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Abstract
Autonomous mission capabilities with optimal path are stringent requirements for Unmanned Aerial Vehicle (UAV) naviga-
tion in diverse applications. The proposed research framework is to identify an energy-efficient optimal path to achieve the 
designated missions for the navigation of UAVs in various constrained and denser obstacle prone regions. Hence, the present 
work is aimed to develop an optimal energy-efficient path planning algorithm through combining well known modified ant 
colony optimization algorithm (MACO) and a variant of A*, namely the memory-efficient A* algorithm (MEA*) for avoiding 
the obstacles in three dimensional (3D) environment and arrive at an optimal path with minimal energy consumption. The 
novelty of the proposed method relies on integrating the above two efficient algorithms to optimize the UAV path planning 
task. The basic design of this study is, that by utilizing an improved version of the pheromone strategy in MACO, the local 
trap and premature convergence are minimized, and also an optimal path is found by means of reward and penalty mechanism. 
The sole notion of integrating the MEA* algorithm arises from the fact that it is essential to overcome the stringent memory 
requirement of conventional A* algorithm and to resolve the issue of tracking only the edges of the grids. Combining the 
competencies of MACO and MEA*, a hybrid algorithm is proposed to avoid obstacles and find an efficient path. Simulation 
studies are performed by varying the number of obstacles in a 3D domain. The real-time flight trials are conducted experi-
mentally using a UAV by implementing the attained optimal path. A comparison of the total energy consumption of UAV 
with theoretical analysis is accomplished. The significant finding of this study is that, the MACO-MEA* algorithm achieved 
21% less energy consumption and 55% shorter execution time than the MACO-A*. moreover, the path traversed in both 
simulation and experimental methods is 99% coherent with each other. it confirms that the developed hybrid MACO-MEA* 
energy-efficient algorithm is a viable solution for UAV navigation in 3D obstacles prone regions.

Keywords Path planning · UAV · Modified ant colony · Memory efficient a* · Energy efficient · Autonomous and obstacle 
avoidance
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List of symbols
�

�

ij
(t)  Modified heuristic function

wij(t)  The weight of edge
dij(t)  The Manhattan distance
�new
ij

(t + 1)  The updation of pheromone deposition
I  Co-efficient of pheromone intensity
�1
[

wij(t, (t + 1))
]

  Rewarding factor
�2[bij(t, (t + 1))]  Penalized factor
Nr  The number of ants to be rewarded.
Np  The number of ants to be penalized.
lr  The path length for rewarding
lp  The path length for penalizing
F(n)  Cost function
G(n)  Cost from initial to present node
H(n)  The heuristic estimation cost from pre-

sent to end node
Pmin  Power consumption during forward 

motion
ṽ  Induced velocity
v  The average ground speed of UAV
β  Pitch angle
T  The thrust generated from a motor
m  The mass of UAV( including battery)
g  The gravitational constant
fd  Drag force
r & q  The diameter and number of UAV 

rotors
ρ  The density of air
Pa(n)  Actual power consumption.
�k  The power efficiency of the UAV
Ef   The total flying energy
Ph  Actual power consumption for hovering 

of UAV

1 Introduction

Unmanned Aerial Vehicles are becoming popular to carry 
more payloads for a wide range of applications and navi-
gate dangerous and hazardous environments. They should 
possess good manoeuvrability and flexibility to adapt in 
a cluttered environment for effective navigation. In these 
circumstances with stringent energy requirements, autono-
mous UAV navigation is a great concern for deploying 
UAVs in multifaceted environments and applications 
(Aggarwal and Kumar 2020). Very few instances are traf-
fic monitoring, highway infrastructure assessment (Outay 
et al. 2020), post-disaster search and rescue operations 
(Shakhatreh et al. 2019), spraying the pesticides in the vast 
farm fields (Radoglou-Grammatikis et al. 2020), inspection 
of mines (Park and Choi 2020) and other long-range sur-
veillance (Valsan et al. 2020) and reconnaissance defence 

missions (Sigala and Langhals 2020). In this regard, multi-
rotor UAVs (MUAVs) are considered to be the prominent 
solutions due to their inherent hovering capabilities, swift 
and fast manoeuvring abilities, and nowadays capable of 
carrying heavier payloads, including transport of human 
beings (Liu et al. 2021). MUAVs of various sizes with 
different payload capacities can be effectively deployed 
by replacing human beings to perform designated tasks. 
Autonomous navigation in an optimal path by avoiding the 
obstacles to achieving safe navigation in a 3D environment 
is a challenging problem. Optimal path planning plays a 
significant role in enhancing the autonomous capabilities 
of UAV. During the actual flight conditions of UAV, many 
static and dynamic obstacles influence the navigation. An 
efficient path planning strategy is much needed to avoid 
the obstacles and find the shortest and the safest path to 
achieve the desired mission. Many pioneering works dealt 
with a 2D environment (Khan et al. 2021a, b) and very 
few works focused on path planning in a 3D environment 
by avoiding the obstacles (Vashisth et al. 2021; Zhang 
et al. 2021). In the event of low-altitude flight of UAVs, 
many static obstacles obstruct the UAV and an efficient 
path planning algorithm is very much needed. Path plan-
ning aims to find an optimal path and be of a collision-
free path in a dense environment. In order to navigate the 
UAVs in the desired trajectory for the specific mission, 
optimal decisions have to be taken to reach the destination 
in the shortest time. It finds great potential in the delivery 
of parcels, medical kits, terrain-following flight and dis-
aster relief activities etc. The other issues pertaining to 
these UAVs are suffering for their flight endurance due to 
limited battery storage capacity. Hence, energy-efficient 
optimal path planning (Monwar et al. 2018; Ahmad et al. 
2017; Yacef et al. 2020) is a viable solution to achieve 
the designated missions with a given energy constraint. 
In order to address these issues, this article focused on 
developing an energy-efficient path planning algorithm in 
a global and local sense to navigate in a 3D environment 
by avoiding the obstacles.

2  State‑of‑the art

UAV path planning is to find the best possible path in a 
cluster environment to fly from the source to destination 
without colliding with obstacles in the airspace. It is an envi-
ronment-based modeling process, which should consider 
static obstacles in the given airspace and possible dynamic 
threats that abruptly intrude the same airspace. In order to 
find an optimal path in static and dynamic environments, 
efficient path planning algorithms (Shin and Chae 2020; 
Qian et al. 2016) is necessary. Many pioneering works on 
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path planning and autonomous navigation of ground vehicles 
(Lipp and Boyd 2014; Herrmann et al. 2020a, b; Ozatay et al. 
2017). They focused on optimising the speed of a vehicle over a 
fixed path for minimum time traversal, generating optimal trajec-
tory, and determining optimal energy trajectory. However, for 
the case of UAVs, path planning algorithms are classified into 
graph-based, population-based evolutionary algorithms, and dis-
tributed approaches. Among these categories, Ant Colony Opti-
mization (ACO) (Dorigo and Stützle 2019) and A* algorithms 
(Debnath et al. 2021) are widely used for various applications 
including UAV path planning. ACO is well utilized because of 
the positive feedback mechanism of each and through depositing 
pheromones on the visited places and nodes. It is very useful 
for other ants to follow the path defined by other ants and find 
the destination effortlessly in a short span. ACO has a robust 
global searching ability to find an optimal path, perform superior 
computing capabilities in a parallel and distributed sense, quick 
convergence to the solutions and strong adaptability to the varied 
environments (Zheng et al. 2017). Based on these advantages, 
ACO has been used for path planning problems in mobile robot 
and UAV applications. However, in order to improve the effi-
ciency of ACO further, modified ACO (MACO) algorithm has 
been developed for various applications (Chowdhury et al. 2019; 
Ebadinezhad 2020; Hou et al. 2020; Hamad and Hasan 2020). 
The main drawbacks of the conventional ACO algorithm are 
local trap and poor convergence. It is effectively addressed in 
(Wang et al. 2020) by updating heuristic information and ignor-
ing the worst path through implementing the pheromone update 
strategy. In this work, a similar strategy is considered for finding 
an optimal path in a global sense. In addition, the grid-based 
algorithm, namely the A* algorithm, has gained significant 
interest in UAV path planning to avoid obstacles efficiently. It 
combines Dijkstra’s Algorithm (Lin et al. 2018) competencies 
that consider the favoring points near the start point and the 
greedy best-first search algorithm that accounts for the point that 
is close to the destination (Zammit and Van Kampen 2018). It 
is a heuristic search algorithm that computes the cost for each 
path and the minimum cost function is a determining factor for 
selecting the next node to move forward and reach the destina-
tion point. However, due to its heuristic nature, it may not be 
able to find an optimal path efficiently in the sense that it may 
not consider a path even though it is short in nature (Noreen 
et al. 2019). A* works with respect to tracking the grid cell edges 
and may not traverse into the complex environment (Noreen 
et al. 2019). The memory requirement to store the earlier visited 
nodes is also challenging for intricate surroundings. Hence, in 
order to overcome the aforementioned issues, several variants 
of A* algorithms have been presented.

The iterative-deepening A* (IDA*) was proposed (Bu 
and Korf 2021) to address the vast memory requirements 
imposed by the A* algorithm. However, the IDA* was not 
performing well in identifying and selecting subsequent pos-
sible nodes. It is used to select the same node multiple times, 

making slower performance than A*. In addition, in order 
to resolve the issue of following the grid edges of individual 
grid cells to determine an optimal path, a Theta* (Daniel 
et al. 2010; Wu et al. 2020) algorithm was proposed. It was 
found that Theta* performance is much slower than A* in 
finding an optimal path. However, another variant of A*, 
namely Field D* (FD*), was formulated (Ferguson et al. 
2006) to avoid following the edges of the grid cell. It was 
observed that FD* made more unnecessary turns than the 
A* algorithm (Ferguson et al. 2006; Warren 1993; Botea 
et al. 2004). Aghababaie et al. (2017) proposed Convolu-
tional Neural Network (CNN) with non-linear multi-layer 
mapping using super-resolution techniques to improve the 
image quality for superior UAV navigation. The simulation 
results show that the proposed method performs much better 
than the other benchmark techniques in terms of peak signal-
to-noise ratio (PSNR). KhazaeiPoul et al. (2017) improved 
the quality of images collected using UAV by incorporating 
super-resolution techniques. Khisheh et al. (2016) devel-
oped two hybrid algorithms, Ant-lion:Neural Network and 
Biogeography-Based Optimization Algorithm: Neural net-
work, to select the sensors for improving the performance of 
Autonomous Underwater Vehicle. Recently, many path plan-
ning algorithms have been developed for Unmanned system 
applications, and Table 1 compares various path planning 
algorithms with their merits, demerits, and applications.

The recent survey on various UAV path planning and 
collision avoidance algorithms can be seen in (Basiri et al. 
2022; Khan et  al. 2021a, b). In order to solve the high 
dimensional problems with good accuracy and avoid sud-
den changes in its path for UAV applications, the aforemen-
tioned algorithm may not be an efficient choice. In order to 
overcome these issues, the Memory Efficient A* (MEA*) 
algorithm (Noreen et al. 2019) is implemented for efficient 
path planning. It is becoming popular because it does not 
require large memory and avoids the edges of the grid cells 
in contrast to other algorithms as discussed in the afore-
mentioned table for finding an optimal path. It was proven 
to be an efficient algorithm to determine an optimal path 
in fewer turns with very minimal execution time and the 
main advantage is less memory requirement. Hence, in this 
work combining the competencies of MACO and MEA* 
algorithms, a hybrid MACO-MEA* algorithm is proposed 
to avoid obstacles in a 3D environment and efficiently deter-
mine an optimal path for UAV applications. In general, 
UAVs are suffering from less endurance (flight time), and 
energy-efficient UAVs are in high demand for navigating in 
the multifaceted environments, including disaster missions, 
surveillance and reconnaissance operations, an inspection 
of civil infrastructures and societal applications etc. Energy 
management is the main concern (Herrmann et al. 2019; 
Herrmann et al. 2020a, b) in autonomous vehicles. There are 
quite a few works focused on energy-efficient path planning 
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of Unmanned Surface Vehicle (USVs) using particle swarm 
optimization (Ding et al. 2018), a deep learning approach for 
UAV path planning (Nie et al. 2020) and addressed energy 
constraint of UAVs (Monwar et al. 2018; Abeywickrama 
et al. 2017; Yang et al. 2018) discussed energy calculation 
for the forward and hovering flight of UAVs. Hence, the 
present work envisaged integrating the energy calculation 
with an optimal path planner for flying and hovering UAV in 
determining the energy-efficient optimal path. The mission 
can be planned prior with respect to the optimal energy-
efficient conditions by which one can understand the strin-
gent energy requirement for deploying the UAV in real-time.

Based on the state-of-the-art, the main contribution, 
novelty and application of this work are:

• Development of Hybrid MACO-MEA* algorithm inte-
grated with the energy requirement to determine an 
energy-efficient optimal path

• The novelty of the work lies on the integration of MACO 
and MEA* algorithm for effective global and local path 
planning which is not combined in the prior art.

• The developed framework provides an effective solution 
for planning and executing critical missions effectively 
by navigating in a clustered environment, such as in dis-
aster-prone regions, goods delivery, etc.

The rest of the sections are organized as follows. Section 2 
discusses briefly about ACO, A* and MEA* algorithms. Sec-
tion 3 focuses on the energy requirement of UAV during flying 
and hovering conditions. Section 4 discusses the simulation 
results of MACO without obstacles and Hybrid MACO-A* 
and MACO- MEA* with obstacles. Section 5 describes about 
the experimental platform and implementation of the Hybrid 
MACO-MEA* and MACO-A* algorithm and a comparative 
analysis of these algorithms. Section 6 provides concluding 
remarks and future aspects.

3  UAV path planning algorithms

Path planning in UAV applications (Zhang et al. 2014) is 
challenging to avoid obstacles in a constrained environment. 
The present research focused on combining MACO and A*/
MEA* algorithms' competencies to find an optimal path to 
avoid obstacles. The A* /MEA* algorithm is utilized to avoid 
obstacles and travel with a minimal distance, which is con-
sidered a local path planning. MACO is employed to find the 
shortest path for the entire region and considered as a global 
pathfinder in the present study. Hence, a hybrid approach is 
dealt with to find an optimal path by avoiding obstacles and 

finding the optimal path. An overview of MACO, A* and 
MEA* algorithms are explained below.

3.1  Modified ACO algorithm

The basic idea of the ant algorithm (Dorigo and Stützle 2019; 
Zhang et al. 2014) is that in a colony of ants, the individual ants 
will move in a different directions to find their shortest path. 
While moving in their path, they deposit pheromone, which 
will affect other ants' activities. The ant maintains the tabu list, 
which is nothing but a list of modes the ant has visited. The 
pheromone deposition will determine the number of ants that 
have travelled on the path. The shortest path will be completed 
quickly and more frequently by the ants, and the intensity of 
the pheromone will also be high. Hence, other ants change their 
path of travel and start to move on the high-intensity pheromone 
path. ACO can be well exploited to find an optimal flight trajec-
tory in a large mission area considered a large scale optimiza-
tion problem. ACO has strong global search ability, can perform 
parallel and distributed computing, and has fast convergence 
speed and strong adaptability compared to other algorithms. 
However, it has poor premature convergence and loss of sig-
nificant paths to be visited by the ants based on the updated 
tabu list. Hence, it is challenging to arrive at an efficient path. 
In order to address these issues, Wang et al. (2020) introduced 
two frameworks for improving path efficiency.

Firstly, they adopted a modified heuristic function to 
improve the directional search which is given by

where i and j are node locations; wij(t) is the weight of edge 
ij, dij(t) is the Manhattan distance.

Secondly, they considered a reward/penalty mechanism in 
which the best path is stored and the worst path is ignored, 
avoiding the local trap.

The updation of pheromone deposition is given by,

�1
[

wij(t, (t + 1))
]

=

{

I

lr
, if (i, j) ∈ the best path

0, otherwise
.

where I is the co-efficient of pheromone intensity, 
�1
[

wij(t, (t + 1))
]

 is a rewarding factor and �2[bij(t, (t + 1)) ] 
is penalizefactor. Nr is the number of ants to be rewarded, 
and Np is the number of ants to be penalized. lr is the path 

(1)�
�

ij
(t) =

1

wij(t) + dij(t)

(2)
�new
ij

(t + 1) =�ij(t + 1) + Nr × �1
[

wij(t, (t + 1))
]

− Np × �2
[

bij(t, (t + 1))
]

�2
[

wij(t, (t + 1))
]

=

{

I

lp
, if (i, j) ∈ the worst path

0, otherwise
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length for rewarding and lp is the path length for penalizing, 
respectively. These two tasks are updated in the conventional 
ACO to improve the algorithm's efficiency for arriving at the 
best possible path.

3.2  MEA* algorithm

MEA* algorithm is a variant of the A* algorithm that pri-
marily focuses on the stringent memory requirement of the 
A* algorithm and solving high dimensional grid environ-
ment (Noreen et al. 2019). A* also has an issue of track-
ing the edges of grids, and it may not provide an efficient 
optimal path. In order to overcome these bottlenecks for 
determining an optimal path in high dimensional space, the 
MEA* algorithm is developed. It has three lists, an empty 
list containing the nodes to be explored, a close list that has 
already explored nodes, and the parent list has the parent 
node of the current node. At the initial stage, all lists are 
set to empty.

Its cost function is given by

where G(n) is cost from initial to present node and H(n) is the 
heuristic estimation cost from present to end node. Initially, 

(3)F(n) = G(n) + H(n)

G(n) is set to zero for the start point, and all other nodes in 
the map are assumed to be infinity. The minimum F-Value 
is considered and added to the open list and other nodes are 
ignored during each iteration. Due to this, execution time 
and memory requirements are minimized. However, A* con-
siders all the neighbouring nodes that are unnecessary for 
an optimal path, which causes more memory requirements 
and increases execution time. Unlike A*, the MEA* algo-
rithm uses Euclidean distance with a due consideration of 
obstacles to make a next move which avoids more number of 
turns as occurs in A* algorithm. Hence, it finds the next best 
possible node with one iteration itself and other nodes are 
ignored. Due to which, large memory storage is eliminated 
and time consumption is minimized.

The UAV path planning with and without obstacles in 
2D and 3D environment (Ghambari et al. 2020; Zhang et al. 
2020) is a significant concern in real-world applications. 
Here, in this work path planning in a 3D environment with 
static obstacles is envisaged for the simulation and experi-
mental studies. The Hybrid algorithms such as MACO-A* 
and MACO-MEA* are considered for the simulation and 
their performance is compared. The Fig. 1  shows the sche-
matic of the proposed Hybrid algorithm in determining an 
optimal path through avoiding the obstacles.

Fig. 1  Hybrid MACO with A*/
MEA* Load prebuilt map

Define boundary Define obstacle Define ‘N’ inspection nodes

Avoid obstacles using A* /MEA* algorithm and 
optimize the path between every two inspection nodes 

Finding an energy efficient optimal path 
using ACO

Formulate square cost matrix (N x N)

Integration of hovering and flying energy 
calculations into ACO
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4  Energy consumption during forward 
and hovering flight

Autonomous inspection of large geographical areas is a cru-
cial requirement for landslide monitoring, an inspection of 
infrastructures, water quality and environmental monitor-
ing. The energy requirement for the UAVs are major bottle-
neck (Stolaroff et al. 2018). In order to overcome this issue, 
energy-efficient UAVs have to be deployed (Ahmed et al. 
2016; Kumbhare et al. 2017; Pereira de Carvalho 2018). The 
energy consumed by a UAV is mainly due to the drag force 
with respect to wind conditions during forward flight and it 
pitches down at an angle. The following relations are suit-
able for calculating the energy consumption during forward 
flight conditions (Ahmed et al. 2016).

Power consumption during forward motion against the 
drag force is given by

where ṽ is induced velocity, v is the average ground speed 
of UAV, β is pitch angle and T is the thrust generated from 
a motor.

where m is the mass of UAV, including battery, g is the 
gravitational constant and fd is a drag force.

The induced velocity is given by,

where r and q are the diameter and number of UAV rotors, 
ρ is the density of air.

The actual power consumption by a UAV is given by,

�k is the power efficiency of the UAV.
The total flying energy that an arbitrary UAV to traverse 

distance d is given by,

In order to achieve a hovering flight, the all-up weight of 
the UAV has to be balanced with the summation of thrust 
generated by all rotors.

Actual power consumption for hovering of UAV is given 
by,

(4)Pmin = (ṽ + v sin 𝛽)T

(5)T = mg + fd

(6)
∼
v =

2T

qr2��

√

(v cos �)2 + (v sin � +
∼
v)2

(7)Pa(n) =
Pmin

�k

(8)Ef =
Pad

v

5  Comparison of simulation 
and experimental results

The MACO algorithm is primarily used for finding an opti-
mal path in obstacle-free zones. It has three parameters such 
as exponent on pheromone (α), exponent on distance (β), 
and pheromone decay rate (ρ) which influence the algorithm 
majorly. These parameter settings vary depending on the 
applications, and the optimal value has to be arrived for each 
case. In order to obtain optimal parameters in finding the 
shortest distance, sensitivity analysis is performed through 
varying these three parameters.

(9)Ph =
T
√

T

�k

√

0.5�qr2�

Table 2  Various levels of parameters

Parameters Levels

1 2 3 4

Α 0.25 0.75 1 1.5
Β 0.25 0.75 1 1.5
Ρ 0.5 0.75 0.95 1

Table 3  Experimental results with Mean Square Error

Experiment 
number

Parameters MSE

α β ρ

1 0.25 0.25 0.5 4104.96
2 0.25 0.75 0.75 1909.98
3 0.25 1 0.95 1139.27
4 0.25 1.5 1 1536.26
5 0.75 0.25 0.5 3031.59
6 0.75 0.75 0.75 836.62
7 0.75 1 0.95 65.91
8 0.75 1.5 1 462.90
9 1 0.25 0.5 2977.52
10 1 0.75 0.75 1300.57
11 1 1 0.95 11.84
12 1 1.5 1 408.82
13 1.5 0.25 0.5 3279.78
14 1.5 0.75 0.75 1084.81
15 1.5 1 0.95 314.10
16 1.5 1.5 1 711.08
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5.1  Sensitivity analysis

The proposed algorithm is analysed by conducting sensi-
tivity analysis by varying these three significant MACO 
parameters (α, β, and ρ). The parameter α controls the 
weight on the pheromone deposition, β applies weight on 
the calculated Euclidean distance and ρ controls the rate of 
pheromone decay. The prominent intention of varying these 
parameter values by conducting intense trial and error runs 
is to find the optimal values of these parameters leading to 
efficient performance. The sensitivity analysis necessitated 

to conduct several experiments by considering these param-
eters to be varied in four different levels as given in Table 2 
An orthogonal array of experimental results with the cal-
culated Mean Square Error (MSE) are provided in Table 3 
and the level trends of these parameters are shown in Fig. 2

Fig. 2  Trend of MSE for vari-
ous levels
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Fig. 4  Distribution of model parameters and its performance

Table 4  Various parameters of proposed model

Sl. no Parameters Values

1 α:Exponent on pheromone 1
2 β: Exponent on distance 1
3 ρ: Rate at which pheromone decay 0.95
4 n: Number of iterations 200

Table 5  Various parameters of UAV

Sl. no Parameters Value

1 Mass of UAV (m) 1.66 kg
2 Mass of the battery 0.50 kg
3 Number of rotors 4
4 Rotor diameter 0.228 m
5 Pitch angle 5°
6 Vehicle velocity 3 m/s
7 Efficiency of the battery 70%
8 Maximum available energy of the 

battery
31.45 kJ 

(5000 mAh, 
4 S)
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Fig. 5.  3D obstacle free environment

Table 6  Optimal path of MACO algorithm without obstacles envi-
ronment

No. of ants Distance (m) Time (s) Path

0 239 150 0–1–2–3–4–5–6–7–8–0
1 227 146 0–4–6–7–3–2–1–5–8–0
2 225 145 0–1–2–4–6–7–3–5–8–0
3 210 140 0–2–3–7–6–4–5–1–8–0
4 209 139 0–1–4–5–2–3–6–7–8–0
5 207 139 0–1–2–7–3–6–4–5–8–0
6 196 135 0–1–2–3–7–6–4–5–8–0

irrespective of the value of ρ. Similarly, the level of ρ is 
started from assigning 0.5 to bring the contribution of phero-
mone deposition to a minimum value. All these aspects are 
found to be beneficial in the present experimental study. In 
addition, the sensitivity of each parameter with respect to 
determining an optimal path is depicted in Fig. 3. It is evi-
dent that, the best parameter settings to arrive at an optimal 
path is α = 1, β = 1,and ρ = 0.95.

The Fig. 4 illustrates the 2D box plot analysis to exem-
plify the performance distribution in terms of percentage 
with respect to change in three parameters (α, β, and ρ) of 
the MACO algorithm. The exponent on alpha and expo-
nent of distance parameters are varied evenly from 0 to 2 
to showcase their performance distribution on the proposed 
model. It is apparent that the parameter α has specifically 
more impact in obtaining performance percentage rang-
ing between 88 to 95% and the parameter β has achieved 
a performance percentage range between 88 and 93%. It is 
also observed from the parameter ρ that, the decay rate has 
more impact on the performance and achieved a low range 
of 65–69%. The Table 4 provides the list of parameters and 
their values incorporated for simulation studies.

5.2  Optimal path planning in 3D environment 
without obstacles

Simulation is performed for the cases of with and without 
obstacles environment using Python programming. The 
various parameters of UAV and battery considered for the 
simulation are given in Table 5. The inspection area of the 
UAV is selected as 100 × 100 m and the inspection points are 
randomly distributed in the specified region. The operating 
system used for simulation was 64-bit ubuntu 18.04.5 on a 
PC with 16 GB internal RAM and an Nvidia Quadro k620. 
The simulation environment is considered a 100 × 100 grid, 
and each cell size is 1 unit. The set of nodal points, hov-
ering points and their coordinates are indicated in Fig. 5. 

All these three parameters are interrelated with each other 
in deciding the performance of the entire proposed model. 
Further, the intention behind choosing the value of param-
eters α and β to start for 0.25 raises from the fact that, if we 
choose α = 0 then it signifies that the model will act purely 
heuristics (distance measure). If we choose β = 0, it signifies 
that the model depends entirely on pheromone concentration 

Fig. 6.  3D Environment with obstacles a 5 obstacles, b 10 obstacles, c 15 obstacles
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The MACO algorithm is implemented for this obstacle-free 
environment and an optimal path is found.

The simulation is performed by varying the number of 
ants. It is evident from the Table 6 that, on accounting 
maximum of six number of ants, the path is optimized. 
Due to MACO, 18% of reduction in path length and 10% 
of decrease in execution time are observed in comparison 
to without ants.

5.3  Optimal path planning in 3D environment 
with obstacles

UAV navigation in obstacle-prone regions, especially in 
a 3D environment, is challenging (Pereira de Carvalho 
2018). An efficient path planning algorithm is neces-
sary to avoid obstacles and find an optimal path. In this 
work, MEA* algorithm is utilized to avoid obstacles, 
and the MACO algorithm is employed to determine the 
optimal path. Recently, energy-efficient path planning for 
UAV applications has been promising due to the limited 

storage capacity of batteries. An energy-efficient optimal 
path planner is identified, and the energy consumption 
calculated through theoretical relations is compared with 
experimental work. The number of obstacles is varied in 
a 3D environment, as shown in Fig. 6, and simulation is 
performed using these two algorithms for finding an opti-
mal path through avoiding these obstacles.

The simulation results are shown in Fig.  7. It is 
observed that, the Hybrid MACO-A* algorithm tracks the 
edges of obstacles which is disadvantageous and it will 
increase path length and execution time. However, Hybrid 
MACO-MEA* algorithm has not tracked the edges as evi-
dent from Fig. 8 and found the optimal path effectively. 
The comparison between MACO-A* and MACO-MEA* 
algorithm with respect to various performance measures 
for avoiding an increase in the number of obstacles are 
given in Table 7. It is observed that MACO-MEA* is 
superior in performance than MACO-A* with respect to 
various parameters such as 3 to 4% less in the distance 
travelled, 50% less in the number of turns, 20% less in 
execution time and 21% less in consumption of energy.

Fig. 7  Simulation results of hybrid ACO-A* algorithm a 5 obstacles, b 10 obstacles, c15 obstacles
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6  Real‑time implementation of developed 
algorithms through UAV flight tests

The flight trials are conducted in the outdoor environment 
using a custom-built UAV platform. The Quadrotor UAV 
utilized for the proposed experimental work integrated 
with Digi Xbee module, an on-board computer Raspberry 
Pi 3 system as companion computer and flight controller is 
shown in Fig. 9. The on-board processor is used to provide 
the necessary control commands to the flight control unit 
for efficient navigation with the help of proposed algorithm. 
The Xbee module is employed to communicate with UAV 
via the ground control station. The proposed algorithm is 

deployed in the companion computer which in turn directs 
the inbuilt flight controller to effectively choose the optimal 
path planning strategy. Meanwhile, the performance of the 
real-time flight mission implementation for monitoring the 
optimal path travelled by the UAV is visualized in Ground 
Control Station (GCS). The hardware and software architec-
ture, including the mission planner using a GCS, wherein 
optimal path is fed in from the simulation environment.

The inspection nodes (Hovering locations of UAV) are 
given prior to determine the optimal path in real-time. Based 
on that, the integrated MACO and A*/MEA* algorithms 
identify the energy-efficient optimal path. The determined 
optimal path is processed using an on-board computer with 

Fig. 8  Simulation results of Hybrid ACO-MEA* algorithm a 5 obstacles, b 10 obstacles, c 15 obstacles

Table 7  Comparison between MACO-A* and MACO-MEA* algorithm

Algorithm/no. 
of obstacles

Total distance travelled (m) Total energy consumed (J) Execution time (s) Number of turns

Algorithm MACO-A* MACO-MEA* MACO-A* MACO-MEA* MACO-A* MACO-MEA* MACO-A* MACO-
MEA*

5 obstacles 302 291 29,847 23,648 220 175 16 8
10 obstacles 309 295 30,218 23,881 223 177 18 9
15 obstacles 311 298 30,323 24,024 225 180 24 12
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a drone kit platform. It sends the positional information, 
altitude, speed and hovering time to the Pixhawk controller. 
The controller takes necessary action to realize the energy-
efficient optimal path in real-time. The Fig. 10 shows the 
entire hardware setup with an on-board computer and flight 
controller. In the event of navigation. GCS provides optimal 

waypoints, which is determined through an energy-efficient 
optimal path planning algorithm that will be fed into the 
flight controller. The latitude and longitude information for 
each waypoints are obtained from the on-board GPS sensor. 
GCS software displays the list of waypoints extracted from 
an optimal path as an output.

Fig. 9  Experimental model

Fig. 10  Experimental frame-
work for implementing path 
planning algorithm
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Outdoor experiments are performed by implementing 
the determined optimal path in real-time. The altitude of 
the UAV is kept at 15 m and vehicle speed is maintained 
at 2 m/s. The Fig. 11 shows the flight trials conducted in 
real-time at our university campus. The on-board computer 
receives the list of waypoints from GCS and executes the 
path planning algorithm in real-time. The desired position, 
velocity, and yaw of UAV are obtained based on the way-
points, and the controller sends the control signal to the 
motor to achieve navigation. In addition, an obstacle avoid-
ance testing of UAV is performed as depicted in Fig. 12.

The stability of UAV during the navigation is considered 
to be an important factor. The attitude, position and alti-
tude of UAV is controlled with a feedback signal generated 
from a flight controller. The Roll, pitch and yaw motion of 
UAV is examined during the manoeuvring. It is evident from 
Fig. 13a–c. The UAV is flown with most of its good stability 
and position of UAV in tracking the desired waypoints to 
reach the destination is also achieved good performance as 
depicted in Fig. 14a–c. In addition, the voltage and current 
consumption is also monitored in-flight mode and satisfac-
tory performance is evident from the Fig. 15

The total energy consumption of UAV is calculated for 
both the cases, and it is evident from the Table 8 that, 
Hybrid MACO-MEA* has achieved a 21% reduction in 
energy in comparison to Hybrid MACO-A* algorithm to 

Fig. 11  Navigation of UAV in 
real time flight trials

Fig. 12  Obstacle avoidance of 
UAV
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reach the destination through avoiding the obstacles in a 
3D environment in all three cases of number of obstacles 
region. The execution time is minimal, which will be very 
well suited for UAV path planning in a 3D environment. 
Hence, the Hybrid MACO-MEA* algorithm can be well 
utilized for navigating in a clustered environment. Table 8 
compares the simulation and experimental results of both 
the algorithms, and it is evident that the Hybrid MACO-
MEA* algorithm outperforms with respect to execution 
time, path length and avoiding the obstacles proficiently. 
It is observed that the theoretical and practical results are 
attained 99% coherence. In addition, the execution time 
for the MACO-MEA* algorithm is about 55% less than 
the MACO-A*, and hence it can be well suited to find 
an optimal path through avoiding obstacles in a clustered 
environment.

The Fig.  16 depict the obstacles avoided 3D paths of 
MACO-A* and MACO-MEA* for the various number of 
obstacles encountered in the navigation and Fig. 17 shows a 
sample flight trajectory for the case of 15 obstacles for MACO-
A* and MACO-MEA* algorithms executed in a QGCS soft-
ware after successful flight trails. It is evident that Hybrid 
MACO-MEA* has followed the shortest path through avoid-
ing the obstacles to reach the desired destination. It is evident 
from these results that, the proposed algorithm has strong 
global search ability, can perform parallel and distributed com-
puting, has fast convergence speed and strong adaptability to 

the environments. It avoids tracking of edges and is very well 
suited for high dimensional space. The weakness of this algo-
rithm is to select the number of ants for finding an optimal 
path. It needs a lot of trails to finalize the number of ants to be 
considered. In addition, an increase in the number of obstacles 
causes more number of iterations which leads to an increase 
in convergence time. The proposed algorithm can be further 
improved through incorporating the chimp optimization algo-
rithm (Khishe and Mosavi 2020) by avoiding the local optima 
by means of adaptive tuning of various parameters which are 
sensitive to finding an optimal distance and improving the con-
vergent rate of the algorithm with its chaotic behavior for UAV 
path planning applications. In addition, GWO (Lv et al. 2022), 
GSA (Wang et al. 2021) and IPO (Mozaffari et al. 2016) algo-
rithms can be integrated with MACO-MEA* for efficient navi-
gation on the dynamic environment, determining the number 
of ants in prior and improving the searching capability.

7  Conclusion

The present work focused on combining the competencies 
of MACO and A* /MEA* algorithms and inculcating the 
energy consumption of the UAV to find an energy-efficient 
optimal path in a 3D environment while avoiding obsta-
cles. Simulations are performed for the cases of with and 
without obstacles using the MACO algorithm. It is found 
that 18% reduction in path length and 10% decrease in exe-
cution time are observed compared to without ants. Further, 
for the cases of a varied number of obstacles, the proposed 
Hybrid MACO-MEA* algorithm has attained superior per-
formance in avoiding the obstacles without tracing the grids 
with minimal path length. It outperformed MACO-A* with 
respect to various parameters such as 3 to 4% shorter in the 
distance travelled, 50% less in the number of turns avoiding 
the obstacles, 20% small in execution time, and 21% or less 
consumption of energy.

On the other hand, the real-time UAV flight tests at the 
outdoor environment by implementing an optimal path 
have achieved 21% less energy consumption of UAV than 
the MACO-A* algorithm. The MACO-MEA* algorithm 
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Table 8  The simulation 
and experimental results of 
MACO-A* and MACO-MEA*

No. of obstacles MACO-A* MACO-MEA*

Simulation 
energy (J)

Experimental 
energy (J)

Execution 
time (s)

Simulation 
energy (J)

Experimental 
energy (J)

Execu-
tion time 
(s)

15 obstacles 30,323 30,496 10.34 24,024 24,235 4.6
10 obstacles 30,218 30,371 8.25 23,881 24,050 3.2
5 obstacles 29,847 29,949 5.31 23,648 23,742 2.1
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Fig. 16  Obstacle avoided path of MACO-A* and MACO-MEA*. a 5 obstacles, b 10 obstacles, c 15 obstacles

accomplished a 55% shorter execution time than MACO-
A*. The simulation and experimental results obtained 
99% coherence, showing that the developed algorithm 
and its results can be well utilized for path planning in a 
denser environment. Hence, the developed Hybrid MACO-
MEA* algorithm has proven to be a proficient framework 

for avoiding obstacles in a 3D environment and effectively 
finding the energy-efficient optimal path. The experimental 
framework can be well utilized for deploying the UAV in 
the obstacle prone regions for the multifaceted applications 
wherein UAV energy consumption is a prime concern. In 
addition, the implication of the developed energy-efficient 
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framework will be well suited for various categories of 
unmanned systems, mobile robots and other autonomous 
vehicles with stringent memory requirements for achieving 
efficient autonomous navigation. The present work performs 
well in a known environment and avoids static obstacles 
effectively. In contrast, it could be further extended in the 
near future to cope by avoiding dynamic obstacles in the 
unknown environment too. Moreover, in the future, attempts 
will be made to intelligibly understand the geometrical fea-
tures of the obstacles and thereby equip them to avoid real-
time obstacles using the deep learning approach.
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