

SI. no Parameters Values
1 a:Exponent on pheromone 1

2 p: Exponent on distance 1

3 p: Rate at which pheromone decay 0.95

4 n: Number of iterations 200

5.1 Sensitivity analysis

The proposed algorithm is analysed by conducting sensi-
tivity analysis by varying these three significant MACO
parameters (a, B, and p). The parameter a controls the
weight on the pheromone deposition,  applies weight on
the calculated Euclidean distance and p controls the rate of
pheromone decay. The prominent intention of varying these
parameter values by conducting intense trial and error runs
is to find the optimal values of these parameters leading to
efficient performance. The sensitivity analysis necessitated

@ Springer
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Pheromone decay rate (p)

Table 5 Various parameters of UAV

SL. no Parameters Value

1 Mass of UAV (m) 1.66 kg

2 Mass of the battery 0.50 kg

3 Number of rotors 4

4 Rotor diameter 0.228 m

5 Pitch angle 5°

6 Vehicle velocity 3 m/s

7 Efficiency of the battery 70%

8 Maximum available energy of the ~ 31.45 kJ

battery (5000 mAh,

458)

to conduct several experiments by considering these param-
eters to be varied in four different levels as given in Table 2
An orthogonal array of experimental results with the cal-
culated Mean Square Error (MSE) are provided in Table 3
and the level trends of these parameters are shown in Fig. 2
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Fig.5. 3D obstacle free environment

Table 6 Optimal path of MACO algorithm without obstacles envi-
ronment

No. of ants Distance (m) Time (s) Path

0 239 150 0-1-2-3-4-5-6-7-8-0
1 227 146 0-4-6-7-3-2-1-5-8-0
2 225 145 0-1-2-4-6-7-3-5-8-0
3 210 140 0-2-3-7-6-4-5-1-8-0
4 209 139 0-1-4-5-2-3-6-7-8-0
5 207 139 0-1-2-7-3-6-4-5-8-0
6 196 135 0-1-2-3-7-6-4-5-8-0

All these three parameters are interrelated with each other
in deciding the performance of the entire proposed model.
Further, the intention behind choosing the value of param-
eters o and P to start for 0.25 raises from the fact that, if we
choose a=0 then it signifies that the model will act purely
heuristics (distance measure). If we choose =0, it signifies
that the model depends entirely on pheromone concentration

irrespective of the value of p. Similarly, the level of p is
started from assigning 0.5 to bring the contribution of phero-
mone deposition to a minimum value. All these aspects are
found to be beneficial in the present experimental study. In
addition, the sensitivity of each parameter with respect to
determining an optimal path is depicted in Fig. 3. It is evi-
dent that, the best parameter settings to arrive at an optimal
pathisa=1, f=1,and p=0.95.

The Fig. 4 illustrates the 2D box plot analysis to exem-
plify the performance distribution in terms of percentage
with respect to change in three parameters (o, f, and p) of
the MACO algorithm. The exponent on alpha and expo-
nent of distance parameters are varied evenly from O to 2
to showcase their performance distribution on the proposed
model. It is apparent that the parameter o has specifically
more impact in obtaining performance percentage rang-
ing between 88 to 95% and the parameter f§ has achieved
a performance percentage range between 88 and 93%. It is
also observed from the parameter p that, the decay rate has
more impact on the performance and achieved a low range
of 65-69%. The Table 4 provides the list of parameters and
their values incorporated for simulation studies.

5.2 Optimal path planning in 3D environment
without obstacles

Simulation is performed for the cases of with and without
obstacles environment using Python programming. The
various parameters of UAV and battery considered for the
simulation are given in Table 5. The inspection area of the
UAV is selected as 100x 100 m and the inspection points are
randomly distributed in the specified region. The operating
system used for simulation was 64-bit ubuntu 18.04.5 on a
PC with 16 GB internal RAM and an Nvidia Quadro k620.
The simulation environment is considered a 100 x 100 grid,
and each cell size is 1 unit. The set of nodal points, hov-
ering points and their coordinates are indicated in Fig. 5.

(b)

Fig. 6. 3D Environment with obstacles a 5 obstacles, b 10 obstacles, ¢ 15 obstacles
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(b)
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Fig. 7 Simulation results of hybrid ACO-A* algorithm a 5 obstacles, b 10 obstacles, ¢15 obstacles

The MACO algorithm is implemented for this obstacle-free
environment and an optimal path is found.

The simulation is performed by varying the number of
ants. It is evident from the Table 6 that, on accounting
maximum of six number of ants, the path is optimized.
Due to MACO, 18% of reduction in path length and 10%
of decrease in execution time are observed in comparison
to without ants.

5.3 Optimal path planning in 3D environment
with obstacles

UAV navigation in obstacle-prone regions, especially in
a 3D environment, is challenging (Pereira de Carvalho
2018). An efficient path planning algorithm is neces-
sary to avoid obstacles and find an optimal path. In this
work, MEA* algorithm is utilized to avoid obstacles,
and the MACO algorithm is employed to determine the
optimal path. Recently, energy-efficient path planning for
UAYV applications has been promising due to the limited

@ Springer

storage capacity of batteries. An energy-efficient optimal
path planner is identified, and the energy consumption
calculated through theoretical relations is compared with
experimental work. The number of obstacles is varied in
a 3D environment, as shown in Fig. 6, and simulation is
performed using these two algorithms for finding an opti-
mal path through avoiding these obstacles.

The simulation results are shown in Fig. 7. It is
observed that, the Hybrid MACO-A* algorithm tracks the
edges of obstacles which is disadvantageous and it will
increase path length and execution time. However, Hybrid
MACO-MEA* algorithm has not tracked the edges as evi-
dent from Fig. 8 and found the optimal path effectively.
The comparison between MACO-A* and MACO-MEA*
algorithm with respect to various performance measures
for avoiding an increase in the number of obstacles are
given in Table 7. It is observed that MACO-MEA* is
superior in performance than MACO-A* with respect to
various parameters such as 3 to 4% less in the distance
travelled, 50% less in the number of turns, 20% less in
execution time and 21% less in consumption of energy.
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Fig.8 Simulation results of Hybrid ACO-MEA* algorithm a 5 obstacles, b 10 obstacles, ¢ 15 obstacles
Table 7 Comparison between MACO-A* and MACO-MEA* algorithm
Algorithm/no.  Total distance travelled (m) Total energy consumed (J) Execution time (s) Number of turns
of obstacles
Algorithm MACO-A*  MACO-MEA*  MACO-A* MACO-MEA* MACO-A* MACO-MEA*  MACO-A*  MACO-
MEA*

5 obstacles 302 291 29,847 23,648 220 175 16 8
10 obstacles 309 295 30,218 23,381 223 177 18
15 obstacles 311 298 30,323 24,024 225 180 24 12

6 Real-time implementation of developed
algorithms through UAV flight tests

The flight trials are conducted in the outdoor environment
using a custom-built UAV platform. The Quadrotor UAV
utilized for the proposed experimental work integrated
with Digi Xbee module, an on-board computer Raspberry
Pi 3 system as companion computer and flight controller is
shown in Fig. 9. The on-board processor is used to provide
the necessary control commands to the flight control unit
for efficient navigation with the help of proposed algorithm.
The Xbee module is employed to communicate with UAV
via the ground control station. The proposed algorithm is

deployed in the companion computer which in turn directs
the inbuilt flight controller to effectively choose the optimal
path planning strategy. Meanwhile, the performance of the
real-time flight mission implementation for monitoring the
optimal path travelled by the UAV is visualized in Ground
Control Station (GCS). The hardware and software architec-
ture, including the mission planner using a GCS, wherein
optimal path is fed in from the simulation environment.
The inspection nodes (Hovering locations of UAV) are
given prior to determine the optimal path in real-time. Based
on that, the integrated MACO and A*/MEA* algorithms
identify the energy-efficient optimal path. The determined
optimal path is processed using an on-board computer with
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Fig. 9 Experimental model

Digi XBee-Module

Fig. 10 Experimental frame-
work for implementing path
planning algorithm

UAV energy

system model

A*/ MEA*
algorithm

MACO

GPS

PIXHAWK
ESCs BLDC
Motors
Main
Processor
STM32F4
Main
Processor Power 48
STM32F1 module LiPo
battery

Final obstacle avoided
energy efficient
optimal path

Raspberry pi on board computer

DroneKit

Latitude and Longitude Coordinates, Altitude,
Speed, Hovering time

a drone kit platform. It sends the positional information,
altitude, speed and hovering time to the Pixhawk controller.
The controller takes necessary action to realize the energy-
efficient optimal path in real-time. The Fig. 10 shows the
entire hardware setup with an on-board computer and flight
controller. In the event of navigation. GCS provides optimal
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waypoints, which is determined through an energy-efficient
optimal path planning algorithm that will be fed into the
flight controller. The latitude and longitude information for
each waypoints are obtained from the on-board GPS sensor.
GCS software displays the list of waypoints extracted from
an optimal path as an output.
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Fig. 11 Navigation of UAV in
real time flight trials

Fig. 12 Obstacle avoidance of
UAV

(a)

Outdoor experiments are performed by implementing
the determined optimal path in real-time. The altitude of
the UAV is kept at 15 m and vehicle speed is maintained
at 2 m/s. The Fig. 11 shows the flight trials conducted in
real-time at our university campus. The on-board computer
receives the list of waypoints from GCS and executes the
path planning algorithm in real-time. The desired position,
velocity, and yaw of UAV are obtained based on the way-
points, and the controller sends the control signal to the
motor to achieve navigation. In addition, an obstacle avoid-
ance testing of UAV is performed as depicted in Fig. 12.

(b)

The stability of UAV during the navigation is considered
to be an important factor. The attitude, position and alti-
tude of UAV is controlled with a feedback signal generated
from a flight controller. The Roll, pitch and yaw motion of
UAV is examined during the manoeuvring. It is evident from
Fig. 13a—c. The UAV is flown with most of its good stability
and position of UAV in tracking the desired waypoints to
reach the destination is also achieved good performance as
depicted in Fig. 14a—c. In addition, the voltage and current
consumption is also monitored in-flight mode and satisfac-
tory performance is evident from the Fig. 15

The total energy consumption of UAV is calculated for
both the cases, and it is evident from the Table 8 that,
Hybrid MACO-MEA* has achieved a 21% reduction in
energy in comparison to Hybrid MACO-A* algorithm to
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reach the destination through avoiding the obstacles in a
3D environment in all three cases of number of obstacles
region. The execution time is minimal, which will be very
well suited for UAV path planning in a 3D environment.
Hence, the Hybrid MACO-MEA* algorithm can be well
utilized for navigating in a clustered environment. Table §
compares the simulation and experimental results of both
the algorithms, and it is evident that the Hybrid MACO-
MEA* algorithm outperforms with respect to execution
time, path length and avoiding the obstacles proficiently.
It is observed that the theoretical and practical results are
attained 99% coherence. In addition, the execution time
for the MACO-MEA* algorithm is about 55% less than
the MACO-A*, and hence it can be well suited to find
an optimal path through avoiding obstacles in a clustered
environment.

The Fig. 16 depict the obstacles avoided 3D paths of
MACO-A* and MACO-MEA* for the various number of
obstacles encountered in the navigation and Fig. 17 shows a
sample flight trajectory for the case of 15 obstacles for MACO-
A* and MACO-MEA* algorithms executed in a QGCS soft-
ware after successful flight trails. It is evident that Hybrid
MACO-MEA¥ has followed the shortest path through avoid-
ing the obstacles to reach the desired destination. It is evident
from these results that, the proposed algorithm has strong
global search ability, can perform parallel and distributed com-
puting, has fast convergence speed and strong adaptability to

the environments. It avoids tracking of edges and is very well
suited for high dimensional space. The weakness of this algo-
rithm is to select the number of ants for finding an optimal
path. It needs a lot of trails to finalize the number of ants to be
considered. In addition, an increase in the number of obstacles
causes more number of iterations which leads to an increase
in convergence time. The proposed algorithm can be further
improved through incorporating the chimp optimization algo-
rithm (Khishe and Mosavi 2020) by avoiding the local optima
by means of adaptive tuning of various parameters which are
sensitive to finding an optimal distance and improving the con-
vergent rate of the algorithm with its chaotic behavior for UAV
path planning applications. In addition, GWO (Lv et al. 2022),
GSA (Wang et al. 2021) and IPO (Mozaffari et al. 2016) algo-
rithms can be integrated with MACO-MEA* for efficient navi-
gation on the dynamic environment, determining the number
of ants in prior and improving the searching capability.

7 Conclusion

The present work focused on combining the competencies
of MACO and A* /MEA* algorithms and inculcating the
energy consumption of the UAV to find an energy-efficient
optimal path in a 3D environment while avoiding obsta-
cles. Simulations are performed for the cases of with and
without obstacles using the MACO algorithm. It is found
that 18% reduction in path length and 10% decrease in exe-
cution time are observed compared to without ants. Further,
for the cases of a varied number of obstacles, the proposed
Hybrid MACO-MEA¥* algorithm has attained superior per-
formance in avoiding the obstacles without tracing the grids
with minimal path length. It outperformed MACO-A* with
respect to various parameters such as 3 to 4% shorter in the
distance travelled, 50% less in the number of turns avoiding
the obstacles, 20% small in execution time, and 21% or less
consumption of energy.

On the other hand, the real-time UAV flight tests at the
outdoor environment by implementing an optimal path
have achieved 21% less energy consumption of UAV than
the MACO-A* algorithm. The MACO-MEA* algorithm

Table 8 The simulation

X No. of obstacles MACO-A* MACO-MEA*
and experimental results of
MACO-A* and MACO-MEA* Simulation ~ Experimental Execution  Simulation  Experimental Execu-
energy (J) energy (J) time (s) energy (J) energy (J) tion time
(s)
15 obstacles 30,323 30,496 10.34 24,024 24,235 4.6
10 obstacles 30,218 30,371 8.25 23,881 24,050 32
5 obstacles 29,847 29,949 5.31 23,648 23,742 2.1
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Fig. 16 Obstacle avoided path of MACO-A* and MACO-MEA*. a 5 obstacles, b 10 obstacles, ¢ 15 obstacles

accomplished a 55% shorter execution time than MACO-
A*. The simulation and experimental results obtained
99% coherence, showing that the developed algorithm
and its results can be well utilized for path planning in a
denser environment. Hence, the developed Hybrid MACO-
MEA* algorithm has proven to be a proficient framework

@ Springer

for avoiding obstacles in a 3D environment and effectively
finding the energy-efficient optimal path. The experimental
framework can be well utilized for deploying the UAV in
the obstacle prone regions for the multifaceted applications
wherein UAV energy consumption is a prime concern. In
addition, the implication of the developed energy-efficient
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Fig. 17 Flight trajectory for 15 obstacles. a MACO-A*, b MACO-MEA¥* algorithms

framework will be well suited for various categories of
unmanned systems, mobile robots and other autonomous
vehicles with stringent memory requirements for achieving
efficient autonomous navigation. The present work performs
well in a known environment and avoids static obstacles
effectively. In contrast, it could be further extended in the
near future to cope by avoiding dynamic obstacles in the
unknown environment too. Moreover, in the future, attempts
will be made to intelligibly understand the geometrical fea-
tures of the obstacles and thereby equip them to avoid real-
time obstacles using the deep learning approach.
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