
1

A Self-adaptive Exhaustive Search Optimization-based Method for

Restoration of Bridge Defects Images

Eslam Mohammed Abdelkader*
1,2, Mohamed Marzouk

3
, and Tarek Zayed

4

1 Ph.D. candidate, Department of Building, Civil, and Environmental Engineering, Concordia University, Montreal,

QC, Canada. Corresponding author, E-mail: eslam_ahmed1990@hotmail.com.
2 Assistant lecturer, Structural Engineering Department, Faculty of Engineering, Cairo University, Egypt.
3 Professor of Construction Engineering and Management, Structural Engineering Department, Faculty of

Engineering, Cairo University, Egypt.
4 Professor, Department of Building and Real Estate, the Hong Kong Polytechnic University, Hung Hom, Hong

Kong.

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use
(https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms), but is not the Version of Record and does not reflect
post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s13042-020-01066-x

This is the Pre-Published Version.

mailto:eslam_ahmed1990@hotmail.com

2

A Self-adaptive Exhaustive Search Optimization-based Method for

Restoration of Bridge Defects Images

ABSTRACT

Existing bridges are aging and deteriorating. Furthermore, large number of bridges exist in

transportation networks meanwhile maintenance budgets are being squeezed. This state of affairs

necessities the development of automatic bridge defects evaluation model using computer vision

technologies to overcome the limitations of visual inspection. The digital images are prone to

degradation by noises during the image acquisition phase. The absence of efficient bridge defects

image restoration method results in inaccurate condition assessment models and unreliable

bridge management systems. The present study introduces a self-adaptive two-tier method for

detection of noises and restoration of bridge defects images. The first model adopts Elman neural

network coupled with invasive weed optimization algorithm to identify the type of noise that

corrupts images. In the second model, moth-flame optimization algorithm is utilized to design a

hybrid image filtering protocol that involves an integration of spatial domain and frequency

domain filters. The proposed detection model was assessed through comparisons with other

machine learning models as per split validation and 10-fold cross validation. It attained the

highest classification accuracies, whereas the accuracy, sensitivity, specificity, precision, F-

measure and Kappa coefficient are 95.28%, 95.24%, 98.07%, 95.25%, 95.34%. 95.43% and

0.935, respectively in the separate noise recognition module. The capabilities of the proposed

restoration model were evaluated against some well-known good-performing optimization

algorithms in addition to some conventional restoration models. Moth-flame optimization

algorithm outperformed other restoration models, whereas peak signal to noise ratio, mean-

squared error, normalized absolute error and image enhancement factor are 25.359, 176.319,

0.0585 and 7.182, respectively.

Keywords: Bridge defects, computer vision, image restoration, Elman neural network, moth-

flame optimization, filtering protocol

3

1. INTRODUCTION

Bridges are regarded as one of the core elements of the infrastructure systems. Meanwhile,

they are vulnerable to severe deterioration agents such as freeze-thaw cycles, excessive distress

loads due to traffic overload, sulfates, alkali-silica reaction (ASR), poor construction practices,

etc. Based on the Canadian infrastructure report card, 26% of the bridges are either in a “Fair”,

“Poor” or “Very Poor” conditions. The backlog of maintenance, repair and rehabilitation

activities is $10 billion. The continuous increase in the backlog results in a substantial

degradation in the condition of the bridges. One-third of Canada’s bridges have structural or

functional deficiencies with short remaining service life, whereas 20 million light vehicles,

750,000 trucks, and 15,000 public transits use Canadian bridges annually [1]. The average age of

the bridges is 24.5 years in 2007 compared to a mean service life of 43.3 years. Thus, 57% of the

estimated service life has already been consumed [2].

Based on the aforementioned statistics, it is very crucial to evaluate the condition of the

bridge decks in order to maintain them within a safe condition. Thus, the detection and

evaluation of surface defects are very essential for timely maintenance of various concrete

bridges. Recently, the use of digital image processing to deal with the surface defects becomes a

research trend because the accuracy and efficiency of visual inspection-based methods are highly

dependent on the skills and experience of inspectors. Thus, the subjectivity associated with the

visual inspection-based methods requires the development of an automated method that can

efficiently evaluate the severities of surface defects based on machine vision technologies.

The digital images are subjected to degradation by noise during the image acquisition stage

or as a result of unfavorable conditions during image transmission. Noise is undesirable random

fluctuations in the color and brightness of the image. The restoration of bridge defects images is

4

a pre-processing operation that involves two stages. The first stage is to determine which type of

separate noise or combination of noises that corrupt the images. The second stage incorporates

the application of a certain filtering method to remove noises from images. The inefficiency or

the absence of one of the two stages can substantially affect the further feature extraction,

detection and evaluation of surface defects. Thus, the restoration of bridge defects needs to take

place to increase the prediction capacity of the surface defects evaluation method by enabling the

precise extraction of important features of surface defects such as length and width of cracks and

area of spalling. For instance, if a crack image corrupted with noise, is processed this can lead to

inaccurate analysis and diagnosis of the surface defect.

 In the view of the above, Noise detection and recognition is a key stage because it enables

to determine the suitable filters to deal with the noise. Thus, having prior knowledge about the

nature of the noise is fundamental in noise removal. Otherwise, noise removal can lead to image

blurring. Furthermore, the process of noise removal while preserving as much as possible the

edges and texture details of the image is a challenging task. Moreover, the task becomes more

challenging when the images are subjected to a combination of noises. As such, the present study

introduces a self-adaptive two-tier optimization-based method for the detection of noises and

restoration of bridge defects images. Therefore, the main objectives of the present study are as

follows:

1- Develop a hybrid Elman neural network-invasive weed optimization model (ENN-IWO) for

the detection and recognition of separate and combined noises in bridge defects images.

2- Design a hybrid self-adaptive moth-flame optimization model for the restoration of bridge

defects images.

5

3- Validate the previously-developed models through comparisons with other machine learning

models reported in literature.

2. LITERATURE REVIEW

The literature review is divided into three sections: 1) overview of noise detection and removal

models, 2) restoration of bridge defects images, and 3) research gaps.

2.1 Overview of Noise Detection and Removal Models

Noise detection is one of the key challenges in computer vision, whereas once the type of

noise is correctly identified, the appropriate filtering method is applied to de-noise the captured

image because poor de-noising often arises from the incorrect identification of the noise type.

Karibasappa and Karibasappa [3] presented a method that integrated probabilistic neural network

and fuzzy C-means clustering algorithm to classify the images based on the noise type. The

addressed noise types were Gaussian white noise, speckle noise, salt and pepper noise and non-

Gaussian white noise. The classification of the noise types was based on statistic features,

namely Kurtosis and skewness. Chuah et al. [4] utilized deep convolutional neural network for

the detection of the presence of Gaussian noise and noise levels. The deep convolutional neural

network was capable of the detection of 10 classes of noise levels with an overall accuracy of

74.7%.

Turajlic and Begovi [5] proposed a method for the detection of Gaussian noise levels using

artificial neural network in the singular value decomposition domain. They investigated the

computational time for different alternatives of block sizes. They concluded that the proposed

method achieved the lowest mean-squared error in the case of low noise levels. Vasuki et al. [6]

proposed a method for the classification of noise types based on artificial neural network. They

6

utilized some statistical features such as Kurtosis and skewness for the identification of the noise

type. Artificial neural network yielded better classification results when compared to the K-

nearest neighbors algorithm, whereas the proposed method was capable of achieving an accuracy

of 98.57%, 92.85% and 98.57% for Gaussian noise, salt and pepper noise and speckle noise,

respectively.

Noise removal is one of the most worked upon topics in the area of image processing in

recent years. Gupta et al. [7] compared six types of filters as per their capabilities to remove

speckle noise, Gaussian noise, salt and pepper noise and Poisson noise based on the mean-

squared error, peak signal to noise ratio and mean absolute error. They stated that the mean filter

performed well in removing speckle noise, salt and pepper noise, and Poisson noise. On the other

hand, Gaussian filter de-noised the Gaussian noise efficiently. Verma and Mehra [8] utilized

particle swarm optimization algorithm to improve the performance of the median filter in de-

noising the images corrupted with the salt and pepper noise. They stated that the proposed

method provided higher peak signal to noise ratio and higher image quality index when

compared to the median filter and adaptive median filter.

 Dass [9] introduced a method that integrated bacterial foraging optimization (BFO)

algorithm, discrete wavelet transform and Wiener filter to remove speckle noise from captured

images. BFO algorithm is applied to minimize the error between the restored image and the

original image. The proposed method provided better restoration results in terms of mean

absolute error and peak signal to noise ratio when compared to adaptive median filter and

Wiener filter. Kumar et al. [10] presented a method that combined adaptive particle swarm

optimization algorithm with fuzzy median filter for the restoration of noisy images. The

proposed method achieved higher image de-noising when compared to the bilateral filter, Wiener

7

filter and median filter as per the peak signal to noise ratio and second derivative-like measure of

enhancement.

Wang et al. [11] developed margin setting algorithm to detect salt and pepper noise in

digital images. Then, ranked order median filter was applied to de-noise the corrupted images.

The developed noise detection model yielded less false positive rate than support vector

machines. The ranked order median filter outperformed standard median filter as per peak signal

to noise ratio, mean-squared error, image enhancement factor and structural similarity index.

Zhao et al. [12] presented a model to supress noises in digital images based on Demspter-Shafer

evidence theory. An improved accelerated algorithm within a sample window of size 2×2 was

introduced for better noise detection existence. The developed model achieved higher peak

signal to noise ratio when compared to the mean filter for different percentages of noise

densities. They highlighted that the developed model provides a fast and efficient platform to

remove noises from images. Ma et al. [13] developed a model that integrated fuzzy C-means

clustering algorithm and non-local spatial information for image segmentation. The non-local

means was utilized to restore the degraded images by restraining noises, and increase the

segmentation capacity of the fuzzy C-means clustering algorithm by decreasing its sensitivity to

the different types of noises. The developed model outperformed different variants of the fast

generalized fuzzy C-means clustering algorithm based on a set of image segmentation quality

indicators.

2.2 Restoration of Bridge Defects Images

Image restoration can be performed in several domains such as spatial domain and

frequency domain. Most of the previous reported efforts in the literature utilized standalone

filters for image restoration purposes in bridges. Tong et al. [14] introduced a method for image-

8

based crack detection to facilitate the inspection process in reinforced concrete bridges. Gaussian

filter was used to remove the noise and enhance the image quality. Morphological operations are

used to ensure the connection between the crack segments. The objective of the proposed method

was to determine whether or not the images contained cracks. The proposed model achieved an

accuracy of 93% and it outperformed some other methods such as Fujita method, canny edge

detection method and Sobel edge detection method. Adhikari et al. [15] developed an artificial

neural network-based model to predict the depth of the crack given a certain crack width based

on an input dataset of 101 images of bridges. Median filter was applied to smooth images, which

enabled the accurate interpretation of cracks. They also developed an approach based on spectral

analysis to detect the change in crack patterns over time by converting digital images to the

frequency domain using Fast Fourier Transform (FFT).

Yao et al. [16] presented a bridge crack detection and classification model based on a

climbing root using a set of image processing techniques. Wiener filtering method was applied to

remove the motion blur of the acquired images. Then, the wavelet transform was employed to

minimize the texture effects of the crack area and finally, support vector machine (SVM) was

implemented to classify the cracks and evaluate their severity levels. Lee et al. [17] developed a

bridge inspection system using an unmanned aerial vehicle (UAV). Median filter was used to

remove the noises and blurring present in images. Otsu method was applied to segment the

images to objects of interest and background. Then, the crack properties in the HSV space were

used to distinguish between cracks and other surface irregularities. They highlighted that their

model was capable of detecting cracks measured in micrometers.

Ellenberg et al. [18] developed a bridge damage quantification model using digital images

collected from unmanned aerial vehicles. Median filter was applied to remove the noise and

9

enhance the contrast in images. The proposed method combined high-resolution cameras with

camera calibration and homography for tracing of cracks. They highlighted that the proposed

method was capable of detecting cracks in images, which could eventually provide efficient

bridge inspection models. Lei et al. [19] developed a method for crack detection method using

unmanned aerial vehicle technology combined with digital image processing. Gaussian filter was

applied to remove noise from images. The developed crack central point method outperformed

other edge detection methods such as Canny algorithm, Sobel algorithm, Laplacian of Gaussian

and Prewitt algorithm.

Li et al. [20] introduced a two-stage crack detection method based on convolutional neural

network. A median filter was applied to de-noise the input images for further processing stages.

The first stage involved feeding a small patch centering each pixel into the predictor to compute

the probability that a pixel belong to a cracked area. In the second stage, a bigger patch elicited

from the first confidence map is fed into the second predictor to obtain a second confidence map.

Finally, the two confidence maps are combined to generate a final confidence map, which is used

to map whether or not a certain pixel belong to cracked regions. The introduced method

outperformed the canny edge detector method and STRUM (Spatially tuned robust multi-feature)

method as per accuracy, precision and sensitivity. Dinh et al. [21] introduced a computer vision-

based method for concrete crack detection. Average filter was applied to smooth the input

images and remove the blob-like noise. A non-parametric peak detection algorithm was

developed for binarization purpose in order to be able to differentiate defected and non-defected

regions. They highlighted that the proposed method provided satisfactory results in the case of

high noisy background images and low contrast images.

10

Wang et al. [22] proposed a method for crack detection in concrete bridges based on a set

of image processing techniques. Adaptive filtering was integrated with contrast enhancement to

eliminate the background noise and facilitate the accurate extraction of crack features. Then, a

hybridization of Otsu and modified Sobel operator was applied for the detection of cracks. The

proposed method achieved an absolute error of 0.02 mm in the detection of cracks width. Ho et

al. [23] introduced a method for the damage detection of cable surface in cable-stayed bridges.

Median filter was applied for noise reduction and histogram equalization. Then, the input images

are mapped to principal component analysis space, where the Mahalanobis square distance was

utilized to determine the distances between the input images and sample patterns, and eventually

building the pattern recognition model.

Lee et al. [24] designed a machine vision robotic system to automate the inspection process

of bridges. The developed system enables the user to evaluate the cracks in real-time based on a

dataset of 100 noisy images. Median smoothing filter was applied to remove noises and to ensure

uniform brightness through the image. Then, dilation and thinning morphological operations

were utilized to maintain the connections between the crack segments. They demonstrated that

the developed method yielded higher detection accuracies when compared to Sobel, Canny and

Fujita methods. Pavithra et al. [25] proposed a computer vision-based method for the detection of

cracks in reinforced concrete bridges. Then, median filter was applied to remove the salt and

pepper noise present in images. Morphological segmentation was utilized to detect cracks in

images using some operations such as dilation and erosion. The grey level co-occurrence matrix

and statistical features were used to feed the detection model. Finally, the cascaded random

forest classifier was applied to decide whether the images contain cracks or not.

11

2.3 Research Gaps

Based on the aforementioned studies, most of the restoration methods of bridge defects

images are lacking a comprehensive investigation of the type of noise that the images are

corrupted with. Moreover, the restoration of bridge defects images is a problem-dependent in

real- time environment, i.e., applying a filtering method without specifying the type of noise

leads to poor de-noising results under these conditions. Thus, it is decisive to find a method

which aims to intelligently evaluate if an image is corrupted with noise, and what type of

separate or mixed noise is corrupting the image before applying the de-noising method. The

images which are corrupted with a mixture of noises create an amplified challenge to remove the

mixed noise without compromising the edge sharpness and important features. As such, building

a generic model which is irrespective of a specific type of noise can provide more robustness to

the proposed method. Absence of noise detection models can lead to image blurring due to the

application of incorrect or underperforming image restoration models. This will remarkably

affect the following bridge defects evaluation procedures including: bridge defects severities

extraction and detection, and eventually the accuracy of diagnosis of bridge defects severities.

In addition to that, most of the previous studies utilized a single filter such as median,

mean or Gaussian filters to deal with different types of noises. Nevertheless, a single filter fails

to deal with all types of noises, whereas some filters behave efficiently with some types of noises

and fail to deal with others. Another issue in the reported de-noising methods is the parameter of

the filters, whereas most of the filtering methods proposed in the literature are attribute or

threshold governed such as mask size of 4×4. The window size selection in the neighborhood

filters is a key issue in de-noising, whereas smaller window sizes sometimes don’t completely

remove the noise while larger window sizes sometimes lead to edge blurring. The absence of

12

noise detection models and inefficient restoration methods lead to the establishment of inaccurate

condition assessment models and unreliable deterioration models, which eventually leads to

inefficient bridge management systems. Thus, the present study proposes a self-adaptive

restoration method which can automatically detect and recognize the type of noise in bridge

defects images. Moreover, it designs an image filtering protocol for each type of noise which can

remove the noise in bridge defects images and preserve their edges and other features without

human handpicking of the parameters.

3. PROPOSED METHOD

The ultimate objective of the proposed method is to design a filtering protocol for how to

deal with different types of separate or mixed noises that corrupt bridge defects images. The

proposed method is a two-tier framework for the automatic recognition of noise and restoration

of degraded bridge defects images. The framework of the proposed restoration method of bridge

defects images is depicted in Figure 1. The first model is the automatic classification of noises,

whereas three modules are developed for the detection and recognition of noise types based on

the level of details the asset managers are concerned with. The first module is the noise

detection, whereas a binary classification module is constructed to classify the images based on

the existence of noise, i.e., to classify whether the image is corrupted with noise or not. The

second module is the separate noise recognition, whereas it is formulated as a four-point

classification problem to provide a higher level of detail. The output of this module is to identify

whether the image is corrupted with speckle noise, salt and pepper noise, or Gaussian noise or

not corrupted with the noise. The third classification module is the combined noise recognition

such that it provides the highest level of detail based on a formulation of a seven-point

classification problem. This module is used to identify whether the image is corrupted with

13

speckle noise, salt and pepper noise, Gaussian noise, combination of speckle and salt and pepper

noises, combination of speckle and Gaussian noises, combination of salt and pepper and

Gaussian noises, or not degraded with noise.

INSERT FIGURE 1

For the first phase, the first step is to convert the RGB image into a gray-scale image,

whereas the intensity values of the gray-scale image vary from 0 to 255. For the RGB image, R

stands for red, G stands for green, and B stands for blue. The gray-scale images can improve the

process of image processing without losing important features of the distress. Then, the

converted images are standardized to a size of 200×200 to ensure same size images in the

training and testing processes of the neural network, and to speed up the computational process.

The next step is to convert the noise free image into a noisy image. Different combinations of

separate and mixed noises are added to create the noisy images. Then, a set of statistical features

are extracted from the noisy images to be able to classify the noise present in the image. The

statistical features include: mean, mode, median, range, standard deviation, skewness, kurtosis,

75th percentile and 50th quartile.

Training Elman neural networks with meta-heuristic optimization algorithms is a

powerful tool to improve the search engine of the Elman neural network by addressing the

exploration-exploitation trade-off dilemma. The proposed method utilizes invasive weed

optimization algorithm is used for both parametric and structural learning, i.e., to automatically

optimize the weights and define the best possible architecture of the Elman recurrent neural

network. The Elman neural network is trained by designing a variable-length single-objective

optimization problem which encompasses a fitness function of minimization of misclassification

error. The steps of the invasive weed optimization algorithm are repeated until satisfying the

14

convergence criteria, i.e., reaching maximum number of iterations. The optimized Elman neural

network is saved and utilized to simulate the testing dataset.

The proposed method is compared with five other machine learning models to

demonstrate the capabilities of the proposed noise detection and recognition method. The five

models are discriminant analysis (DA), K-nearest neighbors (KNN), random forest (RF), support

vector machines (SVM) and back-propagation artificial neural network (ANN). The comparison

is conducted based on six performance metrics, namely precision, F-measure, sensitivity,

specificity, accuracy and Kappa coefficient. The performance of the different noise detection and

recognition models were evaluated using split validation and 10-fold cross validation. The K-

fold cross validation is applied to ensure the training and testing of the entire dataset, which rules

out any possibility of over-fitting or over-learning in the pattern recognition phase. Finally,

parametric and non-parametric tests were performed between each pair of classifiers to evaluate

the statistical significance level of the outcome of classifiers using the performances of the

different folds. The parametric test is the Student’s t-test while the non-parametric tests are

Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test, binomial sign test, Mood’s median

test, Friedman test and Friedman's aligned ranks test [26, 27].

After mapping each image to a specific type of noise or noises, the second model is the

restoration of bridge defects images. Image restoration aims at removing the maximum

undesirable noise from the captured images and trying to bring the noisy image as much as

possible to its un-degraded ideal state. Assume a degradation function H and a noise function

n(x, y) which are added to the original image A(x, y) to produce the degraded image G(x, y). The

objective of the restoration function is to obtain the reconstructed image A^(x, y) and at the same

time to be as close as possible to the original image A(x, y). The degraded image in the spatial

15

domain can be expressed using Equation (1). As shown in Equation (1), based on the type of

noise and degradation present in the image, an optimization problem is designed in order to

define optimum configuration and parameters of the restoration method that can better filter out

the noise present in the image and build the reconstructed image [28, 29].

G(x, y) = h(x, y) × A(x, y) + n(x, y) (1)

Where;

h(x, y) represents the spatial representation for the degradation function. The symbol × indicate

the spatial convolution.

After loading the degraded image, a self-adaptive hybrid filtering model is developed

based on designing a variable-length optimization problem that considers a combination of

spatial domain and frequency domain filters to provide more in-depth evaluation and better-

restored images. The smoothing filters used in the present study are median filter, mean filter,

mode filter, Wiener filter, Gaussian filter, Lee filter and Frost filter of variable sizes. The

proposed model employs moth-flame optimization algorithm to search for the optimum structure

and parameters of the restoration method using a single objective function that maximizes the

peak signal to noise ratio, i.e., minimize the difference between the original image and

reconstructed image of bridge defects. The superior capacity of the moth-flame optimization in

exploration and exploitation motivated its application in solving the restoration problem of

bridge defects images.

In addition to investigating different combinations of filters, the proposed method

explores the effectiveness of the sequence of applying the filters, whereas the sequence of

applying the smoothing filters can substantially affect the quality of the restored images. For

16

instance, the quality of the restored image when applying the median filter followed by the

Wiener filter is different from applying the Wiener filter followed by the median filter. Thus, the

objective of the proposed method is to define for each noise the following: optimum number of

filters, optimum types of filters, optimum sequence of applying the filters, and optimum tuning

parameters (governing attributes) of the applied filters.

The proposed method is validated on two stages. For the first stage, the proposed method is

compared with the conventional filtering methods found in the literature. For the second stage,

the proposed method is compared with a set of optimization algorithms which are: invasive weed

optimization algorithm, differential evolution algorithm, modified differential evolution

algorithm, grasshopper optimization algorithm, grey wolf optimization algorithm, particle swarm

optimization algorithm, genetic algorithm and non-linear programming algorithm. This

comparison is conducted to investigate the capacity of the proposed restoration method to search

for the global optimum solutions in case of large search space and complex optimization

problems against a set of well-known efficient meta-heuristics and exact optimization algorithm.

The performances are assessed as per four performance metrics, namely peak signal to noise

ratio (PSNR), mean-squared error (MSE), normalized absolute error (NAE) and image

enhancements factor (IEF). Eventually, the significance level of the optimal solutions of the

different meta-heuristic optimization algorithms is evaluated using the same parametric and non-

parametric tests of the noise detection and recognition model.

4. TYPES OF NOISES

Noise represents unwanted information that degrades the quality of the image. The present

study deals with three types of noises which are: Gaussian noise, salt and pepper noise and

speckle noise [29, 30].

17

4.1 Gaussian Noise

Gaussian noise is the most common noise present in the image which mainly affects all the

pixel values. Gaussian noise is a statistical noise that the Gaussian probability density function as

shown in Equation (2). This type of noise is sometimes called “white noise”, which causes the

image to be blurry.

f(g) =
1

√2πσ2
e
−(

g−µ
2σ2)

2

 (2)

Where;

g represents the gray level. µ and σ2 represent the mean and variance of the noise, respectively.

4.2 Salt and Pepper Noise

Salt and pepper noise usually occurs due to errors during the image transmission phase,

whereas the intensity of the corrupted pixel either has an intensity which is either very high or

very low compared to the neighboring pixels. A pixel is called a “salt” pixel if its intensity is

very high and it is called a “pepper” pixel if its intensity is very low. This type of noise is

demonstrated in the form of dark pixels (black dots or pepper) in bright regions and bright pixels

(white dots or salt) in dark regions.

4.3 Speckle Noise

Speckle noise is a granular noise that affects all the inherent characteristics of the image

and increases the mean grey level in a local area. This type of noise is sometimes called “Data

missing” noise, which occurs due to loss of data during the image transmission. The corrupted

pixels are set to maximum value and the speckle noise follows a gamma distribution as

illustrated in Equation (3).

18

f(g) =
gα−1

(α − 1)!
e
−g
σ2 (3)

Where;

𝛼 represents the shape parameter of the speckle noise distribution.

5. TYPES OF FILTERS

Image restoration can be performed in several domains such as spatial domain and

frequency domain. The present study investigates a set of spatial domain filters (mean, median,

mode, Gaussian, Lee, and Frost) and a frequency domain filter (Wiener filter). Spatial domain

techniques deal directly with the pixel intensities present in the image. However, frequency

domain filters are based on the Fourier transform of the image.

5.1 Average Filter

Mean filter is a simple and easy algorithm that is utilized to remove irrelevant details in the

image. It is used to minimize the noise in the image by minimizing the intensity variations in the

image pixel and the next pixels. Average filter is based on computing the sum of all pixels in the

filter window and dividing them by the number of pixels. Then the center pixel is replaced by the

average value. The 2D mask (window) is applied to each pixel in the image. The larger the

window size, the more noise can be removed effectively however; this can result in a blur image

[29, 30].

5.2 Median Filter

Median filter is a non-linear filter that is mainly utilized to remove speckle noise and salt

and pepper noise. Median filter helps in decreasing the intensity variations between a certain

pixel and its neighboring pixels as the average filter. However, median filter provides a better

19

alternative to filter out the noise, smooth the image and preserve its details than the average filter

because it is less sensitive than the average filter to the outliers. The median filter is performed

through a 2D mask, which is transferred across the whole pixels of the image. The median value

is computed by first arranging the pixel intensities in an ascending order and then the pixel is

replaced by the middle pixel value. If the number of neighboring pixels is equal to an even

number, then the pixel value is replaced by the average of the two middle pixel values. The

median filter is not efficient when dealing with images, where half of the pixel values are

affected. Thus, the median filter is not effective in removing Gaussian noise from images [29,

30].

5.3 Mode Filter

Mode filter is performed through a 2D mask applied to each pixel value, whereas each

pixel value is replaced by the mode value of the neighboring pixels.

5.4 Gaussian Filter

Gaussian filter is used to smooth images by removing the Gaussian noise. Gaussian

smoothing filter is utilized to remove the noise based on a Gaussian kernel function using

Equation (4) [31].

G(x, y) =
1

2πσ2
e
x2+y2

2σ2 (4)

Where;

x represents the distance from the origin in the horizontal axis. y represents the distance from the

origin in the vertical axis. σ indicates the standard deviation of the Gaussian distribution.

20

5.5 Wiener Filter

Wiener filter is a de-noising method that works in the frequency domain to filter out the

noise from a corrupted signal and improve the signal to noise ratio. As mentioned before, the

Wiener filter is a frequency domain filter, which means that it utilizes discrete Fourier transform

(DFT) to transform the degraded image to the frequency domain. Wiener filter is an optimal

image filtering technique that is used to minimize the mean square error between the restored

image and the original image. The Fourier transform of the restored image can be expressed

using Equation (5). As shown in Equation (5), the Fourier transform of the restored image is

equal to the product of the Wiener filter and the original image.

F^(u, v) = G(u, v) × A(u, v) (5)

Where;

F^(u, v) represents the Fourier transform of the original image. G(u, v) represents the Wiener

filter. A(u, v) indicates the original image.

The Wiener filter can be obtained using Equation (6). The term
Sn

Sf
 is replaced by a

frequency independent constant called K. Then a suitable value of the constant K that achieves a

suitable restored image can be obtained by minimizing the mean squared error between the

original image and the restored image [31, 32].

G(u, v) =
H∗(u, v)

|H(u, v)|2 +
Sn

Sf

 (6)

Where;

21

H∗(u, v) denotes the Fourier transform of the degradation function. H(u, v) represents the

degradation function. Sn and Sf represent the power spectrum of the noise and power spectrum of

the un-degraded image, respectively.

5.6 Lee Filter

Lee filter is a spatial filtering method based on the first order of statistics to reduce noise

present in images and preserve their details. It depends on the minimum mean-squared error to

attain the noise free images. The pixel being filtered is replaced by a value calculated based on

the neighboring pixels. Lee filter assumes that the speckle noise is uniformly distributed all over

the image. Thus, it sometimes causes blurring of the edges as a result of the sudden change in the

pixels’ intensity at the edges. The restored image is obtained as follows [33, 34].

R^(τ) = R^(τ) − W(τ)[F^(τ) − F(τ)] (7)

Where;

R^(τ) represents the restored image. F(τ) indicates the noisy image. F^(τ) represents the mean

value of F(τ). W(τ) is the weighted function and can be obtained using the following Equations.

W(τ) =
var(τ)

[F^(τ)]2σ2 + var(τ)]
 (8)

var(τ) =
σI

2 + µI
2

σ2 + 1
− µI

2 (9)

Where;

var(τ) represents the variance of the pixel being filtered. σ2 represents the global variance of the

noisy image. σI
2 and µI

2 indicate the local variance and local mean, respectively.

22

5.7 Frost Filter

Frost filter is an exponentially weighted average filter that utilizes local statistics to reduce

noise. Frost filter can be used to remove multiplicative noise from images, whereas it is based on

the computation of variation, which is the ratio of the local standard deviation to the local mean

of the noisy image. Thus, for high coefficients of variation, the sharp features in the image are

preserved while the frost filter acts like the average filter for low coefficients of variation. The

frost filter can be described as follows [33, 34].

R^(τ) = ∑ Kαe−α|t| (10)

n×n

Such that;

α =
4

nσ^2
×

σ2

I2
 (11)

t = |X − Xo| + |Y − Yo| (12)

Where;

K is a normalizing constant. σ2 represents the local variance. σ^2 is the image coefficient of

variation. I is the local mean. n is the moving kernel size.

6. MODEL DEVELOPMENT

This section describes in-detail the developed noise detection and recognition model in

addition to the restoration models of bridge defects images presented in the “Proposed Method”

section.

6.1 Noise Detection and Recognition Model

The present study a self-adaptive hybrid Elman hybrid ENN-IWO model to automatically

train and classify the retrieved degraded images of bridge defects based on the noise type. The

23

following section discusses the basic theories of the Elman neural network and invasive weed

optimization algorithm in addition to the hybrid ENN-IWO model for noise detection and

recognition in bridge defects images.

6.1.1 Basic theory of Elman neural network

Elman neural network (ENN) is one of the recurrent neural networks (RNNs), which was

proposed by Jeffrey Locke Elman in 1990 [35]. Elman neural network is characterized by

additional context layers, which helps in providing a memory about the results of the

computations done so far. The connections and dependencies between the layers form a directed

cycle, which enables the neural network to preserve a state between the subsequent time steps

[36]. The main difference between the conventional feed-forward neural networks and recurrent

neural networks is that in the case of RNNs, the output at each time step depends on the previous

inputs and previous computations by memorizing previous events while in the feed-forward

neural network, outputs are independent of each and the network output depends only on the

current time step [37, 38].

The architecture of the Elman neural network is depicted in Figure 2. Elman neural

network is composed of: input layer, hidden layer, context layer, and output layer, whereas

number of neurons in the context layer is the same as number of neurons in the hidden layer. The

neurons in each layer are used to propagate information from one layer to the subsequent layers.

The connections of hidden layers entering the context layer are not weighted while the connections of

the context layer entering the hidden layer are weighted. Elman neural network is considered as a

recurrent neural network because it has a feedback loop, which has a substantial impact on

improving the learning capability of the network, which consequently enhances the performance

24

of the neural network. The feedback loop incorporates the use of unit-delay element (Z−1), which

provides a non-linear dynamic behaviour to the neural network.

INSERT FIGURE 2

The context layer takes its input from the output of hidden layer. Then, the context layer

feeds into the hidden input layer. Therefore, the output of the hidden layer is going into two

layers: context layer and output layer. The output from the hidden layer are sent into the context

layer, stored, and fed through the weights into the hidden layer in order to rely on this

information in the next iterations, so the neural network is constantly remembering the output

from the hidden layer and re-feeding this output from the previous iteration into the hidden layer.

This behaviour enables the neural network to maintain short term memory, which improves the

network performance [39, 40].

The output of the hidden layer and output layer can be calculated using Equations (13)

and (14), respectively.

X(k) = f(W2Xc(k) + W1U(k − 1)) (13)

Y(k) = g(W3X(k)) (14)

Give that:

Xc(k) = X(k − 1) (15)

Where;

W1 represents the weight of the input later to the hidden layer. W2 represents the weight of the

context layer to the hidden layer. X(k) is the output of the hidden layer. Xc(k) is the output of the

context layer. U(k − 1) is the input of the neural network. Y(k) is the output of the neural

25

network. f represents the transfer (activation) function at the hidden layer. g is the transfer

function at the output layer.

Gradient descent (GD) algorithm is considered as one of the most commonly utilized

algorithms to train the Elman neural network and back propagation neural networks. The

networks are called “back propagation” because the error is computed at the output layer based

on the desired and predicted output for each input value, and then the error distributed

(propagates) backwards through the network layers from the output to the hidden layers and then

further to the input layer. Gradient descent algorithm is based on finding the partial derivative of

the error function to update the weights of the connections. The optimum weights are obtained

based on minimizing the error function, which can be expressed as the sum of squared error

(SSE) of the predicted and actual values. The error (cost) function is calculated using Equation

(16).

E = ∑(Pt − Ot)
2

N2

t=1

 (16)

Where;

E represents the error function, i.e., the objective function, which should be minimized within

each training epoch. Pt and Ot represent the predicted and actual values, respectively.

Based on the gradient descent algorithm, the weights are adjusted during each training

epoch (k) based on Equation (17), whereas the error partial derivative is computed during each

training epoch and subsequently, as per the error partial derivative and the learning rate, the

weights are updated [41].

26

Wij(k + 1) = Wij(k) + ∆ Wij((k) = Wij(k) − η ×
∂E(k)

∂Wij
 (17)

Where;

∆ Wij((k) represents the adjustment or increment in the weights (weight updates). Wij(k + 1)

and Wij(k) represent the new (updated) and current (old) weights, respectively. η depicts the

learning rate.
∂E(k)

∂Wij
 represents the error partial derivative with respect to the weights.

6.1.2 Basic theory of invasive weed optimization algorithm

Invasive weed optimization (IWO) algorithm is a meta-heuristic bio-inspired

optimization algorithm that was developed by Mehrabian and Lucas in 2006. IWO algorithm is

exhaustive search engine that demonstrated its capabilities in exploring complex and multi-local

search spaces. Moreover, it manifested its superiority over some of the best-performing

optimization algorithms. IWO algorithm is based on simulating the invasive behaviour of weed

in colonizing and finding the most suitable place for growth and reproduction. Weeds are robust

and undesirable plants that grow spontaneously and they can have a harmful effect on both farms

and gardens. The computational procedures of the invasive weed optimization algorithm are

discussed in the following lines [42, 43].

The first stage is to create an initial population of weeds that are spread in the i-

dimensional search space. The fitness of each weed within the population is then computed

based on a predefined objective function. The production of seeds associated with each weed is

calculated based on a linear function, where the number of seeds varies between the minimum

and maximum number of seeds. Each weed in the population produces seeds based on its own

comparative fitness value, maximum and minimum fitness values within the population, and the

27

maximum and minimum number of seeds. The reproduction of seeds is shown in Equation (18)

where the higher the fitness of the weed, the more seeds it produces

Seedi =
fi − fmin

fmax−fmin

 × (smax − smin) + smin (18)

Where;

 Seedi represents number of seeds associated with the i − th weed. fi represents the current

fitness of the weed. fmax, and fmin represent the maximum and minimum fitness of the current

population, respectively. smax, and smin denote the maximum and minimum number of seeds,

respectively.

The following stage is the spatial dispersion, where the seeds are randomly scattered in

the search space based on a normal distribution of a mean equal to zero and an adaptive varying

standard deviation. This step ensures that the seeds are accumulated around the weed plant,

which leads to a local search around each parent weed. The standard deviation of the seed

dispersion is reduced from an initial predetermined maximum value to an initial predetermined

smaller value based on a non-linear function as shown in Equation (19). The probability of

finding a seed far from the weed plant is high at the beginning of the optimization process and it

decreases within a predefined number of iterations.

σi = σmin + (
itermax−iter

itermax−itermin
)
p

× (σmax − σmin) (19)

Where;

σi indicates the standard deviation of the current iteration. σmax, and σmin indicate the initial and

final standard deviation of the optimization process, respectively. itermax represents the

28

maximum number of iterations. p represents non-linear modulation index, and usually, it is a

number between two and three.

Finally, competitive exclusion is performed because the number of weeds and seeds

reaches the maximum population size due to the fast reproduction (exponential increase in the

number of plants). The parent weeds alongside with the seeds are ranked based on the fitness

value in order to eliminate the solutions with the least fitness values to keep the number of the

weed plants and seeds within the maximum allowable population size. The seeds and their parent

weeds with higher fitness survive, and become reproductive. The process continues until the

convergence criteria are met (reaching the maximum number of iterations).

6.1.3 Hybrid ENN-IWO for noise detection and recognition

The proposed method utilizes invasive weed optimization algorithm to train the Elman

neural network. This is expected to enhance the search mechanism of the Elman neural network,

which leads to improve its recognition capacity of the noise type in the bridge defects images.

The IWO is utilized to optimize the ENN for two main reasons which are: inferior accuracy and

convergence of the gradient descent algorithm, and manual tuning of the parameters of Elman

neural network. The training process based on the gradient descent usually gets trapped in a local

minima or premature convergence and sometimes causes over-fitting problems especially in the

case of presence of multilayer neural network. The multi-layer neural network is normally

associated with large search space, multi-local minima points, non-differential function and

complex multi-dimensional curve. Moreover, in some cases, the global minimum is hidden

29

between the local minima. Thus, the gradient descent algorithm can end up oscillating between

the local minima.

 The second reason is the existence of wide range of parameters, which substantially

affect the performance of the neural network. These parameters are sensitive to the initial values,

whereas their initial setting is always variable from one case to the other. For instance, there is

no exact method to define the number of hidden neurons, whereas most of the equations present

in the literature are case dependent and cannot be generalized. As such, if the number of hidden

neurons is less than the optimum number, then the accuracy will be so much affected. However,

if the number of hidden neurons is more than optimum number, this will consume so much

training time. Thus, the blindness in the determination of such parameters can result in the

network to be trapped in an inferior solution and subsequently a long computational time of the

training process and slow convergence. Thus, a self-adaptive model is designed in order to

automatically and dynamically tune the input parameters based on the available dataset of bridge

defects images.

In the present study, eight types of transfer functions are investigated. The hyperbolic

tangent sigmoid transfer function, log-sigmoid transfer function, Elliot symmetric sigmoid

transfer function and linear transfer function are shown in Equations (20), (21), (22) and (23),

respectively. Positive linear transfer function, triangular basis transfer function, radial basis

transfer function and normalized radial basis transfer function are depicted in Equations (24),

(25), (26) and (27), respectively.

f(x) =
2

(1 + е−2x)
 − 1 (20)

30

f(x) =
1

(1 + е−x)
 (21)

f(x) =
x

1 + |x|
 (22)

f(x) = x (23)

f(x) = {
 x, if x ≥ 0

0 , if x < 0
 (24)

f(x) = {
 1 − |x|, if − 1 ≤ x ≤ 1

0 , otherwise
 (25)

f(x) = е−x2
 (26)

f(x) =
е−x2

∑ е−x2
 E

x=1

 (27)

Where;

x represents the input of the transfer function. f(x) represents the output of the transfer function.

E indicates the size of the entries of the transfer function.

Optimality theory is mainly based on the fixed-length assumption, whereas most of the

optimization algorithms utilize a fixed-length vector of decision variables to represent a solution.

However, some few cases present in the literature for the variable-length optimization problems,

whereas the number of decision variables changes over the number of iterations (training

epochs). The variable-length optimization problems are more complex and require more

computational effort when compared to the fixed-length optimization problems [44]. In the

variable-length optimization problems, there is no clear definition for the gradient vector for the

variable-length problem. Thus, the gradient-based methods are inefficient in dealing with such

31

problems. Some ways to deal with such problems is to assume a fixed length for the decision

variables and to tune iteratively the decision variable that causes variability in length. However,

this method leads to suboptimal solutions. Moreover, it is impractical and inefficient method if

the ranges of the decision variables are very wide. Therefore, the better approach is to design a

model whose vector of solutions vary in length within the training epochs.

The development made in the use of Invasive weed optimization as a training mechanism

includes optimization of both architecture and parameters of the Elman neural network. This

encompasses selection of most suitable transfer functions between the network layers, number of

hidden layers and hidden neurons, number of context layers and context neurons, and values of

weights and bias terms. As a result of the structure and parameter learning of the proposed

training paradigm, a variable-length optimization model is designed, whereas its length varies

iteratively as per the number of hidden layers, hidden neurons, context layers and context

neurons. As such an estimator is designed to handle the dynamism of the configuration of the

ENN and to gives the user the flexibility to design a multi-hidden layer and a multi-context layer

neural network based on the input dataset of bridge defects images. This is done by computing

the number of weights and bias terms in each training epoch. The estimator can be

mathematically defined using Equation (28).

Num = ((I + 1) × N) + ((N × C × P + ((N + 1) × N × (P − 1)) + ((N + 1) × O) (28)

Where;

Num represents the total number of weights and bias terms. I represents the number of

input neurons. N indicates the number of hidden neurons. C represents the number of neurons in

the context layer. P represents number of hidden and context layers. O depicts the number of

32

output neurons. For simplification purposes, the number of context layers is assumed to be equal

to the number of hidden layers

Elman neural network is trained using a single objective function which minimizes the

misclassification error of the noise type of the bridge defects images. Therefore, the developed

optimization model establishes a dynamically changing optimum configuration and

characteristics of Elman neural network triggered by the number of images and their statistical

features. The misclassification error is selected as an objective function because it is a well-

known good performing performance indicator, unitless. Moreover, it is usually more practical to

deal with cost functions. The mathematical formulation of the misclassification error can be

defined as follows.

MC_ER =
WC_IM

T_IM
 (29)

Where;

 MC_ER represents the misclassification error. WC_IM is the number of wrongly classified

images. T_IM stands for the total number of images.

6.2 Restoration of Bridge Defects Images

The proposed method utilizes moth-flame optimization algorithm to design a filtering

protocol, which encompasses designing a hybrid smoothing filter for each noise type that

degrades bridge defects images. This enables to determine the optimum structure and parameter

restoration method for each noise type. Moth-flame optimization (MFO) algorithm is newly-

developed bio-inspired meta-heuristic algorithm that proved its superior capacity in solving

complex optimization problems. Yildiz and Yildiz [45] utilized MFO algorithm to maximize the

profit rate of multi-tool milling operations considering unit production time and unit production

33

cost and subject to a set of difficult constraints. The developed method outperformed some other

meta-heuristics such as genetic algorithm, ant colony algorithm, hybrid immune algorithm,

cuckoo search algorithm and hybrid particle swarm immune algorithm based on the

maximization of profit rate. Yildiz et al. [46] conducted a comparative study to investigate the

application of ten newly-developed meta-heuristic algorithms to solve the design of six

mechanical engineering optimization problems. They highlighted that the MFO algorithm is an

efficient and robust algorithm in solving complex mechanical design optimization problems.

 MFO algorithm was developed by Seyedali Mirjalili in 2015, whereas it is based on the

simulation of navigation mechanism of moths in nature, which is called “transverse orientation”

[47]. In the moth-flame optimization algorithm, the moths are the candidate solutions. In this

mechanism, moths fly in the night by maintaining a fixed angle with their alignment to the moon,

which is deemed as a very efficient method for travelling long distances in a straight line. The

moths are the search agents that fly in 1-D, 2-D, 3-D or hyper dimension search space while the

flames are the best positions attained so far, i.e., flames are the flags or pins dropped by moths

while exploring the search space. As such, the moth searches around the flag or flame, and

updates it if it finds a better solution. Simultaneously, the flames are updated according to the

fitness values of the fittest moths. The positions of the moths in the search space are the

optimization problem’s parameters.

The computational procedures of the MFO algorithm are discussed in the following lines

[46-48]. MFO algorithm is a population-based meta-heuristic algorithm. Thus, a set of moths can

be defined as follows.

34

M =

[

m1,1 m1,2 m1,3 … . m1,d

m2,1 m2,2 m2,3 … . m2,d

m3,1 m3,2 m3,3 … . m3,d

… . … . … . … . … .
mn,1 mn,2 mn,3 mn,4 mn,d]

 (30)

Such that;

M(i, j) = (ub(i) − lb(i)) × rand() + lb(i) (31)

Where;

M is the position matrix of moths. n represents number of moths. d represents the number of

design variables or the dimensions of the optimization problem. M(i, j) is the value of the i − th

row and j − th column of the matrix. ub(i) and lb(i) represent the upper and lower bounds of the

i − th moth, respectively. rand() is a random number generated from a uniform distribution

within the interval [0,1].

The performance of each moth is evaluated using a pre-defined objective function. Then,

a fitness matrix is constructed to store the fitness function values of the moths. The mathematical

formulation of the fitness matrix of moths can be expressed as follows.

OM =

[

OM1

OM2

OM3

… .
OMn]

=

[

f(m1,1 m1,2 m1,3 … . m1,d)

f(m2,1 m2,2 m2,3 … . m2,d)

f(m3,1 m3,2 m3,3 … . m3,d)
… . … . … . … . … .

f(mn,1 mn,2 mn,3 mn,4 mn,d)]

 (32)

Where;

OM indicates the fitness matrix of moths. f(∗) is the fitness function.

As mentioned before, flames are another important aspect in the moth-flame optimization

algorithm. The set of flames can be expressed using Equation (33). The fitness matrix of flames

can be defined using Equation (34).

35

F =

[

f1,1 f1,2 f1,3 … . f1,d

f2,1 f2,2 f2,3 … . f2,d

f3,1 f3,2 f3,3 … . m3,d

… . … . … . … . … .
fn,1 fn,2 fn,3 fn,4 fn,d]

 (33)

OF =

[

OF1

OF2

OF3

… .
OFn]

 (34)

Where;

F represents the position matrix of flames. f(i, j) indicates the j − th variable of the i − th flame.

OFn is the fitness function value of the n − th flame. n represents number of flames.

For the purpose of modelling the transverse orientation mechanism of moths, the MFO

algorithm utilizes the logarithmic spiral as the main paradigm to update the positions of the

moths with respect to the flames. The updated mechanism of moths’ positions can be defined as

follows.

 Mi = S(Mi, Fj) = Di × ebt × cos(2πt) + Fj (35)

Such that;

Di = |Mi − Fj| (36)

Where;

S is the logarithmic spiral function. Mi and Fj represent the i − th moth and j − th flame. Di

represents the distance of the i − th moth to j − th flame. b is a constant that defines the

logarithmic spiral motion. T is a random number within the interval [-1, 1]. It is worth

mentioning that the spiral movement is a fundamental component in the MFO algorithm because

it depicts how the moths update their positions around flames. The logarithmic spiral function

enables the moth to fly around the flame and not necessarily in the search space between the

36

moths. This mechanism facilitates both exploration and exploitation of the search space, which is

deemed as an advantage over other meta-heuristic optimization algorithms.

In order to further improve the exploitation mechanism of the MFO algorithm, t is

assumed to be a random number in the range [r, 1] such that r is a convergence constant

decreasing from -1 to -2 over the course of iterations. In addition to that, each moth is obliged to

update its position using only one of the flames as per Equation (37) to increase the probability

of converging to a global solution and to avoid being trapped in a local minimum. In the MFO

algorithm, the exploration of the search space is guaranteed since moths update their positions

around the best solutions obtained so far in the hyper sphere during the optimization process. To

enable more exploitation of the best promising solutions, an adaptive mechanism is employed to

decrease the number of flames within each iteration number. The updated mechanism can be

expressed as follows.

NFL = round ((N − it) ×
N − 1

T
) (37)

Where;

N_FL represents the number of flames. it indicates the current iteration number. N and T stand

for the maximum number of flames and maximum number of iterations, respectively.

Within each iteration, the positions and fitness values of moths and flames are updated as

per Equations form (30) to (36) such that the moths update their positions in the hyper sphere

around the best solution obtained so far. The sequence of flames is adapted with respect the best

solutions obtained so far in each iteration, and then the positions of the moths are updated as per

the updated flames. The proposed restoration model utilizes peak signal to noise ratio as an

objective function to search for the optimum configuration and parameters of the hybrid

smoothing filter for each noise type. Peak signal to noise ratio measures the quality of the image

37

as per the maximum possible signal (image) power to the noise power that affects the

representation of the image, whereas higher PSNR indicates better quality of the image. Peak

signal to noise ratio can be defined using Equation (38).

PSNR = Max(10 × log10(
R2

1
m × n

∑ ∑ [A(i, j) − A^(i, j)]2n
j=1

m
i=1

) (38)

Where;

R represents the maximum grey level intensity in the original image. A(i, j) and A^(i, j)

represent the original image and restored image, respectively. m and n are the dimensions of the

image.

The quantitative performances of the restoration methods are compared as per mean-

squared error, normalized absolute error and image enhancement factor in addition to the peak

signal to noise ratio. Mean-squared error measures the average deviation between the original

image and the de-noised image. Normalized absolute error measures the error prediction

accuracy of the filtered image. Lower values of MSE and NAE indicate that there is small

deviation between the original image and the de-noised image, and consequently significant

noise reduction is experienced. Image enhancement factor is a measure of the quality of the

enhanced signal, and it is equal to the ratio of the sum of squared error before filtering to the sum

of squared error after filtering. Hence, higher values of IEF indicates higher noise reduction and

greater enhancement in the quality of the image as well as higher preservation of the edges.

Mean-squared error, normalized absolute error and image enhancement factor can be expressed

as follows [49, 50].

38

MSE =
1

m × n
∑∑[(A(i, j) − A^(i, j)]2

n

j=1

m

i=1

 (39)

NAE =
∑ ∑ [|A(i, j) − A^(i, j)|]

n

j=1
m
i=1

∑ ∑ A(i, j)
n

j=1
m
i=1

 (40)

IEF =
∑ ∑ [(N(i, j) − A(i, j)]2

n

j=1
m
i=1

∑ ∑ [(A^(i, j) − A(i, j)]2
n

j=1
m
i=1

 (41)

Where;

N(i, j) indicates the noisy image. N(i, j) represents the corrupted image with noise.

7. CONVENTIONAL MACHINE LEARNING METHODS

This section provides an overview of some of the existing machine learning methods

reported in the literature that are used to validate the proposed method. Due to the paper size

limitations, K-nearest neighbors and random forest are discussed in detail in the following

sections. Discriminant analysis is a multivariate statistical method for the discrimination of a set

of data points to a finite number of classes. More details about the discriminant analysis method

can be found in Rathi and Palani [51], and Subasi and Gursoy [52]. Support vector machines is a

supervised learning method that can be utilized in either classification or regression applications

based on defining the optimum hyperplane by maximizing the margin between positive and

negative classes. More information about the support vector machines can be adopted from Feng

et al. [53], and Chen et al. [54].

39

7.1 K-Nearest Neighbors

K-Nearest Neighbors algorithm is a popular classification method in many applications

because of its speed and relatively high convergence. It is based on the idea that similar feature

vectors are located in close vicinity, whereas the classification of an input feature vector X is

accomplished by identifying the K closest training vectors based on a suitable dimension metric.

Usually, Euclidean distance is utilized as the dimension metric to measure the proximity of the

feature vector the K nearest neighbors (instances). The feature vector X is then assigned to the

class to which the majority of the K nearest neighbors belong. The Euclidean distance of a

feature vector in the N-dimensional search space can be formulated as follows [55, 56].

ED = √∑(X1i − X2i)2

N

i=1

 (42)

Where;

ED is the Euclidean distance. Thus, if K=1, the feature vector is mapped to the class C based on

the 1-nearest neighbor to the feature vector. if K=5 classifying is performed as per the most

common class among the K-neareset neighbors. For instance, if four nearest labels are mapped to

class label C1 while one nearest neighbor is mapped to class label C2. Hence, the feature vector

is mapped to class label C1.

7.2 Random Forest

Random Forest is a tree-based ensemble method proposed by Breiman [57] to overcome

the shortcomings of the decision tree method. Random Forest includes large number of decision

tree learners, which grow at the same time to reduce the bias and randomness of the

40

classification process. Since the random forest is an ensemble classification method, it involves

the employment of bootstrap aggregating (bagging) to enhance the prediction accuracy of the

classifier. Moreover, it boosts the performance of various decision trees through voting scheme.

Each decision tree provides different results. Hence, the results of the classification are

aggregated through majority of voting, i.e., the feature vector is assigned to the class which

obtained the highest voting score. Thus, for training a dataset of N instances, N bootstrapped

samples are extracted from the original dataset (randomly sampled with replacement). Then, a

decision tree is developed based on the randomly selected dataset, whereas each decision tree is

constructed using different N bootstrap samples obtained from the original dataset. The

bootstrapping improves the robustness of the classifier because some feature vectors may exist

more than once in the classification process or some feature vectors may not be trained at all.

Hence, the random forest becomes less sensitive to the variations in the input dataset.

The subset that is not considered as a result of the bootstrap resampling is called “out of

bag” (nearly one-third of the observations). This subset can be used to compute the error of the

classifier, which eliminates the need for adding extra feature vectors. Random forest involves

random feature selection, whereas in each split node of the decision tree, m random predictors

(features or input variables) are selected from the M possible predictors. Random feature

selection is introduced to minimize the correlation between the decision trees and to improve the

prediction accuracy of each decision tree, which consequently enhances the prediction accuracy

of the whole forest. The most common method is to select the split among the m possible

predictors is called the Gini index. The Gini index is computed at each point of potential split of

the predictors, whereas it can be defined as available selection measure which measures the

impurity of a certain variable with respect to the output.

41

 The decision tree splitting criterion is based on selecting the predictor which yields low

Gini index. Impurity is a measure for how well the variable splits the data, whereas the lower the

impurity, the better splitting of the data is. Gini index measures the probability that an instance is

incorrectly classified if it were randomly classified as per the distribution of the labels within the

node. For binary splitting, Gini index at a certain node can be defined using Equation (43). The

bootstrap resampling and random feature selection are repeated for creating D decision trees until

forming a forest of random decision trees [58, 59].

GInn = 1 − ∑[Pi
2]

2

i=1

 (43)

Where;

GInn represents the Gini index at a certain node nn. Pi represents the relative proportion of

instances belonging to the i-th category.

8. META-HEURISTIC OPTIMIZATION ALGORITHMS

Many bio-inspired meta-heuristic optimization algorithms have been developed recently to

solve exhaustive optimization problems. The proposed method incorporates moth-flame

optimization algorithm to design the self-adaptive hybrid restoration method. This method is

compared against a set of meta-heuristics which include: genetic algorithm, particle swarm

optimization algorithm, invasive weed optimization algorithm, differential evolution algorithm,

modified differential evolution algorithm, grasshopper optimization algorithm and grey wolf

optimization algorithm. It is Worthing mentioning that recently some models utilized a

hybridization of meta-heuristics to enhance the performance of the proposed method by

enhancing the search paradigm as found in Demirci and Yildiz [60] in addition to Yildiz et al.

42

[61]. Differential evolution algorithm is going to be discussed in-detail while the basic concepts

of other meta-heuristics in addition to the needed references are provided in the following lines.

Genetic algorithm (GA) is one of the most popular evolutionary algorithms, which was

developed by John Holland in 1975. Genetic algorithm is based on two main processes. The first

process is the selection of individuals for the production of the next generation. The second

process is the manipulation of the selected individual to form the next generation by crossover

and mutation. The selection paradigm identifies which chromosomes are chosen for reproduction

and how many off springs are produced. The better individual has a higher chance of being a

parent [62, 63].

Particle swarm optimization (PSO) algorithm is a population-based heuristic search

algorithm that was originally developed by Eberhart and Kennedy in 1995 [64]. PSO algorithm

belongs to the family of “swarm intelligence” algorithms in solving optimization problems, and

it is inspired by the social behavior of birds flocking to the desired place in a multi-dimensional

space. PSO algorithm is initiated by creating a population called “swarm” which is composed of

individuals called “particles”, whereas each particle adjusts its own flying based on its own

flying experience and its companions’ experience. Each particle represents a candidate solution

in a multi-dimensional search space such that the status of the particle is characterized by its

position and velocity and they are updated within each iteration [64-66].

Grasshopper optimization algorithm (GOA) is a newly-developed bio-inspired algorithm

that was introduced by Saremi et al. in 2017 [67]. This algorithm is inspired by the swarming

behaviour of grasshoppers in nature. The main aspects of the GOA are foraging, target pursuing

and team behavior in both nymph and adulthood phases. In the larval phase, the grasshopper

swarm exhibit short-length jumps associated with slow movement. On the other hand,

43

grasshopper swarm exhibit long-range and swift movements to obtain food sources from farming

areas in the adulthood phase. The search process of the GOA is divided into two paradigms,

namely exploration and exploitation, whereas the search agents are encouraged to move abruptly

in the exploration phase while they tend to move locally in the exploitation phase. These two

processes are simulated by the swarming behavior of grasshopper [68, 69]. More information

about the grasshopper optimization algorithm can be adopted from Saremi et al. [67] and Zhang

et al. [70].

Grey wolf optimization (GWO) algorithm is a recently-developed nature-inspired algorithm

that was proposed by Mirjalili et al. in 2014 [71]. This algorithm is based on simulation of the

behavior of a pack of grey wolves, which follow distinct steps while hunting in nature. Each

pack hierarchy consists of four levels of grey wolves which are: alpha, beta, delta and omega.

Alpha wolves are the leaders the pack and the ones responsible for making decisions. The next

level in the hierarchy is the beta grey wolves, whereas they act as the subordinates of the alpha

grey wolves and they support them in the decision-making process. Delta grey wolves follow the

dictated orders of both alpha and beta grey wolves but they dominate the omega grey wolves.

Delta grey wolves can be scouts, hunters, elders, sentinels or caretakers. Omega grey wolves are

the least prioritized wolves in the hierarchy, whereas they have to submit to all other dominant

wolves. They play the role of scapegoat and they are the last ones allowed to eat. In grey wolf

optimization algorithm, a specific number of grey wolves explore the multi-dimensional search

space to hunt a prey. The movement of grey wolves is influenced by search for prey, encircling

prey, hunting and attacking prey operators. More information about the GWO algorithm can be

found in [71, 72].

44

Differential evolution (DE) algorithm is an optimization algorithm that was introduced by

Storn and Price in 1997 to search for the global solution of non-linear problems with non-

differentiable objective functions [73]. The framework of the differential evolution algorithm is

similar to the genetic algorithm. However, the classical mutation and crossover in the genetic

algorithm are substituted by alternative mutation and crossover operators. Differential evolution

algorithm is divided into five main stages which are: initialization, mutation, crossover,

selection, and convergence criteria. Differential evolution algorithm starts by generating a

population of D-dimensional parameter vectors (candidate solutions) of size NP. The

computational steps of the DE algorithm are as follows [73-75]. The generation of individuals

can be obtained using the following Equation

Xi,G = LB + rand[0, 1] × (UB − LB) (44)

Where;

i denotes the population. G denotes the generation to which the population belongs to. LB, and

UB represent two vectors of upper and lower bound for any decision variable, respectively.

rand[0, 1] represent a uniformly distributed random number between 0 and 1.

The next step is the mutation, whereas the mutation vector is defined based on the

combination of three randomly selected vectors. A vector in the current population is selected to

be the target vector (parent). For each target vector (Xi,G) in the population, a mutant vector is

created using the following Equation.

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G) r1 ≠ r2 ≠ r3 (45)

Where;

45

r1, r2, and r3 represent three random and different indices between 1 and NP. The three random

chosen vectors have to be different than the target vector. Vi,G+1 is the newly created mutant

vector. F represents a mutation scale factor that control the amplification of differential variation

between Xr2,G, and Xr3,G. Mutation scale factor is a real number between [0, 1].

Crossover is performed to diversify the current population by exchanging components of

the target vector and the mutant vector. The trial vector (offspring) can be obtained using

Equation (46). If the crossover rate is smaller than the random number, Vj,i,G+1 in the mutant

vector is copied to the trial vector. Otherwise, Xj,i,G in the target vector is copied to the trial

vector.

Uj,i,G+1 = {
Vj,i,G+1 if CR ≥ randj

Xj,i,G, if CR < randj
 (46)

Where;

CR represents crossover probability. Uj,i,G+1 represents trial vector. j represents index element for

any vector. randj denotes uniform random number between [0,1].

In the selection stage, the trial vector is compared with the target vector to determine if

trial vector should be a member of the next generation G + 1 as shown in Equation (47). Assume

the objective function to be minimized. The vector with lower objective function survives to the

next generation. If the trial vector yields a lower objective function than the target vector, then

the trial vector replaces the target vector in the next generation.

Xi,G+1 = {
Ui,G+1 if f(Ui,G+1) ≤ f(Xi,G)

Xi,G, if(Ui,G+1) > f(Xi,G)
 (47)

46

Mutation, crossover, and selection are repeated in each generation until stopping criterion is

satisfied, i.e., reaching maximum number of generations. In the modified differential evolution

(MDE) algorithm, the Gaussian distribution is used to model the mutation scale factor because it

offers a good balance between the exploration and exploitation of the search space.

9. MODEL IMPLEMENTATION

The images utilized to train and test the proposed method are captured from three bridge

decks in Montreal and Laval, Canada using Sony DSC-H300 digital camera of 20.1 megapixel

resolution. All the computations of the machine learning and optimization algorithms took place

on a laptop with an Intel Core i7 CPU, 2.2 GHz and 16 GB of memory. Sample of the free-noise

bridge defects images is shown in Figures 3 and 4. Sample of the degraded bridge defects images

with different types of noises is depicted in Figures 5 and 6. Figures 5 and 6 contain images

corrupted with Gaussian noise, speckle noise, salt and pepper noise, combination of Gaussian

and speckle noises, combination of Gaussian and salt and pepper noises and combination of

speckle and salt and pepper. As shown in Figure 4, the combination of noises amplifies the

degradation in the qualities of the bridge defects images, which requires a higher capacity

restoration method.

INSERT FIGURE 3

INSERT FIGURE 4

INSERT FIGURE 5

INSERT FIGURE 6

Three modules are developed for the noise detection and recognition in bridge defects

images. Since the performance of the Elman neural network is substantially governed by number

47

of hidden and context layers, number of hidden and context neurons, type of transfer functions

and weights and bias terms, the present study relies on the IWO algorithm to establish a proper

setting for the tuning of the architecture of the Elman neural network and its parameters. One

hundred sixty real-world images are used for training the noise detection module while the

remaining forty are used for its testing in the split validation. The output of this module is

whether the bridge defect image is noise free or corrupted with noise. The maximum numbers of

hidden layers, hidden neurons, context layers and context neurons are equal to 5. Thus, the

maximum length of the optimization problem is 304, which is considered as a large search space

that substantiates the employment of exhaustive training mechanism. The parameters of the IWO

algorithm are presented in Table 1. The number of iterations and the initial population size are

assumed 200 and 100, respectively. The maximum and minimum numbers of seeds are 5 and 0,

respectively. The initial and final standard deviations are assumed 0.5 and 0.001, respectively.

INSERT TABLE 1

The convergence of the ENN-IWO model for noise detection is shown in Figure 7. The least

misclassification error achieved by ENN-IWO model equals to zero. Moreover, the optimization

model stabilizes at iteration 96 which illustrates the superior search capability of the IWO

algorithm. The optimum numbers of hidden and context layers are four while the optimum

numbers of hidden and context neurons are five. The optimum transfer function is the hyperbolic

tangent sigmoid function. The optimum transfer function is the hyperbolic tangent sigmoid

function. The confusion matrix is the first step for the performance comparison. For example, the

number of false positive instances in the ENN-IWO model is two. The confusion matrix enables

the computation of true positive, false positive, true negative and false negative instances, which

provides the platform for the calculation of the performance metrics.

48

INSERT FIGURE 7

 The performances of the six machine learning models as per split validation and 10-fold

cross validation are shown in Tables 2 and 3, respectively. As shown in Tables 2 and 3, the

proposed noise detection model achieved the achieved the highest classification accuracies as per

split validation and 10-fold cross validation. Support vector machines attained the second best

performance. On the other hand, discriminant analysis and artificial neural network achieved the

least performance. For instance, as per the cross-validation model, the proposed noise detection

model is capable of attaining accuracy, sensitivity, specificity, precision, F-measure and Kappa

coefficient of 98.72%, 99.65%, 98.52%, 93.12%, 96.39% and 0.956, respectively. Nevertheless,

accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of ANN model are

equal to 90.73%, 64.77%, 97.06%, 86.38%, 74.18% and 0.687, respectively.

INSERT TABLE 2

INSERT TABLE 3

For the separate noise recognition module, the output of this model is if the image contains

speckle, Gaussian, salt and pepper or doesn’t contain noise. The neural network is composed of

four output neurons for the four previous states, whereas the output is expressed in the form of a

binary vector. One hundred images are used for training the separate noise recognition module

while the thirty five images are used for its testing in the split validation. The decision variables

of the proposed ENN-IWO model are as follows: maximum numbers of hidden and context

layers are 10 while the maximum numbers of hidden and context neurons are 10. Thus,

maximum length of the optimization problem is 2137. The number of iterations is assumed 250

while the initial population size is assumed 150. The maximum and minimum numbers of seeds

are 5 and 0, respectively. The initial and final standard deviations are assumed 0.5 and 0.001,

49

respectively. The convergence of the ENN-IWO model for separate noise recognition is depicted

in Figure 8. The least misclassification error achieved by ENN-IWO model is equal to 0.05. In

addition to that, the proposed optimization model stabilizes 191, which exemplifies the higher

capacity of the proposed model to search for the optimum structure and parameters of the ENN.

INSERT FIGURE 8

The optimum structure of the ENN is one hidden layer, one context layer, seven hidden

neurons and seven context neurons. The optimum transfer function is the hyperbolic tangent

sigmoid function. The confusion matrix of the classification provided by ENN-IWO model is

shown in Table 4. The total numbers of true positive instances and true negative instances for all

the classes are 129 and 393, respectively. The performance comparisons for the five

classification models using the split and 10-fold cross validation are described in Tables 5 and 6,

respectively. As shown in Table 5 and 6, the proposed separate noise recognition model

outperformed other classification models for the six performances indicators in both split

validation and 10-fold cross validation. Random forest achieved the second best performance,

while discriminant analysis and artificial neural network attained the lowest values for the

performance indicators. In the cross validation model, the proposed ENN-IWO model attained

accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of 95.28%,

95.24%, 98.07%, 95.25%, 95.43% and 0.935, respectively. On the other hand, accuracy,

sensitivity, specificity, precision, F-measure and Kappa coefficient of discriminant analysis were

equal to 83.45%, 83.41%, 93.84%, 83.42%, 83.57% and 0.768, respectively.

INSERT TABLE 4

INSERT TABLE 5

INSERT TABLE 6

50

For the combined noise recognition module, the output layer is composed of seven neurons

represented in the form of the binary vector. The output of this model determines if the image is

noise free or if the image is corrupted with separate noise or corrupted with any of the different

combinations of the noises. One hundred sixty images are used for training the combined noise

recognition module while the forty images are used for testing purposes in the split validation.

The decision variables of the proposed ENN-IWO model are as follows: maximum numbers of

hidden and context layers are 10 while the maximum numbers of hidden and context neurons are

10. As such, the maximum length of the optimization model is 2170, which is deemed as an

exhaustive search space to explore. The parameters of the IWO algorithm in the current module

are the same as the ones in the separate noise recognition module.

The convergence of the ENN-IWO model for combined noise recognition is depicted in

Figure 9. As shown in Figure 9, the minimum misclassification error achieved by ENN-IWO

model is equal to 0.1625, whereas the model stabilizes at iteration 180. The optimum structure of

the ENN is one hidden layer, one context layer, ten hidden neurons and ten context neurons. The

optimum transfer function is the linear function. The confusion matrix of the classification

attained by ENN-IWO model is shown in Table 7. As shown in Table 7, the total numbers of true

positive instances and true negative instances for all the classes are 151 and 1035, respectively.

The comparison between the six classification models using split validation and cross validation

are described in Tables 8 and 9. As shown in Tables 8 and 9, it can be inferred that the proposed

ENN-IWO model outperformed other classifiers for the six performances indicators in both split

validation and 10-fold cross validation. For the 10-fold cross validation, the proposed ENN-IWO

model achieved accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of

84.26%, 84.22%, 97.21%, 84.45%, 84.46% and 0.811, respectively. On the other hand, accuracy,

51

sensitivity, specificity, precision, F-measure and Kappa coefficient of discriminant analysis are

equal to 75.27%, 81.33%, 95.05%, 75.25%, 78.32% and 0.702, respectively.

INSERT FIGURE 9

INSERT TABLE 7

INSERT TABLE 8

INSERT TABLE 9

Parametric and non-parametric tests were conducted to provide a thorough assessment of

the noise classification models by examining the significant difference in the accuracies among

the different classifiers, whereas the significance level (α) is set to be 0.05. The performed

statistical tests examine the null hypothesis (H0), which implies that there is no significant

difference between the classification results obtained from each pair of classifiers. On the other

contrary, the alternative hypothesis (H1) implies that there is a significant difference between the

classification results obtained from each pair of classifiers. If the P − value is less than the

significance level, then the null hypothesis is rejected in favor of the alternative hypothesis.

Nonetheless, if the P − value is more than the significance level, thus the null hypothesis is

accepted. The Student’s t-test, Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test,

binomial sign test, and Mood’s median test of the noise classification models are shown in

Tables 10 and 11. Results indicate that the P − values of the pairs (ENN-IWO, discriminant

analysis), (ENN-IWO, K-nearest neighbors), (ENN-IWO, random forest), (ENN-IWO, support

vector machines) and (ENN-IWO, artificial neural network) for all the tests are less than 0.05,

which implies that there are statistically significant differences between the performance of the

proposed noise classification model, and other classification models.

INSERT TABLE 10

52

INSERT TABLE 11

Friedman test and Friedman's aligned ranks test were employed to investigate whether

there are statistical differences among the set of noise detection and recognition models. The

average rankings of the noise classification model obtained from the Friedman and Friedman's

aligned ranks tests are presented in Table 12. It is worth mentioning that a smaller average

ranking value implies a better noise classification model. As shown in Table 12, ENN-IWO

achieved the best ranking followed by support vector machines based on the two tests.

Discriminant analysis and artificial neural network achieved the lowest rankings based on

Friedman test and Friedman's aligned ranks test, respectively. The P − value of the Friedman

test and P − value of the Friedman's aligned ranks test are equal to zero, which indicates that

there are statistical significant differences among the noise classification models. As such,

Nemenyi, Holms and Finner post hoc statistical tests are utilized to investigate if the ENN-IWO

model is significantly better than the remaining noise classification models. The P − values of

the ENN-IWO model based on Nemenyi, Holms and Finner tests are shown in Table 13. As can

be seen, the P − values of the pairs (ENN-IWO, discriminant analysis), (ENN-IWO, K-nearest

neighbors), (ENN-IWO, random forest), (ENN-IWO, support vector machines) and (ENN-IWO,

artificial neural network) for all the post hoc tests are less than 0.05. It is worth mentioning that

the developed noise classification is the only model which provided statistical significant better

performance against the reminder of noise classification models with respect to all tests. This

indicates the ENN-IWO model is a statistically better noise classification model than other

models.

INSERT TABLE 12

INSERT TABLE 13

53

The different classification models for noise detection and recognition were compared

with respect to the average running time for both training and testing. Average run time

represents the average run time per fold. The results of the comparisons are presented in Tables

14, 15 and 16. For instance, in the training process of noise detection module, discriminant

analysis had the shortest computational time of 3.36 seconds while the proposed model had the

longest computational time of 1203.56 seconds. It can be inferred that the proposed ENN-IWO

model requires more computational time to train the input dataset. However, almost most of the

execution time is spent in the learning process of the underlying pattern between inputs and

outputs. Moreover, the classification time is nearly the same for all detection and recognition

models. The long computational training time of the proposed model can be explained by the fact

that it has capacity to optimize all of the variables of the Elman neural network including both its

architecture and parameters. The structure and parameter learning is a very exhaustive search

process, which requires more processing time to explore the search space efficiently. It is also

worth mentioning that the classification time is a more useful performance metric than training

time in practical applications because the training process is only needed to be performed once

also, the usage of a higher-performing computer can decrease the computational time of the

training process. Although the discriminant analysis, K-nearest neighbors, random forest, support

vector machines are not time-exhaustive models. However, their classification accuracies are

low, which hinders their usage in noise detection and recognition. In view of above comparisons,

the proposed ENN-IWO model required nearly the same computational time for classification as

other models. Moreover, it achieved significant higher classification performance than other

models. As such, the proposed ENN-IWO model serves as a better alternative in the noise

detection and recognition of bridge defects images.

54

INSERT TABLE 14

INSERT TABLE 15

INSERT TABLE 16

The second model is the restoration of bridge defects images identified from the previous

stage. The output of this model is a filtering protocol, which incorporates the optimum design of

filters for each noise type. In order to provide a fair comparison between the different meta-

heuristic optimization algorithms, the population size and number of iterations are assumed 10

and 40, respectively. Different initializations of parameters were experimented for the different

meta-heuristics in order to search for their optimum values. Each meta-heuristic was run ten

times independently in order to avoid unstable solutions due to random initialization of

population. The proposed restoration model was compared with other models reported in the

literature based on the de-noising performance of ten different types of images to examine its

robustness in restoration of degraded images.

In the genetic algorithm, tournament selection is the parent selection strategy. Two-point

crossover is utilized, and the crossover rate is assumed 0.8. Mutation rate is assumed 0.1. For the

particle swarm optimization, the cognitive learning and social parameters are assumed two. The

inertia weight is assumed 0.5. The initial standard deviation and final standard deviation are

assumed 0.5 and 0.001, respectively. The maximum and minimum numbers of seeds are 5 and 0,

respectively. For the differential evolution algorithm, the crossover probability is assumed 0.2.

The mutation is assumed to follow a uniform distribution between 0.2 and 0.8. For the modified

differential evolution algorithm, the mutation is assumed to follow a normal distribution with a

mean and standard deviation equal to 0.5 and 0.2, respectively. For the grasshopper optimization

algorithm, the maximum and minimum values of deceleration of grasshoppers approaching the

55

food source and consuming it are assumed 1 and 0.00004, respectively. In the grey wolf

optimization algorithm, the trade-off parameter which controls the balance between exploration

and exploitation is assumed to be linearly decreasing from 2 to 0. The logarithmic spiral motion

constant is assumed 1 while the convergence constant is assumed to be decreasing from -1 to -2

in the moth-flame optimization algorithm.

A set of comparisons are conducted for the different possible combination of noises in

order to investigate the robustness of the proposed restoration model in filtering of degraded

images. For the Gaussian noise, the convergence curves of the different meta-heuristic-based

restoration models of “Image 1”. The optimization problem is a maximization problem of PSNR,

thus a negative sign to convert it to a minimization problem because it is often more easier to

deal with cost functions. As shown in Figure 10, the MFO algorithm outperformed other

optimization algorithms, whereas it achieved PSNR of 25.29. PSO algorithm provided the second

best performance with PSNR of value 25.28. A performance comparison between the different

restoration models of Gaussian noise is described in Table 17. Based on the MFO algorithm, the

optimum filter design is to apply Wiener filter of size 3×3. The proposed restoration model

achieved better de-noising results when compared to other optimization methods. For instance,

the MFO algorithm achieved PSNR, MSE, NAE and IEF of 25.29, 185.75, 0.074 and 5.16,

respectively. PSO algorithm attained PSNR, MSE, NAE and IEF equal to 25.28, 192.31, 0.076

and 3.34, respectively. Mode filter achieved the lowest de-noising results such that PSNR, MSE,

NAE and IEF equal to 16.73, 1381.15, 0.211 and 0.47, respectively. The restored images based

on the optimization-based models and conventional filtering models are shown in Figures 11, 12,

13, 14 and 15. By visually investigating the images, it is clear that the MFO algorithm provided

better restoration results when compared to other models.

56

INSERT FIGURE 10

INSERT TABLE 17

INSERT FIGURE 11

INSERT FIGURE 12

INSERT FIGURE 13

INSERT FIGURE 14

INSERT FIGURE 15

The convergence curves of the different meta-heuristic-based restoration models for salt

and pepper noise of “Image 2” are depicted in Figure 16. MFO algorithm achieved the highest

PSNR of 30.11 while MDE algorithm achieved the second highest PSNR of 30.07. The

performances of the different restoration models of Gaussian noise are shown in Table 18. The

optimum filter design is median filter of size 3×3 based on MFO algorithm, whereas it provided

PSNR, MSE, NAE and IEF of 30.11, 65.29, 0.038 and 14.24, respectively. The PSNR, MSE, NAE

and IEF of MDE algorithm are 30.07, 67.35, 0.039 and 13.61, respectively. Mode filter had the

lowest de-noising results such that PSNR, MSE, NAE and IEF equal to 13.74, 2748.22, 0.194 and

0.32, respectively. A clearer visual comparison is presented between the different restoration

models in Figures 17, 18, 19, 20 and 21. The output of the proposed restoration model provided

superior filtering results, which demonstrates its capabilities in removing the salt and pepper

noise.

INSERT FIGURE 16

INSERT TABLE 18

INSERT FIGURE 17

INSERT FIGURE 18

57

INSERT FIGURE 19

INSERT FIGURE 20

INSERT FIGURE 21

For the speckle noise, the convergence curves of the different meta-heuristic-based

restoration models of “Image 3” are illustrated in Figure 22. MFO algorithm achieved the highest

PSNR of 24.57 while MDE provided the second highest performance such that the PSNR is

24.47. A performance evaluation of the different restoration models of speckle noise are shown

in Table 19. It can be inferred that, the optimum filter design is Lee filter of size 3×3 based on

MFO algorithm, whereas it provided PSNR, MSE, NAE and IEF of 24.57, 228.9, 0.082 and 4.13,

respectively. MDE algorithm had PSNR, MSE, NAE and IEF equal to 24.49, 270.5, 0.088 and

4.05, respectively. Mode filter achieved the lowest de-noising results such that PSNR, MSE, NAE

and IEF equal to 15, 2055.63, 0.264 and 0.54, respectively. The restored images using

optimization-based models are shown in Figures 23, 24 and 25. The restored images using

conventional filtering models are shown in Figures 26 and 27. These images provide a visual

understanding of the quality of the performances of restoration models. It can be inferred that the

proposed restoration model provided the highest de-noising capabilities of speckle noise.

INSERT FIGURE 22

INSERT TABLE 19

INSERT FIGURE 23

INSERT FIGURE 24

INSERT FIGURE 25

INSERT FIGURE 26

INSERT FIGURE 27

58

The convergence curves of the different meta-heuristic-based restoration models for the

combination of Gaussian and speckle noises of “Image 4” are shown in Figure 28. As shown in

Figure 28, MFO algorithm achieved very promising results, whereas the PSNR is 25.14 while the

GWO algorithm achieved the second highest PSNR of 24.98. The optimum design of the

proposed restoration model is Wiener filter of size 3×3 followed by Lee filter of size 3×3. A

comparative analysis of the different restoration models is shown in Table 20. The proposed

model achieved the highest filtering performance, whereas PSNR, MSE, NAE and IEF are 25.14,

158.51, 0.084 and 7.87, respectively. GWO algorithm achieved the second best performance

such that PSNR, MSE, NAE and IEF are 24.98, 155.04, 0.086 and 6.82, respectively. Mode filter

achieved the lowest de-noising performance such that PSNR, MSE, NAE and IEF are 15.06, 2029,

0.343 and 0.68, respectively. The output of the optimization-based restoration models is depicted

in Figures 29, 30 and 31while the resorted images using the conventional restoration models are

shown in Figures 32 and 33. By investigating these images, it can be inferred that the proposed

restoration model achieved the best de-noising capabilities of the combination of Gaussian and

speckle noises.

INSERT FIGURE 28

INSERT TABLE 20

INSERT FIGURE 29

INSERT FIGURE 30

INSERT FIGURE 31

INSERT FIGURE 32

INSERT FIGURE 33

59

For the combination of Gaussian and salt and pepper noises, the convergence curves of

different meta-heuristic-based restoration models of “Image 5” are presented in Figure 34. As

shown in Figure 34, The MFO algorithm yielded the highest PSNR of 25.06 such that optimum

filter obtained by it is median filter of size 3×3. GOA yielded the second highest PSNR of 25.05,

whereas the optimum filter obtained by it is Frost filter of size 3×3. A comparison of the

performances of the different restoration models is shown in Table 21. As shown in Table 21, the

proposed model outperformed other models, where the PSNR, MSE, NAE and IEF achieved by

the proposed method are equal to 25.16, 180.19, 0.095 and 8.61, respectively. Frost filter of size

4×4 obtained the highest filtering performance among the conventional restoration models,

whereas the PSNR, MSE, NAE and IEF are 24.42, 226.85, 0.103 and 5.63, respectively. The

restoration outcome of the different optimization-based models is shown in Figures 35, 36 and

37 while the restoration outcome of the conventional models is presented in Figures 38 and 39.

As shown in these figures, the capacity of the restoration is significantly improved by applying

the proposed model. This highlights the capacity of the proposed restoration model in removing

noises from images corrupted by combination of Gaussian and salt and pepper noises.

INSERT FIGURE 34

INSERT TABLE 21

INSERT FIGURE 35

INSERT FIGURE 36

INSERT FIGURE 37

INSERT FIGURE 38

INSERT FIGURE 39

60

For the images corrupted with a combination of speckle and salt and pepper noises, the

convergence curves of the different meta-heuristic-based restoration models of “Image 6” are

presented in Figure 40. As shown in Figure 40, MFO algorithm achieved the highest PSNR

followed by MDE algorithm and then the DE algorithm. The values of PSNR obtained by the

MFO algorithm, MDE algorithm and DE algorithm are 22.98, 22.93 and 22.82, respectively. A

performance comparison of the different restoration models is presented in Table 22. The

proposed restoration demonstrated the highest filtering performance while mode filter achieved

the least performance among the restoration models. The PSNR, MSE, NAE and IEF of the MFO

algorithm are 22.98, 290.61, 0.091 and 5.91, respectively. Lee filter of size 4×4 yielded the

highest filtering performance among the conventional restoration models, whereas the PSNR,

MSE, NAE and IEF are 21.66, 360.59, 0.099 and 4.82, respectively. The restored images using

the optimization-based models are presented in Figures 41, 42 and 43. The restored images using

the conventional restoration models are shown in Figures 44 and 45. By visually investigating

the restored images, it is concluded that the proposed model provides an efficient alternative to

restore images corrupted with combination of speckle and salt and pepper noises.

INSERT FIGURE 40

INSERT TABLE 22

INSERT FIGURE 41

INSERT FIGURE 42

INSERT FIGURE 43

INSERT FIGURE 44

INSERT FIGURE 45

61

In view of the above comparisons with respect to the different types of noises, the

proposed restoration model provided a consistent superior filtering capability than other models,

which aids in overcoming the inconsistencies of other restoration models, such that some models

perform well in some types of de-noising problems. However, they fail to deal with other types

of de-noising problems. For example, DE algorithm provided efficient results when dealing with

salt and pepper noise. However, it didn’t perform well when dealing with the combination of

Gaussian and speckle noises. Moreover, median filter performed well when dealing with salt and

pepper noise. On the other hand, it failed to deal with speckle noise.

The overall performance of the different proposed restoration model is investigated

through comparison against other restoration models as shown in Table 23. These models are

evaluated as per the average of the peak signal to noise ratio (APSNR), average of mean-squared

error (AMSE), average of normalized absolute error, (ANAE) and average of image enhancement

factor (AIEF) for the ten images. The proposed restoration model achieved superior de-noising

results when compared to other optimization-based restoration models and conventional

restoration models. MDE achieved the second best performance followed by DE algorithm. On

the other hand, non-linear programming-based model attained the least restoration performance

among the optimization-based models. The APSNR, AMSE, ANAE and AIEF of the MFO

algorithm are 25.36, 176.32, 0.059 and 7.18, respectively. MDE algorithm attained APSNR,

AMSE, ANAE and AIEF of 25.23, 177.59, 0.059 and 6.9, respectively. For the DE algorithm, the

values of APSNR, AMSE, ANAE and AIEF are 24.94, 180.71, 0.06 and 6.82, respectively. The

APSNR, AMSE, ANAE and AIEF of the non-linear programming are 20.3, 415.34, 0.099 and

3.09, respectively. This highlights that the evolutionary algorithms provide better filtering

62

performance when compared to exact optimization models, which illustrates that exact

optimization algorithms fail to solve discrete and complex optimization problems.

INSERT TABLE 23

For the conventional restoration models, Wiener and lee filter are the best two performing

restoration models while mode filter achieved the least filtering performance. The APSNR,

AMSE, ANAE and AIEF of the Wiener filter are 22.73, 290.04, 0.093 and 4.26, respectively.

Mode filter achieved APSNR, AMSE, ANAE and AIEF of 14.14, 2701.5, 0.284 and 0.53,

respectively. This manifests that the proposed restoration model using MFO algorithm provided

holistic and consistent superior filtering capacity over the conventional restoration models.

The utmost objective of the proposed method is to develop a filtering protocol, which

incorporates the optimum filters to deal with each type of the different noises. Table 24 describes

the optimum filter(s) for each noise type(s). As shown in Table 24, conventional filters of size

3×3 are more efficient in removing separate noises than the combination of noises. Moreover, a

filter of size 3×3 provides better de-noising outcome than a filter of size 4×4. In addition to that,

it is worth mentioning that, the application of a set of filters in a certain sequence can improve

the restoration process when compared to single filters in the case of images corrupted with a

combination of noises. For example, the optimum hybrid filter in the case of images corrupted by

a combination of Gaussian and speckle noises is to apply Wiener filter of size 3×3 followed by

Lee filter of size 3×3. Moreover, the optimum hybrid filter in the case of images corrupted with a

combination of speckle and salt and pepper noises is to apply Lee filter of size 3×3 followed by

Wiener filter of size 3×3. This also demonstrates that the application of two filters in two

different sequences yields different restoration results.

INSERT TABLE 24

63

Parametric and non-parametric tests were performed to evaluate the statistical significant

differences in the filtering capacities of the different meta-heuristic-based restoration models at a

significance level of 0.05. The Student’s t-test, Wilcoxn test, Mann-Whitney-U test, Kruskal–

Wallis test, binomial sign test, and Mood’s median test of the meta-heuristics-based restoration

models are shown in Table 25 and 26. As can be seen, P − values of the pairs (MFO, DE),

(MFO, MDE), (MFO, PSO), (MFO, IWO), (MFO, GOA), (MFO, GWO) and (MFO, GA) are

less than 0.05 for all the previously-mentioned statistical tests. This evinces that there are

significant differences in the filtering capacities of the proposed restoration model with respect to

other meta-heuristic-based restoration models.

INSERT TABLE 25

INSERT TABLE 26

Table 27 displays the average rankings of the different meta-heuristic-based restoration

models using Friedman test and Friedman's aligned ranks test, respectively. Moth-flame

optimization algorithm yielded the best ranking followed by modified differential evolution

algorithm while grasshopper optimization algorithm achieved the least ranking as per Friedman

test and Friedman's aligned ranks test. The average ranking values of the moth-flame

optimization algorithm, modified differential evolution algorithm and grasshopper optimization

algorithm based on Friedman test are 1, 3.88 and 6.38, respectively. The P − values of the

Friedman test and Friedman's aligned ranks test are equal to zero, which indicates that there are

statistical significant differences among the meta-heuristic-based restoration models. Thus,

Nemenyi, Holms and Finner post hoc statistical tests are applied to examine if the developed

moth-flame restoration model is significantly better than other restoration models. The P −

values of the moth-flame-based restoration model using Nemenyi, Holms and Finner tests are

64

shown in Table 28. It can be inferred that the P − values of the pairs (MFO, DE), (MFO, MDE),

(MFO, PSO), (MFO, IWO), (MFO, GOA), (MFO, GWO) and (MFO, GA) are less than 0.05 for

all post hoc tests. It should be mentioned that the developed restoration model is the only

restoration model which provided statistical significant better filtering performance over other

meta-heuristic-based restoration models for all tests. In view of the above comparisons, it can be

concluded that the proposed restoration model introduced significant superior consistent and

overall filtering results over other restoration models.

INSERT TABLE 27

INSERT TABLE 28

The different restoration models were evaluated as per the average computational time of

both training and restoration. The average computational times of the training and restoration are

presented in Table 29. As shown in Table 29, non-linear programming required less training time

with respect to other optimization-based models. On the other hand, while the IWO had the

longest computational time of 1304.62 seconds. The proposed restoration model required 915.38

seconds to select the optimum restoration process based on MFO algorithm. It is worth

mentioning that optimization-based restoration models had longer computational time compared

to the conventional time. However, most of the computational time is spent in the training

process. In addition to that, most of the time spent in the restoration process is nearly equal

among the different restoration models. The long computational time of the proposed restoration

model is resulting from its capability to optimize the number of filters, types of filters, sequence

of filters and the governing tuning parameters of these filters. This is deemed as a large search

space problem, which requires an exhaustive search engine to explore the space. Moreover, the

time of restoration process is a more practical performance indicator in bridge defects

65

recognition applications because the training process is only done once, and then the optimum

filter(s) obtained from the restoration model are used to de-noise the images based on the type of

noise that corrupts the images. As such, the different restoration models consume nearly the

same time in the restoration process. Meanwhile, the proposed restoration model achieved

significant enhancement in the filtering process when compared to other restoration models.

Thus, it can provide an efficient alternative for the restoration of bridge defects images.

INSERT TABLE 29

In order to investigate the implication of the restoration process on the segmentation of

the bridge defects, the proposed restoration model is compared with the median filter of size 4×4

based on their influence on the quality of segmentation of spalling in reinforced concrete bridges.

The case study is “Image 6” corrupted with Gaussian noise. The segmentation process of

spalling is performed using fuzzy C-means clustering algorithm, which is considered as a well-

performing segmentation method that proved its capability in detecting bridge defects. More

details about fuzzy C-means clustering algorithm can be found in keskin [76]. The results of the

segmentation as per the proposed restoration model and median filter are shown in Figure 46. As

shown in Figure 46, it is clearly visible that the segmented image using fuzzy C-means clustering

algorithm based on the de-noised images of the proposed restoration model yields superior

segmentation performance when compared to other methods. As such, the self-adaptive two-tier

optimization-based method provides a consistent, holistic and remarkable improvement in

recognition of noise as well as restoration of degraded bridge defects images with noise as per

the different levels of comparison. This leads to better detection and evaluation of bridge defects

images, which eventually leads to the establishment of more accurate image-based condition

assessment models and reliable maintenance decision-making models.

66

INSERT FIGURE 46

10. CONCLUSION

Routine inspections are diagnostic methods to evaluate the condition of reinforced concrete

bridges. Nevertheless, current visual inspection-based methods are labor-intensive, and provide

biased and subjective judgments. This requires the development of a machine vision-based

method for the automatic assessment of bridge defects. Noise is undesirable random variation in

the brightness or intensity of the image, which significantly influences the attributes of bridge

defects images. In this regard, the absence or the inefficiency of a restoration method of bridge

defects images leads to error-prone deterioration models and maintenance intervention actions.

As such the present study introduces a self-adaptive two-tier method for the restoration of bridge

defects images.

The developed method is envisioned on two main stages which are: automatic recognition of

noise, and restoration of degraded bridge defects images. In the first model, a hybrid Elman

neural network-invasive weed optimization model is developed to detect and recognize the

noises in bridge defects images based on three different modules. A variable-length optimization

problem is designed to enhance the search capacity of the ENN-IWO model through both

parameter and structural learning of the Elman neural network. The recognition capabilities of

the proposed ENN-IWO model are examined by comparison with other well-performing

machine learning models such as discriminant analysis, artificial neural network, random forest,

support vector machines and K-nearest neighbors. The proposed noise recognition model

significantly outperformed other classifiers. For instance, in the separate noise recognition

module the developed model achieved accuracy, sensitivity, specificity, precision, F-measure

67

and Kappa coefficient of 95.28%, 95.24%, 98.07%, 95.25%, 95.34%. 95.43% and 0.935,

respectively.

After mapping each image to the designated type of noise, a moth-flame optimization-based

restoration model is developed to restore bridge defects corrupted with noise. The developed

restoration model outperformed other optimization-based and conventional restoration models,

whereas it achieved the APSNR, AMSE, ANAE and AIEF of 25.36, 176.32, 0.059 and 7.18,

respectively. The final outcome of the proposed method is a filtering protocol, which enables

decision-makers to deal with different types of noises in bridge defects images. In the developed

protocol, hybrid combinations of filters are required to be applied in some cases of combinations

of noises. This exemplifies that these combinations of noises amplify the degradation in bridge

defects images, which necessitates the application of a higher capacity restoration model. It is

expected that the developed method can enhance the automatic evaluation of bridge defects,

which enables establishing more accurate image-based condition assessment models and

enhancing the decision-making process in the bridge management systems.

Conflict of interest: The authors declare that they have no conflict of interest.

REFERENCES

1. National Research Council Canada (2013) Critical Concrete Infrastructure: Extending the

Life of Canada’s Bridge Network <http://www.nrc-cnrc.gc.ca/ci-ic/article/v18n1-5>

(20.12.2016).

2. Statistics Canada (2009) Age of Public Infrastructure: A Provincial Perspective <

http://www.statcan.gc.ca/pub/11-621-m/11-621-m2008067-eng.htm> (20.12.2016).

http://www.nrc-cnrc.gc.ca/ci-ic/article/v18n1-5
http://www.statcan.gc.ca/pub/11-621-m/11-621-m2008067-eng.htm

68

3. Karibasappa K G, Karibasappa K (2015) AI Based Automated Identification and Estimation

of Noise in Digital Images. Advances in Intelligent Systems and Computing, Springer, pp 49-

60.

4. Chuah J H, Khaw H Y, Soon F C, Chow C (2017) Detection of Gaussian Noise and Its Level

using Deep Convolutional Neural Network. In: Proceedings ofthe 2017 IEEE Region 10

Conference (TENCON), Penang, Malaysia, 5-8 November, pp 2447-2450.

5. Turajlic E, Begovi A (2019) Application of Artificial Neural Network for Image Noise Level

Estimation in the SVD domain. Electronics 8(163):1-20.

6. Vasuki P, Bhavana C, Lakshmi D E, Roomi S M M (2012) Automatic Noise Identification

in Images Using Moments and Neural Network. In: 2012 International Conference on

Machine Vision and Image Processing (MVIP), Nadu, India, 14-15 December.

7. Gupta M, Taneja H, Chand L (2018) Performance Enhancement and Analysis of Filters in

Ultrasound Image Denoising. PROCEDIA COMPUT SCI 132:643–652.

8. Verma R, Mehra R (2016) PSO Algorithm based Adaptive Median Filter for Noise Removal

in Image Processing Application. INT J of ADV COMPY SCI APPL 7(7):92–98.

9. Dass R (2018) Speckle Noise Reduction of Ultrasound Images Using BFO Cascaded with

Wiener Filter and Discrete Wavelet Transform in Homomorphic Region. PROCEDIA

COMPUT SCI 132:1543–1551.

10. Kumar N (2017) Image Restoration in Noisy Free Images Using Fuzzy Based Median

Filtering and Adaptive Particle Swarm Optimization - Richardson-Lucy Algorithm. INT J

INTELL ENG SYST 10(4): 50–59.

11. Wang Y, Adhmai R, Fu J (2015) A novel supervised learning algorithm for salt-and-pepper

noise detection. INT J MACH LEARN 6(4): 687–697.

69

12. Zhao Y, Xin J. M, Sun, L. X (2017) Reconstructing images corrupted by noise based on D–S

evidence theory. INT J MACH LEARN 8(2): 611–618.

13. Ma J, Tian D, Gong M (2014) Fuzzy clustering with non-local information for image

segmentation. INT J MACH LEARN CYB 5(6): 845–859.

14. Tong X, Guo J, Ling Y, Yin Z (2011) A New Image-Based Method for Concrete Bridge

Bottom Crack Detection. In: 2011 International Conference on Image Analysis and Signal

Processing, Wuhan, China, 21-23 October.

15. Adhikari R S, Moselhi, O, Bagchi, A (2014) Image-based retrieval of concrete crack

properties for bridge inspection. AUTOMAT CONSTR 39(1):180–194.

16. Yao C, Tao M, Xiaojie W, Feng L (2016) A Bridge Crack Image Detection and

Classification Method Based On Climbing Robot. In: Proceedings of the 35th Chinese

Control Conference, Chengdu, China, 27-29 July, pp 4037-4042.

17. Lee J H, Jin S S, Kim I H, Jung H J (2017) Development of crack diagnosis and

quantification algorithm based on the 2D images acquired by Unmanned Aerial Vehicle

(UAV). In: The 2017 Congress on Advances in Structural Engineering and Mechanics,

Seoul, Korea, 28 August- 1 Septemeber.

18. Ellenberg A, Kontsos S, Moon F, Bartoli I (2016) Bridge related damage quanti fi cation

using unmanned aerial vehicle imagery. STRUCT CONTROL HLTH 23:1168–1179.

19. Lei B, Wang N, Xu P, Song G (2018) New Crack Detection Method for Bridge Inspection

Using UAV Incorporating Image Processing. J AEROSPACE EN 31(5): 1–13.

20. Li Y, Zhao W, Zhang X, Zhou Q (2018) A Two-Stage Crack Detection Method for Concrete

Bridges Using Convolutional Neural Networks. IEICE T INF SYST E101(12):3249–3252.

21. Dinh T H., Ha Q P, Tranhiepdinhutseduau E (2016) Computer Vision-based Method for

70

Concrete Crack Detection. In: 14th International Conference on Control, Automation,

Robotics and Vision, Phuket, Thailand, 13-15 November.

22. Wang Y, Zhang J Y, Liu J X, Zhang Y, Chen Z P., Li C G, He K, Yan R B (2019) Research

on Crack Detection of Algorithm of the Concrete Bridge Based on Image Processing.

PROCEDIA COMPUT SCI 154: 610–616.

23. Ho H, Kim K, Park Y, Lee J (2013) An efficient image-based damage detection for cable

surface in cable-stayed bridges. NDT&E INT 58:18–23.

24. Lee J H, Lee J M, Kim H J, Moon Y S (2008) Machine Vision System for Automatic

Inspection of Bridges. In: 2008 Congress on Image and Signal Processing, Sanya, China, 27-

30 May, pp 363–366.

25. Pavithra D, Saranya T, Prakash K, Soundarya G (2018) Electronic Crack Detection on

Concrete. INT J ADV SCI ENG RES 3(1):515–521.

26. Rodríguez-Fdez I, Canosa A, Mucientes M, Bugar A (2015) STAC : a web platform for the

comparison of algorithms using statistical tests. In: 2015 IEEE International Conference on

Fuzzy Systems (FUZZ-IEEE), Istanbul, Turkey, 2-5 August.

27. Ning J, Zhang C, Sun P, Feng Y (2019) Comparative Study of Ant Colony Algorithms for

Multi-Objective Optimization. Information 10(11): 1–19.

28. Nancy E, Kaur E S (2013) Comparative Analysis and Implementation of Image

Enhancement Techniques Using MATLAB. INT J COM SCI MOB COMP 2(4), 138–145.

29. Hoshyar A N, Al-jumaily A, Hoshyar A N (2014) Comparing the Performance of Various

Filters on Skin Cancer Images. PROCEDIA COMPUT SCI 42: 32–37.

30. Tania S, Rowaida R (2016) A Comparative Study of Various Image Filtering Techniques for

Removing Various Noisy Pixels in Aerial Image. INT J SIGNAL PROCESS IMAGE

71

PROCESS PATTERN RECOGN 9(3):113–124.

31. Wu Q, Lee J, Park M, Park C, Kim I (2014) A study on Development of Optimal Noise Filter

Algorithm for Laser Vision System in GMA Welding. PROCEDIA ENG 97:819–827.

32. Hasan M, El-sakka M R (2018) Improved BM3D image denoising using SSIM-optimized

Wiener filter. EURASIP J IMAGE VID, 2018(1):25.

33. Kulkarni S, Kedar M, Rege P P (2018) Comparison of Different Speckle Noise Reduction

Filters for RISAT -1 SAR Imagery. In: International Conference on Communication and

Signal Processing, Chennai, India, 3-5 April.

34. Dhanushree M, Priyadharsini P, Sharmila T S (2019) Acoustic image denoising using

various spatial filtering techniques. INT J INF TECH 1-7.

35. Singh N K, Singh A K, Tripathy M (2014) A Comparative Study of BPNN, RBFNN and

ELMAN Neural Network for Short-Term Electric Load Forecasting : A Case Study of Delhi

Region. In: 9th International Conference on Industrial and Information Systems (ICIIS),

Gwalior, India, 5-17 December.

36. Lauraitis A, Maskeli R, Damaševičius R (2018) Research Article ANN and Fuzzy Logic

Based Model to Evaluate Huntington Disease Symptoms. J HEALTHC ENG Article ID

4581272, 10 pages.

37. Kurach K, Pawlowski K (2016) Predicting Dangerous Seismic Activity with Recurrent

Neural Networks. In: Proceedings of the Federated Conference on Computer Science,

Gdansk, Poland, 11-14 September, pp 239–243.

38. Bianchi F M., Maiorino E, Kampffmeyer M C, Rizzi A, Jenssen R (2017) An overview and

comparative analysis of Recurrent Neural Networks for Short Term Load Forecasting.

Springer.

72

39. Köker R (2013) A Genetic Algorithm Approach to a Neural-network-based Inverse

Kinematics Solution of Robotic Manipulators Based on Error Minimization. INFORM

CONTROL 222:528–543.

40. Wang J, Zhang W, Li Y, Wang J, Zhangli D (2014) Forecasting Wind Speed Using

Empirical Mode Decomposition and Elman Neural Network. APPL SOFT COMPUT 23:

452–459.

41. Yu F, Xu X (2014) A Short-term Load Forecasting Model of Natural Gas Based on

Optimized Genetic Algorithm and Improved BP Neural Network. APPL ENERG 134:102–

113.

42. Zhou Y Q, Xidian H C (2014) Invasive Weed Optimization Algorithm for Optimization No-

Idle Flow Shop Scheduling Problem. NEUROCOMPUTING 137: 285–292.

43. Azizipour M, Ghalenoei V, Afshar M H, Solis S S (2016) Optimal Operation of Hydropower

Reservoir Systems Using Weed Optimization Algorithm. WATER RESOUR MANAG 30:

3995–4009.

44. Ryerkerk M L, Averill R C, Deb K, Goodman E D (2017) Solving Metameric Variable-

length Optimization Problems Using Genetic Algorithms. GENET PROGRAM EVOL M

18(2):247-277.

45. Yildiz B S, Yildiz A R (2017) Moth-flame optimization algorithm to determine optimal

machining parameters in manufacturing processes. MATER TEST 59(5):425–429.

46. Yildiz A R, Abderazek H, Mirjalili S (2019a) A Comparative Study of Recent Non-

traditional Methods for Mechanical Design Optimization. ARCH COMPUT METHOD E 1-

19.

47. Mirjalili S, Mohammad S, Lewis A (2014) Grey Wolf Optimizer. ADV ENG SOFTW 69:

73

46–61.

48. Mohanty B (2019) Performance analysis of moth flame optimization algorithm for AGC

system. INT J MODEL SIMUL 39(2):73–87.

49. Dhane D M, Maity M, Achar A, Bar C, Chakraborty C (2015) Selection of Optimal

Denoising Filter using Quality Assessment for Potentially Lethal Optical Wound images.

PROCEDIA COMPUT SCI 58:438–446.

50. Vasanth K, Manjunath T G, Raj S N (2015) A Decision based Unsymmetrical Trimmed

Modified Winsorized Mean Filter for the Removal of High Density Salt and Pepper Noise in

Images and Videos. PROCEDIA COMPUT SCI 54:595–604.

51. Rathi V P G P, Palani D S (2012) Brain tumor mri image classification w ith feature selection

and extraction using linear discriminant analysis. INT J INF SCI TECH 2(4):1-17.

52. Subasi A, Gursoy M I (2010) EEG signal classification using PCA , ICA , LDA and support

vector machines. EXPERT SYST APPL 37(12): 8659–8666.

53. Feng C, Ju S, Huang H (2016) Using a Simple Soil Spring Model and Support Vector

Machine to Determine Bridge Scour Depth and Bridge Safety. J PERFORM CONSTR FAC

30(4):1–14.

54. Chen H, Wei L, Ning R, Cai Z, Shao H (2015) Application of Factor Analysis and SVM

Technique in Expressway Condition Pattern Recognition”. In: 15th COTA International

Conference of Transportation Professionals, Beijing, China, 24-27 July, pp 2073–2085.

55. Sharmila A, Geethanjali P (2016) DWT Based Detection of Epileptic Seizure From EEG

Signals Using Naive Bayes and k-NN Classifiers. IEEE Access 4:7716–7727.

74

56. Yang C C, Soh C S, Yap V V (2018) A systematic approach in appliance disaggregation

using k-nearest neighbours and naive Bayes classifiers for energy efficiency. ENERG EFFI

11:239–259.

57. Breiman L (2001) Random Forests. MACH LEARN 45:5–32.

58. Jin Y, Liu X, Chen Y, Liang X, Chen Y (2018) Land-cover mapping using Random Forest

classification and incorporating NDVI time-series and texture : a case study of central

Shandong. INT J REMOTE SENS 39(23):1–21.

59. Ahmad M W, Mourshed M, Rezgui Y (2017) Trees vs Neurons : Comparison between

random forest and ANN for high-resolution prediction of building energy consumption.

ENERG BUILDINGS, 147:77–89.

60. Demirci E, Yildiz A R (2016) A new hybrid approach for reliability-based design

optimization of structural components. MATER TEST 61(2):111–119.

61. Yildiz A R, Kurtuluş E, Demirci E, Yildiz, B S, Karagöz S (2016) Optimization of thin-wall

structures using hybrid gravitational search and Nelder-Mead algorithm. MATER TEST

58(1):75–78.

62. Elbeltagi E, Hegazy T, Grierson D (2005) Comparison Among Five Evolutionary-based

Optimization Algorithms. ADV ENG INFORM 19(1): 43–53.

63. Heidari E, Movaghar A (2011) An Efficient Method Based On Genetic Algorithm To Solve

Sensor Network Optimization Problem. GRAPH-HOC 3(1):18–33.

64. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings of the IEEE

International Conference on Neural Networks, Perth, Australia, 27 November-1 December,

pp 1942-1948.

65. Zhang H, Li H (2010) Multi-objective Particle Swarm Optimization For Construction Time-

cost Tradeoff Problems. CONSTR MANAG ECON 28(1):75–88.

75

66. Baltar A M, Fontane D.G (2008) Use of Multiobjective Particle Swarm Optimization in

Water Resources Management. J WATER RES PLAN MAN 134 (3):257–265.

67. Saremi S, Mirjalili S, Lewis A (2017) Advances in Engineering Software Grasshopper

Optimisation Algorithm : Theory and application. ADV ENG SOFTW 105:30–47.

68. Yildiz B S, Yildiz A R (2019) The Harris hawks optimization algorithm , salp swarm

algorithm, grasshopper optimization algo- rithm and dragonfly algorithm for structural

design optimization of vehicle components. MATER TEST 61(8):744-748.

69. Yildiz A R, Mirjalili S, Yildiz B S, Sait S M, Li X (2019b). The Harris hawks , grasshopper

and multi-verse optimization algorithms for the selection of optimal machining parameters in

manufacturing operations. MATER TEST 61(8): 1-9.

70. Zhang Y, Wang J, Lu H (2019) Research and Application of a Novel Combined Model

Based on Multiobjective Optimization for Multistep-Ahead Electric Load Forecasting.

Energies 12(10):1–30.

71. Mirjalili S (2015) Moth-Flame Optimization Algorithm : A Novel Nature-inspired Heuristic

Paradigm. KNOWL-BASED SYST 89:228–249.

72. Yildiz B S, Yildiz A R (2018) Comparison of grey wolf, whale, water cycle, ant lion and

sine-cosine algorithms for the optimization of a vehicle engine connecting rod. MATER

TEST 60(3):311–315.

73. Storn R, Price K (1995) Differential Evolution - A simple and efficient adaptive scheme for

global optimization over continuous spaces. Technical Report TR-95-012 International

Computer Science Institute, Berkley.

74. Hamza F, Abderazek H, Lakhdar S, Ferhat D, Yildiz A R (2018) Optimum design of cam-

roller follower mechanism using a new evolutionary algorithm. INT J ADV MANUF TECH

76

99:1267–1282.

75. Seyedpoor S M, Shahbandeh S, Yazdanpanah O (2015) An efficient method for structural

damage detection using a differential evolution algorithm-based optimisation approach. CIV

ENG ENVIRON SYST 32(3): 230-250.

76. Keskin G A (2015) Using integrated fuzzy DEMATEL and Fuzzy C : means Algorithm for

Supplier Evaluation and Selection. INT J PROD RES 53(12): 3586-3602.

77

List of Figures

Figure 1: Framework of the proposed noise detection and restoration method

Figure 2: Architecture of the Elman recurrent neural network

Figure 3: Sample of bridge defects images

Figure 4: Another sample of bridge defects images

Figure 5: Corrupted images by (a) Gaussian noise, (b) salt and pepper noise, (c) speckle

noise and (d) combination of Gaussian and speckle noises

Figure 6: Corrupted images by (a) combination of Gaussian and salt and pepper noises,

and (b) combination of speckle and salt and pepper noises

Figure 7: Convergence of the ENN-IWO noise detection model

Figure 8: Convergence of the ENN-IWO separate noise recognition model

Figure 9: Convergence of the ENN-IWO combined noise recognition model

Figure 10: Convergence of the meta-heuristic-based restoration models for images with

Gaussian noise

Figure 11: Restored images corrupted with Gaussian noise using (a) differential evolution,

(b) modified differential evolution, (c) particle swarm optimization and (d) invasive weed

optimization

Figure 12: Restored images corrupted with Gaussian noise using (a) moth-flame

optimization, (b) grasshopper optimization and (c) grey wolf optimization

Figure 13: Restored images corrupted with Gaussian noise using (a) genetic algorithm and

(b) non-linear programming

Figure 14: Restored images corrupted with Gaussian noise using (a) median filter, (b)

Gaussian noise, (c) Wiener filter and (d) average filter

Figure 15: Restored images corrupted with Gaussian noise using (a) mode filter, (b) Lee

filter and (c) frost filter

Figure 16: Convergence of the meta-heuristic-based restoration models for images with salt

and pepper noise

Figure 17: Restored images corrupted with salt and pepper noise using (a) differential

evolution, (b) modified differential evolution, (c) particle swarm optimization and (d)

invasive weed optimization

Figure 18: Restored images corrupted with salt and pepper noise using (a) moth-flame

optimization, (b) grasshopper optimization and (c) grey wolf optimization

78

Figure 19: Restored images corrupted with salt and pepper noise using (a) genetic

algorithm and (b) non-linear programming

Figure 20: Restored images corrupted with salt and pepper noise using (a) median filter,

(b) Gaussian noise, (c) Wiener filter and (d) average filter

Figure 21: Restored images corrupted with salt and pepper using (a) mode filter, (b) Lee

filter and (c) frost filter

Figure 22: Convergence of the meta-heuristic-based restoration models for images with

speckle noise

Figure 23: Restored images corrupted with speckle noise using (a) differential evolution,

(b) modified differential evolution, (c) particle swarm optimization and (d) invasive weed

optimization

Figure 24: Restored images corrupted with speckle noise using (a) moth-flame

optimization, (b) grasshopper optimization and (c) grey wolf optimization

Figure 25: Restored images corrupted with speckle noise using (a) genetic algorithm and

(b) non-linear programming

Figure 26: Restored images corrupted with speckle noise using (a) median filter, (b)

Gaussian noise, (c) Wiener filter and (d) average filter

Figure 27: Restored images corrupted with speckle noise using (a) mode filter, (b) Lee filter

and (c) frost filter

Figure 28: Convergence of the meta-heuristic-based restoration models for images with

combination of Gaussian and speckle noises

Figure 29: Restored images corrupted with combination of Gaussian and speckle noises

using (a) differential evolution, (b) modified differential evolution, (c) particle swarm

optimization and (d) invasive weed optimization

Figure 30: Restored images corrupted with combination of Gaussian and speckle noises

using (a) moth-flame optimization, (b) grasshopper optimization and (c) grey wolf

optimization

Figure 31: Restored images corrupted with combination of Gaussian and speckle noises

using (a) genetic algorithm and (b) non-linear programming

Figure 32: Restored images corrupted with combination of Gaussian and speckle noises

using (a) median filter, (b) Gaussian noise, (c) Wiener filter and (d) average filter

Figure 33: Restored images corrupted with combination of Gaussian and speckle noises

using (a) mode filter, (b) Lee filter and (c) frost filter

Figure 34: Convergence of the meta-heuristic-based restoration models for images with

combination of Gaussian and salt and pepper noises

79

Figure 35: Restored images corrupted with combination of Gaussian and salt and pepper

noises using (a) differential evolution, (b) modified differential evolution, (c) particle swarm

optimization and (d) invasive weed optimization

Figure 36: Restored images corrupted with combination of Gaussian and salt and pepper

noises using (a) moth-flame optimization, (b) grasshopper optimization and (c) grey wolf

optimization

Figure 37: Restored images corrupted with combination of Gaussian and salt and pepper

noises using (a) genetic algorithm and (b) non-linear programming

Figure 38: Restored images corrupted with combination of Gaussian and salt and pepper

noises using (a) median filter, (b) Gaussian noise, (c) Wiener filter and (d) average filter

Figure 39: Restored images corrupted with combination of Gaussian and salt and pepper

noises using (a) mode filter, (b) Lee filter and (c) frost filter

Figure 40: Convergence of the meta-heuristic-based restoration models for images with

combination of speckle and salt and pepper noises

Figure 41: Restored images corrupted with combination of speckle and salt and pepper

noises using (a) differential evolution, (b) modified differential evolution, (c) particle swarm

optimization and (d) invasive weed optimization

Figure 42: Restored images corrupted with combination of speckle and salt and pepper

noises using (a) moth-flame optimization, (b) grasshopper optimization and (c) grey wolf

optimization

Figure 43: Restored images corrupted with combination of speckle and salt and pepper

noises using (a) genetic algorithm and (b) non-linear programming

Figure 44: Restored images corrupted with combination of speckle and salt and pepper

noises using (a) median filter, (b) Gaussian noise, (c) Wiener filter and (d) average filter

Figure 45: Restored images corrupted with combination of speckle and salt and pepper

noises using (a) mode filter, (b) Lee filter and (c) frost filter

Figure 46: Segmented images based on output of (a) proposed restoration model and (b)

median filter

80

81

82

(a) Image 1 (b) Image 2

(c) Image 3 (d) Image 4

83

(a) Image 5 (b) Image 6

84

(a) Gaussian noise (b) Salt and pepper noise

(c) Speckle noise (d) Combination of Gaussian and

speckle noises

85

(a) Combination of Gaussian

and salt and pepper noises

(b) Combination of speckle

and salt and pepper noises

(e)

86

0 20 40 60 80 100 120 140 160 180 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Iteration

M
is

c
la

s
s
ifi

c
a

tio
n

 e
rr

o
r

87

0 50 100 150 200 250
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iteration

M
is

c
la

s
s
ifi

c
a

tio
n

 e
rr

o
r

88

0 50 100 150 200 250
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration

M
is

c
la

s
s
ifi

c
a

tio
n

 e
rr

o
r

89

0 5 10 15 20 25 30 35 40
20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

90

(a) Differential evolution (b) Modified differential evolution

(c) Particle swarm optimization

algorithm

(d) Invasive weed optimization

algorithm

91

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

92

(a) Genetic algorithm (b) Non-linear programming

93

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

94

(a) Mode filter (b) Lee filter

(c) Frost filter

95

0 5 10 15 20 25 30 35 40

24

25

26

27

28

29

30

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

96

(a) Differential evolution (b) Modified differential evolution

(c) Particle swarm optimization

algorithm

(f)

(d) Invasive weed optimization

algorithm

97

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

98

(a) Genetic algorithm (b) Non-linear programming

99

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

100

(a) Mode filer (b) Lee filter

(c) Frost filter

101

0 5 10 15 20 25 30 35 40

22

22.5

23

23.5

24

24.5

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

102

(a) Differential evolution (b) Modified differential evolution algorithm

(c) Particle swarm optimization

algorithm

(d) Invasive weed optimization

algorithm

103

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

104

(a) Genetic algorithm (b) Non-linear programming

105

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

106

(a) Mode filter (b) Lee filter

(c) Frost filter

107

0 5 10 15 20 25 30 35 40

22

22.5

23

23.5

24

24.5

25

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

108

(a) Differential evolution algorithm (b) Modified differential evolution algorithm

(c) Particle swarm optimization

algorithm

(d) Invasive weed optimization

algorithm

109

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

110

(a) Genetic algorithm (b) Non-linear programming

111

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

112

(a) Mode filter
(b) Lee filter

(c) Frost filter

113

0 5 10 15 20 25 30 35 40

21.5

22

22.5

23

23.5

24

24.5

25

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

114

(a) Differential evolution algorithm (b) Modified differential evolution algorithm

(c) Particle swarm optimization

algorithm

(d) Invasive weed optimization

algorithm

115

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

116

(a) Genetic algorithm (b) Non-linear programming

117

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

118

(a) Mode filter
(b) Lee filter

(c) Frost filter

119

0 5 10 15 20 25 30 35 40
21

21.2

21.4

21.6

21.8

22

22.2

22.4

22.6

22.8

23

Iteration

P
e

a
k
 s

ig
n

a
l
to

 n
o

is
e

 r
a

ti
o

DE

MDE

PSO

IWO

MFO

GOA

GWO

GA

120

(a) Differential evolution algorithm (b) Modified differential evolution algorithm

(c) Particle swarm optimization

algorithm

(d) Invasive weed optimization

algorithm

121

(a) Moth-flame optimization

algorithm

(b) Grasshopper optimization

algorithm

(c) Grey wolf optimization

algorithm

122

(a) Genetic algorithm (b) Non-linear programming

123

(a) Median filter (b) Gaussian filter

(c) Wiener filter (d) Average filter

124

(a) Mode filter
(b) Lee filter

(c) Frost filter

125

(a) Proposed restoration model (b) Median filter

126

List of Tables

Table 1: Parameters of IWO algorithm for noise detection module

Table 2: Performance comparison of the different machine learning models in noise

detection based on split validation

Table 3: Performance comparison of the different machine learning models in noise

detection based on 10-fold cross validation

Table 4: Confusion matrix of the classification of the ENN-IWO model for separate noise

recognition

Table 5: Comparison of the performance metrics of the six classification models for

separate noise recognition based on split validation

Table 6: Comparison of the performance metrics of the six classification models for

separate noise recognition based on 10-fold cross validation

Table 7: Confusion matrix of the classification of the ENN-IWO model for combined noise

recognition

Table 8: Comparison of the performance metrics of the six classification models for

combined noise recognition based on split validation

Table 9: Comparison of the performance metrics of the six classification models for

combined noise recognition based on 10-fold cross validation

Table 10: Statistical comparison between the different noise classification models based on

two-tailed Student’s t-test

Table 11: Statistical comparison of the developed noise classification model against other

models based on non-parametric tests

Table 12: Average ranking of the noise classification models using Friedman test and

Friedman's aligned ranks test

Table 13: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the EN-IWO noise classification model using Nemenyi test, Holm

test and Finner test

Table 14: Average run time in seconds of different classification models of noise detection

Table 15: Average run time in seconds of different classification models of separate noise

recognition

Table 16: Average run time in seconds of different classification models for combined noise

recognition

Table 17: Performance evaluation of different restoration models for “Image 1” corrupted

with Gaussian noise

127

Table 18: Performance evaluation of different restoration models for “Image 2” corrupted

with salt and pepper noise

Table 19: Performance evaluation of different restoration models for “Image 3” corrupted

with speckle noise

Table 20: Performance evaluation of different restoration models for “Image 4” corrupted

with a combination of Gaussian and speckle noises

Table 21: Performance evaluation of different restoration models for “Image 5” corrupted

with a combination of Gaussian and salt and pepper noises

Table 22: Performance evaluation of different restoration models for “Image 6” corrupted

with a combination of speckle and salt and pepper noises

Table 23: Overall performance evaluation of the different types of restoration models

Table 24: Filtering protocol for different types of noises

Table 25: Statistical comparison between the different meta-heuristic-based restoration

models based on two-tailed Student’s t-test

Table 26: Statistical comparison of the developed restoration model against meta-heuristic-

based models based on non-parametric tests

Table 27: Average ranking of the meta-heuristic-based restoration models using Friedman

test and Friedman's aligned ranks test

Table 28: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the moth-flame-based restoration model using Nemenyi test, Holm

test and Finner test

Table 29: Average run time in seconds of different restoration models

128

Table 1: Parameters of IWO algorithm for noise detection module

Decision Variable Range

Initial population size 100

Maximum number of iterations 200

Minimum number of seeds 0

Maximum number of seeds 5

Initial standard deviation 0.5

Final standard deviation 0.001

129

Table 2: Performance comparison of the different machine learning models in noise

detection based on split validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 95.5% 92% 96% 76.67% 83.64% 0.81

KNN 98% 100% 97.7% 86.67% 92.86% 0.917

RF 98% 96.43% 98.26% 90% 93.1% 0.919

SVM 98.5% 93.55% 99.41% 96.67% 95.08% 0.942

ANN 91% 65% 97.5% 86.67% 74.29% 0.689

ENN-

IWO 99% 100% 98.84% 93.33% 96.55% 0.959

130

Table 3: Performance comparison of the different machine learning models in noise

detection based on 10-fold cross validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 95.21% 91.68% 95.57% 76.42% 83.51% 0.808

KNN 97.71% 99.65% 97.26% 86.38% 92.72% 0.914

RF 97.7% 96.09% 97.82% 89.70% 92.96% 0.916

SVM 98.20% 93.22% 98.96% 96.35% 94.94% 0.939

ANN 90.73% 64.77% 97.06% 86.38% 74.18% 0.687

ENN-

IWO
98.72% 99.65% 98.52% 93.12% 96.39% 0.956

131

Table 4: Confusion matrix of the classification of the ENN-IWO model for separate noise

recognition

 Class 1 Class 2 Class 3 Class 4

Class 1 29 0 1 0

Class 2 0 24 0 1

Class 3 0 0 55 0

Class 4 0 4 0 21

Predicted class

Act

ual

clas

s

132

Table 5: Comparison of the performance metrics of the six classification models for

separate noise recognition based on split validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 83.7% 83.7% 94.26% 83.7% 83.7% 0.77

KNN 85.93% 85.93% 95.08% 85.93% 85.93% 0.801

RF 91.85% 91.85% 97.21% 91.85% 91.85% 0.887

SVM 86.67% 86.67% 95.36% 86.67% 86.67% 0.813

ANN 84.44% 84.44% 94.53% 84.44% 84.44% 0.781

ENN-

IWO 95.56% 95.56% 98.5% 95.56% 95.56% 0.937

133

Table 6: Comparison of the performance metrics of the six classification models for

separate noise recognition based on 10-fold cross validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 83.45% 83.41% 93.84% 83.42% 83.57% 0.768

KNN 85.67% 85.63% 94.65% 85.65% 85.80% 0.799

RF 91.57% 91.53% 96.77% 91.55% 91.71% 0.884

SVM 86.41% 86.37% 94.93% 86.38% 86.54% 0.811

ANN 84.19% 84.14% 94.10% 84.16% 84.31% 0.779

ENN-

IWO
95.28% 95.24% 98.07% 95.25% 95.43% 0.935

134

Table 7: Confusion matrix of the classification of the ENN-IWO model for combined noise recognition

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7

Class 1 27 0 3 0 0 0 0

Class 2 0 22 0 0 2 0 1

Class 3 1 0 57 0 2 0 0

Class 4 0 15 0 8 0 1 1

Class 5 0 1 0 0 19 0 0

Class 6 0 0 0 0 0 20 0

Class 7 0 0 0 3 0 1 16

Predicted class

Act

ual

clas

s

135

Table 8: Comparison of the performance metrics of the six classification models for

combined noise recognition based on split validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 82.5% 82.5% 96.97% 82.5% 82.5% 0.787

KNN 82.5% 82.5% 96.94% 82.5% 82.5% 0.787

RF 75.5% 81.62% 95.48% 75.5% 78.44% 0.704

SVM 82.5% 82.5% 96.97% 82.5% 82.5% 0.691

ANN 81% 81% 96.62% 81% 81% 0.77

ENN-

IWO
84.5% 84.5% 97.33% 84.5% 84.5% 0.812

136

Table 9: Comparison of the performance metrics of the six classification models for

combined noise recognition based on 10-fold cross validation

Type of

classifier
Accuracy Sensitivity specificity Precision

F-

measure

Kappa

coefficient

DA 82.25% 82.21% 96.53% 82.23% 82.38% 0.785

KNN 82.25% 82.21% 96.50% 82.23% 82.38% 0.785

RF 75.27% 81.33% 95.05% 75.25% 78.32% 0.702

SVM 82.25% 82.21% 96.53% 82.23% 82.38% 0.689

ANN 80.76% 80.72% 96.19% 80.73% 80.88% 0.768

ENN-

IWO
84.26% 84.22% 97.21% 84.45% 84.46% 0.811

137

Table 10: Statistical comparison between the different noise classification models based on two-tailed Student’s t-test

Pair of

classifiers

Discriminant

analysis

K-nearest

neighbors

Random Forest Support vector

machines

Artificial

neural network
ENN-IWO

Discriminant

analysis
H0

 (P − value=1)

H1

(P − value

=1.87×10-8)

H0

(P − value

=3.01×10-1)

H1

(P − value

=2.63×10-8)

H1

(P − value

=1.51×10-4)

H1

(P − value

=6.8×10-8)

K-nearest

neighbors

H1

(P − value

=1.87×10-8)

H0

 (P − value=1)

H0

(P − value

=6.98×10-1)

H1

(P − value

=8.18×10-7)

H1

(P − value

=1.38×10-7)

H1

(P − value

=2.55×10-6)

Random Forest H0

(P − value

=3.01×10-1)

H0

(P − value

=6.98×10-1)

H0

 (P − value=1)

H0

(P − value

=4.22×10-1)

H1

(P − value

=1.28×10-2)

H1

(P − value

=4.03×10-8)

Support vector

machines

H1

(P − value

=2.63×10-8)

H1

(P − value

=8.18×10-7)

H0

(P − value

=4.22×10-1)

H0

 (P − value=1)

H1

(P − value

=4.2×10-8)

H1

(P − value

=5.56×10-6)

Artificial

neural network

H1

(P − value

=1.51×10-4)

H1

(P − value

=1.38×10-7)

H1

(P − value

=1.28×10-2)

H1

(P − value

=4.2×10-8)

H0

 (P − value=1)

H1

(P − value

=1.66×10-13)

ENN-IWO
H1

(P − value

=6.8×10-8)

H1

(P − value

=2.55×10-6)

H1

(P − value

=4.03×10-8)

H1

(P − value

=5.56×10-6)

H1

(P − value

=1.66×10-13)

H0

 (P − value=1)

138

Table 11: Statistical comparison of the developed noise classification model against other models based on non-parametric

tests

Pair of classifiers Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median

Discriminant

analysis, ENN-

IWO

H1

(P − value

=5.39×10-7)

H1

(P − value

=1.17×10-6)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =1×10-3)

K-nearest

neighbors, ENN-

IWO

H1

(P − value

=5.39×10-7)

H1

(P − value

=6.06×10-3)

H1

(P − value =6×10-3)

H1

(P − value =0)

H1

(P − value =1×10-3)

Random Forest,

ENN-IWO

H1

(P − value

=5.39×10-7)

H1

(P − value

=1.83×10-2)

H1

(P − value

=1.8×10-2)

H1

(P − value =0)

H1

(P − value =1×10-3)

Support vector

machines, ENN-

IWO

H1

(P − value

=5.39×10-7)

H1

(P − value

=1.83×10-2)

H1

(P − value

=1.8×10-2)

H1

(P − value =0)

H1

(P − value =1×10-3)

Artificial neural

network, ENN-

IWO

H1

(P − value

=5.39×10-7)

H1

(P − value

=6.93×10-7)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =1×10-3)

139

Table 12: Average ranking of the noise classification models using Friedman test and

Friedman's aligned ranks test

Type of classifier Friedman Friedman's aligned

ranks

Discriminant analysis 4.69 124.21

K-nearest neighbors 3.66 110.51

Random Forest 3.83 106.19

Support vector machines 2.63 81.21

Artificial neural network 5.16 150.71

ENN-IWO 1 24.15

140

Table 13: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the EN-IWO noise classification model using Nemenyi test, Holm test and Finner test

Pair of classifiers Friedman Friedman's aligned ranks

Nemenyi Holm Finner Nemenyi Holm Finner

Discriminant analysis,

ENN-IWO
H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

K-nearest neighbors,

ENN-IWO
H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

Random Forest, ENN-

IWO
H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

Support vector machines,

ENN-IWO
H1

(P − value

=5.71×10-3)

H1

(P − value

=3.43×10-3)

H1

(P − value

=8.2×10-4)

H1

(P − value

=7.9×10-4)

H1

(P − value

=5.2×10-4)

H1

(P − value

=1.3×10-4)

Artificial neural network,

ENN-IWO
H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

141

Table 14: Average run time in seconds of different classification models of noise detection

Average run

time

Discriminant

analysis

K-nearest

neighbors

Random

Forest

Support

vector

machines

Artificial

neural

network

ENN-

IWO

Training time 3.36 4.84 62.73 39.87 523.11 1203.56

Classification

time

0.034 0.035 0.036 0.035 0.037 0.039

142

Table 15: Average run time in seconds of different classification models of separate noise

recognition

Average run

time

Discriminant

analysis

K-nearest

neighbors

Random

Forest

Support

vector

machines

Artificial

neural

network

ENN-

IWO

Training time 4.23 5.96 77.16 60.65 620.42 1250.42

Classification

time
0.037 0.037 0.038 0.037 0.039 0.041

143

Table 16: Average run time in seconds of different classification models for combined noise

recognition

Average run

time

Discriminant

analysis

K-nearest

neighbors

Random

Forest

Support

vector

machines

Artificial

neural

network

ENN-

IWO

Training time 4.77 6.96 89.09 65.23 702.85 1652.65

Classification

time
0.044 0.046 0.047 0.048 0.046 0.046

144

Table 17: Performance evaluation of different restoration models for “Image 1” corrupted

with Gaussian noise

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm Lee filter of size 2×2 24.47 235.06 0.083 2.47

MDE

algorithm
Frost filter of size 3×3 25.24 185.88 0.074 3.48

PSO

algorithm
Wiener filter of size 2×2 25.28 192.31 0.076 3.34

IWO

algorithm

Lee filter of size 3×3 followed by

mode filter of size 5×5 25.01 303.77 0.093 2.61

MFO

algorithm
Wiener filter of size 3×3 25.29 185.75 0.074 5.16

GOA
Average filter of size 3×3 followed

by Wiener filter of size 3×3 23.3 411.62 0.103 1.68

GWO

algorithm
Lee filter of size 3×3 25.14 250.23 0.084 2.6

GA
Gaussian filter of Size 3×3 and

sigma of 0.6 25.18 186.06 0.074 3.47

Nonlinear

programming
Median filter of size 2×2 22.12 406.89 0.104 1.56

Median filter Size 4×4 22.64 292.86 0.089 2.23

Gaussian

filter
Size 4×4 and sigma of 0.4 21.45 465.20 0.121 1.87

Weiner filter Size 4×4 23.09 195.96 0.084 2.17

Mean filter Size 4×4 20.02 646.74 0.143 1.12

Mode filter Size 4×4 16.73 1381.15 0.211 0.47

Lee filter Size 4×4 23.02 251.09 0.082 2.57

Frost filter Size 4×4 22.13 317.34 0.091 2.04

145

Table 18: Performance evaluation of different restoration models for “Image 2” corrupted

with salt and pepper noise

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm Lee filter of size 2×2 30.03 66.94 0.038 13.15

MDE

algorithm

Gaussian filter of Size 5×5 and

sigma of 0.17 30.07 67.35 0.039 13.61

PSO

algorithm

Gaussian filter of Size 3×3 and

sigma of 0.48 followed by Lee

filter of Size 3×3
24.94 287.99 0.092 2.48

IWO

algorithm

Median filter of size 3×3 followed

by frost filter of size 3×3 25.45 135.44 0.057 13.47

MFO

algorithm
Median filter of size 3×3 30.11 65.29 0.038 14.24

GOA
Median filter of size 2×2 followed

by frost filter of size 3×3 23.91 199.6 0.066 4.62

GWO

algorithm
Frost filter of size 3×3 29.90 72.41 0.039 12.66

GA Frost filter of size 2×2 28.73 65.31 0.039 14.18

Nonlinear

programming
Median filter of size 2×2 25.36 199.89 0.058 4.57

Median filter Size 4×4 21.37 303.8 0.078 2.87

Gaussian

filter
Size 4×4 and sigma of 0.4 19.9 631.11 0.049 1.65

Weiner filter Size 4×4 22.7 292.09 0.078 3.05

Average filter Size 4×4 21.88 279.46 0.088 3.18

Mode filter Size 4×4 13.74 2748.22 0.194 0.32

Lee filter Size 4×4 23.54 192.09 0.078 4.75

Frost filter Size 4×4 22.39 244.75 0.084 3.63

146

Table 19: Performance evaluation of different restoration models for “Image 3” corrupted

with speckle noise

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm

Gaussian filter of Size 4×4 and

sigma of 0.25 followed by Lee

filter of Size 3×3
24.31 307.36 0.094 3.56

MDE

algorithm
Wiener filter of size 3×3 24.49 270.5 0.088 4.05

PSO

algorithm
Lee filter of size 2×2 24.44 566.83 0.124 2.32

IWO

algorithm

Frost filter of Size 3×3 followed by

Wiener filter of Size 2×2 23.45 276.34 0.088 4.02

MFO

algorithm
Lee filter of size 3×3 24.57 228.9 0.082 4.13

GOA Frost filter of Size 3×3 23.8 271.24 0.087 3.57

GWO

algorithm
Frost filter of size 2×2 24.26 307.32 0.093 3.55

GA Gaussian filter of Size 4×4 and

sigma of 0.25 followed by Lee

filter of Size 3×3
24.21 272.1 0.089 1.72

Nonlinear

programming

Average filter of size 3×3 followed

by mode filter of size 4×4 20.16 640.86 0.136 4.08

Median filter Size 4×4 19.94 511 0.112 2.15

Gaussian

filter
Size 4×4 and sigma of 0.4 19.11 796.62 0.164 1.89

Weiner filter Size 4×4 23.13 275.39 0.089 3.99

Average filter Size 4×4 21.25 378.79 0.099 2.9

Mode filter Size 4×4 15 2055.63 0.264 0.54

Lee filter Size 4×4 22.4 270.82 0.088 3.07

Frost filter Size 4×4 21.62 331.94 0.095 2.29

147

Table 20: Performance evaluation of different restoration models for “Image 4” corrupted

with a combination of Gaussian and speckle noises

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm
Wiener filter of size 4×4 followed

by median filter of size 3×3 24.27 195.14 0.095 5.59

MDE

algorithm

Lee filter of size 3×3 followed by

median filter of size 3×3 24.49 180.49 0.092 4.67

PSO

algorithm

Wiener filter of size 3×3 followed

by median filter of size 3×3 24.58 177.6 0.091 4.72

IWO

algorithm

Wiener filter of size 5×5 followed

by Gaussian filter of Size 3×3 and

sigma of 0.5
24.16 193.02 0.094 6.22

MFO

algorithm

Wiener filter of size 3×3 followed

by Lee filter of size 3×3 25.14 158.51 0.084 7.87

GOA
Wiener filter of size 3×3 followed

by average filter of size 3×3 24.08 264.4 0.104 5.62

GWO

algorithm

Lee filter of size 3×3 followed by

Wiener filter of size 3×3 24.98 155.04 0.086 6.82

GA Lee filter of size 3×3 followed by

Wiener filter of size 6×6 24.24 180.54 0.092 7.64

Nonlinear

programming

Median filter of size 4×4 followed

by Gaussian filter of Size 5×5 and

sigma of 0.7
15.24 1977.65 0.339 0.69

Median filter Size 4×4 19.51 336.96 0.116 4.06

Gaussian

filter
Size 4×4 and sigma of 0.4 17.93 985.79 0.223 2.18

Weiner filter Size 4×4 23.65 217.6 0.099 5.22

Average filter Size 4×4 21.90 234.15 0.100 5.88

Mode filter Size 4×4 15.06 2029 0.343 0.68

Lee filter Size 4×4 23.22 178.56 0.098 5.71

Frost filter Size 4×4 22.53 208.21 0.096 5.58

148

Table 21: Performance evaluation of different restoration models for “Image 5” corrupted

with a combination of Gaussian and salt and pepper noises

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm Frost filter of size 5×5 24.6 223.72 0.102 6.63

MDE

algorithm
Median filter of size 2×2 24.93 206.13 0.101 7.24

PSO

algorithm

Frost filter of size 4×4 followed by

Wiener filter of size 3×3 24.87 214.92 0.099 6.77

IWO

algorithm

Median filter of size 5×5 followed

by Wiener filter of size 2×2 24.39 373.08 0.129 3.67

MFO

algorithm
Median filter of size 3×3 25.06 180.19 0.095 8.61

GOA Frost filter of size 3×3 25.05 208.41 0.102 7.02

GWO

algorithm

Frost filter of size 4×4 followed by

Wiener filter of size 4×4 24.37 205.84 0.101 7.25

GA Frost filter of size 5×5 24.67 224.34 0.102
6.47

Nonlinear

programming

Gaussian filter of Size 2×2 and

sigma of 0.02 followed by median

filter of Size 2×2
21.16 414.73 0.133

3.59

Median filter Size 4×4 19.7 284.55 0.104 5.08

Gaussian

filter
Size 4×4 and sigma of 0.4 17.52 1075.86 0.198 1.38

Weiner filter Size 4×4 22.37 283.38 0.107 5.15

Average filter Size 4×4 20.85 239.55 0.106 6.13

Mode filter Size 4×4 14.13 2511.65 0.341 0.6

Lee filter Size 4×4 21.64 190.31 0.098 7.99

Frost filter Size 4×4 24.42 226.85 0.103 5.63

149

Table 22: Performance evaluation of different restoration models for “Image 6” corrupted

with a combination of speckle and salt and pepper noises

Restoration

model

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅

DE algorithm
Lee filter of size 3×3 followed by

Wiener filter of size 4×4 22.82 379.61 0.106 5.43

MDE

algorithm

Lee filter of size 3×3 followed by

Wiener filter of size 2×2 22.93 350.7 0.102 5.68

PSO

algorithm

Wiener filter of size 3×3 followed

by median filter of size 3×3 22.82 285.68 0.092 3.34

IWO

algorithm
Lee filter of size3×3 22.71 339.44 0.101 5.78

MFO

algorithm

Lee filter of size 3×3 followed by

Wiener filter of size 3×3 22.98 290.61 0.091 5.91

GOA
Lee filter of size 3×3 followed by

Wiener filter of size 6×6 22.39 323.4 0.098 5.83

GWO

algorithm

Wiener filter of size 3×3 followed

by median filter of size 2×2 22.75 297.94 0.093 3.25

GA Gaussian filter of Size 3×3 and

sigma of 0.54 followed by median

filter of Size 3×3
22.32 340.52 0.101 2.84

Nonlinear

programming
Median filter of size 3×3 19.72 720.69 0.144 2.72

Median filter Size 4×4 19.14 603.06 0.118 3.23

Gaussian

filter
Size 4×4 and sigma of 0.4 16.67 1382.63 0.193 1.31

Weiner filter Size 4×4 20.88 434.14 0.108 4.59

Average filter Size 4×4 20.04 448.64 0.111 4.32

Mode filter Size 4×4 10.28 6099.58 0.405 0.32

Lee filter Size 4×4 21.66 360.59 0.099 4.82

Frost filter Size 4×4 20.93 392.7 0.106 3.95

150

Table 23: Overall performance evaluation of the different types of restoration models

Restoration model 𝐀𝐏𝐒𝐍𝐑 𝐀𝐌𝐒𝐄 𝐀𝐍𝐀𝐄 𝐀𝐈𝐄𝐅

DE algorithm 24.94 180.71 0.06 6.82

MDE algorithm 25.23 177.59 0.059 6.9

PSO algorithm 24.56 184.26 0.061 6.71

IWO algorithm 24.32 186.57 0.062 6.65

MFO algorithm 25.36 176.32 0.059 7.18

GOA 23.92 191.71 0.064 6.54

GWO algorithm 25.11 178.72 0.059 6.86

GA 24.52 184.91 0.062 6.7

Nonlinear programming 20.3 415.34 0.099 3.09

Median filter 20.23 418.92 0.106 3.1

Gaussian filter 18.72 884.72 0.154 1.38

Weiner filter 22.73 290.04 0.093 4.26

Average filter 20.97 355.99 0.104 3.86

Mode filter 14.14 2701.5 0.284 0.53

Lee filter 22.47 241.72 0.09 5.17

Frost filter 21.68 291.38 0.096 4.34

151

Table 24: Filtering protocol for different types of noises

Type of noise Restoration

model

Optimum design of filter(s)

Gaussian MFO algorithm Wiener filter of size 3×3

Salt and pepper MFO algorithm Median filter of size 3×3

Speckle MFO algorithm Lee filter of size 3×3

Combination of Gaussian

and speckle noises
MFO algorithm

Wiener filter of size 3×3 followed by Lee

filter of size 3×3

Combination of Gaussian

and salt and pepper noises
MFO algorithm Median filter of size 3×3

Combination of Speckle and

salt and pepper noises
MFO algorithm

Lee filter of size 3×3 followed by Wiener

filter of size 3×3

152

Table 25: Statistical comparison between the different meta-heuristic-based restoration models based on two-tailed Student’s

t-test

Pair of meta-

heuristics

DE MDE PSO IWO MFO GOA GWO GA

DE H0

 (P −
value=1)

H1

(P − value

=2.46×10-2)

H1

(P − value

=9.69×10-3)

H1

(P − value

=3.39×10-3)

H1

(P − value

=2.6×10-3)

H1

(P − value

=1.41×10-4)

H1

(P − value

=4.32×10-2)

H1

(P − value

=1.2×10-5)

MDE H1

(P − value

=2.46×10-2)

H0

 (P −
value=1)

H1

(P − value

=7.6×10-2)

H1

(P − value

=1.89×10-2)

H1

(P − value

=1.47×10-3)

H1

(P − value

=5.14×10-4)

H0

(P − value

=2.38×10-1)

H1

(P − value

=2.02×10-3)

PSO H1

(P − value

=9.69×10-3)

H1

(P − value

=7.6×10-2)

H0

 (P −
value=1)

H0

(P − value

=2.92×10-1)

H1

(P − value

=2.09×10-3)

H1

(P − value

=1.11×10-4)

H1

(P − value

=4.07×10-2)

H0

(P − value

=8.53×10-1)

IWO H1

(P − value

=3.39×10-3)

H1

(P − value

=1.89×10-2)

H0

(P − value

=2.92×10-1)

H0

 (P −
value=1)

H1

(P − value

=8×10-4)

H0

(P − value

=1.76×10-1)

H1

(P − value

=1.29×10-2)

H0

(P − value

=4.25×10-1)

MFO H1

(P − value

=2.6×10-3)

H1

(P − value

=1.47×10-3)

H1

(P − value

=2.09×10-3)

H1

(P − value

=8×10-4)

H0

 (P −
value=1)

H1

(P − value

=2.9×10-5)

H1

(P − value

=9.65×10-6)

H1

(P − value

=1.27×10-7)

GOA H1

(P − value

=1.41×10-4)

H1

(P − value

=1.47×10-3)

H1

(P − value

=1.11×10-4)

H0

(P − value

=1.76×10-1)

H1

(P − value

=2.9×10-5)

H0

 (P −
value=1)

H1

(P − value

=6.47×10-4)

H1

(P − value

=3.46×10-2)

GWO H1

(P − value

=4.32×10-2)

H0

(P − value

=2.38×10-1)

H1

(P − value

=4.07×10-2)

H1

(P − value

=1.29×10-2)

H1

(P − value

=9.65×10-6)

H1

(P − value

=6.47×10-4)

H0

 (P −
value=1)

H1

(P − value

=2.52×10-4)

GA H1

(P − value

=1.2×10-5)

H1

(P − value

=2.02×10-3)

H0

(P − value

=8.53×10-1)

H0

(P − value

=4.25×10-1)

H1

(P − value

=1.27×10-7)

H1

(P − value

=3.46×10-2)

H1

(P − value

=2.52×10-4)

H0

 (P −
value=1)

153

Table 26: Statistical comparison of the developed restoration model against meta-heuristic-based models based on non-

parametric tests

Pair of meta-heuristics Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median

DE, MFO H1

(P − value

=8.58×10-5)

H1

(P − value

=1.64×10-3)

H1

(P − value =2×10-

3)

H1

(P − value

=3.13×10-4)

H1

(P − value

=1.8×10-2)

MDE, MFO H1

(P − value

=9.17×10-4)

H1

(P − value

=8.27×10-3)

H1

(P − value =8×10-

3)

H1

(P − value

=6.96×10-5)

H1

(P − value

=1.8×10-2)

PSO, MFO H1

(P − value

=1.73×10-4)

H1

(P − value =1×10-

5)

H1

(P − value =0)

H1

(P − value

=3.93×10-3)

H1

(P − value =1×10-

3)

IWO, MFO H1

(P − value

=3.2×10-5)

H1

(P − value

=4.4×10-6)

H1

(P − value =0)

H1

(P − value

=1.19×10-3)

H1

(P − value =5×10-

3)

GOA, MFO H1

(P − value

=1.11×10-6)

H1

(P − value

=4.01×10-8)

H1

(P − value =0)

H1

(P − value

=2.27×10-7)

H1

(P − value =0)

GWO, MFO H1

(P − value

=2.22×10-5)

H1

(P − value

=2.69×10-3)

H1

(P − value =3×10-

3)

H1

(P − value

=3.13×10-4)

H1

(P − value

=1.8×10-2)

GA, MFO H1

(P − value

=4.58×10-7)

H1

(P − value

=4.09×10-2)

H1

(P − value =1×10-

3)

H1

(P − value

=1.94×10-8)

H1

(P − value

=1.8×10-2)

154

Table 27: Average ranking of the meta-heuristic-based restoration models using Friedman

test and Friedman's aligned ranks test

Type of classifier Friedman Friedman's aligned

ranks

Differential evolution algorithm 4.41 144.33

Modified differential evolution

algorithm

3.88 109.05

Particle swarm optimization

algorithm

4.5 159.69

Invasive weed optimization

algorithm

5.27 181.61

Moth-flame optimization algorithm 1 29.77

Grasshopper optimization

algorithm

6.38 214.22

Grey wolf optimization algorithm 4.38 131.72

Genetic algorithm 6.13 185.58

155

Table 28: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the moth-flame-based restoration model using Nemenyi test, Holm test and Finner test

Pair of meta-heuristics Friedman Friedman's aligned ranks

Nemenyi Holm Finner Nemenyi Holm Finner

DE, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

MDE, MFO H1

(P − value

=2×10-5)

H1

(P − value

=1×10-5)

H1

(P − value =0)

H1

(P − value

=1.51×10-5)

H1

(P − value =0)

H1

(P − value =0)

PSO, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

IWO, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

GOA, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

GWO, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value

=1×10-5)

H1

(P − value =0)

H1

(P − value =0)

GA, MFO H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

H1

(P − value =0)

156

Table 29: Average run time in seconds of different restoration models 1

Average run

time

DE MDE PSO IWO MFO GOA GWO GA NLP Conventional

restoration

models

Training time 748.45 899.09 711.84 1304.62 915.38 1062.12 787.37 559.41 475.72 …

Restoration

time
2.93 2.7 3.15 3.83 2.69 3.16 2.94 3.17 2.69 2.89

 2

 3

AS 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

