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Abstract
Motivated by the increasing interest in machine learning algorithms for data-driven applications in agri-food addressing 
sustainability issues and by the ongoing discussion on the interpretability and sustainability of such algorithms, we compare 
congruently the performance of some state-of-the-art techniques and a new version (here proposed for the first time) of 
Co-Active Neuro-Fuzzy Inference System, equipped with fractional regularization (CANFIS-T for short). To this end, we 
consider two case studies retrieved from the literature and dealing with two approaches for sustainability development, i.e. 
ex-ante Life Cycle Assessment and Supply Chain Operations Reference in the agri-food context. Such approaches are set in a 
data-driven framework and completed by the above-mentioned machine learning techniques. The state-of-the-art techniques 
from the relevant literature are the ensemble ANFIS, Radial Basis Function Network and Decision Tree. The techniques 
are compared from the computational, interpretability and energy standpoints. From a formal perspective, we prove what 
negatively affects the accuracy of ensemble ANFIS. On the basis of the performed experiments, we notice that except for the 
ensemble ANFIS, all the approaches can be regarded as sustainable, with energy savings over 99%, while only CANFIS-T 
keeps both good accuracy and interpretability (with up to 4 rules) when the number of input and output variables gets large.

Keywords  Fuzzy sets · CANFIS · LCA · SCOR · Energy

1  Introduction

The European Union (EU) is committed to the United 
Nations (UN) 2030 Agenda and the sustainable develop-
ment goals (SDGs). In every field, sustainability issues 
have been prioritized. Typical procedures for sustainability 

development are Life Cycle Assessment (LCA) and Supply 
Chain Management (SCM) (Glavic and Lukman 2007).

LCA can be defined as “the method/process for evaluat-
ing the effects that a product has on the environment over 
the entire period of its life, thereby increasing resource use 
efficiency and decreasing liabilities” (Glavic and Lukman 
2007). Most LCA studies in scientific literature and indus-
trial practice are applied ex-post for comparing production 
systems in well-defined case studies or to prove compliance 
with environmental guidelines and green certificates. Any-
way, determining possible environmental impacts at an early 
stage of research and development allows reorienting the 
development activities towards improved environmental per-
formance levels at relatively low costs. This has motivated 
the use of the ex-ante LCA, even though its output should 
not be interpreted as an absolute result but rather as an indi-
cation of what might happen (Tsalidis and Korevaar 2022).

There are several studies highlighting the usefulness of 
the ex-ante LCA for identifying environmental issues at 
an early stage of development, regardless of the product, 
process, or service, especially for the food and feed sector 
(Ott et al. 2022). For instance, in Leon (2022), ex-ante LCA 

 *	 Stefania Tomasiello 
	 stefania.tomasiello@ut.ee

 *	 Yang Liu 
	 yang.liu@liu.se

	 Muhammad Uzair 
	 muhammad.uzair@ut.ee

	 Evelin Loit 
	 evelin.loit@emu.ee

1	 Institute of Computer Science, University of Tartu, Narva 
mnt 18, Tartu 51009, Estonia

2	 Department of Management and Engineering, Linköping 
University, SE‑58183 Linköping, Sweden

3	 Institute of Agricultural and Environmental Sciences, 
Estonian University of Life Sciences, Kreutzwaldi 5, 
Tartu 51009, Estonia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12652-023-04702-w&domain=pdf
http://orcid.org/0000-0003-2830-7525
https://orcid.org/0000-0001-8006-3236


16868	 S. Tomasiello et al.

1 3

was performed to evaluate the potential changes in fertilizer 
application rates and life cycle greenhouse gas emissions 
when dealing with biological nitrification inhibition-enabled 
wheat. Already popular in several fields, machine learning 
(ML) techniques have also been proven to be useful to com-
plement LCA for a better interpretation of the results (Prioux 
et al. 2022). A first concrete attempt to formalize an ML 
framework for ex-ante LCA was presented in Karka et al. 
(2022), where Radial Basis Function networks (RBFN) and 
Decision Trees (DTs) were used to predict single LCA indi-
cators in the context of bio-based processes. In Ghasemi-
Mobtaker et al. (2022), given the typical process inputs for 
the LCA analysis of wheat production, the global warming 
potential (GWP) was predicted by using a sequence of Adap-
tive Neuro-Fuzzy Systems (ANFIS), called ensemble ANFIS 
(e-ANFIS). It must be pointed out that this e-ANFIS is a 
serial-like scheme, different from the ensemble of ANFIS 
proposed in Melin et al. (2012), which is a parallel-like 
scheme, where the results of each ANFIS are integrated by 
direct average and weighted average to give the outcome 
of the computing scheme. Yet, the idea behind e-ANFIS is 
somewhat different from the ensemble approach using dif-
ferent ML techniques (e.g. see Saggi et al. 2022).

Regarding SCM, it can be defined as “a process of 
planning, implementing and controlling the operations 
of the supply chain (SC) with the purpose of satisfying 
consumer requirements” (Glavic and Lukman 2007). 
There are numerous studies focusing on SCs in agri-food 
(e.g. see D’Arienzo and Raritá 2020; de Falco et al. 2018; 
Morella et al. 2021). The supply chain operations refer-
ence (SCOR) model can be regarded as a diagnostic tool 
for assessing the SC processes (Huan et al. 2004). Over 
the last years, the SCOR model has become very popu-
lar, with several applications also in the agri-food sector 
(Ntabe et al. 2015). This method has five scopes, namely: 
plan, source, make, deliver, and return. Additionally, five 
dimensions are considered, i.e. reliability, responsiveness, 
flexibility, cost, and asset. These criteria are expanded 
hierarchically in order to identify gaps and improvement 
opportunities for the high-level criteria starting with low-
level criteria. Due to the growing interest in sustainabil-
ity (especially environmental issues), recent versions of 
SCOR have been equipped with greenness criteria. These 
criteria include carbon emission, liquid waste generated, 
air pollutant emission, solid waste generated, and recycled 
waste. Anyway, as emphasized in Stohler et al. (2018), 
the integration of sustainability metrics into SCOR pro-
cess models is underway. It must be pointed out that the 
SCOR model itself is not able to adapt proactively to any 
changes in the system (Lima-Junior and Carpinetti 2019). 
Enabling techniques in this regard are from the realm of 
Artificial Intelligence (AI). For instance, in Lima-Junior 
and Carpinetti (2019, 2020), the performance metrics 

proposed by the SCOR model are combined with AI tech-
niques in order to have predictive evaluation systems. Sim-
ilar ideas are exploited in Khan et al. (2023), but covering 
sustainability.

Digital technologies, particularly artificial intelligence 
(AI), play a central role in attaining the SDGs (Vinuesa 
2020). Recently, the discussion has focused on sustainable 
AI. Sustainable AI can be understood in two ways: AI for 
sustainability and sustainability of AI (van Wynsberghe 
2021). There is a growing number of publications deal-
ing with AI for the SDGs (Vinuesa 2020). Considering the 
increasing importance of AI, the environmental impact of 
AI systems also needs to be duly considered. Only very little 
research has been performed addressing the environmental 
cost of AI (van Wynsberghe 2021; Ferro et al. 2021). It has 
been shown that the training and tuning of a complex archi-
tecture using deep learning produced the same amount of 
carbon dioxide as five cars during their lifespan (see Ferro 
et al. 2021 and references therein). Most machine learn-
ing (ML) algorithms are costly to train and develop, both 
from the computational and energy standpoint. Thus, AI is 
rapidly becoming economically, technically, and environ-
mentally unsustainable. Some efforts have been exerted to 
study the energy consumption of a class of ML algorithms, 
i.e. that of DTs (Ferro et al. 2021). On the other hand, AI 
is expected to be human-centred, and in such a vision, any 
algorithm should be not only sustainable but also interpret-
able (Auernhammer 2020). Interpretable approaches may 
be regarded as humanly understandable with regard to the 
interactions in the modelling process. The interpretability 
should be addressed every time the modelled phenomena 
have socioeconomic implications, to allow different stake-
holders to understand algorithmic decisions, in agreement 
with current regulations (Regulation 2016).

In this paper, we consider two case studies dealing with 
two approaches for sustainability development, i.e. ex-ante 
LCA and SCOR, both enhanced by AI. The first case is 
retrieved from Ghasemi-Mobtaker et al. (2022) and the sec-
ond one from Lima-Junior and Carpinetti (2020). Both in 
Ghasemi-Mobtaker et al. (2022); Lima-Junior and Carpinetti 
(2020), the e-ANFIS was used. We formally prove in this 
paper that the error affecting the final output in e-ANFIS is 
amplified through the partial outputs of such a computing 
scheme, discussing the order of this error. We introduce a 
new version of Co-Active Neuro-Fuzzy Inference System 
(CANFIS), equipped with fractional regularization, named 
CANFIS-T. We compare this approach against those in the 
relevant literature, i.e. e-ANFIS, due to several applications 
in agri-food, RBFN and DTs, used for ex-ante LCA as dis-
cussed in Karka et al. (2022), in addition to the fact that the 
latter was considered as a sustainable approach (Ferro et al. 
2021). The numerical experiments on the two case stud-
ies come after a brief preliminary study to start checking 
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the performance of the considered approaches. Accuracy, 
interpretability and sustainability of all the approaches are 
discussed.

This paper is structured as follows. In the next section, 
the related works are briefly presented. In Sect. 3, the pro-
posed CANFIS-T is introduced, and the other approaches 
used for comparative purposes, i.e. e-ANFIS, RBFN and 
DTs, are briefly recalled. Section 4 is devoted to numerical 
experiments. Finally, in the last section, some conclusions 
are drawn.

2 � Related works

The role of AI in sustainable agri-food has been widely dis-
cussed (Sharma 2021). AI is deemed to offer the means to 
tackle all food and agriculture-related problems. Intelligent 
systems, decision-making strategies, robust forecasting tech-
niques may all contribute to increased efficiency, reduced 
resource consumption, and cost. The value of AI in agri-
food is expected to grow rapidly with a rate of over 22% 
(Sharma 2021). While in the recent review (Sharma 2021) 
fuzzy logic (FL) was mentioned among the others as partici-
pating in the AI revolution of the agri-food sector, not many 
details were discussed about the FL techniques. Among the 
FL approaches, CANFIS and e-ANFIS must be considered 
because of their application in agri-food, as already men-
tioned in the previous section and as will be better discussed 
in this section.

In many papers (e.g. see Abyaneh 2016-Gholami 2023), 
CANFIS was improperly used as a multi-input single-output 
system. i.e. as ANFIS. CANFIS was used to predict the soil 
temperature in Abyaneh (2016); Talaee (2014). In Aytek 
(2009); Tabari et al. (2012); Malik and Kumar (2015), CAN-
FIS was utilized to estimate evapotranspiration or pan evap-
oration, showing its robustness in comparison with other 
models. In Malik et al. (2017), CANFIS was used to predict 
the daily suspended sediment concentration in an Indian 
river. CANFIS outperformed ANN and multiple linear and 
nonlinear regressions. In Gholami (2023), CANFIS was used 
to model the relationships between runoff and factors such as 
rainfall, antecedent soil moisture, soil texture, forest cover, 
and percentage of litter cover.

A proper application of CANFIS, with three inputs and 
two outputs, can be found in Gonzalez Perea et al. (2021), 
where it was used to forecast one-day ahead distribution 
in energy tariff periods of the irrigation depths at the farm 
level. The tuning of the CANFIS model was obtained by 
NSGA-II. Three models were obtained, namely for rice, 
tomato, and maize. Another proper application of CANFIS 
can be found in Bayatvarkeshi (2021), where it was used to 
predict the soil temperature at six different depths after hav-
ing pre-processed the data by using wavelets.

Over the last few years, e-ANFIS has been appearing in 
several works in the agri-food area. Some of them deal with 
LCA. For instance, in Mousavi-Avval (2017), an e-ANFIS 
was used to predict output energy, economic productivity 
and environmental emissions of canola production, com-
plementing the LCA analysis for the environmental profile 
of canola production. Similarly, in Nabavi-Pelesaraei et al. 
(2019), the LCA was complemented by an e-ANFIS to pre-
dict economic profit, output energy and global warning in 
milling factories. In Khoshnevisan et al. (2014), e-ANFIS 
was used to predict the environmental indices of greenhouse 
production of tomatoes and cucumbers. The authors used 
Life Cycle Inventory (LCI) data as inputs to predict energy 
indices in greenhouse production. A similar contribution is 
offered in Kaab (2019), where the application is sugarcane 
production. Sugarcane is also the topic of Yani (2022), but 
the authors did not use LCI data as input for the e-ANFIS; 
they used different indicators from the relevant literature to 
assess the sustainability of the sugarcane SC.

In Chen et al. (2020), the authors employed an e-ANFIS 
for maximum yield prediction given inputs from different 
sensor nodes such as humidity, soil moisture, and tempera-
ture, in addition to other information on the crops. Finally, in 
Mardani et al. (2019), an e-ANFIS was designed to predict 
carbon dioxide emissions, given some indicators.

In all the articles cited in this section, the sustainability of 
AI was not considered. Sustainable AI, also called green AI, 
has been attracting growing interest, especially over the last 
three years (Verdecchia et al. 2023). The recent review (Ver-
decchia et al. 2023) shows that green AI is mostly tackled at 
the level of energy efficiency. In this respect, DTs seem to 
be more energy efficient and with minimal impact on accu-
racy than other considered approaches (Verdecchia et al. 
2023). According to the same review, and to the best of our 
knowledge, e-ANFIS and CANFIS have not been explored 
yet from the sustainability perspective. In addition to the 
above-mentioned DTs, RBFNs must be considered for com-
parison purposes because appearing in the relevant literature 
(Sharma 2021; Karka et al. 2022). Finally, since green AI 
should also be transparent (Osifo 2023), and transparency is 
a feature of interpretability (Lipton 2018), the above-men-
tioned approaches should also be checked for interpretability. 
These are the research gaps that will be covered in this paper.

3 � The approaches

In this section, we describe the proposed approach and 
briefly recall the state-of-the-art approaches, i.e. the 
approaches we refer to for a fair comparison. The considered 
state-of-the-art approaches are e-ANFIS, RBFN and DTs.
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3.1 � The proposed approach: CANFIS‑T

The Co-Active Neuro-Fuzzy Inference System (CANFIS) is a 
generalization of the Adaptive Neuro-Fuzzy Inference System 
(ANFIS) (Mizutani and Jang 1995). Like ANFIS (Jang 1993), 
it presents a multi-layered network architecture to describe the 
Takagi-Sugeno fuzzy inference system, but unlike ANFIS, 
it allows for multiple outputs. Hence, while ANFIS models 
Multi-Input-Single-Output (MISO) systems, CANFIS models 
Multi-Input-Multiple-Output (MIMO) systems. In CANFIS, 
the fuzzy rules are constructed with shared membership values 
to take into account any possible correlation among outputs.

Let x = {x1,… , xn} be the input vector with n attributes. 
Let Li denote the ith layer of this network. The operations 
performed through the different layers can be summarized 
as follows:

•	 L1, uir = �Air
(xi),

•	 L2, wr = Πn
i=1

uir,
•	 L3, frk = wrCrk(x),
•	 L4, ok =

∑R

r=1
frk,

•	 L5, ok = ok

�∑R

j=1
wj

�−1

,

where Air , i = 1, 2,… , n , are fuzzy sets representing linguis-
tic attributes of the input xi in the r-th rule (r = 1, 2,… ,R) , 
and ok , with k = 1,… , p , are the p computed outputs. The 
linear functions Crk(x) are a linear combination of xi through 
nRp × p unknown parameters. The fuzzy sets are uniquely 
identified by means of membership functions (MFs), here 
assumed to be parameterized functions such as the Gauss-
ian function:

where air, cir are the function’s parameters.
A CANFIS scheme is depicted in Fig. 1. Like ANFIS, the 

standard CANFIS uses a hybrid learning approach, including 
backpropagation and least-squares (LS) method.

Given N training samples, the following matrix equation 
is obtained using the training data:

where O is the N × p output matrix, � is the matrix of the 
unknown parameters, H = [H1 … ,Hp] is the block matrix 
consisting of N × nR matrices Hi , i = 1,… , p.

The LS method is formulated as

(1)�Air
(x) = exp

(
−

(
xi − cir

air

)2
)
,

(2)H� = O,

(3)min
�

‖H� −O‖2

with the solution

where H∗ = (HT
H)−1HT  is the pseudoinverse of H . The 

fractional Tikhonov method represents a generalization of 
the standard LS method through the following minimization 
problem

where ‖Θ‖P = (ΘTPΘ)
1

2 and P is a symmetric positive semi-
definite matrix defined as

where � ∈ (0, 1) is the fractional regularization parameter 
and � a general regularization parameter.

Following Tomasiello et al. (2022), the solution is:

where M = H
T
H.

In Tomasiello et al. (2022), the accuracy of ANFIS with 
fractional regularization was formally proved. It is possible 
to mimic the same proofs to prove the accuracy in the case 
of multiple outputs in CANFIS.

The jth rule that is possible to extract from CANFIS is

It is worth mentioning that in order to ensure interpretability 
in fuzzy systems, there should be a small number of rules 
allowing easy reading and understanding. This also means 

(4)�
∗ = H

∗
O,

(5)min
Θ

‖H� −O‖2
P
+ �‖�‖2,

(6)P = (HT
H)

�−1

2 ,

(7)Θ∗ = (M
�+1

2 + �I)−1M
�−1

2 H
T
O,

IF x1 is A1j … AND xn is Anj THEN {Cj1,… ,Cjp}.

Fig. 1   A CANFIS architecture
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that the number of terms should be small enough (e.g. 3–5) 
(Mencar 2013). This has motivated the adoption of frac-
tional regularization in ANFIS first (Tomasiello et al. 2022) 
and then in CANFIS.

3.2 � Ensemble ANFIS

An ensemble ANFIS (e-ANFIS) model combines multiple 
individual ANFIS models, each trained with a different 
set of training data. The output of each model is passed to 
another ANFIS to make a final prediction. This approach 
may be an option to model MIMO systems, but clearly, it 
may be computationally costly. The interpretability is also 
negatively affected. An example of e-ANFIS is depicted 
in Fig. 2.

From a formal perspective, this implies the fuzzification 
of the q intermediate outputs oI

i
 by means of the fuzzy sets 

Bir represented by their membership functions �Bir
 , i.e. the 

final output oF can be written as:

where fr(oI) represents the linear combination of the inter-
mediate outputs oI

i
 by the unknowns �i for the rth rule.

A drawback of this approach is that the error affect-
ing the computed intermediate outputs is propagated, 
also affecting the final output. This is clearly shown by 
Lemma 1.

Let oI
i
 and oI

i
 be the ith computed and exact output, 

respectively. Similarly, let oF and oF be the computed 
final output and the target. Besides, let �i = |oI

i
− oI

i
| be the 

error affecting the ith computed output, with i = 1,… , q . 
We prove the following (proof in Appendix).

Lemma 1  Suppose the membership functions �Bir
 are Lip-

schitz continuous for any i = 1,… , q and r = 1,… ,R . Then 
it is

where L is the Lipschitz constant, M = maxi �i , m = mini �i.

(8)oF =

∑R

r=1
Π

q

i=1
�Bir

(oI
i
)fr(o

I)

∑R

r=1
Π

q

i=1
�Bir

(oI
i
)

,

(9)eF = |oF − o
F| = O(

(
LM + 1

Lm + 1

)q

),

It is worth recalling that the membership functions usu-
ally adopted in the ANFIS schemes, i.e. the Gaussian and 
the generalized bell-shaped function, are Lipschitz con-
tinuous. Lemma 1 clearly shows that the error affecting 
the final output depends on the errors affecting the inter-
mediate outputs. It provides the order of accuracy of this 
computing scheme.

3.3 � Radial basis function networks

The RBFN is a kind of shallow network consisting of only 
three layers:

•	 input layer, which consists of n nodes, given the input 
vector x = {x1,… , xn};

•	 hidden layer, where each hidden node is described by a 
radial basis function 

 where cj defines the centre of the unit; there are no 
weights associated with the connections from the input 
nodes to the hidden nodes;

•	 output layer, which is equipped with a linear function; 
assuming that the output layer consists of a single unit, 
then it is characterized by a K-dimensional weight vector 
w , that is 

The parameters of the hidden units are computed in an unsu-
pervised manner. A clustering technique, such as K-means, 
is usually adopted. The learning process consists of two 
phases: unsupervised tuning of all the parameters  in the 
hidden layer of the network and supervised learning of the 
weights in the output layer, e.g. by using the recursive least 
squares approach (Haykin 2009).

Although a multi-output version has been presented in 
Dua et al. (2010), in order to extract IF-THEN rules from 
this computing scheme as discussed in Jin and Sendhoff 
(2003), parallel single-output RBF networks, with the same 
input nodes, can be adopted.

(10)�j(x) = �(‖x − cj‖), j = 1,…K,

(11)y(x) =

K�

i=1

wi�i(x), o r y(x) =

∑K

i=1
wi�i(x)

∑K

i=1
�i(x)

.

Fig. 2   An e-ANFIS scheme
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3.4 � Decision trees

Decision trees fall in the class of non-parametric supervised 
learning algorithms (Breiman et al. 1984). These computing 
schemes have a hierarchical, tree structure, consisting of a root 
node, branches, internal nodes (decision nodes) and leaf nodes. 
The leaf nodes represent all the possible outcomes within the 
given data. A DT can also be regarded as a set of IF-THEN 
rules. This also implies that DTs are well interpretable if their 
depth (i.e. the number of levels) is limited (Molnar 2020). 
Their depth may influence the accuracy, even though it is not 
for granted that a deeper tree produces better accuracy. Moreo-
ver, a larger number of levels may negatively affect the runt-
ime. Choosing a proper node-splitting function is critical to 
accuracy improvement. There are several techniques for a bet-
ter DTs’ performance (e.g. see Barros 2012). The consistency, 
as part of the convergence, of DTs has been widely discussed 
in the literature (e.g. see Breiman et al. 1984).

The multi-output case is handled by storing all the p out-
put values in leaves, instead of 1, and splitting by computing 
the average reduction across all the p outputs.

4 � Numerical experiments

In this section, we detail the performed numerical 
experiments.

The original data was generated in the average and stand-
ard deviation specified for the two case studies and then it was 
normalized using min-max normalization in the range [0, 1].

In all the experiments, we used 2-fold cross-validation, 
even though no cross-validation was used in the main refer-
ences. Using at least 2-fold cross-validation allows for avoid-
ing biased results due to the choice of the test data.

Regarding CANFIS-T, several values of the regulariza-
tion parameters were used, i.e. � ∈ {0.1, 0.2,… , 0.9, 1} and 
� ∈ {10−3, 10−2,… , 102, 103} . For CANFIS-T, e-ANFIS, 
and RBFN, the Gaussian function was adopted. The gener-
alized bell-shaped function has also been tried, but it did not 
bring any significant improvements in the results despite its 
additional parameter, worsening the computational cost. The 
numerical experiments were performed using an Intel Core-
i5 processor clocking at 1.2 GHz, with the Scilab environ-
ment for CANFIS-T, and Matlab for all the other approaches.

As an accuracy measure, we considered the RMSE. The 
computational effort was measured by the training time. The 
sustainability of the approaches was measured by the energy 
consumption (EC) (Ferro et al. 2021; Pereira 2017; Hender-
son 2020). The energy value is here assumed as the sum of 
CPU and DRAM energy consumption (Pereira 2017). A com-
mon misconception when dealing with EC in software is that 
reducing the execution time of a program would bring the 

same amount of energy saving. The energy measured in joules 
(J) is the total power (watts) consumed during an interval of 
time (s). Hence, it may sound reasonable a reduction of the 
consumed energy when reducing time. Anyway, the power 
cannot be assumed as a constant, and it also has an impact on 
the energy. Therefore, conclusions regarding this issue may 
often diverge, as observed in Pereira (2017). To simulate the 
energy consumption, we used Intel Power Gadget 3.6.

4.1 � Preliminary study

In the preliminary study, we use synthetic data, randomly 
generated in the range [0, 1]. There are two generated data-
sets, each one consisting of 2000 samples, but the first one 
has 11 attributes and 3 targets, while the second one has 
19 attributes and 9 targets. These preliminary experiments 
represent a first attempt to see how the accuracy and the 
complexity of the considered approaches change when the 
number of attributes and targets increases. The e-ANFIS 
scheme for the first dataset is like the one in Fig. 2, i.e. a 
combination of 3 ANFIS models, where ANFIS-1 has 6 
input variables, and ANFIS-2 has 5 input variables. Regard-
ing the second dataset there are two e-ANFIS schemes like 

Table 1   Preliminary study, first dataset

Cross-validated test results

Approach Rules RMSE Training time 
(s)

Energy (J)

CANFIS-T 
( � = 1 , 
� = 0.9)

3 0.2914 ± 
0.00141

0.48 6.384

e-ANFIS 10 0.57853 ± 
0.00989

168.23 2115.221

DT 6 0.2934 ± 
0.00211

0.63 8.410

RBFN 20 0.59176 ± 
0.11623

0.24 3.112

Table 2   Preliminary study, second dataset

Cross-validated test results

Approach Rules RMSE Training time 
(s)

Energy (J)

CANFIS-T 
( � = 10 , 
� = 0.9)

3 0.29078 ± 
0.00043

1.14 11.742

e-ANFIS 85 0.69976 ± 
0.00835

1995.26 21,947.863

DT 18 0.2909 ± 
0.00165

1.59 19.668

RBFN 45 0.60209 ± 
0.02784

0.85 11.22
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the one in Fig. 2, where ANFIS-1/1 and ANFIS-2/1 in the 
first scheme have both 5 input nodes and ANFIS-1/2 and 
ANFIS-2/2 in the second scheme have 5 and 4 input nodes 
respectively.

The results related to the first and second datasets are 
reported in Tables 1 and 2, respectively. As one can see, 
the accuracy of CANFIS-T and DT is almost the same, 
even though the number of rules which can be extracted 
from CANFIS-T is smaller. This is, in particular, more 
evident for the second dataset. The shortest training time is 
offered by the RBFN, though its accuracy is not that good. 
Regarding energy consumption, this is quite limited for all 
the approaches except for e-ANFIS. The worst results from 
any perspective are by e-ANFIS.

It must be mentioned that in both datasets, there is no 
correlation, i.e. the largest entry of the correlation matrix 
in both cases was of the order of 10−2 . To introduce 
some correlation in the output data, the second dataset is 

modified by means of the last column as a sum of the two 
previous ones. This is shown in Fig. 3, where for the modi-
fied data (Fig. 3b), some dark cells (representing entries 
close to 1) are visible. No significant changes are reported 
after running the experiments with this modified dataset: 
all the observed changes are less than 10% on average.

4.2 � First case study

The first case study is inspired by Ghasemi-Mobtaker et al. 
(2022), where e-ANFIS was used to predict the GWP indica-
tor, pursuing an ex-ante LCA of wheat production. It is use-
ful recalling that the methodology for ex-ante LCA of any 
process originates from the idea that previous knowledge 
of the process can be used to estimate LCA indicators at 
an early stage of the process development. In a data-driven 
framework, first, one has to prepare the input–output flows 
of the model based on prior knowledge. Prior knowledge 
may come from the literature and implies the selection of 
a proper set of predictors ad corresponding LCA indicators 
to create input–output samples. The dataset so formed is 
then used by a suitable machine learning approach (Karka 
et al. 2022).

Regarding the dataset used herein, it presents attributes, 
which, with their average, and standard deviation, have 
been retrieved from Ghasemi-Mobtaker et al. (2022). They 
are listed in Table 3. The dataset consists of 5000 samples. 
There is no correlation among data, with the largest entry of 
the correlation matrix of order 10−2 . The e-ANFIS adopted 
in our experiments follows the scheme depicted in Fig. 2. 
More precisely, the inputs to ANFIS-1 are x1, x2, x3, x4 , with 
y1 as output. The inputs to ANFIS-2 are x5, x6, x7 , with y2 as 
output. Finally, y1 and y2 are provided as inputs to ANFIS-3, 
with y3 as the final output. The obtained results are reported 
in Table 4, showing the cumulative average RMSE, and in 

Fig. 3   Preliminary study, second dataset, correlation matrix plot: a 
original data, b modified data

Table 3   Input and output variables ( xi and yj respectively, with 
i = 1,… , 7 and j = 1, 2, 3)

The unit for GWP is kg CO2 . The unit for the rest of the attributes is 
MJ ha−1

Variable Description Average Standard deviation

x1 Field operations 1373.75 215.62
x2 Transport 5726.73 750.37
x3 Nitrogen 5851.63 2528.76
x4 Phosphate 1001.86 433.82
x5 Manure 624.00 653.85
x6 Biocides 285.12 80.10
x7 Medium voltage 23,534.59 6646.94
y1 Wheat grain 77,723.80 14,376.67
y2 Wheat straw 39,683.33 9401.63
y3 GWP 624.29 129.93
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Fig. 4, showing the RMSE for each output variable. The 
average energy consumption is shown in Fig. 6a. From the 
results, it is clear that the RBFN and e-ANFIS performed 
worst. CANFIS-T and DT have similar performance in terms 
of accuracy. By looking at the training time and consumed 
energy during the training, CANFIS-T performs slightly 
better than DT. The training time of the RBFN is similar, 
though slightly shorter than the one for CANFIS-T. The 
energy consumption for the RBFN is smaller than that of 
CANFIS-T but greater than that of the DT. The number of 
rules of CANFIS-T is only 2, while it is 5 for e-ANFIS, 6 
and 9 for the DT and RBFN, respectively. Hence, all the 
approaches turns out to be interpretable.

4.3 � Second case study

The second case study is an adaptation of the study on SCs’ 
performance reported in Lima-Junior and Carpinetti (2020), 
based on ML and SCOR. In the latter, seven ANFIS schemes 
were used to model the causal relationships defined by 
SCOR, to estimate the values of level-1 metrics on the basis 
of level-2 metrics. The aim of that model was to support 
a predictive diagnosis to identify which level-1 metric(s) 
underperform and, consequently, take action. Hence, the 
inputs were given by level-2 metrics, whereas the output 
variables represented level-1 metrics. The authors used 

synthetic data by following (Lima-Junior and Carpinetti 
2019). The data referred to a generic SC. Herein, we are 
considering the same inputs and outputs. Additionally, 
in order to take into account sustainability, we add to the 
outputs the CO2 emissions. These have been obtained syn-
thetically based on two facts. First, the CO2 emissions XCO2 
can be assumed directly proportional to the energy E, i.e. 
XCO2 = 0.785E (He 2019). Secondly, the energy intensities 

Table 4   First case study

Cross-validated test results

Approach Rules RMSE Training time (s)

CANFIS-T 
( � = 0.01 , 
� = 0.9)

2 0.13733 ± 0.00122 0.98

e-ANFIS 5 0.2546 ± 0.00734 173.22
DT 6 0.1372 ± 0.00212 1.41
RBFN 9 0.5116 ± 0.04231 0.89

Fig. 4   First case study. Cross-validated test results per output variable

Table 5   Input and output variables ( xi and yj respectively, with 
i = 1,… , 30 and j = 1,… , 8 ); the ndash stands for dimensionless

Variable Description Range Unit

x1 Orders delivered in full [0, 1] –
x2 Delivery performance [0, 1] –
x3 Documentation accuracy [0, 1] –
x4 Perfect condition [0, 1] –
x5 Value at risk (plan) [10, 100]×103 $
x6 Value at risk (source) [50, 200]×103 $
x7 Value at risk (make) [50, 300]×103 $
x8 Value at risk (deliver) [20, 200]×103 $
x9 Value at risk (return) [20, 200]×103 $
x10 Source cycle time [1, 6] Days
x11 Make cycle time [1, 7] Days
x12 Delivery cycle time [1, 7] Days
x13 Delivery retail cycle time [7, 20] Days
x14 Sourcing cost [140, 300]×103 $
x15 Planning cost [25, 50]×103 $
x16 Material landed cost [70, 150]×103 $
x17 Production cost [150, 380]×103 $
x18 Order management cost [220, 480] ×103 $
x19 Fulfilment cost [45, 70] ×103 $
x20 Returns cost [50, 200] ×103 $
x21 Cost of goods sold [1.3, 1.9] ×106 $
x22 Inventory [0.1, 2] ×106 $
x23 Accounts receivable [0.5, 2]×106 $
x24 Accounts payable [0.5, 2]×106 $
x25 Total cost to serve [2, 3.53] ×106 $
x26 = y5 $
x27 Supply chain revenue [3.5, 10] ×106 $
x28 Days sales outstanding [25, 70] Days
x29 Inventory days of supply [27, 80] Days
x30 Days payable outstanding [30, 72] Days
y1 Perfect order fulfilment [0, 4] –
y2 Overall value at risk [0.15, 1] ×106 $
y3 Order fulfilment cycle time [10, 40] Days
y4 Total cost to serve [2, 3.53] ×106 $
y5 Denominator of y6 [−1.4, 3.5] ×106 $
y6 Return on working capital [− 15, 100] %
y7 Cash-to-cash cycle time [22, 120] Days
y8 CO2 emissions [78.5, 314] –
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in the manufacturing sector including beverages, fruits and 
vegetables, grain products may vary approximately in the 
range [100,400] (TOE energy consumed) (Rademaekers 
et al. 2020). All the input and output details are reported 
in Table 5. The dataset consists of 1000 instances. As in 
the previous case, there is no correlation among data. The 
authors in Lima-Junior and Carpinetti (2020) used four 
single ANFIS and one e-ANFIS. We partially follow their 
scheme since we consider here an additional output, i.e. the 
CO2 emissions. The input–output details of our e-ANFIS-
based scheme are reported in Table 6. As in Lima-Junior 
and Carpinetti (2020), each e-ANFIS consists of two parallel 
ANFIS and a final one as depicted in Fig. 2; they appear in 
Table 6 as e-ANFIS I/ANFIS-i, and e-ANFIS II/ANFIS-i, 
with i = 1, 2, 3, since in our scheme there are two e-ANFIS 
models and two single ANFIS models.

Since the output y5 is a partial output, it is not considered 
among the outputs of CANFIS-T, RBFN and DT.

The results are shown in Table 7 and Fig. 5. The energy 
consumed during the training is shown in Fig. 6b. As in the 
previous case, e-ANFIS performed worst. Accuracy, training 
time and consumed energy during the training of CANFIS-
T and DT are very similar. The accuracy of the RBFN is 
worse, even though better than the one of e-ANFIS, and its 
training time is the least one. Its energy consumption is the 
least one as well, though not significantly distant from the 
one of CANFIS-T and DT. The number of rules which can 
be extracted from the RBFN and DT is 35 and 28, respec-
tively, while for CANFIS-T is only 4, implying the better 
interpretability of CANFIS-T.

5 � Conclusions

In this paper, we considered two case studies retrieved from 
the literature to compare the performance in terms of accu-
racy, sustainability and interpretability of some state-of-the-
art techniques, namely e-ANFIS, RBFN, DT, and the newly 
proposed CANFIS with fractional regularization. The first 

case study dealt with ex-ante LCA and the second one with 
SCOR. Before discussing the numerical experiments and 
results, we formally proved that e-ANFIS has limited accu-
racy, because of the propagation of the errors affecting the 
intermediate outputs.

According to the two considered cases, it has been pos-
sible to notice what follows. The performance of e-ANFIS 
was the worst one in terms of training time and energy con-
sumption in both cases. The energy consumption of all the 
other approaches was comparable, with CANFIS-T perform-
ing slightly better in the first case. The least training time was 
achieved by the RBFN, though not significantly distant from 
that of CANFIS-T, especially in the first case. The best accu-
racy was equally achieved by CANFIS-T and DT in both cases.

Regarding interpretability, in the presence of a small 
number of input and output variables, such as in the first case 
study, all the approaches ended up with a limited number of 
rules (i.e. < 10 ) and hence all were well interpretable; for a 
larger number of input and output variables, such as in the 
second case study, only CANFIS-T could be regarded as well 
interpretable, with only 4 rules, while the other approaches 
presented a number of rules not less than 28. In both cases, 
the number of rules extracted from CANFIS-T was the least 
one. Similar behaviour of the approaches was observed in 
the preliminary study.

Table 6   Second case study: inputs and outputs for the e-ANFIS based 
scheme

Model Input Output

ANFIS x1, x2, x3, x4 y1

ANFIS x5, x6, x7, x8, x9 y2

e-ANFIS I/ANFIS-1 x14, x15, x16, x17, x18, x19, x20, x21 y4 = x25

e-ANFIS I/ANFIS-2 x22, x23, x24 y5 = x26

e-ANFIS I/ANFIS-3 x25, x26, x27 y6

e-ANFIS II/ANFIS-1 x10, x11, x12, x13 y3 = x30

e-ANFIS II/ANFIS-2 x28, x29, x30 y7 = x31

e-ANFIS II/ANFIS-3 x30, x31 y8

Table 7   Second case study

Cross-validated test results

Approach Rules RMSE Training time (s)

CANFIS-T 
( � = 1000 , 
� = 0.9)

4 0.31331 ± 0.00343 1.91

e-ANFIS 864 0.8528 ± 0.25348 2295.37
DT 28 0.3129 ± 0.00577 1.8
RBFN 35 0.5805 ± 0.12556 1.05

Fig. 5   Second case study. Cross-validated test results per output vari-
able
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Appendix A: Proof Lemma 1

First of all, let us observe that, because of the hypothesis, it 
is for any i = 1,… , q:

where L represents the Lipschitz constant. Besides, 
since fr(.) is a linear function in its arguments, it is 
fr(o

I) = fr(o
I
) + fr(���) , where ��� is the vector whose ith entry 

is �i . Recalling that the highest value taken by the member-
ship functions is 1, it is straightforward to obtain:
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