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the disease, generating a significant cost to the healthcare 
system (Wielinski et al. 2005; Sparrow et al. 2016).

Several clinical scales and tests are employed to assess 
the postural instability and the balance dysfunctions, includ-
ing Time Up and Go (TUG) test (Shumway-Cook et al. 
2000; Nocera et al. 2013); Postural Instability and Gait Dif-
ficulty (PIGD) (Jankovic et al. 1990), a subscale of the Uni-
fied Parkinson’s Disease Rating Scale (UPDRS) (Goetz et 
al. 2008); Berg balance scale (Berg et al., 1989; Błaszczyk 
et al. 2007).

The combination of multiple balance tests can provide a 
better assessment of postural instability (Jacobs et al. 2006, 
2016), compared to the single one as TUG or the pull test 
defined in the UPDRS (Jacobs et al. 2006; Munhoz et al. 
2004; Pérez-Sánchez et al., 2019). Furthermore, deficits in 
postural stability can be highlighted performing concur-
rent cognitive tasks or secondary motor tasks during steady 
standing conditions (Morris et al. 2000; Marchese et al. 
2003; Cheng et al., 2018; Sarasso et al. 2021).

1  Introduction

Postural instability is one of the symptoms of Parkinson’s 
Disease (PD) that significantly affects the quality of life and, 
more importantly, the safety of people suffering from this 
neurodegenerative disease, as it increases the risk of falls 
and injuries during daily activities (Shoneburg et al. 2013; 
Fasano et al. 2017), and it worsens with the progression of 
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Several recent studies have shown the strong correlation 
between postural sway and balance dysfunctions during 
the standing stance in PD subjects (Frenklach et al. 2009; 
Ozinga et al. 2015; Mancini et al. 2011; Curtze et al. 2016). 
Postural sway is the continuous movement of the Center 
of Mass (CoM) of the body activated by the vestibular, 
somatosensory, and visual systems to maintain a balanced 
posture. In PD, it is also recognized that dopaminergic treat-
ments influence postural sway (Mancini et al. 2011; Menant 
et al. 2011; Workman et al., 2019), so frequent monitoring 
of this physical quantity is desirable to control and limit the 
negative side effect on the stability that could determine the 
subject’s fall. Postural (or body) sway is generally estimated 
by static or dynamic posturography (Johnson et al. 2013), 
by quantifying the displacements of the Center of Pressure 
(CoP) on a force platform under the feet, both in steady 
stance conditions and in the presence of external perturba-
tions. CoP and CoM are strongly correlated: CoP represents 
the necessary reaction force to maintain a posture balanced 
in the presence of postural sways, which can be observed 
through the movement of CoM (Richmond et al. 2021). In 
any case, even if CoP movement is only indirectly related 
to postural sway and instability, in clinical settings it has 
traditionally been preferred over CoM estimation due to 
the difficulty of measuring the body CoM out of laboratory 
environments (Hasan et al., 1996; Leach et al. 2014; Clark 
et al. 2018).

Recently, several non-contact approaches based on 
low-cost optical tracking devices as RGB-Depth cameras 
(Microsoft® Kinect 2 SDK; Intel® Developer Zone) have 
been proposed for body movement analysis (Han et al. 
2013; Ferraris et al. 2018; Clark et al. 2019; Puh et al. 2019). 
They show complementary features with respect to on-body 
inertial sensors, including simpler setups, higher usability, 
less invasiveness, and suitability to be easily integrated with 
gesture-based human-machine interfaces. On the other side, 
they are less ubiquitous, prone to self-occlusions and pri-
vacy concerns. This last drawback can be avoided by using 
only the depth or the skeleton information provided by the 
device.

When continuous daily monitoring of the motor status is 
not required, and spot evaluations are preferable, they suc-
cessfully provide a non-invasive alternative to on-body iner-
tial sensors in home monitoring of people with PD (Ozinga 
et al. 2015; Mancini et al. 2011; Rovini et al., 2019; Silva de 
Lima et al. 2020; Sica et al. 2021). In particular, the Micro-
soft Kinect® v1 has been used to assess movements in PD 
subjects (Galna et al. 2014), postural sway (Yeung et al. 
2014), and balance (Yang et al. 2014); while the more recent 
Microsoft Kinect® v2 has been used to assess balance dys-
functions (Eltoukhy et al. 2018), posture and postural stabil-
ity (Clark et al. 2015; Grooten et al. 2018), postural sway 

(Mishra et al. 2017), to assess upper limb functions (Cai 
et al. 2019), to evaluate clinical motor functions (Otte et 
al. 2016; Clark et al. 2019) in different fields of applica-
tion, and for rehabilitation purposes (Garcia-Agundez et 
al. 2019). In the context of neurodegenerative and neuro-
logical diseases, Microsoft Kinect v2 has been successfully 
employed for several clinical evaluations: Time Up and Go 
test (TUG) (Kähär et al. 2017; Tan et al. 2019), automatic 
recognition of different categories of PD subjects (Rocha 
et al. 2015; Dranca et al. 2018), automatic classification of 
gait patterns and disorders (Li et al. 2018), assessment of 
neurological rehabilitation (Knippenberg et al. 2017), and 
assessment of postural stability and lower limb impairments 
(Ferraris et al. 2019).

In the context of PD, a frequent assessment of postural 
instability as a predictor of the risk of falls is important, 
making a home solution for its characterization advanta-
geous for PD subjects.

This paper addresses this demand by presenting a proto-
type of a home-based monitoring system developed for the 
automated assessment of postural instability of PD subjects. 
The proposed system is based on low-cost RGB-Depth 
cameras, and it intends to fulfill specific requirements: suit-
ability to be self-managed without safety risks by users with 
motor impairment, support for objective and daily-based 
spot evaluations compliant with standard clinical scales for 
postural stability assessment, in particular with PIGD sub-
scale (Jankovic et al. 1990; van der Heeden et al. 2016). 
With respect to solutions based on wearable inertial sensors 
(Rovini et al. 2019; Channa et al. 2020), our proposal shows 
a simpler setup and maintenance, no invasiveness and sup-
port for gestural human-machine interfaces.

The assessment is based on the kinematic analysis of the 
body’s Center of Mass (CoM) while the user performs spe-
cific motor tasks. To our knowledge, this is the first time 
that estimates of CoM obtained by RGB-Depth cameras 
are used to characterize the postural instability in PD. The 
proposed tasks are designed on the basis of standard clini-
cal scales adopted for postural stability assessment, which 
have been modified by the inclusion of concurrent motor 
tasks (dual-task condition). This extension produces differ-
ent types of postural stress with the aim of emphasizing the 
balance dysfunctions, thus providing a more comprehensive 
assessment of instability (Jacobs et al. 2006a).

The automated assessment of postural stability takes 
place by a machine learning approach. During the task exe-
cution, a set of kinematic parameters estimated from CoM 
is used as input to supervised classifiers for the assessment 
of the user’s performance. An experimental campaign was 
conducted on a cohort of PD subjects to collect clinical 
trials and the corresponding CoM parameters used for the 
training of the classifiers. The consistency of the automated 
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assessments with respect to the clinical ones has also been 
verified.

This paper extends our previous preliminary work on pos-
tural stability (Ferraris et al. 2021) in the following aspects: 
two more tasks have been designed and added for a more 
comprehensive analysis and assessment of postural stabil-
ity; correspondingly, more PD subjects have been included 
in the experiment; two more classifiers have been trained 
and used for the automated assessments. The remaining part 
of the paper is organized as follows. Section 2 presents the 
methodological framework: the characterization of postural 
instability, the tasks designed to assess postural stability and 
its characterization by CoM parameters, and the automatic 
assessment of postural instability by supervised classifi-
ers. Section 3 presents the system (hardware and software 
components) and the human-machine interface for its man-
agement. Section  4 presents the experimental framework: 
participant selection, experimental data acquisition, and the 
statistical analysis performed on the data. Section 5 presents 
the experimental results on the correlation between clini-
cal scores and CoM parameters, and on the accuracy of the 
classifiers. The paper ends with Sect. 6, where the results are 
discussed and the conclusions are presented.

2  Methodological framework

2.1  Characterization of postural stability

PD subjects can be classified into two motor subtypes: those 
with postural instability and gait difficulty (PIGD subtype) 
and those in which tremor is the dominant symptom (TD 
subtype). The classification is based on the PIGD score as 
the average of some UPDRS items (Jankovic et al. 1990). 
Compared with non-PIGD participants, PIGD participants 
were significantly more likely to suffer multiple falls (Peli-
cioni et al. 2019), supporting the use of PIGD sub-score 
both in selecting PD participants and for comparing clinical 
and automated assessment.

2.2  Tasks for postural stability assessment

The design of the tasks for the automated assessment of pos-
tural stability fulfills several requirements: compliance with 
standard clinical scales, suitability for self-management by 
motor-impaired users, safety of the performer during the 
task execution in a typical home environment, and high-
lighting and enforcement of the strong correlation between 
postural sway and balance dysfunctions. Three tasks have 
been designed as derived directly from the Berg balance 
scale: Up-Stand-Down (USD), Tandem-Standing (TS), 
Reaching-Standing (RS). During each evaluation session, 
the user is invited to perform the following tasks:

	● Up-Stand-Down (USD): get up from a chair, stand with-
out support for 1 min and sit down.

	● Tandem-Standing (TS): stand for 1 min with feet spaced 
one step ahead.

	● Reaching-Standing (RS): stand for 1  min with arms 
outstretched.

As an example, the schema of the RS task is shown in 
[Fig. 1]. Only a few Berg scale items were considered in the 
tasks design, excluding those considered at safety risk for 
self-managed use. The one-minute phase of the three tasks 
is split into two 30-seconds sub-phases: the first one consists 
of a balance test in a single-task condition (ST), while in the 
second one, the user is invited to read some words displayed 
on the system screen. This last sub-phase consists of a con-
current cognitive task, intended to emphasize stability dys-
functions in a dual-task condition (DT) (Morris et al. 2000; 
Cheng et al., 2018; Sarasso et al. 2021). Users perform the 
tasks in front of the RGB-Depth camera, about 3 m away, 
starting from a sitting position (in USD task) or in a stand-
ing position (in TS and RS tasks): specific constraints have 
been considered to ensure the optimal body-tracking using 
the proposed solution. In addition, the user manages each 
task by gestures and visual feedback through the Graphi-
cal User Interface (GUI) of the system. Details on system 
constraints and interaction management are described in 
Subsection 3.1. The user is asked to start and end each task 
by performing three rapid movements with one of the arms: 
these movements are useful to detect the evaluable part of 
the performance automatically.

The task duration is split into two consecutive sub-phases 
(ST and DT) analyzed separately. The system automatically 
assesses the subject’s stability during the execution of the 
three tasks by ranking the performance into a three-level 
ordinal scale, whose scores are: poor, medium, and good. 
Details on the kinematic characterization and the automated 
performance assessment into three levels are given in the 
following sections. The system collects data and videos of 

Fig. 1  Schema of the Reaching-Standing (RS) task: arms stretched for-
ward, standing for 30 s (ST phase), standing for 30 s (DT phase), arms 
stretched at the side. TRS is the total duration of the task
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2019) has been considered to evaluate the Center of Mass 
of the body (CoMBody) where only some joints of the skel-
etal model are used. In particular, CoMBody is calculated as 
indicated in Eq. 1, i.e., as the weighted average of the center 
of mass (CoMi) of six body segments (head, trunk, legs, and 
arms) whose lengths are evaluated from the corresponding 
joint segments of the skeletal model, as shown in [Table 1]. 
The anatomic weights (wi) have been set according to stan-
dard anthropometric tables related to Dempster’s studies in 
1955 (Clauser et al. 1971).

CoMBody =
1

6

∑6

i=1
CoMi ∗ wi � (1)

In the post-processing phase, a low-pass Butterworth filter 
(second-order, 8 Hz cut-off frequency) was applied to the 
3D joints to minimize the effects of high-frequency noise 
in the data due to motion artifacts. An example of CoMBody 
position for standing stance is shown in [Fig. 3]. The figure 
shows the position of the CoMBody and the CoMi for each 
body segment used in the calculation.

Postural parameters were obtained as in (Mancini et al. 
2011) from CoMBody sway along the medio-lateral (ML) 
and antero-posterior (AP) directions, that are the orthogo-
nal components of CoMBody in the horizontal body plane. 
They were evaluated both for single-task (ST) and dual-task 
(DT) conditions as in (Ferraris et al. 2019). [Table 2] shows 
the postural parameters considered for the three tasks. The 
maximum sway range relative to the starting position iscal-
culated; the total sway length isthe total distance covered by 
CoMBody; the speed is the maximum CoMBody velocity; the 
sway area is the smallest area that contains the CoMBody tra-
jectory. Excluding the sway area, the other postural param-
eters are calculated along the AP and ML directions.

2.4  Statistical analysis for discriminant parameter 
selection

In our previous work, the accuracy of the CoM parameters 
measured by the system was verified by comparison with 
an optoelectronic system, according to a standard biome-
chanical setup (Ferraris et al. 2019). CoM trajectories 

each performance both for the automated assessment and 
for the possible verification by remote supervisors of its cor-
rect execution.

2.3  Stability characterization by CoM parameters

In this work, we make use of the strong correlation existing 
between the CoM sway and the balance dysfunctions (Fren-
klach et al. 2009; Mancini et al. 2011; Curtze et al. 2016) to 
automatically characterize and quantify postural stability in 
PD. The assessment is based on the kinematic parameters 
of the user’s CoM during the standing phase of the motor 
tasks designed.

CoM sway has already been analyzed by optical RGB-
Depth devices in the context of biomechanical analysis of 
healthy subjects (Yeung et al. 2014; Mishra et al. 2017). We 
adopt a similar approach based on Microsoft Kinect v.2, 
where the skeletal model provided by the Software Devel-
opment Kit (SDK) is used to evaluate the three-dimensional 
(3D) position of the body CoM in real-time. The SDK of 
the device provides a skeletal model consisting of twenty-
five 3D joints that correspond roughly to anatomical points 
of the human body [Fig.  2]. A simpler model than those 
commonly used with gold standard systems (Devetak et al. 

Table 1  Segments, joints and anatomic weights used for the CoMBody 
evaluation
Segment Joints of skeletal model Anatomic 

Weights
Head Head, SpineS w1 = 0.081
Trunk SpineS, SpineB w2 = 0.497
Total Left Arm ShouldL, WristL w3 = 0.05
Total Right Arm ShouldR, WristR w4 = 0.05
Total Left Leg HipL, AnkleL w5 = 0.161
Total Right Leg HipR, AnkleR w6 = 0.161

Fig. 2  Skeletal model and 3D position of joints in standing stance 
position
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8.94 × 10–3) components: since postural parameters depend 
on CoM trajectories, we expect the agreement to be also 
reflected on CoM parameters. In (Ferraris et al. 2021), the 
trajectories agreement has been confirmed by a new experi-
mental campaign (ρavg: 0.83 ± 0.12, p-value: 6.42 × 10–3), 
as well as the ability of CoM parameters in discriminating 
between parkinsonians and healthy controls and between 
single-task and double-task phases for the USD task. Good 
accuracy of the automated assessments implies that the 
supervised classifiers designed for the tasks make use of the 
best discriminative parameters as input for their predictions. 
This parameter selection approach reduces possible overfit-
ting problems due to the limited sample size of the cohorts 
involved in the experiment. Therefore, we require that the 
most discriminant parameters of the three tasks are those 
showing both a good Spearman’s correlation with the clini-
cal PIGD scores and a good discriminant power in differen-
tiating healthy subjects from PD ones.

2.5  Automatic assessment of postural instability by 
machine learning

According to our previous experience (Ferraris et al., 2021), 
Support Vector Machine (SVM) multiclass classifiers (Vap-
nik 1999) have been considered for the automatic assess-
ment. The experiment described in Sect.  4 was designed 
to create a training dataset for the classifiers. Two groups, 
one consisting of PD subjects and one of healthy subjects, 
undertook a series of evaluation sessions. Every subject was 
asked to perform the USD, TS, and RS tasks in sequence, 
while at the same time, her/his performance was evaluated 
by the system and characterized by CoM parameters. Before 
every session, PD subjects were assessed according to the 
PIGD subscale by an expert neurologist. Three SVM classi-
fiers, one for each task, have been trained by the pairs “CoM 
parameter vector – normalized average PIGD score”. The 
PIGD scores were normalized and quantized in a three-level 
interval where its values (1,2, and 3) correspond to three 
classes of stability: poor, medium, and good. The thresholds 
used to quantize the PIGD scores took into account the class 
imbalance problem, trying to obtain an approximately equal 
sample size distribution among the three classes.

The accuracy and consistency of each classifier have 
been evaluated by applying the leave-one-out cross-valida-
tion method for multiclass problems (Sokolova et al., 2009).

To further validate the classifier performance and, in gen-
eral, the methodology, the CoM parameters of the PD sub-
jects evaluated during the DT phase of each performance 
have been input to the trained classifiers. The expected 
evaluation results should indicate a worsening of stability. 
This expectation is in accordance with the clinical results 

were acquired simultaneously by the RGB-D sensor and 
the optoelectronic system by applying passive markers on 
the body (Davis et al. 1991). Then, the average Pearson’s 
correlation coefficient (ρavg) between CoM trajectories 
was computed. This analysis has proved the good correla-
tion between measurements, both for AP (ρavg: 0.84 ± 0.11, 
p-value: 3.18 × 10–3) and ML (ρavg: 0.90 ± 0.09, p-value: 

Table 2  Postural parameters estimated from CoMBody for USD, TS, 
RS tasks
Namea Meaning Unit
APr AP maximum sway 

range
[cm]

MLr ML maximum sway 
range

[cm]

APt AP total sway 
length

[cm]

MLt ML total sway 
length

[cm]

APv AP sway velocity [cm/s]
MLv ML sway velocity [cm/s]
Area Sway Area [cm2]
a Postural parameters are evaluated for each tasks (ST and DT phases 
separately for USD, TS and RS)

Fig. 3  Example of 3D position of CoMBody (magenta) in standing 
stance on the 3D reconstruction of the body (point cloud). The position 
of each CoMi is also displayed: head (blue), trunk (green), arms (light 
blue) and legs (red)
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521 × 424 pixels for color and depth streams respectively. 
The availability of depth information allows for the three-
dimensional scene reconstruction by standard transforma-
tion algorithms. The RGB-Depth sensor can be mounted 
on a tripod or placed on a flat surface to ensure stability 
and correct orientation during the acquisition, at a height 
that guarantees the optimal tracking of people at about 3 m 
from the device. This distance has been defined considering 
some works concerning the accuracy of the depth sensor. 
According to (Lachat et al. 2015), the best performance is 
in the range [1.5 − 4.5  m] from the camera, where depth 
map errors are in the range [-0.5 mm − 0.5 mm]; the worst 
performance is for distances less than 0.8 m (the minimum 
operating distance) or greater than 5 m. These results agree 
with (Wang et al. 2015), which reports the maximum depth 
accuracy along the central cone of the RGB-D sensor. Con-
versely, lateral and vertical scattering of light pulses dete-
riorates the depth map in those areas, thereby reducing 
overall accuracy. The average accuracy in the central cone 
is between [2 − 4 mm] for distances up to 3.5 m from the 
sensor. For distances greater than 4.0 m, the average error 
becomes greater than 4 mm and gets worse exponentially 
as the distance from the sensor increases. Furthermore, a 
frontal view has been preferred over other viewing angles 
to ensure the optimal viewpoint for body detection, as indi-
cated in (Gianaria et al., 2019).

Furthermore, to ensure optimal body-tracking, some 
constraints have been set to avoid external interferences as 
much as possible. In fact, some elements can influence the 
RGB-D sensor performance and affect the tracking accu-
racy of the skeletal model, making the joints noisy and 
unreliable. These include, for example, the presence on the 
scene of light sources entering the camera or reflective sur-
faces that can interfere with the infrared pulses emitted by 
the device and compromise the correct depth map estima-
tion and, consequently, the 3D reconstruction of the skeletal 
model. Another source of depth map artifacts is commonly 
due to clothing: using loose or too dark clothing and reflec-
tive objects (such as belts, bracelets, necklaces) can gener-
ate discontinuities in the depth map, causing the incorrect 
positioning of the skeletal model joints. These factors have 
been considered in defining the system configuration and 
experimental protocol for the supervised environment. Fur-
thermore, they will become strict constraints in a future 
home-based and unsupervised experimental protocol, 
requiring participants to be adequately instructed on these 
aspects and comply with the established requirements dur-
ing the acquisitions.

The system software, which runs on the processing 
unit, has been developed for real-time data acquisition and 
processing, a crucial requirement to guarantee the inter-
action with the system. The system software, consisting 

concerning postural stability of PD subjects under DT con-
ditions (Morris et al. 2000).

3  System description

3.1  System hardware and software

The hardware component of the acquisition system is made 
of an RGB-Depth optical sensor that is connected via a USB 
port to a processing unit, for example a mini-PC (Intel® 
NUC i7 series). The processing unit is connected to a moni-
tor or TV screen, via VGA or HDMI connection, to provide 
the user with information and visual feedback of body move-
ments, and display the Graphical User Interface (GUI) that 
allows for the natural interaction with the system [Fig. 4]. 
The RGB-Depth sensor used is Microsoft Kinect v.2, since 
this system is part of a wider solution already developed that 
aims to remotely monitor the neuro-motor status of people 
with PD.

Microsoft Kinect v.2 is a long-range camera that gener-
ates synchronized color and depth video streams. The oper-
ative features and the time-of-flight technology allow the 
device to perceive objects at a distance (depth) up to 8 m 
reliably. Despite this, when it is necessary to use the facili-
ties of people detection and tracking, it is safer to limit the 
maximum distance to no more than 4.5 m to ensure tracking 
accuracy. Video streaming is generated at about 30 frames/
second (FPS), with a resolution of 1920 × 1080 pixels and 

Fig. 4  Example of setup for home monitoring: the RGB-Depth sensor 
and the TV screen to display GUIs and to provide visual feedback
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in reading and perceiving information from user interfaces: 
GUI design should consider this element, which is par-
ticularly relevant when the interaction occurs away from 
the monitor, as in our solution. Specific guidelines suggest 
that GUIs use plain fonts and appropriate sizes to ensure 
high readability. Moreover, the color contrast helps sharpen 
readability, such as combining light background with black 
characters (Boll et al., 2015). Also, due to the lower ability 
to avoid distractors, limiting the information displayed on 
the GUI is preferable, presenting the relevant information 
centered as these users often suffer from visual field width 
deficits (Sharma et al. 2016). Another critical point is the 
arrangement of the interaction objects and menus within the 
GUI: a good structure facilitates the users’ interaction. It is 
equally important to keep this structure consistent through-
out the application’s GUI to avoid confusing the user with 
continuous changes in the graphic layout (Boll et al., 2015; 
Sharma et al. 2016).

To address these issues, we equipped the developed solu-
tion with an HMI model that allows for natural interaction 
through simple gestures or actions with parts of the body, 
such as raising arms or moving legs: this choice to limit 
the use of traditional interaction devices such as keyboard 
and mouse. Therefore, the skeletal model provided by the 
camera SDK is exploited for the movement analysis and the 
interaction with the system through dedicated GUIs.

The HMI model includes two GUI types, “interactive 
GUIs” and “execution GUIs”, that try to satisfy the require-
ments previously mentioned. In addition, independently by 
the type, each GUI guides the user through textual messages, 
video, and audio suggestions that indicate the sequence of 
steps to complete all the test session phases.

The interactive GUIs are used to make selections or 
activate management operations. These GUIs are designed 
using augmented reality (AR) and interactive objects, pro-
viding real-time visual feedback during the interaction 
[Fig.  5]. In the interactive GUIs, few interactive objects 
appear when necessary and are appropriately arranged to be 
easily reachable without complex movements: to this end, 
the interactive objects are automatically displayed accord-
ing to specific skeletal model joints. The interaction GUIs 
are also used to correct the user position: the system ana-
lyzes the skeletal model, evaluates the CoM position, and 
warns the subject to move right, left, forward, or backward 
if the current position does not conform to pre-established 
intervals. Currently, the frontal distance range from the 
camera is between [2.5 − 3.2 m], while the left-right range 
is between [-0.8 m − 0.8 m] from the origin of the reference 
system. Furthermore, the size and font of the interactive 
objects can be customized to increase visibility, consider-
ing that the interaction occurs at about 3 m away from the 
system monitor.

of dedicated C + + and MATLAB scripts, allows access 
and analysis of information from the RGB-Depth sensor 
through the SDK, the middle-layer software made available 
by device manufacturers.

3.2  Natural interaction: the human-machine 
interaction and the graphical user interface

The system has been designed to be easy-to-use and self-
manageable as much as possible: these requirements are 
crucial for technological solutions dedicated to elderly and 
pathological subjects since they should respond to more 
complex and challenging needs than those for young and 
healthy users (Rot et al., 2017). For example, in telemedi-
cine applications, people need to effectively use the techno-
logical solutions, especially at home and independently as 
much as possible, in order to follow-up progress or decline 
out of health facilities (Klaassen et al. 2016).

This opportunity closely links to how well the user can 
use the technology and how well the technology is suited to 
the user’s needs and the context of use: in general, the user 
experience allows to evaluate elements such as usefulness, 
usability, and acceptability of an application or technology, 
and the satisfaction of the user while using it, taking into 
account the user’s skills and health conditions (Bajenaru et 
al. 2020).

One of the challenges in developing technological solu-
tions for real-world applications is acceptability: choosing 
interaction models and user interfaces suited to the target 
users’ needs and features may help avoid distrust in using 
such applications (Rashidi et al., 2013). To this end, the syn-
ergy between the human-machine interaction (HMI) model 
and the graphical user interface (GUI) plays a relevant role 
in a technological solution.

The main goal of the HMI is to improve the usability of a 
technological solution by facilitating how the user interacts 
with the system; the primary goal of the GUI is to guide 
the user in using the system with clear and straightforward 
information, thus avoiding user mistakes and misunder-
standing. Several studies proposed age-centered guidelines 
to design and develop HMI and GUI (Sharma et al. 2016; 
Vines et al. 2015) since, for example, psychomotor and cog-
nitive skills worsen with age.

The older and pathological subjects often show resis-
tance to traditional HMI modalities: the use of keyboard and 
mouse, for example, is often problematic due to the deterio-
ration of motor control and coordination. In recent years, 
new natural forms of interaction have aroused great inter-
est by exploiting the movements of the body, speech, and 
gaze (Dias et al. 2012; Hsiao et al. 2017). Another element 
that characterizes aging is the impairment of several sensory 
systems, including vision function, causing more difficulties 
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user experience: many of the design guidelines, indicated 
in (Rot et al., 2017), have been considered, particularly 
regarding the categories of visualization, navigation, com-
munication, support, and personalization. This approach 
makes us confident for a subsequent experimental campaign 
in which we will analyze the user experience and collect 
feedback on usability and acceptability through dedicated 
questionnaires.

4  Experimental framework

4.1  Participants

A group of fourteen subjects with PD was involved in the 
experimental study at the Department of Neurology and 
Neurorehabilitation of the Istituto Auxologico Italiano 
(San Giuseppe Hospital). The study refers to data collected 
between late 2019 and early 2020. Subjects were recruited 
according to the UK Parkinson’s Disease Society Brain 
Bank Clinical Diagnostic standards (Hughes et al. 1992), by 
adopting specific inclusion criteria: no history of neurosur-
gical procedures or injuries to lower limbs; minimal tremor 
(severity < = 1); no cognitive impairment (Mini–Mental 
State Examination Score > = 27/30).

The participants were also enrolled as belonging to the 
PIGD motor subtype of PD, according to their PIGD sub-
score as the average of some UPDRS items (i.e., arising from 
chair, gait, posture, and postural stability tasks). The ratio of 
mean tremor score to mean PIGD score was calculated to 
determine the PD subtype: ratio scores ≤ 1.0 identified the 
PIGD subtype (Jankovic et al. 1990). Compared with other 
non-PIGD PD subtypes, PIGD subjects show a significantly 
higher probability of falling (Pelicioni et al. 2019). All PD 
participants were assessed in their “on” status, thus during 
their best motor performances when the effects of levodopa 
treatment on motor symptoms are still present.

As required by the experimental procedure, the PIGD 
sub-score of the PD subjects was further assessed by an 
expert neurologist before each instrumental session. The 
characteristics of the group of PD subjects are: average 
Hoehn and Yahr score = 2.4 (range: 1–3); average age = 67.8 
years (range: 54–75); average disease duration = 6.7 years 
(range: 3–9). A group of fourteen volunteers made up the 
age-matched control group (CG): the inclusion criteria were 
the absence of any neurological, motor, or cognitive disor-
ders and no episode of previous falls.

4.2  Experimental procedure and data acquisition

A technician instructed the participants on using the sys-
tem in a laboratory setting; then, each subject started to 

The execution GUIs are displayed while the user is per-
forming the proposed tasks. In this case, only rough visual 
feedback of body movements is shown, through the depth 
map and 2D joints, to prevent the user from self-influencing 
during the performance [Fig. 6]: the execution GUIs do not 
require interaction, thus allowing users to focus only on the 
task execution.

Both types of GUIs maintain a consistent structure. The 
larger central area, where the attention is most concentrated 
(Sharma et al. 2016), is where the user is displayed and the 
interaction takes place. User instructions are shown in the 
left area: this layout, which users are pretty accustomed to, 
partly follows web applications that commonly show the 
main menus on the left (Boll et al., 2015). Although the 
structure of the GUI is simple, it still aims to increase the 

Fig. 6  Example of the execution GUI. On the left, the message sug-
gests the action to be performed. In this case, a rough visual feed-
back of the movement and the scene is provided based on depth video 
stream and some joints of the skeletal model

 

Fig. 5  Example of the interactive GUI. On the left, the message sug-
gests the action to be performed. In this case, the interaction oc-curs by 
moving the arm/hand on the red start button. A clear visual feedback of 
the movement and of the scene is provided based on the color stream 
and the involved joint
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The statistical analysis results indicate that CoM param-
eters are able to discriminate PD from CG subjects, as con-
firmed by the Mann-Whitney U Test for the USD, TS and 
RS tasks (Tables  3, 4 and 5, respectively). Furthermore, 
Spearman’s correlation values indicate that many CoM 
parameters are significant and, in general, show a moder-
ate to strong correlation with the PIGD scores (|ρ > 0.4|, 
p-value < 0.05).

A threshold of |ρ > 0.5| on Spearman’s correlation values 
was set to select, from the set of CoM parameters initially 
considered (Table  2), those which best correlate to PIGD 
scores. Then, only the subsets of parameters shown in 
Tables 3, 4 and 5 were considered for the training phase of 
the respective task classifiers.

As can be seen, all the selected parameters are able to dis-
criminate PD from CG subjects, even if with different dis-
criminatory power for the different tasks. In particular, the 
Area parameter is the less discriminant in all the tasks, even 
if with acceptable values in the differences between PD and 
CG mean values and in the corresponding p-values. Con-
cerning the correlation (ρ Spearman’s coefficient) between 
PIGD scores and CoM parameters, this is generally lower 
for the USD task than for TS and RS tasks: this can be due 

self-interact with the system through the HMI under the 
technician‘s supervision, this in the perspective of future 
use of the system in the home setting. All PD and CG partic-
ipants performed the tasks proposed by the system through 
the interactive and execution GUIs as defined in the study 
protocol and under the same operative conditions. Informed 
consent was obtained according to the Declaration of Hel-
sinki (2008) before participating in the study.

5  Experimental results

5.1  Correlation between CoM parameters and PIGD 
scores

Before performing the statistical analysis, the trials have 
been analyzed to verify the stability of the skeletal model 
joints involved in estimating CoM. In particular, the mean 
and standard deviation of the joint positions has been used 
to identify any body-tracking problems. All the trials ana-
lyzed did not reveal any critical issue of tracking or anoma-
lous jittering of joints, so they have been all considered for 
the statistical analysis.

Table 3  Discriminant power and correlation of parameters for USD task (postural parameters evaluated for ST phase)
Mann-Whitney U Test Spearman Coefficient b

Parameter CG (mean ± std) PD (mean ± std) Z p-valuea ρ p-valuea

APr 0.69 ± 0.22 1.68 ± 0.54 2.85 8.55 × 10− 3 0.57 3.24 × 10− 3

APt 1.45 ± 0.18 7.32 ± 2.23 3.72 3.73 × 10− 4 0.63 2.98 × 10− 3

APv 0.87 ± 0.15 2.01 ± 1.14 2.18 2.66 × 10− 3 0.53 2.57 × 10− 3

Area 0.51 ± 0.11 1.98 ± 1.46 1.99 4.29 × 10− 3 0.56 3.14 × 10− 3

aSignificance level < 0.05;bCorrelation respect to PIGD subscale scores

Table 4  Discriminant power and correlation of parameters for TS task (postural parameters evaluated for ST phase)
Mann-Whitney U Test Spearman Coefficient b

Parameter CG (mean ± std) PD (mean ± std) Z p-valuea ρ p-valuea

MLr 0.84 ± 0.23 2.42 ± 0.68 4.41 7.89 × 10− 6 0.78 3.35 × 10− 3

APt 1.24 ± 0.11 3.07 ± 1.10 4.23 2.34 × 10− 5 0.62 1.89 × 10− 3

MLt 2.39 ± 0.81 7.82 ± 2.31 4.48 7.47 × 10− 6 0.71 4.11 × 10− 3

MLv 1.00 ± 0.46 2.84 ± 1.05 4.16 3.20 × 10− 5 0.74 2.98 × 10− 3

Area 0.92 ± 0.20 1.30 ± 0.23 3.77 1.64 × 10− 4 0.52 1.27 × 10− 3

aSignificance level < 0.05;bCorrelation respect to PIGD subscale scores

Table 5  Discriminant power and correlation of parameters for RS task (postural parameters evaluated for ST phase)
Mann-Whitney U Test Spearman Coefficient b

Parameter CG (mean ± std) PD (mean ± std) Z p-valuea ρ p-valuea

APr 1.14 ± 0.17 2.09 ± 0.24 4.48 7.38 × 10− 6 0.80 3.89 × 10− 3

APt 2.11 ± 0.25 6.24 ± 0.94 4.48 7.42 × 10− 6 0.75 2.98 × 10− 3

MLt 2.51 ± 0.33 3.88 ± 0.73 4.25 2.12 × 10− 5 0.56 2.64 × 10− 3

APv 1.55 ± 0.30 3.41 ± 1.07 4.38 1.14 × 10− 5 0.74 1.89 × 10− 3

Area 1.13 ± 0.17 1.53 ± 0.33 3.86 1.12 × 10− 4 0.58 3.32 × 10− 3

aSignificance level < 0.05;bCorrelation respect to PIGD subscale scores
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this could be explained by observing that the TS task is the 
most challenging for postural stability, both for PD and CG 
subjects. The CoM sway tends to be more evident for both 
types of subjects. Similar arguments used before to explain 
the correlation results can also be applied in this case. How-
ever, the accuracy obtained for the binary classification is 
very high for all three tasks. As expected, the accuracies of 
the multiclass classifiers are lower than the corresponding 
accuracies of binary classifiers: the classification is gener-
ally more difficult when the number of classes increases and 
the training data remains the same.

The results on the classification accuracy suggest that the 
system can be successfully used for the automatic assess-
ment of postural stability of PD subjects at home.

The greater postural instability in the DT phase is high-
lighted in [Fig. 7] by the differences in the average values 
of the COM parameters estimated in ST and DT phases. 
The radar graphs show the differences for the three tasks 
(USD, RS, and TS) and for CG and PD groups: difference 
values, which refer to different physical quantities, are rep-
resented in the [0–1] range to be easily comparable. The DT 
condition clearly increases the average values of the pos-
tural parameters (all the differences are positive), indicating 
a worsening of stability compared with the ST condition. 
Although this happens for both PD and CG groups, it is 
more evident for the PD group. This behavior is indicated 
by the PD radar graphs that are wider than CG ones for all 
the tasks. These results demonstrate that CoM parameters 
successfully detect the expected worsening of the stability 
occurring in PD subjects under DT conditions. Furthermore, 
they indicate that CoM parameters are more sensitive in dis-
criminating the worsening in postural stability of PD sub-
jects than CG ones.

The performance of the classifiers in assessing the PD 
subjects during the DT phase has also been evaluated. The 
worsening in the stability by switching from ST to DT 
condition has been successfully detected by the USD, RS, 

to the less challenging motor aspects of USD task, and the 
consequent reduced impact on the CoM sway.

For the TS task, the correlation coefficients of the ML 
parameters are generally higher than the others: this can be 
explained by the higher instability in the medio-lateral plane 
due to the tandem position of the feet. The high values for 
the AP coefficients in the RS task can be explained with sim-
ilar arguments: the forward outstretching of the arms creates 
higher instability in the antero-posterior plane.

5.2  Accuracy of the automated assessment

Classifier performance is evaluated by applying the leave-
one-out cross-validation method, and it is expressed in 
terms of classification accuracy. In Table  6, two types of 
classification accuracy are presented, where the subjects are 
classified according to their CoM parameters during the ST 
phase. First, the results for the binary classification problem 
are presented, where the subjects are classified as belonging 
to PD and CG groups; second, the results for the multiclass 
classification problem are presented, where the PD subjects 
are classified into the three classes of increasing severity of 
postural instability. In this second case, the per-class accu-
racy is used, where the classification accuracies are aver-
aged over the classes (Sokolova et al., 2009).

The accuracy of the binary classifiers indicates that the TS 
task has the best classification accuracy, while the USD task 
has the worst. The same happens for multiclass classifiers: 

Table 6  Accuracy of SVM classifiers for the three tasks (USD, RS and 
TS) using parameters of ST phase
CLASSIFIER PD vs. 

CG
Stability 
severitya

SVMUSD 89.2% 64.3%
SVMRS 92.8% 67.8%
SVMTS 96.4% 71.4%
aClassification of PD subjects vs. stability scores: poor, medium and 
good stability

Fig. 7  Radar Graphs of the differences between the average values of COM parameters in ST and DT phases, for the three tasks (USD, TS and 
RS) and for CG and PD groups
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based on SVM supervised classifiers, allows the automated 
scoring of the user performance through the postural param-
eters evaluated by the system during the execution of each 
task. The classifiers have been trained in an experimental 
campaign, where two groups of PD and CG subjects have 
been assessed simultaneously by the system and an expert 
neurologist. The results show the discriminant power of the 
selected parameters, which distinguish the PD group from 
the CG one.Furthermore, the selected parameters show 
good correlation with the assigned standard clinical scores. 
The good accuracy of the classifiers in assigning a score to 
the performance of PD subjects on three increasing severity 
classes is promising for the in-field use of the system. Nev-
ertheless, caution is needed because of the limited sample 
size of the PD group.

Particularly interesting is the analysis of the DT condi-
tion: postural instability increases during the execution of a 
concurrent task, both for PD and CG groups, but the differ-
ence between the two groups becomes wider compared to 
the single-task condition.

These results demonstrate that CoM parameters suc-
cessfully detect the expected worsening of the stability that 
occurs in PD subjects for the DT condition. CoM param-
eters are also more sensitive in discriminating the wors-
ening of the postural stability in PD subjects than in CG 
subjects. This sensitivity to the DT condition of the param-
eters will be further investigated in future work. Certainly, 
further investigations are necessary to confirm these pre-
liminary results: for example, the PD sample size should 
be increased; the three individual assessments of the tasks 
should be integrated into a single postural stability index; 
the analysis of PD subjects in DT condition should be fur-
ther explored through different types of concurrent cogni-
tive or secondary motor tasks. Nevertheless, the results are 
encouraging, particularly in the perspective of the home 
monitoring of postural stability, which impacts the quality 
of life and the safety of PD people. In addition, the results 
suggest that supervised classifiers can be used for the auto-
matic assessment of the subject’s performance, for predict-
ing a potential risk of falls, and for the automatic detection 
of balance alterations.

As a final note, although Microsoft Kinect® v1 and v2 
have been declared discontinued, other commercial alterna-
tives are now available: Microsoft Kinect Azure®, Orbbec 
Astra®, and Intel RealSense® D400 series, combined with 
new body-tracking algorithms (e.g., Nuitrack® software, 
Openpose®) should allow to achieve results similar to those 
presented here (Cao et al. 2021). In particular, the Microsoft 
Kinect Azure®, which replaced Kinect v2, seems to ensure 
high performance and accuracy, as proved by some recent 
studies on the onboard sensors and the new body-tracking 
algorithm (Tölgyessy et al. 2021a,b).

and TS classifiers as a shift to a worse stability class in the 
majority of the evaluated subjects (86%), with a minority 
(14%) remaining in the same stability class.

6  Conclusion

The objective and daily assessment of postural stability are 
highly desirable in PD because it could be a good index of 
the risk of falling and the consequent injuries. In this paper, 
a vision system for the automatic assessment of postural 
stability in a home environment is presented. The system 
is based on a low-cost RGB-Depth device, whose track-
ing capabilities have been exploited both to characterize 
the movements of PD subjects during balance tasks for the 
assessment of postural stability, and to build a gestural HMI 
suitable for people with motor impairment. The natural 
interaction with the system is based on gestures and actions 
to be performed with simple body movements thanks to cus-
tomizable GUIs that guide the users during the overall test 
session: this makes the solution easy-to-use, intuitive, and 
suitable for home use without requiring particular techni-
cal skills. Specific constraints have been considered in the 
definition of the system setup and experimental protocol in 
order to avoid external interferences due to light sources, 
reflective surfaces, clothing, and worn reflective objects. 
These elements could cause discontinuities and artifacts in 
the depth map and, consequently, an erroneous positioning 
of skeleton model joints and estimation of CoM location 
that could affect postural stability analysis.

Postural stability is assessed by means of kinematic 
parameters that characterize the CoM sways measured by 
the system during the execution of specifically designed 
balance tasks. In particular, the three proposed tasks (named 
USD, RS, and TS) have been derived directly from the Berg 
balance scale, a clinical scale commonly used for postural 
stability assessment. The HMI of the system combined with 
the task design makes them suitable for self-management 
by people with motor impairment, also ensuring the safety 
of the user when performing the tasks in a typical home 
environment.

The evaluation of postural stability by these multiple 
balance tasks aims to stimulate the subject with different 
types of postural stress, providing a more extensive assess-
ment of anomalies and balance dysfunctions. Furthermore, 
considering that the dual-task condition is typical in daily 
activities, a concurrent cognitive task has been introduced 
to force the onset of instability and to evaluate the respon-
siveness of the system to the rapid deterioration of the pos-
tural stability. Postural parameters estimated by the CoM 
sway of the body have been proved to be strongly corre-
lated to postural instability. A machine learning approach, 
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