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DCSVM: FAST MULTI-CLASS CLASSIFICATION USING
SUPPORT VECTOR MACHINES

DULEEP RATHGAMAGE DON AND IONUT E. IACOB

ABSTRACT. We present DCSVM, an efficient algorithm for multi-class clas-
sification using Support Vector Machines. DCSVM is a divide and conquer
algorithm which relies on data sparsity in high dimensional space and per-
forms a smart partitioning of the whole training data set into disjoint subsets
that are easily separable. A single prediction performed between two partitions
eliminates at once one or more classes in one partition, leaving only a reduced
number of candidate classes for subsequent steps. The algorithm continues
recursively, reducing the number of classes at each step, until a final binary
decision is made between the last two classes left in the competition. In the
best case scenario, our algorithm makes a final decision between k classes in
O(log k) decision steps and in the worst case scenario DCSVM makes a final
decision in k — 1 steps, which is not worse than the existent techniques.

1. INTRODUCTION

The curse of dimensionality refers to various phenomena that arise when an-
alyzing and organizing data in high-dimensional spaces (often with hundreds or
thousands of dimensions) that do not occur in low-dimensional settings such as
the three-dimensional physical space of everyday experience. The expression was
coined by Richard E. Bellman in a highly acclaimed article considering problems in
dynamic optimization [I, 2]. In essence, as dimensionality increases, the volume of
the space increases rapidly, and the available data become sparser and sparser. In
general, this sparsity is problematic for any method that requires statistical signif-
icance. In order to obtain a statistically sound and reliable result, the amount of
data needed to support the result often grows exponentially with the dimensional-
ity, which would prevent common data processing techniques from being efficient.

Since its introduction, the Support Vector Machines (SVM) [6] has quickly be-
come a popular tool for classification which has attracted a lot of interest in the
machine learning community. However, SVM is primarily a binary classification
tool. The multiclass classification with SVM is still an ongoing research problem
(see, for example, [3, 22] [I7, [I8] for some recent work). We present an SVM-based
multi-class classification method that exploits the curse of dimensionality to effi-
ciently perform classification of highly dimensional data.

The Divide and Conquer SVM (DCSVM) algorithm’s idea is based on the fol-
lowing simple observation, best described using the example in Figure[]] The figure
shows 6 classes (1 —red, 2 — blue, 3 — green, 4 — black, 5 — orange, and 6 — maroon)
of two-dimensional points and a linear SVM separation of classes 1 and 2 (the line
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1 vs. 2

FIGURE 1. Binary SVM classifier for classes 1 and 2 out of a
dataset of six classes

that separates the points in these classes). It happens that the SVM model for
classifying classes 1 and 2 completely separates the points in classes 4 (which takes
class 2’s side) and 6 (which takes class 1’s side). Moreover, the classifier does a
relatively good job classifying most points of the class 5 as class 2 (with relatively
few points classified as 1) and a poor job on classifying the points of class 3 (as
the points in this class are classified about half as 1’s and the other half as 2’s).
With DCSVM we use the SVM classifier for classes 1 and 2 for a candidate of an
unknown class: if the classifier predicts 1, then we next decide between classes 1,
6, 3, and 5; if the classifier predicts class 2, then we next decide between classes 2,
4, 3, and 5. Notice that in either case one or more classes are eliminated, and we
are left to predict a fewer number of classes. That is, a multi-class classification
problem of a smaller size (less classes). The algorithm then proceeds recursively
on the smaller problem. In the best case scenario at each step half of the k classes
will be eliminated and the algorithm will finish in [log k] steps. Notice that, in
the above scenario, classes 2 and 4 are completely separated from classes 1 and 6,
whereas classes 3 and 5 are not clearly on one side or the other of the separation
line. For this reason, classes 3 and 5 are part of the next decision step, regardless
of the prediction of the first classifier.

However, there is a significant difference between classes 3 and 5. While class
3 is almost divided in half by the separation line, class 5 can be predicted as “2”
with a relatively small error. In DCSVM we use a threshold value 6 to indicate
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the maximum classification error accepted in order to consider a class on one side
or the other of a separation line. For instance, let us consider that only 2% of
the points of class 5 are on the same side as class 1. With the threshold value
set to 0.02, DCSVM will separate classes 1, 3, and 6 (when 1 is predicted) from
classes 2, 3, 4, and 5 (when 2 is predicted). A higher threshold value will produce
a better separation of classes (less overlapping) and less classes to process in the
subsequent steps. This comes at the price of possibly sacrificing the accuracy of
the final prediction.

Clearly, the method presented in the example above is suitable for multiclass
classification using a binary classifier, in general. Our choice of using SVM is
based on the SVM algorithm’s remarkable power in producing accurate binary
classification.

The content of this article is organized as follows. We give a brief description
of binary classification with SVM and related work on using SVM for multi-class
classification in Section [2| DCSVM is described in detail in Section [3| and experi-
mental results (including performance comparisons with one-versus-one approach)
are given in Section [d] We conclude in Section [5]

2. PRELIMINARIES AND RELATED WORK

Support Vector Machines (SVM) [6] was primary developed as a tool for the
binary classification problem by finding a separation hyperplane for the classes in
feature space. If such a plane cannot be find, the “separating plane” requirement
is softened and a maximal margin separation is produced instead. Formally, the
problem of finding a maximal margin separation can be stated as a quadratic opti-
mization problem. Given a set of [ training vectors x; € R, i = 1...1 with labels
y; € {—1,1} and a feature space projection ® : R — H, the SVM method consists
in finding the solution of the following:

!
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where w € R? is the weights vector and C' € RY is a cost regularization constant.
The corresponding decision function is:

f(x) = sign ({w, ®(x)) + )
An interesting property of the method is that the dot product can be represented
by a kernel function:
k(x,x') = (2(x), ®(x'))
which is computationally much less expensive than actually projecting x and x’
into the feature space H.

In the case of multiple classes, the problem formulation becomes more compli-
cated and inherently more difficult to address. Given a set of [ training vectors
x; € R% i =1...1 with labels y; € {1,...,k}, one must find a way to distinguish
between k classes.

Several approaches were proposed, which can be grouped into direct methods (a
single optimization problem formulation for multi-class classification) and indirect
methods (using multiple binary classifiers to produce multi-class classification).
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Many of the indirect methods were introduced, in fact, as methods for multi-class
classification using binary classifiers, in general. They are not limited to the SVM
method.

A comparison [12] of these methods of multi-class classification using binary
SVM classifiers shows that one-versus-one method and its DAG improvement are
more suitable for practical use.

2.1. Direct formulation of multi-class classification. Direct formulations to
distinguish between k classes in a single optimization problem were given in [20,
o, 21], [7] or, more recently, in [I1, 22]. Each of these formulations has a single
objective function for training all k-binary SVMs simultaneously and maximize the
margins from each class to the remaining ones. The decision function then chooses
the “best classified” class.

For instance, Crammer et al. in [7] solve the following optimization problem for
k classes:

k l
. 1 T
Wi Er%‘lir,l& €R 5 mz::l Wi Wm + ¢ ; &
(1) subject to (Wy,, ®(x;)) — (Wi, @(x;)) = 1= 6y,0 — &

E>0,i=1...1, t=1...k
where d; ; is the Kronecker delta function. The corresponding decision function is:
argma,y, fm(x) = argmaz,, (W, ®(x))

The original formulation addresses the classification without taking into account
the bias terms b; (for each of the [ classes). These can be easily included in the
formulation using additional constraints (see, for instance, [12]). Crammer’s formu-
lation is among the most compact optimization problem formulations for multi-class
classification problem.

A common issue of the single optimization problem formulations for multi-class
classification is the large number of variables involved. For instance, , although
a compact formulation, includes I x k variables (not taking into account b;’s, if in-
cluded), which yields large computation complexity. In [I1], Crammer’s formulation
is extended by relaxing its constraints and subsequently solving a single [-variable
quadratic programming problem for multi-class classification.

2.2. One-versus-rest approach. The one-versus-rest approach [20] [4] [19] is an
indirect method relying on binary classifiers as follows. For each classt € {1,...,k}
a binary classifier f; is created between class ¢ (as positive examples in the training
set) and all the other classes, {1,...,t — 1,t +1,...,k} (all as negative examples
in the training set). The corresponding decision function is then:

f(x) = argmazi<i<i fi(x)

That is, the class label is determined by the binary classifier that gives maximum
output value (the winner among all classifiers). A well-known shortcoming of the
one-versus-rest approach is the highly imbalanced training set for each binary clas-
sifier (the more classes, the bigger the imbalance). Assuming equal number of
training examples for all classes, the ratio of positive to negative examples for each
binary classifier is 1/(k — 1). The symmetry of the original problem is lost and the
classification results may be dramatically affected (especially for sparse classes).
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2.3. One-versus-one approach. The one-versus-one approach ([I3] 10} 14} [15] or
the improvement by Platt et al. [16]) aims to remove the imbalance problem of the
one-versus-rest method by training binary classifiers strictly with data in the two
classifier’s classes. For each pair of classes, s,t € {1,...,k} a binary classifier f,,
is created. This classifier is trained using all data in class s as positive examples
and all data in class ¢t as negative examples, hence all balanced binary classifiers.
Each binary classifier is the result of a smaller optimization problem, at the cost of
producing k(k — 1)/2 classifiers. The corresponding decision function is based on
majority voting. All classifiers f, ; are used on an input data item x and each class
appears in exactly k — 1 classifiers, hence an opportunity for up to k — 1 votes out
of the k(k — 1)/2 binary classification rounds. The class with the majority of votes
is the winner.

An improvement on the number of voting rounds was proposed by Platt et al.
in [I6]. Their method, called Directed Acyclic Graph SVM (DAGSVM), forms a
decision-graph structure for the testing phase and it takes exactly k& — 1 individual
voting rounds to decide the label of a data item x. In a nutshell, DAGSVM uses
one binary classifier at the time and subsequently removes the losing class from all
subsequent classifications. There is no particular criterion on the order of using
each binary classifier in this process.

3. DIvIDE AND CONQUER SVM (DCSVM)

As noted in the introduction and illustrated in Figure [} the key idea is that
any binary classifier may, in practice, separate more than two classes. Which
raises a natural question: which classes are separated (and with what accuracy)
by each binary classifier? DCSVM combines the one-versus-one method’s simplic-
ity of producing balanced, fast binary classifiers with the classification speed of the
DAGSVM’s decision graph. The essential difference consists of producing the most
efficient decision tree capable of delivering the decision in at most k& — 1 steps in the
worst case scenario, or O(log k) steps in the best case scenario.

3.1. DCSVM training. Let us introduce some notations and then we will proceed
to the formal description of the algorithm. Given a data set D of k classes (labels)
where to each data item x € D has been assigned a label [ € {1,..., k}, we want to
construct a decision function desvm : D — {1,...,k} so that desvm(x) = I, where
l is the corresponding label of x € D. As usual, by considering a split D = RUT of
the data set D into two disjoint sets R (the training set) and T" (the test set), we will
be using the data in R to construct our decision function desvm() and then the data
in T to measure its accuracy. Furthermore, we consider R = Ry U Ro U ---U Ry, as
an union of disjoint sets R;, where each x € R; has label [, [ = 1,... k. (Similarly,
we consider T'=T; UTy U---UT} as a union of disjoint sets 7;, where each x € T;
has label I, 1 =1,...,k.)

Let svm; ; : D — {i,j}, be a SVM binary classifier created using the training
set R; UR;, i< jandi=1,...,k—1,5 =2,..., k. There are k(k — 1)/2 such
one-versus-one binary classifiers. We must clearly specify that the sum() decision
function we consider here is not the ideal one, but the practical one, likely affected
by misclassification errors. That is, for some x € R; UT;, we may have that
svm; ;(x) = j.

Our goal is to create the desum() decision function that uses a minimal number
of binary decisions for k-classes classification, while not sacrificing the classification
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accuracy. We define next a few measures we use in the process of identifying the
shortest path to a multi-class classification decision.

Definition 1 (Class Predictions Likelihoods). The class predictions likelihoods of
a SVM binary classifier svm; ;(-) for a label | € {1,...,k}, denoted respectively as
Ci;(l,1) and C; (1, 7), are:

H{x € R; | sum,; j(x) =i}

Gualht) = | Ryl
, x € Ry | suvm; j(x) =j )
ity = WEERLI =y e

Each class prediction likelihood represents the expected outcome likelihood for
i or j when a binary classifier sum; ;(-) is used for prediction on all data items in
R;. These likelihoods are computed for each binary classifier and each class in the
training data set.

All pairs of likelihood predictions, for every binary classifier sum; ;(-) and classes
are stored in a table, as follows.

Definition 2 (All-Predictions Table). We arrange all classes predictions likelihoods
in rows (corresponding to each binary classifier svm; ;) and columns (corresponding
to each class 1,...,k) to form a table T where each entry is given by a pair of
predictions likelihoods as follows:

T[S”U’I’)’li’j, l] = (Ci,j (lv Z); CiJ (la j))

Figure [2 shows the All-Predictions Table computed for the glass data set in [g].
The data set contains 6 classes, labeled as 1, 2, 3, 5, 6, and 7. Each row corresponds
to a binary classifier svm; 2, -, sumg 7 and the columns correspond to the class
labels. Each table cell contains a pair of likelihood predictions (as percentages) for
the row classifier and class column. For instance, C1 2(1,1) = 100%, C1,2(1,2) = 0%
and 01,6(27 1) = 91.8%}7 C176(2, 6) = 8.2%.

svm 1 2 3 5 6 7

1 Tws 2 1=100%; 2=0% 1=0%; 2=100% 1=0%; 2=100% 1=0%; 2=100% 1=0%; 2=100% 1=0%; 2=100%
2 1vs.3 1=100%; 3=0% 1=59.02%; 3=40.98% 1=0%; 3=100% 1=58.33%, 3=41.67% | 1=14.20%; 3=85.71%  1=0.00%; 3=00.01%
3 1wvs 5 1=100%; 5=0% 1=86.89% 5=13.11% 1=100%; 5=0% 1=0%; 5=100% 1=42 86%; 5=57.14% 1=4 55%; 5=05.45%
4 1vs.0 1=100%; 6=0% 1=01.8%;, 6=8.2% 1=100%; 6=0% 1=50%, 6=50% 1=0%; 6=100% 1=22.73%, 6=77.27%
5 Tws 7 1=100%; 7=0% 1=86.89% 7=13.11% 1=0333% 7=6.67% 1=0%; 7=100% 1=1420%; 7=8571% 1=0%; 7=100%
6 2wvs.3 | 2=100% 3=0% 2=100%; 3=0% 2=0%; 3=100% 2=01.67%, 3=8.33% | 2=71.43% 3=28.57% 2=00.91%, 3=0.00%
7 2vs. 5 2=100%; 5=0% 2=100%; 5=0% 2=100%; 5=0% 2=0%; 5=100% 2=2857%; 5=71.43% 2=0%; 5=100%
8 2wvs. 0  2=100% 0=0% 2=100%, 6=0% 2=00.07%, 6=33.33% 2=01.67% 6=8.33% 2=0% 0=100% 2=22.73%, 6=77.27%
9 2vs.7 | 2=100%; 7=0% 2=100%; 7=0% 2=100%; 7=0% 2=01.67%; 7=8.33%  2=28.57% 7=71.43% 2=0% 7=100%

10 3ws. 5  3=40.74% 5=50.20% 3=03.44% 5=0.50% 3=100%; 5=0% 3=0%; 5=100% 3=0%; 5=100% 3=0%; 5=100%

11 3vs. 0 3=100%; 6=0% 3=100%; 6=0% 3=100%; 6=0% 3=50%, 6=50% 3=0%; 6=100% 3=100%; 6=0%

12 3wvs. 7 3=100%; 7=0% 3=06.72%; 7=3.28%  3=100%; 7=0% 3=33.33%; 7=06.67% 3=28.57% 7=71.43% 3=0% 7=100%

13 5vs.0 5=100%; 6=0% 5=100%; 6=0% 5=100%; 6=0% 5=100%; 6=0% 5=0%; 6=100% 5=0%; 6=100%

14 Swvs. 7 5=100%; 7=0% 5=100%; 7=0% 5=100%; 7=0% 5=100%; 7=0% 5=0%; 7=100% 5=0%; 7=100%

15 Gvs.7 | 0=8333% 7=10.07% 0=91.8% 7=8.2% G=86.07%, 7=13.33% 0=00.67% 7=33.33% 0=100% 7=0% G=0%; 7=100%

FIGURE 2. The All-Predictions table for the glass data set in []]

We define next two measures for the quality of the classification of each sum; ;(-).
The purity index measures how good the binary classifier is for classifying all classes
as ¢ or j for a given precision threshold 6. In a nutshell, a class [ is classified as
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“definitely” ¢ by svm, ;(-) if C; j(I,4) > 1 — 6; as “definitely” j if C; ;(I,5) > 1 —6;
otherwise, it is classified as “undecided” i or j. The purity index counts how many
“undecided” decisions a binary classifier produces. The lower the index, the better
the separation. The balance index measures how “balanced” a separation is in
terms of the number of classes predicted as ¢ and j. The larger the index, the
better.

Definition 3 (SVM Purity and Balance Indexes). For an accuracy threshold 6 of
a SVM classifier sum; ;(-), we define:
- the purity index, denoted as P; ;(6), as:

K
Pi,(0) = (Z (xo(Cij(L,7)) + XG(Ci,j(laj)))> —k

=1
- the balance index, denoted as B; ;(0), as:

k k
B;,;(0) = min (k? - ZXG(Ci,j(lJ))a k— ZX@(Q‘,;‘UJ)))
=1 =1

where g is the step function:

1 ifx >0
X‘)(x):{ 0 ifx<o

For instance, the purity index for row svm; ¢ and threshold § = 0.05 in Figure
is:
P16(005) =((1+0)+(1+1)+(1+0)+(1+1)+(0+1)+(1+1))—6=3

and indicates that 3 of the classes (namely 2, 5, and 7) are undecided when the
required precision is at least § = 5%.

For accuracy threshold 6 = 0.05, the balance index for row sum, 2 in Figure |2| is
Bi2 =1 and for row svms e is Bs g = 2.

The SVM score, defined next, is a measure of the precision of the binary classifier
sum, ;(-) for classifying classes i and j. The higher the score the better the classifier
precision.

Definition 4 (SVM Score). The score of a SVM classifier svm; ;(-), denoted as
Si’j, 18
Cij(i,1) +Ci(J, )
2
For instance, the table in Figure [2| shows that
Ci2(1,1) +C12(2,2)  100% + 100%
2 N 2
Algorithm [I] describes the DCSVM training and proceeds as follows. In the main
procedure, TRAINDCSVM, the SVM binary classifiers for all class pairs are trained
(line 4) and the predictions likelihoods are stored in the predictions table (line 5).
The decision function desvm is created as an empty tree (line 8) and then recursively
populated in the DCSVM-SUBTREE procedure (line 10). The recursion procedure
creates a left and/or a right node at each step (lines 12 and 19, respectively) or
may stop with creating a left and/or a right label (lines 9 and 16, respectively).
Each new node is associated to the binary svm; ; that is the decider at that node
(line 5), or with a class label if an end node (lines 9 and 16).

Sij =

Sio= = 100%.
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Algorithm 1 DCSVM training

1: procedure TRAINDCSVM(Ry,..., R, 0) > Creates DCSVM classifier
2: Input: R = Ry,..., Rg: data set, 8: accuracy threshold
3: Output: desvm()
4: svm; ; < train SVM with R, UR;, i=1,...,k—=1,j=2,...,k, 1 <j
T[SU?TLZ‘J‘, l] = (C@j(l, Z.),Ci7j(l,j)), for all SV, 5, =1 k
//Recursively construct a binary decision tree
//with each node associated with a sum; ; binary classifier
decsvm < empty binary tree
desvm.root <— new tree node
10: DCSVM-SUBTREE(dcsvm.root, T, 6)
11: return dcsvm > Returns the decision tree
12: end procedure
1: procedure DCSVM-SUBTREE(pnode, T, 0) > Creates subtree routed at pnode

2: Input: pnode: current parent node, 7: current predictions table, #: accuracy
threshold

PR

3: Output: recursively constructs sub-tree rooted at pnode
4 svm, j < optimal sum in T, for given 6
5 pnode[sum] < svm; ;
6: listi < classes labeled as i or undecided by svm, ;
7 listj < classes labeled as j or undecided by svm; ;
8 if length(listi) = 1 then > reached a leaf
9 pnode.le ftnode < tree-node(label in listq)
10: else
11: T.left < T minus sumy, ,,m € listj or n € listj rows, and columns of
classes not in listi
12: pnode.le ft < new tree node
13: DCSVM-SUBTREE(pnode.left, T .left,0)
14: end if
15: if length(listj) = 1 then > reached a leaf
16: pnode.rightnode + tree-node(label in listj)
17: else
18: T .right < T minus svm,, », m € listi or n € listi rows, and columns of
classes not in listj
19: pnode.right < new tree node
20: DCSVM-SUBTREE(pnode.right, T .right, 0)
21: end if

22: end procedure

An important part of the DCSVM-SUBTREE procedure is choosing the “opti-
mal” svm from a current predictions likelihoods table (line 4). For this purpose,
we use the SVM Purity Index, Balance, and Score from Definitions [3|and [4] respec-
tively. The order these measures are used may influence the decision tree shape
and precision. If Score is used then the Purity and Balance Indexes are used to
break a tie, the resulting tree favors accuracy over the speed of decisions (may yield
bushier trees). If Purity and Balance Indexes are used first, then Score, if a tie, the
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resulting tree may be more balanced. The decision speed is favored while possibly
sacrificing accuracy.

A desvm decision tree for the glass data set is shown in Figure Clearly,
the algorithm may produce highly unbalanced desvm decision trees (when some
classes are decided faster than others) or very balanced decision trees (when most
of class labels are leaves situated at about same depth). Regardless of outcome,
the following result is almost immediate.

Proposition 1. The dcsum decision tree constructed in Algorithm[1] has depth at
most k — 1.

Proof. The lists of classes labeled i and j (lines 6, 7 in DCSVM-SUBTREE proce-
dure) contain at least one label each: i or j, respectively. Once a class column is
removed from 7 at some tree node n, it will not appear again in a node or leaf in
the subtree rooted at that node n. Hence with each recursion the number of classes
decreases by at least one (lines 11, 18) from k to 2, ending the recursion with a left
or a right label node in lines 9 or 16, respectively. [

Notice that a scenario where each dcsvm decision tree label has depth k is
possible in practice: when no svm; ; binary classifier is a good separator for classes
other than ¢ and j (and therefore at each node only classes i and j are separated,
while the other are undecided and will appear in both left and right branches). We
call this the worst case scenario, for obvious reasons. The opposite case scenario
is also possible in practice: each svm; ; separates all classes into two disjoint lists
of about same lengths. The dcsvm decision tree is also very balanced in this case,
but a lot smaller.

Proposition 2. The dcsvm decision tree constructed in Algorithm [1| when each
svm; ; produced balanced, disjoint separation between all classes has depth at most

[log k].

Proof. Clearly, this is a case scenario where at each recursion step a node is created
such that half of the classes are assigned to the left subtree and the other half to
the right subtree. This produces a balanced binary tree with k& leaves, hence of
depth at most [logk]. O

The DCSVM classifier Algorithm [2] relies on the desvm decision tree produced
by Algorithm [I| to take any data item x and predict its label. The algorithm starts
at the decision tree root node (line 4) then each node’s associated svm predicts the
path to follow (lines 6-12) until a leaf node is reached. The label of the leaf node
is the DCSVM’s prediction (line 14) for the input data item x. An example of a
prediction path in a desvm tree is illustrated in Figure [3[ (b).

Propositions [T] and [3.1] directly justify the following result.

Theorem 1. The Algorithm[3 performs multi-class classification of any data item
x in at most k — 1 binary decisions steps (in the worst case scenario) and at most
[log k] binary decision steps (in the best case scenario).

We illustrate next how the dcsvm decision tree is created and how a prediction
is computed using a working example.
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Algorithm 2 DCSVM classifier

1: procedure DCSVMCLASSIFY (desvm, x) > Produces DCSVM classification
2: Input: dcsvm: decision tree; x: data item
3: Output: Label of data item x

4: node < dcsvm.root

5 while node not a leaf do > Visits the decision tree nodes towards a leaf
6: svm, ; + node[svm] > Retrieves the sum associated to current node
7: label < svm; j(x)

8 if label = i then

9: node < node.left

10: else

11: node < node.right

12: end if

13: end while

14: return label of node > Returns the leaf label

15: end procedure

3.2. A working example. We use the glass data set [§] to illustrate DCSVM at
work. This data set contains 6 classes, labeled 1, 2, 3, 5, 6, and 7 (notice there
is no label 4). Consequently, 6 * (6 — 1)/2 = 15 binary svm classifiers are created
and then the “all predictions likelihoods” table 7 is computed (Figure . Let us
choose the accuracy threshold € = 0, for simplicity. That is, a class [ is classified
by an svm; ; as only ¢ if sum; ; predicts that all data items in R; have class i; [ is
classified as only j if sum,; ; predicts that all data items in R; have class j; else, [ is
undecided and will appear on both sides of the decision tree node associated with
SUMy, 5.

@ @ @
(a) (b)

FIGURE 3. DCSVM decision tree (a) with a decision process ex-
ample (b), for the glass data set

We follow next the DCSVM-SUBTREE procedure in Algorithm [T and construct
the desum decision tree. Notice that S; ; = 100% for all sum, ;, so score does not
matter for choosing the optimal svm;; in line 4. The choice will be solely based
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TABLE 1. svum optimality measures for glass data set and the ini-
tial All-Predictions table

svmi; | Pij(0) | Bii(0) | Si;
1. | sumq o 0 1 100%
2. | sumy 3 4 1 100%
3. | sumys 3 1 100%
4. | sumye 3 1 100%
5. | sumy 7 3 1 100%
6. | suma 3 3 1 100%
7. sUmM2 5 1 2 100%
8. | sumag 3 1 100%
9. | sumar 2 1 100%
10. | sums 5 2 1 100%
11. | sumgzg 1 1 100%
12. | sumg 7 3 1 100%
13. | sums g 0 2 100%
14. | sums 7 0 2 100%
15. | sumg 7 4 1 100%

TABLE 2. Optimality measures in the second step of creating the
decision tree in Figure[3| (b)

svmi; | Pij(0) | Bii(0) | Si;
1. | sumq o 0 1 100%
2. | sumy 3 2 1 100%
3. | sumys 1 1 100%
6. | suma 3 1 1 100%
7. | sumgys 0 1 100%
10. | sumg 5 2 1 100%

on the purity and balance indexes. Table [1| shows all values for these measures
for the initial predictions likelihoods table. The table shows rows 1, 13, and 14 as
candidates with minimum purity indexes. Then a tie between rows 13 and 14 as
the winners among these. Row 13 comes first and hence svms ¢ is selected as the
root node. Figure [3| (a) shows the full decision tree, with sums ¢ as the root node.
Subsequently, sums ¢ labels classes 1, 2, 3, and 5 as “5” (left), and classes 6 and 7
as “6” (right). The algorithm continues recursively with classes {1,2,3,5} to the
left, and classes {6, 7} to the right. The right branch will be completed immediately
with one more tree node (for sumsg 7) and two corresponding leaf nodes (for labels
6 and 7).

For the left branch the algorithm will proceed with a reduced All-Predictions
table: rows 4, 5, 8, 9, 11, 12, 13, 14, and 15 and columns for classes 6 and 7 are
removed. The optimality measures will be subsequently computed for all sum and
classes still in competition (1, 2, 3, and 5) in the left branch. The corresponding
measures are given in Table [2] (for an easier identification, the indices in the first
column are kept the same as the original indices in the All-Predict table in Figure[2]).
There is a tie between svm 2 and svms 5, and svm; 2 is being used first. A node is
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consequently created, with a leaf as a left child. The rest of the tree is subsequently
created in the same manner.

4. EXPERIMENTAL RESULTS

TABLE 3. Data sets

No | Dataset Classes || No | Dataset Classes
1. | artificial 6 8. | covertype 7
2. | iris 3 9. | svmguided 6
3. | segmentation 7 10. | vowel 11
4. | heart 5 11. | usps 10
5. | wine 3 12. | letter 26
6. | wine-quality 6 13. | poker 10
7. | glass 6 14. | sensorless 11
140
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We implemented DCSVM in R v3.4.3 using the e1071 library [9], running on
Windows 10, 64-bit Intel Core i7 CPU @3.40GHz, 16GB RAM. For testing, we
used 14 data sets from the UCI repository [§] (as listed in Table [3]). We performed
three sets of experiments: (i) multi-class prediction accuracy comparison, (ii) pre-
diction performance in terms of speed (time and number of binary decisions) and
resources (number of support vectors), and (iii) DCSVM performance comparisons
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for different data sets and accuracy threshold parameter values. For the first set of
experiments we compared three multi-class predictors: the built-in multi-class SVM
(from the e1071 library), our R implementation of one-versus-one, and the R imple-
mentation of DCSVM. For a fair comparison, in the second set of experiments we
compared only the R implementations of one-versus-one and DCSVM. The built-in
multi-class SVM would benefit of the inherent speed of native code it relies on.
Finally, the third set of experiments focused on the DCSVM’s R implementation
performance and fine tuning.

4.1. Accuracies comparison: built-in multi-class SVM, one-versus-one,
and DCSVM. The main goal of DCSVM is to improve multi-class prediction
performance while not sacrificing the prediction accuracy. The first experimental
results compare multi-class prediction accuracy of: (i) built-in SVM multi-class
prediction (in the e1071 package), (ii) one-versus-one implementation in R, and
(iii) DCSVM implementation in R. For the experiment, we used cross-validation
with 80% data for training and 20% for testing, for each data set. We ran 10
trials and averaged the results. The results are displayed in Figure [4 and show no
significant differences between the three methods.
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FIGURE 5. Average number of Support Vectors for multi-class predictions

4.2. Prediction performance comparison. For this purpose, we compared the
R implementations of one-versus-one method and DCSVM. We analyzed prediction
performance in three aspects: the average number of support vectors, the average
number of binary decisions, and time. The number of support vectors used was com-
puted by summing up all support vectors from every binary decider, over all steps
of binary decisions until the multi-class prediction was achieved. The number of
such support vectors is clearly proportional not only to the number of decision steps
(which are illustrated separately), but also to the configuration of data separated by
each binary classifier. The corresponding performance results are presented in Fig-
ure [B] Figure [} and Figure [7] respectively. Due to large variations in size between
the data sets we used, we split the data sets into two size-balanced groups and dis-
played each graph side-by-side for each group. DCSVM significantly outperforms



14 DULEEP RATHGAMAGE DON AND IONUT E. TACOB

250

“1
= DCSVM s 1
%007
15 -
200 -|
10 -
150
100 -
5
I I I I I I I "
- I I I I
. . ] — — — —
F 2 2
= 2 2
b
3

Average steps
Average steps

. |

ided

s
3
2

artificialt
segmentation
wine-qual
glass
covertype
svmgui
vowel
letter
poker

sensorless

FIGURE 6. Average number of binary decisions for multi-class predictions
1000
10 4 800 -

600 -

Average time [sec]
Average time [sec]

aIl e Mo

°
2 2

H

.o
L
artificiall
iris
‘segmentation I
heart
wine-quality
glass
covertipe
svmguided I.
—
vowel [
5
)
- B
‘ ‘
s I-
letter
poker
sensorless

FIGURE 7. Average prediction times for multi-class predictions

one-versus-one, clearly being much less computationally intensive (number of sup-
port vectors for prediction) and faster (number of binary decisions and prediction
times).

From the first two sets of experimental results we can conclude already that
DCSVM achieved the goal of being a faster multi-class predictor without sacrificing
prediction accuracy.

4.3. DCSVM performance fine tuning. In this set of experiments we analyze
in close detail DCSVM’s performance in terms of the accuracy threshold parameter.
Figureshows the trade-off between accuracy (left) and the average prediction steps
(right) with various threshold values. Clearly, the accuracy threshold parameter
permits a trade-off between accuracy and speed. However, this is largely data
dependent. The more separable the data is, the less influence the threshold has
on speed. For less separable data (such as the letter data set), fine adjustment of
the threshold permits trade-off between prediction accuracy and prediction speed.
This is not the case for the vowel data set, which is highly separable: changes in
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Figure0]shows how DCSVM accuracy compares to other multi-class classification
methods (BI = built-in, OvsO = one-against-one) for various threshold values.
For less separable data (such as letter) DCSVM’s accuracy drops sharply with the
threshold (starting at some small threshold value) compared to the accuracy of one-
against-one method, which we found to perform better than the built-in method.
The built-in and one-against-one methods do not depend on the threshold value,
of course. They are shown on the same graph for comparison purpose. However,
it is interesting to notice that by increasing the threshold the prediction accuracy
of DCSVM on letter data sets decreases from a comparable value with one-versus-
one method’s accuracy (which performs best on this data set) to the accuracy of
the built-in method. With a threshold value 6 = 2% the prediction accuracy of
DCSVM is still above the accuracy of the built-in method (for the letter data set).

Table[d]shows side-by-side accuracies of multi-class classification using (i) built-in
(BI), (ii) one-against-one (OvsO), and (iii) DCSVM (for a few threshold values 0).
DCSVM performs very well in terms of accuracy (compared to the other methods)
for all data sets, for threshold values 6 € {2%,1%,0.1%,0.01%} (the larger the
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TABLE 4. Prediction accuracies for different split thresholds

DCSVM
No | Dataset BI|OvsO|6=2 6=1 6=01 6=0.01
1 | artificiall 98.85 | 98.76 | 98.70 98.70 98.76 98.76
2 | iris 96.97 | 96.97 | 96.97 96.97 96.97 96.97
3 | segmentation | 27.71 | 27.71 | 29.44 29.44 29.44 29.44
4 | heart 58.82 | 58.82 | 59.12 59.12 59.12 59.12
5 | wine 96.97 | 96.97 | 96.97 96.97 96.97 96.97
6 | wine-quality | 62.33 | 62.33 | 62.39 62.39 62.39 62.39
7 | glass 87.55 | 91.70 | 91.29 91.29 91.29 91.29
8 | covertype 49.95 | 49.95 | 49.95 49.95 49.95 49.95

9 | svimguided 97.88 | 71.21 | 72.73 72.73 72.73 72.73

10 | vowel 94.34 | 97.26 | 97.26 97.26 97.26 97.26
11 | usps 94.17 | 93.94 | 93.89 94.08 94.17 94.17
12 | letter 95.25 | 96.43 | 95.52 96.00 96.41 96.41
13 | poker 55.94 | 55.96 | 55.56 55.83 55.96 55.96

14 | sensorless 97.46 | 98.87 | 98.32 98.60 98.86 98.87

TABLE 5. DCSVM: Average number of steps per decision, for dif-
ferent split thresholds

No | Dataset =2 6=1 6=0.1 6=0.01
1 | artificiall 3.76  3.75 3.67 3.67
2 | iris .71 1.71 1.71 1.71
3 | segmentation | 5.63  5.63 5.63 5.63
4 | heart 4.00 4.00 4.00 4.00
5 | wine 1.69 1.69 1.69 1.69
6 | wine-quality 4.85  4.86 4.87 4.87
7 | glass 4.09 4.12 4.12 4.12
8 | covertype 593 5.93 5.93 5.93
9 | svmguided 4.63  4.88 4.88 4.88

10 | vowel 5.41 5.41 5.41 5.41
11 | usps 716 7.29 7.80 7.80
12 | letter 17.63 19.56 22.29 22.29
13 | poker 8.36  8.40 8.43 8.43
14 | sensorless 5.44  5.49 6.28 6.93

threshold, the better the accuracy, in general). A larger threshold § may increase the
prediction speed (Table and reduce the computation effort (Table@. Interesting
to notice: Table [5] shows that in all cases displayed in the table the number of
decision steps is less than k& — 1, where k is the number of classes in the respective
data set. DCSVM outperforms (even for very small threshold) one-against-one and
its improvement DAGSVM [16], which reaches multi-class prediction after k — 1
steps.

The All-Predictions table in Figure [ collects all information used by DCSVM
to construct its multi-class prediction strategy (the desum decision tree in Algo-
rithm . The same information can be used to predict how much separation can
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TABLE 6. DCSVM: Average support vectors per decision, for dif-
ferent split thresholds

No | Dataset 0=2 f=1 6=01 6=0.01
1 | artificiall 115.17 117.29 127.22 127.22
2 | iris 32.47 32.47 32.47 32.47
3 | segmentation 305.49 305.49 305.49 305.49
4 | heart 270.18 270.18 270.18 270.18
5 | wine 66.41 66.41 66.41 66.41
6 | wine-quality 1154.49  1155.55 1157.13  1157.13
7 | glass 112.14 114.37 114.37 114.37
8 | covertype 4528.47  4528.47  4528.47  4528.47
9 | svmguided 236.58 245.71 245.71 245.71
10 | vowel 218.36 218.36 218.36 218.36
11 | usps 785.21 798.41 846.84 846.84
12 | letter 2822.54  3110.42  3307.19  3307.19
13 | poker 22166.49 22735.92 22803.01 22807.62
14 | sensorless 2977.89  3057.77  3404.91  3735.30
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be achieved for different threshold values. For instance, for the glass data set All-
Predictions table in Figure [2/ and for a threshold value § = 2% there are 58 entries
in the table where the percentage of predicting one class or the other is at least
100 — 6 = 98% (out of a total of 15 x 6 = 80 entries in the table). The percentage
58/80 = 72.5% is a good indicator of purity for DCSVM with threshold § = 2%:
the higher the percentage, the more separation is produced at each step and hence a
shallow decision tree. Figure[I0]shows the class separation percentages for threshold
values 0 < 6 < 5 and four data sets (letter, vowel, usps, and sensorless). Intuitively,
as threshold increases so does the separation percentage. The letter and usps data
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sets display an almost linear increase of separation with threshold. sensorless dis-
plays a sharp increase for small threshold values, then it tends to flatten, that is,
not much gain for significant increase in threshold (and hence possibly less accu-
racy). Lastly, vowel displays a step-like behavior: not much gain in separation
until threshold value reaches approx 6 = 2.3%, a steep increase until 6 approaches
3%, then nothing much happens again. One can use these indicators to decide the
trade-off between speed and accuracy of predictions.

5. CONCLUSION

In this paper we present DCSVM, a fast algorithm for multi-class classification
using Support Vector Machines. Our method relies on dividing the whole training
data set into two partitions that are easily separable by a single binary classifier.
Then, a prediction between the two training set partitions would eliminate one or
more classes at the time. The algorithm continues recursively until a final binary
decision is made between the last two classes left in the competition. Our algorithm
performs consistently better than the existent methods on average. In the best case
scenario, our algorithm makes a final decision between k classes in O(log k) decision
steps between different partitions of the training data set. In the worst case scenario,
DCSVM makes a final decision in k — 1 steps, which is not worse than the existent
techniques.

The SVM divide and conquer technique we present for multi-class classification
can be easily used with any binary classifier. It is rather a consequence of increasing
data sparsity with the dimensionality of the space, which can be exploited, in
general, in favor of producing fast multi-class classification using binary classifiers.
Our experimental results on a few popular data sets show the applicability of the
method.
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