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Abstract Deep brain stimulation (DBS) of Subthalamic nu-

cleus (STN) is the most successful treatment for advanced

Parkinson’s disease. Localization of the STN through Mi-

croelectrode recordings (MER) is a key step during the surgery.

However, it is a complex task even for a skilled neurosur-

geon. Different researchers have developed methodologies

for processing and classification of MER signals to locate

the STN. Previous works employ the classical paradigm of

supervised classification, assuming independence between

patients. The aim of this paper is to introduce a patient-

dependent learning scenario, where the predictive ability for

STN identification at the level of a particular patient, can be

used to improve the accuracy for STN identification in other

patients. Our inspiration is the multi-task learning frame-

work, that has been receiving increasing interest within the

machine learning community in the last few years. To this

end, we employ the multi-task Gaussian processes frame-

work that exhibits state of the art performance in multi-task

learning problems. In our context, we assume that each pa-

tient undergoing DBS is a different task, and we refer to the

method as multi-patient learning. We show that the multi-

patient learning framework improves the accuracy in the iden-

tification of STN in a range from 4.1% to 7.7%, compared to

the usual patient-independent setup, for two different datasets.
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Given that MER are non stationary and noisy signals. Tradi-

tional approaches in machine learning fail to recognize ac-

curately the STN during DBS. By contrast in our proposed

method, we properly exploit correlations between patients

with similar diseases, obtaining an additional information.

This information allows to improve the accuracy not only

for locating STN for DBS but also for other biomedical sig-

nal classification problems.

Keywords Parkinson’s Disease · Deep Brain stimulation ·
MER signals Processing · Multi-Task Gaussian Processes.

1 Introduction

Parkinson’s Disease (PD) is a progressive degenerative con-

dition of the Central Nervous System (CNS). Most common

symptoms of PD are the hypokinesia, bradykinesia, lower

verbal fluency and tremor (Wright et al 2008; Lees et al

2009; Miocinovic et al 2009). It is known, though, that one

of the reasons for its development is related to the deteriora-

tion of cells in a structure called substantia nigra pars retic-

ulata (SNr), generating a loss of a neurotransmitter known

as dopamine. This makes it impossible for people to control

their movements, leading to the primary motor symptoms of

PD (NINDS 2004). Patients with PD are usually subjected

to drug treatment with Levodopa. In more advanced stages

of the disease, it becomes necessary to proceed with a sur-

gical treatment. Deep Brain Stimulation (DBS) of Subthala-

mic Nucleus (STN) is the most common surgical procedure

for PD (Benabid 2003; Maks et al 2009; Krack et al 2003),

achieving excellent therapeutical outcomes. The main task

in DBS, therefore, is the correct targeting of the STN.

Identification of basal ganglia from analysis and classi-

fication of Microelectrode Recording Signals (MER) during

DBS, serves as a medical support for the correct localiza-

tion of a target brain area, and the posterior implantation
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of neuroexcitatory microelectrodes. Previous works (Chan

et al 2010; Chuang et al 2012) have employed processing

approaches based on temporal analysis of spikes. In Chan

et al (2010), an unsupervised spike sorting method based on

specific wavelet coefficients was implemented. The authors

use a spike alignment technique based on multi-peak en-

ergy comparison (MPEC), and a dynamic codebook-based

template-matching algorithm with a class-merging feature.

Another common approach is the time-frequency analysis,

which consists in transforming the MER signals to differ-

ent mathematical representation spaces. Examples include

the Short-Time Fourier Transform space (STFT) for power

spectrum analysis (Chuang et al 2012; Novak et al 2007),

the Wavelet Transform space (WT) (Gemmar et al 2008),

and the Hilbert-Huang Transform space (HHT) (Pinzon et al

2009). Within the wavelet space, analysis by adaptive filter

banks or adaptive wavelets (AW) is one of the most power-

ful methods for feature extraction in MER signals (Giraldo

et al 2008; Pinzon et al 2010). Another type of features used

in analysis of MER are based on nonlinear dynamic analy-

sis (Rodriguez et al 2008), and non-stationary surrogate data

methods (Guarin et al 2010).

When the emphasis is on analysis, low complexity clas-

sifiers are usually employed. Examples are a Linear Dis-

criminant Classifier (LDC) or a Quadratic Discriminant Clas-

sifier (QDC) (Pinzon et al 2010). More sophisticated clas-

sifiers have also been used including Support Vector Ma-

chines (SVM) with Polynomial Kernel (Guillen et al 2011),

and Hidden Markov Models (HMM) (Tahgva 2011; Orozco

et al 2006).

To the best of our knowledge, all the methods used so

far for basal ganglia identification follow the usual super-

vised learning paradigm. In a nutshell, each microelectrode

recording is transformed to a feature space using some signal-

processing representation (i.e. STFT, WT and AW). The fea-

ture vector thus obtained, x, has an associated label t, as-

signed by the specialist. In practice, we usually have access

to a set of feature vectors X obtained from the raw MER

signal and the corresponding set of labels t. Based on a sub-

set of X and t, known as a training set, a learning algorithm

is put to work, with the hope that the algorithm will exhibit

an adequate generalization ability over a different subset of

X and t, known as a validation set.

We refer to the setup above as patient-independent clas-

sification. By this, we mean an scenario for which the de-

velopment of the classification system does not take into ac-

count that there are multiple patients involved in a particular

study, that is, for training a particular system, data from dif-

ferent patients is usually used.

Machine learning methods have been employed in dif-

ferent real world problems such as rain flow prediction (Taormina

and et. al. 2015; Wu and et. al. 2009), financial time series

(Niu and Wang 2014), among others. Inspired by the philos-

ophy behind the multi-task learning framework originated in

Machine learning (Caruana 1997; Bakker and Heskes 2003;

Bonilla et al 2007; Skolidis and Sanguinetti 2011), we pro-

pose in this paper a patient-dependent classification system

for basal ganglia identification. The idea behind multi-task

learning is that by learning simultaneously different but re-

lated tasks, it is possible to increase the performance of a

learning algorithm (Argyriou et al 2008). The augmented

performance is explained due to the transfer of information

between tasks. For the patient-dependent classification sys-

tem, we assume that each patient is related to a task. We also

refer to this setup as multi-patient learning.

In a patient-dependent system, we want to exploit the

fact that for different patients, the symptoms of a partic-

ular pathology share similar patterns. Given that MER are

non stationary and noisy signals, it is very difficult to extract

discriminant features for differentiating brain structures. So,

the training of an automatic and accurate system for recog-

nition of STN through MER signals is a challenging task.

For this reason, traditional approaches in machine learning

fail to recognize accurately the STN during DBS. In con-

trast, by exploiting not only the information encoded in the

features extracted from the signals, but also the implicit cor-

relations among patients suffering a similar disease, we aim

at increasing the accuracy for targeting the STN. Thereby,

we assume there are some underlying “factors” responsible

for generating the disease. However, in most of the cases

we completely ignore what those factors really are. In spite

of this, those underlying factors reflect themselves on the

output signals that can be measured for each patient. After

learning these hidden factors using a set of signals from dif-

ferent patients, we might be able to use what we learned to

increase the predictive accuracy for a patient not previously

seen before.

Several algorithms for multi-task learning have been pro-

posed in the machine learning literature. In this work, we

employ the multi-task Gaussian processes framework that

exhibits state of the art performance in multi-task problems

(Bonilla et al 2007; Alvarez and Lawrence 2008; Chai 2009;

Pillonetto et al 2010). To obtain the input vectors X we use

three different techniques: Inter Spike Interval (ISI), Wavelet

transform using the base function Daubechies 3 (db3) and

adaptive wavelets. We show how the multi-patient learning

framework improves accuracy when compared to the usual

patient-independent setup, in two different datasets.

Multi-task learning was used for MER signals recogni-

tion (Vargas et al 2012). For this paper, we have augmented

one of the databases with more patients; we have used two

additional methods for feature extraction; we have provided

more insights, and detailed explanations for the multi-patient

learning framework; and we have included a more rigorous

experimental evaluation under several experimental condi-

tions.
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2 Materials and Methods

In this section, we introduce the datasets that were used for

evaluation. We specify the feature extraction methods em-

ployed. We then provide a brief description of the patient-

independent and patient-dependent classifiers. Finally, we

detail the validation framework.

2.1 Databases

A first database comes from Universidad Tecnológica de

Pereira (DB-UTP), Colombia. It contains recordings of sur-

gical procedures for six patients with advanced Parkinson’s

disease, whose ages were in the range 55 ± 6. The patients

signed an informed consent form. Microelectrode record-

ings were obtained using the ISIS MER system (Inomed

Medical GmbH).1 MER signals were labeled by neurophysi-

ology and neurosurgery specialists from the Institute of Parkin-

son and Epilepsy of the Eje Cafetero, located in the city of

Pereira. In total, there are 600 recordings of one second of

duration, sampled at 25 KHz with 16-bit resolution. We con-

sider two classes: 300 recordings belong to the Subthala-

mic Nucleus, and 300 recordings belong to other brain re-

gions (Thalamus-THAL, Zone Incerta-ZI, Substantia Nigra

Reticulata-SNR). Figure 1 shows a sagittal view of a DBS

performed in STN and Samples from THAL, ZI, STN and

SNr. 2

A second database comes from Universidad Politécnica

de Valencia (DB-UPV). Surgeries were carried out in the

General University Hospital of Valencia, Spain, and labeled

by specialists in neurophysiology and electrophysiology. The

equipment used for data acquisition was the LeadPointTM

Medtronic (Medtronics Functional Diagnostics).3 Each sig-

nal is one second long, and sampled at 24 KHz. In total,

there are 240 recordings coming from four patients: 120

recordings belong to STN and 120 recordings come from

other brain regions.

2.2 Feature extraction methods

We use three feature extraction methods, namely, Inter Spike

Interval analysis (ISI) (Fu et al 2005), a classical decompo-

sition through a wavelet transform (WT), and a decomposi-

tion with adaptive filter banks (AW) (Deslauriers and Dubuc

1987).

1 http://www.inomed.com
2 The interested reader can download this dataset from

https://dl.dropboxusercontent.com/u/43310202/

DB_UTP.rar
3 http://www.medtronic.com/

Fig. 1 Cartoon representation of sagittal view for a DBS performed

in Subthalamic Nucleus. In this figure, we can see the DBS elec-

trode and samples of MER signals from Thalamus (Thal), Zone Incerta

(ZI), Subthalamic Nucleus (STN) and Substantia Nigra pars reticulata

(SNr).

2.2.1 Inter Spike Interval (ISI).

The ISI determines the time of occurrence of action poten-

tials for each brain region. This method seeks to organize

the electrical activity of the brain according to common pat-

terns between potentials of different areas. In other words,

the ISI determines the time of repolarization of brain cells.

For this reason, there is a need to isolate each spike in an

ISI vector. This procedure is called Spike Sorting (Quiroga

et al 2004; Shoham et al 2003). We extract 13 features from

the ISI vector: Average Length, Standard Deviation, Max-

imum length, Minimum length, Mean Instantaneous Fre-

quency (MIF), Standard Deviation of MIF, High Frequency

Content Ratio, Low Frequency Content Ratio, dispersion

of ISI, dispersion index, Burst Index, asymmetry index and

Pause Index. For details, we refer the reader to (Fu et al

2005).

2.2.2 Wavelet Transform (WT).

We apply Wavelet Transform (WT) to the raw MER signals

using the mother function Daubechies 3 (db3) with 2 de-

composition levels on windows of 80 ms with overlapping

of 50%. From the approximation coefficients we calculate

the normalized average, the absolute maximum, the kurtosis

and energy, obtaining in total eight features (four for each

decomposition level).
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2.2.3 Adaptive Wavelets (AW)-Dual Scheme.

The adaptive scheme applied to MER signals is shown in

Figure 2. X represents the raw MER signal. Signal Xe is

obtained by downsampling of X , then Xe is updated with

the function U (Update) in order to obtain the approxima-

tion coefficients XL. Signal Xo is obtained by filtering and

downsampling X . Xo is then updated with a function P

(Prediction) for obtaining the detail coefficients XH . In this

scheme, the prediction function P is adapted while the up-

date function U is fixed. Adaptability is achieved from a de-

cision operator D, which depends on the values obtained

from local characteristics of the signal. The decision oper-

ator may take two or more values, allowing a choice be-

tween two or more filters of dual update. We use a filter with

two vanishing moments proposed in (Deslauriers and Dubuc

1987).

X

2z

U D P

Xe

Xo

+

-

XL

XH

2

Fig. 2 Dual update adaptive scheme. Xe is obtained by downsampling

X . Xe is then updated with the function U (Update) to obtain the ap-

proximation coefficients XL. Xo is obtained by filtering and down-

sampling X , and then Xo is updated with the function P (Prediction)

for obtaining the detail coefficients XH . D is the decision operator.

The primary update stage is implemented using XL[n] =

Xe[n]+UXo[n] = Xe[n]+
1

2
(Xo[n] +Xo[n− 1]), whereas

the dual update stage is implemented using XH [n] = Xo[n]−
PdXL[n], where Pd may be a filter of second, fourth or sixth

order.

We use a dual adaptive scheme to decompose the orig-

inal signal into two levels. From the approximation coeffi-

cients (XL), we calculate the normalized average, the ab-

solute maximum, the kurtosis and the energy, obtaining 8

features (x ∈ R
8) per MER signal. The reader is referred to

Giraldo et al (2008) for a detailed description of the above

feature extraction method.

2.3 Learning algorithms

We use several standard learning algorithms for classifica-

tion in the patient-independent context, this is, when no cor-

relation among patients is taken into account. Figure 4 shows

a schematic view of patient-independent framework. In the

patient-dependent context (multi-patient learning), we use

different alternatives of multiple-output Gaussian processes.

As we explained before, we consider that patients under the

ADAPTIVE F2

F3

F4

F1

F6

F7

F8

F5

XL1

XL2

FEATURE

FEATURE

SIGNAL WAVELET COMPUTATION

COMPUTATION

MER

ADAPTIVE

WAVELET

Fig. 3 Feature extraction for MER Signals using Adaptive Wavelets.

From approximation coefficients in two decomposition levels

(XLc, c = 1, 2), we calculate the normalized average, the absolute

maximum, the kurtosis and the energy, obtaining 8 features per sam-

ple.

Patient 1 Patient 2 Patient n

...

Pooled Dataset

Single Task Classifier:

SVM, GP, K-NN, LDC, QDC

Output 

Fig. 4 Patient independent framework. The data is pooled in a single

dataset and there is not learning transfer among patients.

same disease share some underlying factors responsible for

generating the disease. Figure 5 shows a schematic view of

patient-dependent framework.

2.3.1 Standard classifiers.

We test different parametric and non-parametric classifiers.

Within the parametric family, we use the Naive Bayes clas-

sifier with a shared covariance matrix among classes, also

known as the linear discriminant classifier (LDC) and the

Naive Bayes classifier with a different covariance matrix

per class, also known as the quadratic discriminant classi-

fier (QDC). Within the non-parametric family, we use the K-

nearest neighbors (KNN) algorithm with K = 1 and K = 3

(KNN1 and KNN3, respectively); a support vector machine

with a radial basis kernel (SVM) optimized with quadratic

programming. The best parameters for the SVM are found

using cross-validation. We also test a Gaussian process re-



Multi-task learning for subthalamic nucleus identification in deep brain stimulation 5

Patient 1 Patient 2 Patient n

Machine Learning algorithm: 

Multi-Task Gaussian Processes (MTGP) 

Task 1 Task 2 Task n

Output 1 Output 2 Output n

...

...
Fig. 5 Patient dependent framework. Each patient is a correlated task.

There is learning transfer among patients.

gressor with a RBF (Radial Basis Function) kernel used as

a classifier (GPR), and a Gaussian process classifier (GPC)

with an ARD (Automatic Relevance Determination) Kernel.

For statistical inference in GPR, we use maximum likeli-

hood type-II (Bishop 2006), whereas for statistical infer-

ence in GPC we use Laplace approximation (Rasmussen

and Williams 2006). The theory behind each of the above

classifiers is well known. The interested reader is referred to

Bishop (2006).4 Figure 4 show a scheme of patient indepen-

dent framework.

2.3.2 Multi-output Gaussian Processes.

Since this a relatively new topic in the machine learning lit-

erature, we spend a couple of lines here to describing the

different multiple output Gaussian processes methods em-

ployed in the experimental section. A detailed description

of several alternatives can be found at Alvarez et al (2012).

A general method for multiple output Gaussian processes

describes D outputs or tasks {fd(x)}
D
d=1

, x ∈ R
p, by con-

volution integrals of latent functions {ui
q(x)}

Q,Rq

q=1,i=1
, with

smoothing kernels {Gi
d,q(x− z)}

D,Q,Rq

d=1,q=1,i=1
,

fd(x) =

Q
∑

q=1

Rq
∑

i=1

∫

Gi
d,q(x− z)ui

q(z)dz.

4 The parametric classifiers, KNN1, KNN3 and the SVM are

implemented using the PRTOOLS toolbox obtained from http:

//www.prtools.org/. GPR is implemented using the Gaussian

Process Toolbox from http://staffwww.dcs.shef.ac.uk/

people/N.Lawrence/gp/. GPC is implemented using the Gaus-

sian Process Toolbox from http://www.gaussianprocess.

org/gpml/code/matlab/doc/.

Assuming that the latent functions ui
q(x) are independent

Gaussian processes with covariance functions kq(x,x
′),5 the

outputs fd(x) form a joint Gaussian process with covariance

function kd,d′(x,x′) with d, d′ = 1, . . . , D, given by

Q
∑

q=1

Rq
∑

i=1

∫ ∫

Gi
d,q(x− z)Gi

d′,q(x
′ − z′)kq(z, z

′)dzdz′.

(1)

We call this covariance the Convolved Multiple Output Co-

variance or CMOC.

Assuming that Gi
d,q(x− z) = aid,qδ(x− z), being δ(x)

the Dirac delta function, we arrive at a particular case for

the covariance function known as the linear model of core-

gionalization (LMC) (Goovaerts 1997) in the geostatistics

literature. The covariance kd,d′(x,x′) reduces then to

kd,d′(x,x′) =

Q
∑

q=1

Rq
∑

i=1

aid,qa
i
d′,qkq(x,x

′) =

Q
∑

q=1

b
q
d,d′kq(x,x

′),

where b
q
d,d′ =

∑Rq

i=1
aid,qa

i
d′,q . The term b

q
d,d′ accounts for

the correlation between the two tasks fd(·) and fd′(·), for a

particular value of q.

A further simplification of the above function, kd,d′(x,x′),

can be obtained assuming that Q = 1, leading to kd,d′(x,x′) =

bd,d′k(x,x′). This model receives the name of the intrinsic

coregionalization model (ICM) (Goovaerts 1997).

We assume that the observed tasks {yd(x)}
D
d=1

are given

by yd(x) = fd(x) + ǫd, where ǫd is a Gaussian white noise

following ǫd ∼ N (0, σ2

dI), being σ2

d the variance for the

noise. Given a dataset D = {Xd,yd}
D
d=1

, where Xd =
[xd

1
· · ·xd

Nd
]⊤, and yd = [yd(x

d
1
) · · · yd(x

d
Nd

)]⊤, the output

tasks {yd}
D
d=1

are jointly Gaussian,

p(y) = N (y|0,K+Σ), (2)

where y = [y⊤
1
· · ·y⊤

D]⊤; K is a block-wise matrix with

blocks Kd,d′ , and Σ is a block-diagonal matrix with blocks

given by σ2

dI. Elements in Kd,d′ are computed using kd,d′(xd
i ,x

d′

j )
for i = 1, . . . , Nd, and j = 1, . . . , Nd′ . The function used

for kd,d′(·, ·) corresponds to any of the forms CMOC, LMC

or ICM.

Predictive distribution for new input data {X∗
d}

D
d=1

is

given as

p(f∗|y) = N (f∗|µf∗|y,Kf∗|y),

where f∗ = [f⊤
1,∗ · · · f

⊤
D,∗]

⊤, with fd,∗ = [fd(x
d
∗,1) · · · fd(x

d
∗,N∗

)],6

and

µf∗|y = K∗(K+Σ)−1y,

Kf∗|y = K∗,∗ −K∗(K+Σ)−1K⊤
∗ ,

5 The latent functions ui
q(x) share the same covariance kq(x,x′),

irrespectively of the value of i
6 For simplicity, we assume all the task are evaluated at the same

number of tests inputs, N∗. This is mainly to avoid notation clutterness.
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where K∗ is a block-wise matrix with blocks Kd∗,d, and

K∗,∗ is a block-wise matrix with blocks Kd∗,d∗. In turn,

matrix Kd∗,d has entries kd,d′(xd
∗,i,x

d′

j ), for i = 1, . . . , N∗,

and j = 1, . . . , Nd′ . Likewise, matrix Kd∗,d∗ has entries

kd,d′(xd
∗,i,x

d′

∗,j), for i, j = 1, . . . , N∗. As before, the func-

tion for kd,d′(·, ·) corresponds to any of the forms described

above for CMOC, LMC or ICM.

For constructing the CMOC in (1), we use Gaussian-like

kernels for Gi
d,q(x − z), and kq(x,x

′), leading to a closed

form solution for kd,d′(x,x′). For the experimental part, we

also set Rq = 1. Expression for Gd,q(x− z) follows as

Gd,q(x− z) =
Sd,q|Pd|

1/2

(2π)p/2
exp

[

−
1

2
(x− z)⊤Pd(x− z)

]

,

where Sd,q is a scale parameter that depends on the input q,

and the task d, and Pd is the precision matrix for task d. For

kq(z, z
′), we use

kq(z, z
′) =

|Λq|
1/2

(2π)p/2
exp

[

−
1

2
(z− z′)⊤Λq(z− z′)

]

,

where Λq is the precision matrix for the latent function q.

With the above expressions for Gd,q(x−z), and kq(z, z
′),

it can be shown that a standardized form for kd,d′(x,x′), for

CMOC, is given as

Q
∑

q=1

Sd,qSd,q′ exp

[

−
1

2
(x− x′)⊤P−1

eqv(x− x′)

]

, (3)

where Peqv = P−1

d +P−1

d′ +Λ−1

q .

The details for this construction can be found in Álvarez

and Lawrence (2011). 7

For the LMC covariance, we use a Gaussian kernel for

kq(x,x
′),

kq(x,x
′) = exp

[

−
1

2
(x− x′)⊤Γq(x− x′)

]

,

where Γq is the precision matrix for the latent function q.

For multi-task regression, the usual parameter inference

method is based on maximum likelihood. Parameters for

CMOC, θCMOC = {{Sd,q}
D,Q
d=1,q=1

, {Pd}
D
d=1

, {Λq}
Q
q=1

}, and

LMC, θLMC = {{bqd,d′}
D,D,Q
d=1,d′=1,q=1

, {Γq}
Q
q=1

}, are com-

puted by maximizing the logarithm of p(y) in expression

(2), using numerical optimization.

As described above, the CMOC is a generalization of

the LMC covariance. While for the CMOC the contribution

from the tasks and the inputs is mixed through a convo-

lution operation, this contribution is well separated for the

LMC covariance: coefficients b
q
d,d′ represent the covariance

7 The exact expression for (3) includes an additional scaling factor

that was not included, since for a high value of p, that scaling factor

makes the kernel goes to zero quickly. A detailed mathematical expla-

nation of this phenomenon is given in Álvarez and Lawrence (2011).

between tasks, for a given q, independently from the input

values, while kq(x,x
′) accounts for the covariance between

the inputs, independently from the tasks. The practical effect

of these different constructions is that the CMOC is gener-

ally more flexible than the LMC covariance when it comes

to represent outputs with very different behaviors: CMOC

would typically need less parameters to describe such vari-

ety in the outputs, when compared to the LMC covariance.

On the other hand, computing the double integral anality-

cally for the CMOC is not feasible for all smoothing kernels

Gi
d,q(·), and covariances kq(·, ·), whereas using the LMC

covariance amounts to choosing valid covariance expres-

sions for kq(·, ·).
8 Also, the ICM covariance is the simplest

covariance model, and it basically assumes that the differ-

ence between the tasks is in their variance, and that their

spatial-varying pattern in terms of the inputs is fundamen-

tally the same.

In this paper we use multi-task Gaussian process regres-

sion with the CMOC and LMC covariances, for classifica-

tion purposes. This practice is sometimes known as least-

square classification. We refer to the multi-task GP with

CMOC as MC and to the multi-task GP with LMC covari-

ance as ML. As mentioned before, for MC, we set Rq = 1

for all values of q, and choose Q using cross-validation. For

ML, we choose Rq and Q using cross-validation.

We also use the ICM covariance in a multi-task Gaussian

process classifier as introduced in Skolidis and Sanguinetti

(2011), and refer to this method as MI. 9 In Skolidis and

Sanguinetti (2011), the authors use a probit model for relat-

ing the observed data y, with the un-observed variables f .

Computing the posterior distribution p(f |y) can not be ac-

complished in closed form, and the authors use Expectation-

Propagation (EP) for computing an approximated posterior.

2.4 Validation

To test the statistical significance of our results, we follow

the procedure proposed for model selection in Pizarro et al

(2002). We split each dataset in a training set and a valida-

tion set. We train the different methods using the training

set and then we measure the accuracy and area under the

curve (AUC) over the validation set. We repeat this proce-

dure 30 times with a different training set and validation set

per repetition. To study if there are differences that are sta-

tistically significant among the classifiers, we apply first a

8 Strictly speaking, we also need the coefficients b
q

d,d′ to lead to a

positive semidefinite function for kd,d′(·, ·). This can be enforced by

using b
q

d,d′ =
∑Rq

i=1
ai
d,qa

i
d′,q , and estimating ai

d,q instead of b
q

d,d′ .
9 We implement MC and ML using the MULTIGP Toolbox re-

trieved from http://staffwww.dcs.shef.ac.uk/people/

N.Lawrence/multigp/. We implement MI using software

available at http://homepages.inf.ed.ac.uk/gsanguin/

software.html.
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Lilliefors test for normality over the 30 repetitions of each

classifier. If the null hypothesis for normality is rejected, we

perform a Kruskal-Wallis test to compare average perfor-

mances among the classifiers. If the null hypothesis for equal

average behaviors is rejected, we perform a multiple com-

parison test using Tukey-Kramer and Bonferroni to study

further, which classifiers are different. All the significance

levels are measured at 5%.

2.5 Experimental setup.

We want to evaluate the generalization ability of the patient-

independent classifiers (KNN1, KNN3, LDC, QDC, SVM,

GPR, and GPC) against the patient-dependent classifiers (MI,

MC, and ML) in three different types of experiments. For

the first type of experiment, we test the performance of the

different classifiers using 50% of the datapoints from each

patient for training, and then validate the performance over

the other 50% of the datapoints per patient. We refer to this

type of experiment as E1. For the second and third types of

experiments, we initially perform leave-one out (LOO) over

the patients. This is, assume we have D patients for each

dataset. We split the patients in two sets: one of the sets has

D − 1 patients, and the other set has only the patient left

out. We call the set with D − 1 patients, the training set of

patients (TSP), and we call the set with the left out patient,

the validation set of patients (VSP). In the second type of

experiments, we generate the training set for the classifiers

with 50% of the datapoints from the TSP, plus 10% of dat-

apoints from the VSP. The performance measures are com-

puter over the 90% of the datapoints from the VSP. We then

change the composition of the patients for both sets, the TSP

and the VSP, according to the LOO methodology, and com-

pute once again the performance measures. We report the

averaged performance measures obtained from having the

different patients in the VSP, one at a time. We refer to this

type of experiment as E2. The third type of experiments are

similar to the second type. The only difference is that the

training set for the classifiers is made-up with 50% of the

datapoints from the TSP, and none of the datapoints from

the VSP. The performance measures are computer over the

100% of the datapoints from the VSP. The reported mea-

sures are averaged measures obtained similarly to the ones

obtained in E2. We refer to the third type of experiments as

E3.

Notice that E3 is an extreme experiment in which we do

not want to use any datapoints from the validation patient

(from the set VSP) when training the classifiers, as opposed

to E2. Actually, we are attempting to identify the STN of a

particular patient without using any information from that

patient. This setup does not quite fit within the multi-patient

learning classifiers described in section 2.3.2, since for the

prediction phase we need the estimated values for the pa-

rameters b
q
d,d′ , and the estimated values for the parameters

associated to the kernels Gi
d,q(·), for all values of d, even for

the left-out patient. To estimate those parameters, we basi-

cally need datapoints related to the left-out patient. To fulfill

these requirements, and to avoid the inclusion of any data-

point from the left-out patient (in the training phase), we use

as “surrogate” data for that patient, the feature vectors com-

puted as the average of the feature vectors of all the patients

in TSP, with their corresponding labels (STN, etc.) for those

feature vectors.

3 Results and Discussion

In this section, we report and discuss results of the com-

parison between the patient-independent classifiers against

the patient dependent classifiers. Performance measures are

computed over two datasets (DB-UTP and DB-UPV), and

under three different experimental setups, namely, experi-

ments E1, E2, and E3, as described in section 2.5.

3.1 Results for DB-UTP

Table 1 shows accuracy and AUC results for E1, E2 and E3

in DB-UTP.

With respect to E1, we notice that when the features

are extracted with the wavelet transform (WT) and adaptive

wavelet (AW), the methods employing multi-patient learn-

ing (MI, MC, and ML) exhibit better performance than meth-

ods disregarding correlations between patients (KNN1, KNN3,

LDC, QDC, SVM, GPR and GPC). This increased perfor-

mance is further tested using the hypothesis tests described

in section 2.4. For data processed using ISI, accuracy and

AUC results are similar in all classifiers. The null hypoth-

esis of equal average behavior between the group of multi-

patient learning algorithms and the group of patient-inde-

pendent algorithms is rejected when we extract features with

WT and AW-LS, but it is not rejected when we use ISI. Ac-

cording to the same analysis, the difference in performances

between MI, MC and ML is not statistically significant for

all processing methods.

With respect to E2. All multi-patient algorithms (MC,

MI, ML) show an increased performance when compared

to the other learning algorithms. The increased performance

is observed for all the feature extraction method employed.

The null hypothesis of equal averages between the group

of multi-patient classifiers and the group of standard algo-

rithms is rejected. Recall from section 2.5 that in E2, we

use 50% of datapoints for each patient in TSP, and 10% of

the datapoints for the validation patient in VSP. Performance

measures are computed over the remaining 90% datapoints
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Table 1 Mean accuracy and area under the ROC for different classifiers applied to DB-UTP featured with adaptive wavelet, wavelet transform and

inter spike interval (ISI) for all experiments. KNNX stands for K-nearest neighbors, where X is either 1 or 3. L(Q)DC stands for linear(quadratic)

discriminant classifier. SVM stands for support vector machine. GPR stands for Gaussian Process Regressor. GPC stands for Gaussian Process

Classifier. MI represents a multi-patient GP classifier with ICM covariance. MC represents a multi-patient GP regressor with CMOC. ML represents

a multi-patient GP regressor with LMC covariance.

ISI Wavelet Transform Adaptive Wavelet

Experiment Method Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

KNN1 79,1 ± 1,8 0,844 ± 0,013 90,2 ± 0,7 0,970 ± 0,003 92,1 ± 0,8 0,973 ± 0,004

KNN3 81,5 ± 2,3 0,826 ± 0,018 90,0 ± 1,1 0,922 ± 0,010 92,0 ± 0,9 0,938 ± 0,010

LDC 78,7 ± 1,5 0,460 ± 0,041 71,8 ± 1,3 0,628 ± 0,011 76,1 ± 1,6 0,656 ± 0,013

QDC 82,6± 2,4 0,689 ± 0,030 75,4 ± 0,8 0,703 ± 0,012 84,2 ± 1,0 0,779 ± 0,010

E1 SVM 80,3 ± 2,4 0,868 ± 0,014 92,0 ± 0,9 0,962 ± 0,006 93,0 ± 1,0 0,973 ± 0,006

GPR 80,2 ± 1,8 0,911 ± 0,015 92,2 ± 0,5 0,968 ± 0,006 92,9 ± 0,9 0,972 ± 0,004

GPC 80,2 ± 1,8 0,911± 0,015 90,8 ± 1,0 0,959 ± 0,004 92,3 ± 1,1 0,958 ± 0,008

MI 79,1 ± 2,0 0,872 ± 0,026 95,0 ± 0,6 0,985± 0,004 97,0± 0,6 0,992± 0,003

MC 77,3 ± 0,8 0,815 ± 0,011 95,1± 0,5 0,983 ± 0,003 96,4 ± 0,6 0,988 ± 0,004

ML 79,2 ± 2,3 0,867 ± 0,027 93,4 ± 1,9 0,968 ± 0,012 96,3 ± 0,7 0,986 ± 0,005

KNN1 59,4 ± 1,1 0,557 ± 0,011 83,3 ± 1,2 0,935 ± 0,006 82,5 ± 1,6 0,912 ± 0,010

KNN3 60,5 ± 1,0 0,517 ± 0,013 80,8 ± 1,2 0,808 ± 0,016 78,7 ± 1,3 0,781 ± 0,024

LDC 63,2 ± 1,1 0,519 ± 0,021 66,0 ± 0,7 0,562 ± 0,011 63,2 ± 1,2 0,532 ± 0,008

QDC 63,7 ± 0,9 0,561 ± 0,019 76,0 ± 1,2 0,655 ± 0,014 73,6 ± 1,0 0,566 ± 0,008

E2 SVM 64,6 ± 1,1 0,689 ± 0,011 84,4 ± 1,2 0,922 ± 0,009 83,1 ± 1,2 0,887 ± 0,018

GPR 63,3 ± 0,9 0,679 ± 0,010 84,4 ± 1,2 0,924 ± 0,008 83,1 ± 1,6 0,900 ± 0,014

GPC 56,6 ± 2,8 0,593 ± 0,028 72,8 ± 2,7 0,769 ± 0,028 72,8 ± 2,7 0,769 ± 0,028

MI 65,9 ± 4,8 0,775 ± 0,025 87,8 ± 1,4 0,930 ± 0,013 90,8± 1,5 0,943 ± 0,012

MC 81,6± 1,8 0,890± 0,022 89,8± 0,9 0,956± 0,007 90,7 ± 1,1 0,954± 0,005

ML 58,7 ± 4,1 0,680 ± 0,020 87,5 ± 1,7 0,930 ± 0,010 87,3 ± 1,9 0,910 ± 0,017

KNN1 57,3 ± 6,1 0,540 ± 0,015 72,57 ± 1,97 0,826 ± 0,031 71,38 ± 5,68 0,88 ± 0,021

KNN3 58,2 ± 2,5 0,520 ± 0,021 70,36 ± 2,25 0,647 ± 0,037 74,72 ± 3,21 0,77 ± 0,030

LDC 61,3 ± 4,7 0,530 ± 0,019 60,12 ± 2,81 0,558 ± 0,02 59,18 ± 4,46 0,55 ± 0,005

QDC 62,1 ± 5,9 0,650 ± 0,041 68,77 ± 1,94 0,634 ± 0,046 68,41 ± 5,52 0,57 ± 0,012

E3 SVM 62,8 ± 4,3 0,670 ± 0,014 71,42 ± 2,87 0,89 ± 0,011 83,18 ± 3,68 0,9 ± 0,018

GPR 61,9 ± 2,9 0,670 ± 0,014 76,78 ± 1,62 0,825 ± 0,027 73,8 ± 4,77 0,91 ± 0,014

GPC 55,7 ± 3,2 0,570 ± 0,018 74,12 ± 2,39 0,821 ± 0,033 76,51 ± 3,64 0,78 ± 0,039

MI 65,3 ± 2,1 0,740 ± 0,028 81,18 ± 2,23 0,871 ± 0,017 86,66± 5,25 0,93 ± 0,007

MC 79,6± 1,2 0,860± 0,024 85,99± 1,15 0,919± 0,015 85,28 ± 2,96 0,940± 0,004

ML 57,9 ± 2,9 0,670 ± 0,023 83,22 ± 2,51 0,891 ± 0,019 75,64 ± 8,1 0,75 ± 0,050

for the patient in VSP. We report in Table 1, the averaged

performance over the six patients.

With respect to E3, we observe that the multi-patient

learning algorithms clearly outperform the standard learning

algorithms. The null hypothesis tests further confirm this re-

sult. This result is highly relevant, because it shows evidence

that the multi-patient methods have an increased ability for

generalization, when compared to the patient-independent

methods.

It can be seen from Table 1 that the difference of perfor-

mance of the patient-dependent methods over the patient-

independent methods, is larger for experiments E2, and E3

than for experiment E1. In the context of multi-patient learn-

ing, this is a sensible result since in E2 and E3, we use a just

a few or none datapoints from the patient in the VSP. The

increased performance is also more pronounced for ISI and

WT, than for AW.

3.2 Results for DB-UPV

Table 2 shows accuracy and AUC results for E1, E2 and E3

in DB-UPV.

We notice for E1 that the mean accuracy and AUC per-

formances for the multi-patient algorithms (MI, MC and ML)

are superior to the mean performances of the standard clas-

sifiers, except for the ISI feature extraction method. Based

on the multiple comparison test, we conclude that MI, MC

and ML are not different statistically speaking when com-

pared to SVM. Nevertheless, the post test analysis rejects

the null hypothesis of equal average behaviors between MC

and SVM and between ML and SVM. The post test analysis

also rejects the null hypothesis of equal average behaviors

between the multi-patient learning algorithms, and the other

standard classifiers (KNN1, KNN3, LDC, QDC, GPR and

GPC).

MI with ISI features exhibits the best results for the E2

experiment. MC is the best when using WT. For data pro-

cessed with AW, the SVM obtains the best identification re-

sult. The null hypothesis of equal average behaviors between
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Table 2 Mean accuracy and area under ROC for different classifiers applied to DB-UPV featured with adaptive wavelet, wavelet transform and

inter spike interval (ISI) for all experiments. The specification for each classifier is given in section 2.3.1 or in the caption of table 1.

ISI Wavelet Transform Adaptive Wavelet

Experiment Method Accuracy (%) AUC Accuracy (%) AUC Accuracy (%) AUC

KNN1 75,9 ± 2,1 0,825 ± 0,041 92,7 ± 1,3 0,983 ± 0,007 89,3 ± 1,5 0,957 ± 0,010

KNN3 80,4 ± 2,1 0,765 ± 0,032 90,2 ± 1,7 0,928 ± 0,020 86,8 ± 1,6 0,875 ± 0,020

LDC 76,2 ± 2,3 0,775 ± 0,026 87,2 ± 1,3 0,864 ± 0,018 85,8 ± 1,9 0,770 ± 0,025

QDC 76,7 ± 2,4 0,789 ± 0,019 89,1 ± 1,8 0,903 ± 0,014 86,9 ± 2,5 0,858 ± 0,019

E1 SVM 80,7± 1,7 0,842± 0,016 93,0 ± 1,7 0,971 ± 0,009 94,4 ± 1,3 0,976 ± 0,008

GPR 80,1 ± 2,3 0,831 ± 0,018 91,2 ± 1,2 0,970 ± 0,012 89,5 ± 1,4 0,956 ± 0,007

GPC 80,1 ± 2,3 0,831 ± 0,018 88,1 ± 1,0 0,945 ± 0,009 90,4 ± 1,4 0,904 ± 0,014

MI 77,3 ± 3,5 0,813 ± 0,023 93,1 ± 1,0 0,975 ± 0,009 95,1 ± 1,2 0,989± 0,007

MC 76,4 ± 3,3 0,786 ± 0,029 96,4± 1,0 0,995± 0,003 94,6 ± 0,9 0,983 ± 0,007

ML 78,7 ± 3,6 0,823 ± 0,031 96,1 ± 1,2 0,990 ± 0,006 95,4± 1,4 0,986 ± 0,007

KNN1 74,1 ± 1,8 0,805 ± 0,041 82,5 ± 1,6 0,909 ± 0,018 80,2 ± 2,1 0,900 ± 0,019

KNN3 74,5 ± 1,9 0,695 ± 0,032 81,7 ± 1,7 0,785 ± 0,018 78,0 ± 1,4 0,717 ± 0,020

LDC 71,2 ± 1,5 0,693 ± 0,026 82,7 ± 1,3 0,826 ± 0,014 82,0 ± 1,1 0,813 ± 0,015

QDC 74,7 ± 1,5 0,789 ± 0,019 81,0 ± 2,0 0,847 ± 0,011 79,7 ± 1,5 0,812 ± 0,015

E2 SVM 76,3 ± 1,2 0,805 ± 0,016 86,6 ± 1,0 0,945 ± 0,005 86,4± 1,1 0,950± 0,004

GPR 74,5 ± 1,9 0,788 ± 0,019 82,6 ± 2,3 0,905 ± 0,021 81,7 ± 1,8 0,905 ± 0,022

GPC 74,1 ± 1,8 0,799 ± 0,022 81,5 ± 2,2 0,894 ± 0,020 79,8 ± 2,1 0,905 ± 0,022

MI 77,1± 1,8 0,819± 0,023 82,0 ± 2,5 0,893 ± 0,024 82,4 ± 2,9 0,910 ± 0,023

MC 74,3 ± 2,3 0,815 ± 0,029 87,3± 2,2 0,947± 0,012 83,3 ± 2,2 0,928 ± 0,015

ML 73,3 ± 7,3 0,741 ± 0,031 78,6 ± 3,5 0,851 ± 0,033 82,9 ± 2,2 0,899 ± 0,017

KNN1 71,2 ± 4,1 0,800 ± 0,015 76,3 ± 1,97 0,840 ± 0,031 77,3 ± 4,2 0,860 ± 0,021

KNN3 70,6 ± 2,4 0,740 ± 0,021 75,4 ± 2,25 0,770 ± 0,037 74,1 ± 3,5 0,630 ± 0,030

LDC 71,1 ± 4,2 0,770 ± 0,019 74,9 ± 2,81 0,770 ± 0,02 76,4 ± 2,9 0,800 ± 0,005

QDC 71,8 ± 3,1 0,760 ± 0,041 72,1 ± 1,94 0,810 ± 0,046 79,9 ± 4,3 0,770 ± 0,012

E3 SVM 72,2 ± 2,3 0,810 ± 0,017 77,6 ± 2,87 0,920 ± 0,011 80,2 ± 3,4 0,886 ± 0,018

GPR 72,5 ± 1,9 0,800 ± 0,017 73,1 ± 1,62 0,880 ± 0,027 76,4 ± 2,9 0,810 ± 0,014

GPC 71,8 ± 2,2 0,790 ± 0,014 75,3 ± 2,39 0,870 ± 0,033 74,7 ± 3,1 0,760 ± 0,039

MI 76,9± 2,1 0,818± 0,018 79,1 ± 2,23 0,890 ± 0,017 81,2 ± 3,9 0,880 ± 0,007

MC 72,2 ± 2,9 0,790 ± 0,024 84,1± 1,15 0,930± 0,015 82,5± 2,1 0,890± 0,004

ML 71,8 ± 7,4 0,819 ± 0,023 77,7 ± 2,51 0,810 ± 0,019 82,1 ± 1,9 0,840 ± 0,050

multi-patient classifiers and SVM is not rejected. Therefore,

differences between SVM and MI, MC and ML are not sta-

tistically significant. Nevertheless, the multi-patient group

of classifiers is superior to the other standard methods.

For E3 and ISI features, MI is superior to the other clas-

sifiers. When the features are WT and AW, the MC method

is better. The null hypothesis test shows that both MI and

MC are statistically different when compared to the standard

methods.

The general landscape of the results show a similar be-

havior to the one obtained for DB-UTP. From Table 2 we

observe that the difference of performance of the patient-

dependent methods over the patient-independent methods,

is larger for experiments E2, and E3, and ISI and WT fea-

tures.

3.3 Discussion

Several approaches have been evaluated for MER signals

identification, especially to recognize the STN. In some of

these works the contribution is focused in the processing

methodology, and other works emphasize in supervised learn-

ing techniques, for example: Bayesian classifier, hidden Mar-

kov Models, support vector machines (SVM), single Gaus-

sian processes (GP), etc. The mentioned frameworks pool

the data from different subjects in a single set, and the classi-

fier is trained with the classical paradigm. The SVM is con-

sidered the state of the art for recognition of MER signals,

for this reason we compare our proposed approach with this

method. In relation to multi-task learning (MTL), there are

alternatives such as MTL-KNN, MTL with kernels, decision

trees, among others. However those methods are developed

for a specific type of data. The Gaussian processes are pow-

erful, flexible and robust to noisy signals and they are not

sensible to non-stationary data. Another advantage is that

a GP is a kernelized method, for this reason is able to dis-

criminate high dimensional patterns such as processed MER

signals. Multi-task Gaussian processes (MTGP) exhibit the

state of the art in MTL techniques. Following this notion,

other alternative could not achieve the excellent outcomes

obtained with MTGP.

Although, there are feasible alternatives for extracting

features from MER signals: Spike detection, inter spike in-

terval (ISI), short time Fourier transform (STFT), discrete

Wavelet transform (WT), Hilbert-Huang transform, Adap-

tive Wavelet (AW), statistical descriptors in time, power spec-
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trum analysis, non linear dynamic analysis, among others.

We adopted ISI, WT and AW because we pretend to analyze

the capability of MTGP to identify the STN when we ex-

tract the features with a weak method (ISI), an intermediate

method (WT), and an advanced method (AW). In this work,

the feature extraction approach is secondary. The advantage

of using three processing methods is to prove that our pro-

posed recognition methodology outperforms to the classi-

cal paradigm of single task learning, under any condition.

Given that MTGP improves to LDC, QDC, KNN and SVM

for STN identification, no matter the database, processing

method or experimental setup. We consider that a different

feature extraction method will not affect the results.

To the best of our knowledge, there are not public MER

signals databases. The works presented previously in litera-

ture always reported results with private datasets. For test-

ing the sensibility of our method to modifications in data,

we repeat the experiments in two databases acquired with

different sampling frequencies. Our approach showed a bet-

ter performance when we evaluate both databases, in dif-

ferent testing scenarios (E1, E2, E3). The advantage of our

databases is the medical validation of experimented special-

ists from the Institute of Epilepsy and Parkinson of the eje

Cafetero (Colombia) and the Universitat Politecnica de Va-

lencia. Also, DB-UTP and DB-UPV has been tested in sim-

ilar works previously published. According to this analysis,

a different dataset will not affect the results, because the ex-

perimental setup in this work consider the worst scenario in

E3.

We experimented with several set of parameters for the

Support Vector Machine (SVM), Gaussian Process (GP) and

Multi-Task GP (MTGP) with LMC and CMOC covariance.

K-NN is a non-parametric method. Specifically for the SVM,

we used the Radial Basis Function (RBF) kernel. The reg-

ularization parameter (γ) for the SVM, is estimated using

cross-validation over a grid of values for this parameter. The

length-scale hyperparameter of the Gaussian Process (GP)

is optimized using the gradient descent algorithm. Also, for

the GP and MTGP, we evaluated the number of latent func-

tions (LF) and we found the best results for both methods by

setting one LF. The sensitivities of these parameters on the

results are high. Specially, the regularization parameter in

SVM. For this reason it is necessary a detailed search of the

best γ with cross validation. For the GP and MTGP (LMC

and CMOC) the number of LF is relevant. However, it is

easy to find the best number of LF by a simple comparison

of the best results.

As we explained before, E3 is the more extreme sce-

nario for testing the proposed method. While, we do not

use datapoints from validation patient, we employ a kind

of surrogate data for that patient, defined as the average of

the feature vectors of all the patients used in the training

phase. This solution worked well for estimating parameters

in the left-out patient, because multi-task methods can cor-

relate information among tasks. This additional information

obtained from the patients allows to achieve better outcomes

compared to traditional approaches for classification, where

a correlation is not possible.

4 Conclusions

In this work, we presented a methodology based on multi-

task learning for classification of MER signals obtained from

Parkinson’ disease surgeries. We introduced the term multi-

patient learning to refer to this methodology. Results for the

multi-patient learning methods outperformed the standard

paradigm of supervised classification used in the state of

the art for MER signals identification. The increased perfor-

mance is retained across several feature extraction methods,

and in two different datasets.

We also showed that methods using multi-patient learn-

ing increase the accuracy over standard learning techniques

in setups of low amounts of data for validation patients. Ex-

periment three is particularly illustrative of the way in which

multi-patient learning can leverage the performance of the

learning system, when none of the datapoints are available

for a particular validation patient.

This study is limited by a validation with patients of the

same database. When we trained the methods (LDC, QDC,

K-NN, SVM, GP, MTGP) with subjects of DB-UTP and

we validated with data from DB-UPV (or we trained with

DB-UPV and we validated with DB-UTP) the accuracy in

STN recognition was reduced considerably. This issue is due

to acquisition characteristics, especially the sampling fre-

quency. In this case, DB-UTP was sampled to 25 KHz and

DB-UPV was sampled to 24 KHz. The performance of our

proposed approach depends of a validation with data from

the same database. Therefore, the MTGP is sensible to ac-

quisition protocols of MER signals.

We consider this methodology can be improved with

augmented databases. We observed that multi-patient frame-

work can improve the STN identification when we have more

subjects in the databases. The correlation among patients

with the same pathology is a key information that can not

be omitted.

Finally, as future work we would like to evaluate the

multi-patient methodology for other problems associated to

biosignals identification. For example: epileptic sources (EEG),

cardiac anomalies (ECG) and emotion recognition (multi-

modal signals).
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