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Abstract
Since sleep problems, like sleep apnea, may pose a serious health concern, the quality of a person’s sleep is a good indicator 
of overall wellbeing. It is then crucial to continuously monitor people when they are sleeping, especially if they have cardiac 
or respiratory conditions. The goal of the present paper is to show how to extract physiological parameters from acceleromet-
ric signal processing during sleep by applying a non-invasive technology. Using an accelerometric device located under the 
mattress, we demonstrated the possibility of extracting heart rate and respiratory rate, and then how to use the same signal to 
implement an automatic algorithm to recognize apneas and, more generally, different activities. The proposed automatic 
approach has shown good accuracy and dependability, and it may be a useful tool for preventing significant harm during sleep.
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1  Introduction

Age-related changes in people’s health demands necessitate 
novel approaches due to the ongoing population rise, espe-
cially among the elderly. Health care benefits greatly from 
telemonitoring, especially for those with chronic illnesses. 
The daily data collection is made possible by the recording 
of vital signs, for instance on electronic equipment at home, 
which allows for continuous measures and inspections. By 
sending the gathered data to medical staff afterwards, it will 
be possible to reduce the number of unnecessary hospital 
visits by the population.

According to the International Classification of Sleep 
Disorders (ICSD) (Sateia 2014), there are two types of 
nighttime apneas that can be classified: Central Sleep Apnea 
(CSA) and Obstructive Sleep Apnea (OSA). CSA is defined 
as the absence of respiratory activity caused by a transient 
loss of the nervous stimulus headed for respiratory muscles 

during sleep. It is generally correlated to neurological or 
neuro-muscular diseases (Sharma et al. 2018), such as Alz-
heimer. Repeated episodes of total, partial, or protracted 
upper airway obstruction while you sleep are referred to as 
OSA. One in five American individuals has moderate OSA 
during sleep, which is more common than CSA according to 
accurate research using polysomnography (PSG) (Shamsuz-
zaman et al. 2003).

Sleep apnea and snoring have been proven to cause mem-
ory decline even at an early age. Authors of Osorio et al. 
(2015) showed that, in a group of subjects with Alzheimer’s 
and cognitive impairment but without memory problems, 
those with breathing problems during sleep were diagnosed 
with cognitive impairment almost 10 years earlier than peo-
ple without these conditions. There are many therapies to 
treat OSA, such as nasal continuous positive airway pres-
sure (Mar et al. 2003), however, it is far more important to 
prevent apnea. In Borel et al. (2012) has been shown that 
people who tend to be obese, smokers or excessive alcohol 
consumer, may be predisposed to OSA. For these reasons the 
first step to prevent OSA is to avoid alcohol, drugs relaxing 
the central nervous system (e.g., sedatives), smoke and to 
promote a weight loss. The OSA treatments must be accurate 
and carried out by specialist physicians (pulmonologists or 
neurologists), supported by nutritionists, maxillofacial sur-
geons and/or otolaryngologists.
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To provide the ability to continuously monitor and pre-
vent these treatments, a possible solution is the placement 
of an accelerometric sensor under the mattress with a sub-
sequent accelerometric signal processing. In reality, var-
ied information regarding a subject’s sleep quality may be 
gleaned from an overnight BallistoCardioGraphic (BCG) 
signal acquisition (Meriheinä 2017). This is made possi-
ble in part by a log that makes it possible to preserve all 
the sensor-extracted data. Utilising commercially available 
instruments, data must be processed to perform a classifica-
tion analysis and, generally, to guarantee good measurement 
reliability (Inan et al. 2009).

A more general non-invasive analysis of physiological 
parameters based on the BCG signal, with focus on the heart 
rate extraction, has been carried out with two approaches in 
Mack et al. (2008), by studying changes in the relative posi-
tions of BCG peaks and by setting a threshold for BCG peak 
detection in combination with the derivative BCG wave-
form. The respiration detection was simplified considering 
a variable amplitude threshold. The results were compared 
with respect to ECG, pulse oximetry, and respiratory induct-
ance plethysmography (RIP).

In another paper Zhao et al. (2015), authors applied the 
wavelet decomposition to extract the BCG signal in time-
frequency domain in order to estimate the HeartBeat Interval 
(HBI) time series, obtaining a total average system precision 
of 90.46%.

In Liu et al. (2016), authors considered the event phase 
segmentation of the BCG signal; the respiratory pattern is 
extracted by exploiting an adaptive threshold-based division 
algorithm to distinguish between OSA and non-OSA events. 
By using Back Propagation (BP) neural network, 90% of 
OSA events are detected.

In Jaworski et al. (2019), authors compared the results 
obtained by combining actigraphy (Domingues et al. 2010) 
and BCG data with the gold standard PSG, and classified 
sleep/wake states by exploiting the integrated approach. 
The subjects participated to the tests have worn simultane-
ously an actigraphy sensor on their wrist, a PSG monitor, 
and contemporary, a BCG sensor has placed in the bed. The 
integrated system has shown an accuracy of 86.3%.

A commercial sensor (EMFIT) is used and compared 
with respect to a PSG, which is simultaneously used and 
taken as a reference in the unobtrusive BCG approach used 
in Huysmans et al. (2019), which has demonstrated the pos-
sibility for home monitoring screening of people suffering 
from sleep apnea. Locating the sensor in two different posi-
tions, close to the thorax and on top of the mattress, and 
developing an unsupervised algorithm based on Robust 
Spectral learning (RSFS) (Shi et al. 2014), the authors have 
demonstrated the similar results extracted with the sensor 
and the PSG.

More recently, authors of Bernardini et al. (2021) have 
proposed the use of convolutional deep learning architec-
tures to extract key features from physiological signals. 
Models based on such an architecture are then exploited 
to detect OSAS events in stroke unit recordings obtained 
from the monitoring of unselected patients. Convolutional 
recurrent neural network are also used in Choi et al. (2022), 
where, in combination with a 60 GHz frequency-modulated 
continuous-wave (FMCW) radar, demonstrate the feasibil-
ity of the automated detection of apnea-hypopnea events for 
OSA diagnosis on a dataset consisting of 44 subjects.

Finally, a different approach based on a wearable system 
is proposed in Maritsa et al. (2021). Human contexts such as 
breathing, heartbeat pattern, and swallowing are recognized 
using an audio sensor with an accuracy of 76.9%.

This study aims at deepening the work done in Gambi 
et al. (2021). We propose the implementation of a home 
autonomous monitoring, alternative to the traditional intru-
sive ElectroCardioGraphy (ECG) or PSG techniques, by 
exploiting the BCG signal analysis, which is a well-known 
non-contact approach to measuring vital factors, such as 
heartbeat and respiration (Nurmi 2016). Instead of using 
electrodes in direct contact with the skin or a respiration belt 
fastened to people’s chests, an accelerometric sensor that 
monitors and records mechanical body vibrations induced 
by heart activity is used to collect the BCG signal. The same 
instrument acquires vibrations from the subjects’ breathing 
activities as well as from the body’s movements while they 
are sleeping. As a result, to retrieve the needed informa-
tion, a suitable processing method must be applied to the 
signal obtained from the device. The purpose of this work 
is to describe the accelerometric signal processing in order 
to detect and determine heart rate, respiratory rate, and to 
recognize the presence of night apneas or different activities, 
using a commercial accelerometric sensor.

The rest of paper is organised as follows. Section 2 intro-
duces the BCG signal and the sensor calibration, while the 
methodologies for the heart rate and respiratory rate estima-
tion are presented in Sects. 3 and  4, respectively. In Sect. 5 
the method for identifying sleep apnea is outlined, and the 
system’s results are presented, while in Sect. 6 the signal 
processing for automatic actions recognition is shown. 
Finally, Sect. 7 provides some conclusive remarks.

2 � The BCG signal

Mechanical forces connected to the subjects’ heart activity 
produce the BCG signal (Meriheinä 2017). The mechani-
cal activity of the heart expelling blood causes the body 
to recoil, which can be observed in the form of a graph to 
produce the BCG signal and reveal information about the 
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overall functionality of the circulatory system (Manjula and 
Sharma 2016).

Gordon (1877) and Henderson (1905) are credited with 
developing BCG, which describes how changes in the sub-
ject’s posture while they were standing still on a scale were 
detected by the needle and synchronized with their heart-
beat. The blood that was discharged from the aorta was iden-
tified as the source of these variations, and it was directed 
in the other way (Manjula and Sharma 2016; Kurumaddali 
et al. 2014; Inan et al. 2014). In fact, the basic principle of 
BCG is that for every mass movement that occurs within 
the human body, there is an opposite movement (Shao et al. 
2016) intended to maintain the human body’s center of mass 
undisturbed. Therefore, blood movements in the vasculature 
cause a displacement of the center of mass, and the BCG 
signal captures the minute movements linked to the reflux 
forces that oppose this displacement in order to maintain the 
total moment (Inan et al. 2014).

The records are expressed in terms of three-dimensional 
acceleration (see Fig. 1). In contrast to transverse BCG 
(x-axis), which measures the back-ventral movements (Inan 
et al. 2014), we will exclusively use the longitudinal BCG 
(y-axis) in this work, which measures the deformations of 
the body in a head-to-foot orientation. The equipment used 
must be placed under the mattress.

The BCG signal can be interpreted using a variety of 
parameters, and it can be detected by a number of sensors 
(for example, force and pressure sensors, extensometers, 
piezoelectric sensors, etc.). In this work the measurements 
have been carried out with MEMS type sensor (Meriheinä 
2017), an electromechanical device with integrated con-
trol, data acquisition and signal conditioning circuit. It has 
one or more axes (e.g., a triad of orthogonal vectors, see 
Fig. 1). Since acceleration a is a vector, it can be meas-
ured as the scalar product of its module by the cosine of the 
angle between their directions (e.g., x-axis, a ⋅ cos(�) ) of 
the MEMS. Similar to the ECG, the BCG signal consists of 
characteristic peaks (see Fig. 2) corresponding to the cardiac 
activity and peripheral circulation.

The BCG peaks can be described as follows.

–	 H is the first positive peak, synchronous to ventricular 
isovolumetric contraction, in pathological conditions its 
amplitude may exceed the J peak;

–	 I is the first negative peak, representing the ventricular 
systole;

–	 J is the maximum peak, analogous of the R peak of ECG 
signal, identifies the blood acceleration in the descending 
aorta;

–	 K peak is the blood deceleration that reaches the minor 
vessels, it is synchronised with the closure of the semi-
lunar valves;

–	 L, M, N peaks reflect the conditions of peripheral circu-
lation.

The J peak is the most representative peak in order to 
detect the beats and measure the heartbeat. In fact, the J 
peak is more easily recognized in comparison to the other 
peaks due to its amplitude, which is larger than the other 
peaks and is caused by the acceleration in the head-foot 
direction, i.e., the foot-head reflux force.

Fig. 1   Acceleration directions

Fig. 2   Typical trend of BCG signal with respect to the ECG. The R 
peak of ECG is the equivalent to the J peak of BCG
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2.1 � Calibration, operating and transmission mode

The Murata SCA11H (Meriheinä 2017), a tiny sensor 
( 83.7 × 40.7 × 17.6 mm) that may be used for tests carried 
out both in hospitals and at home, is a commercial device 
that was used to acquire the BCG signal for the experi-
ments described in this study.

After the device has been placed correctly, the cali-
bration process must be carried out. Since it sets up the 
sensor to record the vibrations transmitted on the measure-
ment bed, the calibration phase is crucial. The calibration 
method must be carried out again each time the measur-
ing environment changes. The method is based on two 
one-minute long BCG signal acquisitions, the first with 
an empty bed and the second with the bed occupied by 
the person who will be tracked. Following calibration, the 
sensor produces a stream of 1000 accelerometric measure-
ments per second.

The configuration phase is useful for the choice of the 
sensor operating mode, which is programmed to work in:

–	 RAW MODE or DATA LOGGER: the sensor pro-
cesses a signal with a frequency of 1000 samples per 
second.

–	 BCG MODE: the sensor updates, with a frequency of 1 
Hz, ten parameters which provide to physiological infor-
mation relative to the patient, but different from the BCG 
signal; in this case it is necessary to carry out a more 
meticulous calibration procedure, including threshold 
values to identify any movement or noise artefacts.

The possible transmission modes are as follows:

–	 CLOUD MODE: mode to be selected when the sensor is 
operating in BCG MODE, since it provides an interface 
by which it is possible to have access to the real-time 
updating of the ten vital output parameters, but there is 
not the possibility to save them in a file.

–	 LOCAL MODE: transmission mode related to opera-
tion in DATA LOGGER, which offers the possibility to 
transfer the data processed by the sensor directly to the 
PC using the WiFi network, selected in Network Settings, 
to which both the device and the PC are connected.

In this work, the analyses were carried out by setting the 
sensor in DATA LOGGER and LOCAL MODE. The data 
acquisition was made possible thanks to a Python exten-
sion program, generating a text file consisting of data in 
hexadecimal format, updated once per second. It is used an 
additional program, written in C++, through which it was 
possible to convert the acquired data into decimal format, in 
order to obtain the text file containing the “raw data” which 
represent the raw BCG signal.

3 � Cardiac rate estimation

With the aim of obtaining information on heart rate from 
a raw BCG signal a test involving a healthy subject was 
considered, during an entire night with alternation of sleep 
and wake phases, where the subject under test was asked to 
sleep in a supine position.

In our analysis, a time window of about 30 min of the 
signal is firstly isolated, being characterised by a trend as 
regular as possible, in order to process the signal present 
in this time interval (Fig. 3). With the selection of this time 
window the peaks of the signal, due to involuntary move-
ments of the subject, are avoided.

For a better data visualisation, a sub-interval of the cho-
sen time window of about 30 s (see Fig. 4) is extrapolated, 
where it is visible that the signal due to heart activity is 
overlapped by noise and a periodic oscillation related to the 
movement of the subject. The desired signal is then filtered 
in the frequency range of [1, 12] Hz, by applying two 6th-
order Butterworth filters. This ensures a signal output that 
is free of the high frequency components responsible for the 
noise, but which continues to be overlapped by a periodic 
oscillation (as visible in Fig. 5) due to the low frequency 
components related to the presence of the respiration con-
tribution (Lydon et al. 2015). Among these peaks, it is how-
ever possible to recognise the J peaks (highlighted in Fig. 5), 
which will be fundamental for heart rate extraction.

In order to discriminate the oscillations of the respi-
ration from those that can be associated with the peaks 
J, each sample of the signal is raised to the squared, the 
signal is so called Filtered Squared Signal (Manjula and 
Sharma 2016), but keeping its sign, and a fixed threshold 
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Fig. 3   Time trend of the entire signal acquired during the night; the 
30 min signal range, on which the analysis will be performed, is high-
lighted in black
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in amplitude is applied, in our case with a value of 20. All 
the samples below the threshold are forced to zero, while 
the others retain their value (Fig. 6). A further filtering 
it is carried out, consisting of two 6th-order Butterworth 
filters, a high-pass type with a cutoff frequency of 0.8 Hz 
and a low-pass type with a cutoff frequency of 2 Hz. The 
choice of the filters frequency range [0.8, 2] Hz is related 
to physiological reasons. In fact the heart rate of a healthy 
adult subject at rest is about 1 Hz (i.e. there are about 1.16 
beats in a second).

Figure 7 shows the BCG signal filtered and J peaks are 
now distinguishable. The beat-to-beat time corresponds to 
the time distance between two adjacent J peaks (J–J inter-
val), while the Heart Rate (HR) mean in bpm is calculated as 

60/(J
i
− J

i−1) , where J
i
 is the ith peak and J

i−1 is the previous 
adjacent peak.

Finally, Fig. 8a and b show the HR time trend and the J–J 
time trend, respectively. In the test, the HR mean estimated 
by considering the entire sequence of the 30 min of the sig-
nal is 69.3 bpm, as shown in Fig. 8a.

4 � Respiratory rate estimation

The respiratory rate estimation is processed from the same 
signal acquired for the heart rate measurement. The same 
portion of 30 min of the signal is investigated. In order to 
clarify the results, the analysis is conducted on the win-
dow of 30 seconds in the portion considered. A 6th order 

700 705 710 715 720 725 730

Time [s]

-15

-10

-5

0

5

10

15
A

m
pl

itu
de

Fig. 4   Time Trend of a window of 30 s of the raw BCG signal; the 
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low-pass type Butterworth filter is applied to the initial 
acquisition of the “raw” signal, with a cutoff frequency of 
0.7 Hz, with the aim of removing the components located 
in a frequency range higher than that of the respiratory 
rate.

It is possible to note in Fig. 9a that the filtered resulting 
signal is strictly dependent on respiration, since the signal 
trend varies over time with a R–R interval (we call R the 
peaks related to the respiration signal to discriminate them 
from J peaks related to the heart rate) of about 3–4 s (meas-
urable by observing the distance between adjacent R peaks). 
According to human physiology, in a healthy subject at rest 
the respiratory rate is around 0.2–0.4 Hz, equivalent to a 
respiratory periods between 2.5 s and 5 s. In order to extract 
the respiratory period, it is necessary to analyse the useful 
peaks of the signal, by squaring it in the positive half-plane 
of the y-axis, called Breaths signal.

The output signal is shown in Fig. 9b. In the case of a 
subject under test regularly breathing, one of the following 
approximations can be used to overcome the problem of the 
presence of false peaks.

–	 In presence of peaks too close each other to be consid-
ered more than one, these can be replaced with a single 
peak located in the middle.

–	 Both in presence of peaks too close or too distant each 
other, the value considered in the previous instant can be 
attributed to the cardiac period.

Similarly to what has been presented for the heart rate, the 
graph as a function of time in Fig. 10 shows all the values 
taken from the respiratory rate (Fig. 10a) and respiratory 
period (Fig. 10b) and their mean values calculated over the 
signal portion of 30 min considered.

5 � Automatic sleep apnea recognition

Subjects 1 and 2, whose data are reported in Table 1, were 
involved in the tests for the automatic sleep apnea recogni-
tion. With the intention of examining the respiratory trend, 
both participants are supine on the bed. The volunteers were 
instructed to adjust their breathing pattern in order to alter-
nate between the two conditions described below:

–	 REST: subjects breath with a regular and natural trend.
–	 APNEA: subjects hold the breath for an interval that can 

physiologically simulate the apnea phenomenon.

Fig. 8   a Heart rate (HR) time 
trend and HR mean extracted 
in the portion of 30 min of the 
signal. b J–J peaks time trend 
and J–J mean in the portion of 
30 min of the signal
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Due to the similarities in the results between Subjects 1 
and 2, we will only include the graphs for Subject 1 in this 
report. The signal recorded for Subject 1 is 7.5 min long. 
After obtaining the raw accelerometric signal, the applica-
tion of a 6th-order Butterworth filter of the low-pass type 
with a cut-off frequency of 0.7 Hz is needed to remove com-
ponents other than those related to respiration. At this point, 
the characteristic relating to the amplitude of the apnea 
intervals is taken into consideration when developing the 
automatic apnea recognition method. In fact, the signal is 
subjected to a set threshold with an amplitude near to zero, 
forcing any samples below the threshold to be eliminated 
while the others keep their value. We are able to retrieve 
the test subject’s breathing pattern in this way. However, 
it is crucial to keep in mind that the signal still contains a 
number of low-frequency noises brought on by movement 
artefacts despite the filtering procedure, which is why we 
chose a threshold value in amplitude slightly higher than 
zero, roughly 0.2, marked in red in Fig. 11.

The respiratory period, or the space between two succes-
sive peaks in breathing, is also computed by the automatic 
sleep apnea recognition method. The calculated mean R–R 
time interval ranges from 0.8 to 0.95 s. As a result, it is safe 
to state that a sleep apnea is unquestionably present if the 
time interval between two adjacent R peaks is larger than 
20–30 s. The automatic algorithm works according to the 
following steps: 

1.	 All signal intervals with a distance between adjacent R 
peaks greater than 20 s are highlighted.

2.	 The value of this “abnormal” distance is associated with 
the duration of the identified relative apnea.

3.	 Events of the number of apneas and the corresponding 
duration are noted on the graph above each abnormal 
interval.

The algorithm outcome is shown in Fig. 12, where apnea 
activities were identified with the relevant time duration.

It is also feasible to analyze the signal in the frequency 
domain by using the Fast Fourier Transform (FFT), as 
illustrated in Figs. 13 and 14, to increase the accuracy 
of the automatic approach for recognizing apnea periods. 
The frequency spectrum of each REST-APNEA interval 
is examined and isolated in order to determine the greatest 
frequency peak.

Fig. 10   a Respiration Rate (RR) 
and b R–R peaks as a function 
of time
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Table 1   Characteristics 
of the subjects under tests 
for automatic sleep apnea 
recognition

S stands for subject

S1 S2

Age 24 22
Sex F F
BMI 18 kg/m2 27 kg/m2
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Fig. 11   Filtered BCG signal time trend for Subject 1 with application 
of the amplitude threshold
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6 � Automatic actions recognition

As previously described, the processing of the signal gen-
erated by the accelerometric bed sensor allows to detect 
the vital parameters of the subjects in a completely non-
invasive and unobtrusive way. The same signal can be used 
for the recognition of particular actions during sleep, or for 
the identification of any sleep apnea. In order to recognise 
different activities performed on the bed, three potentially 
healthy adult subjects participated in the test, whose age, 
sex and body mass index (BMI) are reported in Table 2.

Subjects 3, 4 and 5, lying on the bed, performed four 
activities as described in the following. 

1.	 REST: subjects stay for one minute at rest in supine 
position

2.	 TALK: subjects were asked to talk for one minute in 
supine position

3.	 MOVE: subjects were asked to change their position 
from supine to lateral

4.	 REST: subjects remain one minute at rest in lateral posi-
tion

5.	 TALK: subjects were asked to talk for one minute in 
lateral position

6.	 MOVE: subjects were asked to change their position 
lateral to supine

7.	 REST: subjects remain one minute at rest in supine 
position

8.	 MOVE: subjects were asked to leave the bed
9.	 EMPTY: the bed remains empty for about 30 s.

With the purpose to automatically recognise these activities, 
a calibration phase, consisting in setting specific ranges in 
amplitude and variance, is applied. The signal is therefore 
split into intervals and the corresponding activity is assigned 

Fig. 12   Number and duration of sleep apnea activities (denoted as A) 
detected by the automatic recognition algorithm
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Table 2   Characteristics of the subjects under tests for automatic 
actions recognition

S stands for subject

S3 S4 S5

Age 55 53 22
Sex M F F
BMI 28 kg/m2 27 kg/m2 23 kg/m2
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to each one, with respect to variance and amplitude values 
which characterise the signal portion. Finally, the signal is 
represented in diagrams with four colors, each one associ-
ated to a specific activity as follows.

–	 R → Red → Empty
–	 G → Green → Rest
–	 B → Blue → Talk
–	 K → Black → Move

Looking at the acronym associated to the corresponding 
activity, we decide to call the signal “RGBK”.

Figure 15 shows the signal, related to Subject 3, in its 
original form, before being processed by the activity recog-
nition algorithm.

Figure 16 shows the RGBK signal corresponding to the 
different activities performed by Subject 3. The activities 
have been distinguished with high precision, proving that 
the algorithm is able to discriminate the different phases of 
the test.

The RGBK signals for the tests performed by subjects 4 
and 5, after the application of the activity recognition algo-
rithm, are depicted in Fig. 17 and in Fig. 18 respectively.

The system performance results very accurate for both 
Subjects 3 and 4, since it is possible to identify the different 
activities performed during test (Figs. 16, 17). On the con-
trary, the RGBK associated to Subject 5 (Fig. 18) does not 
report differences between the REST and the TALK activi-
ties. This problem could be due to the following reasons: 

(a)	 The body mass index (BMI) of subject 5 could be 
too low to produce detectable TALK activity; a study 
(Albukhari et al. 2019) stated that BMI values too low 

or too high should be excluded from tests, since they 
produce unreliable data.

(b)	 Subject 5 could have particular vocal characteristics 
(i.e., extension, acoustic intensity, timbre,...) that do not 
allow to discriminate the TALK activity with respect to 
the others.

According to these hypotheses, we carried on the analysis 
of the signal spectrum of subject 5, in particular for what 
concerns the signal portion related to the TALK activity, 
shown in Fig. 19, comparing it with respect to the spectra 
of subjects 3 (Fig. 20) and 4 (Fig. 21).
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Fig. 15   Original signal of Subject 3

Fig. 16   RGBK signal of Subject 3 after the application of the activity 
recognition algorithm

Fig. 17   RGBK signal of Subject 4 after the application of the activity 
recognition algorithm
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It is evident that the spectra of the three subjects have 
substantial differences, which can be summarised as follows. 

1.	 Subject 3 exhibits an amplitude in the order of 105, 
clearly greater than the others, whose amplitude is in 
the order of 104. The reason of this amplitude difference 
is probably due to the fact that subject 3 is a male adult 
and his acoustic intensity is higher than the others, who 
are feminine adult subjects.

2.	 Both Figs. 20 and 21 show a similar trend of the peaks at 
low frequency, around 3.5 Hz, which is also exhibited by 
subject 3 in Fig. 19. This observation, together with the 
three peaks located around 5, 6 and 9 Hz in both spectra 

of subjects 4 and 5, suggests that these subjects have a 
comparable vocal range.

7 � Conclusion

In this work we have demonstrated, through a series of dif-
ferent analyses, the feasibility of a cardio-respiratory moni-
toring technique and its benefits in terms of cost, versatility 
and comfort. The main problems, which hindered the use 
of an accelerometer as a device for the detection of physi-
ological parameters, concerned the quality of the signal, 
sometimes compromised by movement artefacts. Despite 

Fig. 18   RGBK signal of Subject 5 after the application of the activity 
recognition algorithm
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Fig. 19   TALK spectrum for Subject 5
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Fig. 20   TALK spectrum for Subject 3
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Fig. 21   TALK spectrum for Subject 4
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this problems, the use of accelerometric sensors presents 
several advantages. For example, the ease of installation 
in nursing homes allows people to avoid excessively long 
waiting times caused by the exclusive use of PSG. In fact, 
this could represent a seriously harmful problem for those 
who urgently need a diagnosis and therefore to undertake 
adequate therapy. The accelerometric device is useful not 
only to study the sleep quality by monitoring a person lying 
on a bed; moreover, it could be employed in a wide range of 
applications. It constitutes a non-invasive approach to verify 
the “bed occupancy”, in order to monitor (e.g. in hospitals 
or nursing homes) if the patient is actually in bed or not. 
Finally, the use of accelerometric sensors is often fundamen-
tal to prevent sleep apnea, thus avoiding a risk condition that 
may imply serious repercussions on health. Future works 
will involve collecting data from a larger number of subjects 
and with different devices, including gold standards, in order 
to expand the dataset and increase the research.
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