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A Self-adaptive Exhaustive Search Optimization-based Method for 

Restoration of Bridge Defects Images 

ABSTRACT  

Existing bridges are aging and deteriorating. Furthermore, large number of bridges exist in 

transportation networks meanwhile maintenance budgets are being squeezed. This state of affairs 

necessities the development of automatic bridge defects evaluation model using computer vision 

technologies to overcome the limitations of visual inspection. The digital images are prone to 

degradation by noises during the image acquisition phase. The absence of efficient bridge defects 

image restoration method results in inaccurate condition assessment models and unreliable 

bridge management systems. The present study introduces a self-adaptive two-tier method for 

detection of noises and restoration of bridge defects images. The first model adopts Elman neural 

network coupled with invasive weed optimization algorithm to identify the type of noise that 

corrupts images. In the second model, moth-flame optimization algorithm is utilized to design a 

hybrid image filtering protocol that involves an integration of spatial domain and frequency 

domain filters. The proposed detection model was assessed through comparisons with other 

machine learning models as per split validation and 10-fold cross validation. It attained the 

highest classification accuracies, whereas the accuracy, sensitivity, specificity, precision, F-

measure and Kappa coefficient are 95.28%, 95.24%, 98.07%, 95.25%, 95.34%. 95.43% and 

0.935, respectively in the separate noise recognition module. The capabilities of the proposed 

restoration model were evaluated against some well-known good-performing optimization 

algorithms in addition to some conventional restoration models. Moth-flame optimization 

algorithm outperformed other restoration models, whereas peak signal to noise ratio, mean-

squared error, normalized absolute error and image enhancement factor are 25.359, 176.319, 

0.0585 and 7.182, respectively.  

Keywords: Bridge defects, computer vision, image restoration, Elman neural network, moth-

flame optimization, filtering protocol    
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1.  INTRODUCTION   

Bridges are regarded as one of the core elements of the infrastructure systems. Meanwhile, 

they are vulnerable to severe deterioration agents such as freeze-thaw cycles, excessive distress 

loads due to traffic overload, sulfates, alkali-silica reaction (ASR), poor construction practices, 

etc. Based on the Canadian infrastructure report card, 26% of the bridges are either in a “Fair”, 

“Poor” or “Very Poor” conditions. The backlog of maintenance, repair and rehabilitation 

activities is $10 billion. The continuous increase in the backlog results in a substantial 

degradation in the condition of the bridges. One-third of Canada’s bridges have structural or 

functional deficiencies with short remaining service life, whereas 20 million light vehicles, 

750,000 trucks, and 15,000 public transits use Canadian bridges annually [1]. The average age of 

the bridges is 24.5 years in 2007 compared to a mean service life of 43.3 years. Thus, 57% of the 

estimated service life has already been consumed [2].  

Based on the aforementioned statistics, it is very crucial to evaluate the condition of the 

bridge decks in order to maintain them within a safe condition. Thus, the detection and 

evaluation of surface defects are very essential for timely maintenance of various concrete 

bridges. Recently, the use of digital image processing to deal with the surface defects becomes a 

research trend because the accuracy and efficiency of visual inspection-based methods are highly 

dependent on the skills and experience of inspectors. Thus, the subjectivity associated with the 

visual inspection-based methods requires the development of an automated method that can 

efficiently evaluate the severities of surface defects based on machine vision technologies.  

The digital images are subjected to degradation by noise during the image acquisition stage 

or as a result of unfavorable conditions during image transmission. Noise is undesirable random 

fluctuations in the color and brightness of the image. The restoration of bridge defects images is 
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a pre-processing operation that involves two stages. The first stage is to determine which type of 

separate noise or combination of noises that corrupt the images. The second stage incorporates 

the application of a certain filtering method to remove noises from images. The inefficiency or 

the absence of one of the two stages can substantially affect the further feature extraction, 

detection and evaluation of surface defects. Thus, the restoration of bridge defects needs to take 

place to increase the prediction capacity of the surface defects evaluation method by enabling the 

precise extraction of important features of surface defects such as length and width of cracks and 

area of spalling. For instance, if a crack image corrupted with noise, is processed this can lead to 

inaccurate analysis and diagnosis of the surface defect.   

    In the view of the above, Noise detection and recognition is a key stage because it enables 

to determine the suitable filters to deal with the noise. Thus, having prior knowledge about the 

nature of the noise is fundamental in noise removal. Otherwise, noise removal can lead to image 

blurring. Furthermore, the process of noise removal while preserving as much as possible the 

edges and texture details of the image is a challenging task. Moreover, the task becomes more 

challenging when the images are subjected to a combination of noises. As such, the present study 

introduces a self-adaptive two-tier optimization-based method for the detection of noises and 

restoration of bridge defects images. Therefore, the main objectives of the present study are as 

follows:  

1- Develop a hybrid Elman neural network-invasive weed optimization model (ENN-IWO) for 

the detection and recognition of separate and combined noises in bridge defects images.  

2- Design a hybrid self-adaptive moth-flame optimization model for the restoration of bridge 

defects images.  
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3- Validate the previously-developed models through comparisons with other machine learning 

models reported in literature.  

2. LITERATURE REVIEW  

The literature review is divided into three sections: 1) overview of noise detection and removal 

models, 2) restoration of bridge defects images, and 3) research gaps.  

2.1 Overview of Noise Detection and Removal Models 

Noise detection is one of the key challenges in computer vision, whereas once the type of 

noise is correctly identified, the appropriate filtering method is applied to de-noise the captured 

image because poor de-noising often arises from the incorrect identification of the noise type. 

Karibasappa and Karibasappa [3] presented a method that integrated probabilistic neural network 

and fuzzy C-means clustering algorithm to classify the images based on the noise type. The 

addressed noise types were Gaussian white noise, speckle noise, salt and pepper noise and non-

Gaussian white noise. The classification of the noise types was based on statistic features, 

namely Kurtosis and skewness. Chuah et al. [4] utilized deep convolutional neural network for 

the detection of the presence of Gaussian noise and noise levels. The deep convolutional neural 

network was capable of the detection of 10 classes of noise levels with an overall accuracy of 

74.7%.       

Turajlic and Begovi [5] proposed a method for the detection of Gaussian noise levels using 

artificial neural network in the singular value decomposition domain. They investigated the 

computational time for different alternatives of block sizes. They concluded that the proposed 

method achieved the lowest mean-squared error in the case of low noise levels. Vasuki et al. [6] 

proposed a method for the classification of noise types based on artificial neural network. They 
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utilized some statistical features such as Kurtosis and skewness for the identification of the noise 

type. Artificial neural network yielded better classification results when compared to the K-

nearest neighbors algorithm, whereas the proposed method was capable of achieving an accuracy 

of 98.57%, 92.85% and 98.57% for Gaussian noise, salt and pepper noise and speckle noise, 

respectively.            

Noise removal is one of the most worked upon topics in the area of image processing in 

recent years. Gupta et al. [7] compared six types of filters as per their capabilities to remove 

speckle noise, Gaussian noise, salt and pepper noise and Poisson noise based on the mean-

squared error, peak signal to noise ratio and mean absolute error. They stated that the mean filter 

performed well in removing speckle noise, salt and pepper noise, and Poisson noise. On the other 

hand, Gaussian filter de-noised the Gaussian noise efficiently. Verma and Mehra [8] utilized 

particle swarm optimization algorithm to improve the performance of the median filter in de-

noising the images corrupted with the salt and pepper noise. They stated that the proposed 

method provided higher peak signal to noise ratio and higher image quality index when 

compared to the median filter and adaptive median filter. 

  Dass [9] introduced a method that integrated bacterial foraging optimization (BFO) 

algorithm, discrete wavelet transform and Wiener filter to remove speckle noise from captured 

images. BFO algorithm is applied to minimize the error between the restored image and the 

original image. The proposed method provided better restoration results in terms of mean 

absolute error and peak signal to noise ratio when compared to adaptive median filter and 

Wiener filter. Kumar et al. [10] presented a method that combined adaptive particle swarm 

optimization algorithm with fuzzy median filter for the restoration of noisy images. The 

proposed method achieved higher image de-noising when compared to the bilateral filter, Wiener 
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filter and median filter as per the peak signal to noise ratio and second derivative-like measure of 

enhancement.  

Wang et al. [11] developed margin setting algorithm to detect salt and pepper noise in 

digital images. Then, ranked order median filter was applied to de-noise the corrupted images. 

The developed noise detection model yielded less false positive rate than support vector 

machines. The ranked order median filter outperformed standard median filter as per peak signal 

to noise ratio, mean-squared error, image enhancement factor and structural similarity index. 

Zhao et al. [12] presented a model to supress noises in digital images based on Demspter-Shafer 

evidence theory. An improved accelerated algorithm within a sample window of size 2×2 was 

introduced for better noise detection existence. The developed model achieved higher peak 

signal to noise ratio when compared to the mean filter for different percentages of noise 

densities. They highlighted that the developed model provides a fast and efficient platform to 

remove noises from images. Ma et al. [13] developed a model that integrated fuzzy C-means 

clustering algorithm and non-local spatial information for image segmentation. The non-local 

means was utilized to restore the degraded images by restraining noises, and increase the 

segmentation capacity of the fuzzy C-means clustering algorithm by decreasing its sensitivity to 

the different types of noises. The developed model outperformed different variants of the fast 

generalized fuzzy C-means clustering algorithm based on a set of image segmentation quality 

indicators.   

2.2 Restoration of Bridge Defects Images 

Image restoration can be performed in several domains such as spatial domain and 

frequency domain. Most of the previous reported efforts in the literature utilized standalone 

filters for image restoration purposes in bridges. Tong et al. [14] introduced a method for image-
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based crack detection to facilitate the inspection process in reinforced concrete bridges. Gaussian 

filter was used to remove the noise and enhance the image quality. Morphological operations are 

used to ensure the connection between the crack segments. The objective of the proposed method 

was to determine whether or not the images contained cracks. The proposed model achieved an 

accuracy of 93% and it outperformed some other methods such as Fujita method, canny edge 

detection method and Sobel edge detection method. Adhikari et al. [15] developed an artificial 

neural network-based model to predict the depth of the crack given a certain crack width based 

on an input dataset of 101 images of bridges. Median filter was applied to smooth images, which 

enabled the accurate interpretation of cracks. They also developed an approach based on spectral 

analysis to detect the change in crack patterns over time by converting digital images to the 

frequency domain using Fast Fourier Transform (FFT). 

Yao et al. [16] presented a bridge crack detection and classification model based on a 

climbing root using a set of image processing techniques. Wiener filtering method was applied to 

remove the motion blur of the acquired images. Then, the wavelet transform was employed to 

minimize the texture effects of the crack area and finally, support vector machine (SVM) was 

implemented to classify the cracks and evaluate their severity levels. Lee et al. [17] developed a 

bridge inspection system using an unmanned aerial vehicle (UAV). Median filter was used to 

remove the noises and blurring present in images. Otsu method was applied to segment the 

images to objects of interest and background. Then, the crack properties in the HSV space were 

used to distinguish between cracks and other surface irregularities. They highlighted that their 

model was capable of detecting cracks measured in micrometers.       

Ellenberg et al. [18] developed a bridge damage quantification model using digital images 

collected from unmanned aerial vehicles. Median filter was applied to remove the noise and 
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enhance the contrast in images. The proposed method combined high-resolution cameras with 

camera calibration and homography for tracing of cracks. They highlighted that the proposed 

method was capable of detecting cracks in images, which could eventually provide efficient 

bridge inspection models. Lei et al. [19] developed a method for crack detection method using 

unmanned aerial vehicle technology combined with digital image processing. Gaussian filter was 

applied to remove noise from images. The developed crack central point method outperformed 

other edge detection methods such as Canny algorithm, Sobel algorithm, Laplacian of Gaussian 

and Prewitt algorithm.  

Li et al. [20] introduced a two-stage crack detection method based on convolutional neural 

network. A median filter was applied to de-noise the input images for further processing stages. 

The first stage involved feeding a small patch centering each pixel into the predictor to compute 

the probability that a pixel belong to a cracked area. In the second stage, a bigger patch elicited 

from the first confidence map is fed into the second predictor to obtain a second confidence map. 

Finally, the two confidence maps are combined to generate a final confidence map, which is used 

to map whether or not a certain pixel belong to cracked regions. The introduced method 

outperformed the canny edge detector method and STRUM (Spatially tuned robust multi-feature) 

method as per accuracy, precision and sensitivity. Dinh et al. [21] introduced a computer vision-

based method for concrete crack detection. Average filter was applied to smooth the input 

images and remove the blob-like noise. A non-parametric peak detection algorithm was 

developed for binarization purpose in order to be able to differentiate defected and non-defected 

regions. They highlighted that the proposed method provided satisfactory results in the case of 

high noisy background images and low contrast images.   
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Wang et al. [22] proposed a method for crack detection in concrete bridges based on a set 

of image processing techniques. Adaptive filtering was integrated with contrast enhancement to 

eliminate the background noise and facilitate the accurate extraction of crack features. Then, a 

hybridization of Otsu and modified Sobel operator was applied for the detection of cracks. The 

proposed method achieved an absolute error of 0.02 mm in the detection of cracks width. Ho et 

al. [23] introduced a method for the damage detection of cable surface in cable-stayed bridges. 

Median filter was applied for noise reduction and histogram equalization. Then, the input images 

are mapped to principal component analysis space, where the Mahalanobis square distance was 

utilized to determine the distances between the input images and sample patterns, and eventually 

building the pattern recognition model.  

Lee et al. [24] designed a machine vision robotic system to automate the inspection process 

of bridges. The developed system enables the user to evaluate the cracks in real-time based on a 

dataset of 100 noisy images. Median smoothing filter was applied to remove noises and to ensure 

uniform brightness through the image. Then, dilation and thinning morphological operations 

were utilized to maintain the connections between the crack segments. They demonstrated that 

the developed method yielded higher detection accuracies when compared to Sobel, Canny and 

Fujita methods. Pavithra et al. [25] proposed a computer vision-based method for the detection of 

cracks in reinforced concrete bridges. Then, median filter was applied to remove the salt and 

pepper noise present in images. Morphological segmentation was utilized to detect cracks in 

images using some operations such as dilation and erosion. The grey level co-occurrence matrix 

and statistical features were used to feed the detection model. Finally, the cascaded random 

forest classifier was applied to decide whether the images contain cracks or not.  
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2.3 Research Gaps  

Based on the aforementioned studies, most of the restoration methods of bridge defects 

images are lacking a comprehensive investigation of the type of noise that the images are 

corrupted with. Moreover, the restoration of bridge defects images is a problem-dependent in 

real- time environment, i.e., applying a filtering method without specifying the type of noise 

leads to poor de-noising results under these conditions. Thus, it is decisive to find a method 

which aims to intelligently evaluate if an image is corrupted with noise, and what type of 

separate or mixed noise is corrupting the image before applying the de-noising method. The 

images which are corrupted with a mixture of noises create an amplified challenge to remove the 

mixed noise without compromising the edge sharpness and important features. As such, building 

a generic model which is irrespective of a specific type of noise can provide more robustness to 

the proposed method. Absence of noise detection models can lead to image blurring due to the 

application of incorrect or underperforming image restoration models. This will remarkably 

affect the following bridge defects evaluation procedures including: bridge defects severities 

extraction and detection, and eventually the accuracy of diagnosis of bridge defects severities.  

In addition to that, most of the previous studies utilized a single filter such as median, 

mean or Gaussian filters to deal with different types of noises. Nevertheless, a single filter fails 

to deal with all types of noises, whereas some filters behave efficiently with some types of noises 

and fail to deal with others. Another issue in the reported de-noising methods is the parameter of 

the filters, whereas most of the filtering methods proposed in the literature are attribute or 

threshold governed such as mask size of 4×4. The window size selection in the neighborhood 

filters is a key issue in de-noising, whereas smaller window sizes sometimes don’t completely 

remove the noise while larger window sizes sometimes lead to edge blurring. The absence of 
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noise detection models and inefficient restoration methods lead to the establishment of inaccurate 

condition assessment models and unreliable deterioration models, which eventually leads to 

inefficient bridge management systems. Thus, the present study proposes a self-adaptive 

restoration method which can automatically detect and recognize the type of noise in bridge 

defects images. Moreover, it designs an image filtering protocol for each type of noise which can 

remove the noise in bridge defects images and preserve their edges and other features without 

human handpicking of the parameters.       

3. PROPOSED METHOD  

The ultimate objective of the proposed method is to design a filtering protocol for how to 

deal with different types of separate or mixed noises that corrupt bridge defects images. The 

proposed method is a two-tier framework for the automatic recognition of noise and restoration 

of degraded bridge defects images. The framework of the proposed restoration method of bridge 

defects images is depicted in Figure 1. The first model is the automatic classification of noises, 

whereas three modules are developed for the detection and recognition of noise types based on 

the level of details the asset managers are concerned with. The first module is the noise 

detection, whereas a binary classification module is constructed to classify the images based on 

the existence of noise, i.e., to classify whether the image is corrupted with noise or not. The 

second module is the separate noise recognition, whereas it is formulated as a four-point 

classification problem to provide a higher level of detail. The output of this module is to identify 

whether the image is corrupted with speckle noise, salt and pepper noise, or Gaussian noise or 

not corrupted with the noise. The third classification module is the combined noise recognition 

such that it provides the highest level of detail based on a formulation of a seven-point 

classification problem. This module is used to identify whether the image is corrupted with 
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speckle noise, salt and pepper noise, Gaussian noise, combination of speckle and salt and pepper 

noises, combination of  speckle and Gaussian noises, combination of salt and pepper and 

Gaussian noises, or not degraded with noise.   

INSERT FIGURE 1 

For the first phase, the first step is to convert the RGB image into a gray-scale image, 

whereas the intensity values of the gray-scale image vary from 0 to 255. For the RGB image, R 

stands for red, G stands for green, and B stands for blue. The gray-scale images can improve the 

process of image processing without losing important features of the distress. Then, the 

converted images are standardized to a size of 200×200 to ensure same size images in the 

training and testing processes of the neural network, and to speed up the computational process. 

The next step is to convert the noise free image into a noisy image. Different combinations of 

separate and mixed noises are added to create the noisy images. Then, a set of statistical features 

are extracted from the noisy images to be able to classify the noise present in the image. The 

statistical features include: mean, mode, median, range, standard deviation, skewness, kurtosis, 

75th percentile and 50th quartile.  

Training Elman neural networks with meta-heuristic optimization algorithms is a 

powerful tool to improve the search engine of the Elman neural network by addressing the 

exploration-exploitation trade-off dilemma. The proposed method utilizes invasive weed 

optimization algorithm is used for both parametric and structural learning, i.e., to automatically 

optimize the weights and define the best possible architecture of the Elman recurrent neural 

network. The Elman neural network is trained by designing a variable-length single-objective 

optimization problem which encompasses a fitness function of minimization of misclassification 

error. The steps of the invasive weed optimization algorithm are repeated until satisfying the 
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convergence criteria, i.e., reaching maximum number of iterations. The optimized Elman neural 

network is saved and utilized to simulate the testing dataset.  

The proposed method is compared with five other machine learning models to 

demonstrate the capabilities of the proposed noise detection and recognition method. The five 

models are discriminant analysis (DA), K-nearest neighbors (KNN), random forest (RF), support 

vector machines (SVM) and back-propagation artificial neural network (ANN). The comparison 

is conducted based on six performance metrics, namely precision, F-measure, sensitivity, 

specificity, accuracy and Kappa coefficient. The performance of the different noise detection and 

recognition models were evaluated using split validation and 10-fold cross validation. The K-

fold cross validation is applied to ensure the training and testing of the entire dataset, which rules 

out any possibility of over-fitting or over-learning in the pattern recognition phase. Finally, 

parametric and non-parametric tests were performed between each pair of classifiers to evaluate 

the statistical significance level of the outcome of classifiers using the performances of the 

different folds. The parametric test is the Student’s t-test while the non-parametric tests are 

Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test, binomial sign test, Mood’s median 

test, Friedman test and Friedman's aligned ranks test [26, 27].     

After mapping each image to a specific type of noise or noises, the second model is the 

restoration of bridge defects images. Image restoration aims at removing the maximum 

undesirable noise from the captured images and trying to bring the noisy image as much as 

possible to its un-degraded ideal state. Assume a degradation function H and a noise function 

n(x, y) which are added to the original image A(x, y) to produce the degraded image G(x, y). The 

objective of the restoration function is to obtain the reconstructed image A^(x, y) and at the same 

time to be as close as possible to the original image A(x, y). The degraded image in the spatial 
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domain can be expressed using Equation (1). As shown in Equation (1), based on the type of 

noise and degradation present in the image, an optimization problem is designed in order to 

define optimum configuration and parameters of the restoration method that can better filter out 

the noise present in the image and build the reconstructed image [28, 29]. 

G(x, y) = h(x, y) × A(x, y) + n(x, y)                                                                                                        (1) 

Where; 

h(x, y) represents the spatial representation for the degradation function. The symbol × indicate 

the spatial convolution.  

After loading the degraded image, a self-adaptive hybrid filtering model is developed 

based on designing a variable-length optimization problem that considers a combination of 

spatial domain and frequency domain filters to provide more in-depth evaluation and better-

restored images. The smoothing filters used in the present study are median filter, mean filter, 

mode filter, Wiener filter, Gaussian filter, Lee filter and Frost filter of variable sizes. The 

proposed model employs moth-flame optimization algorithm to search for the optimum structure 

and parameters of the restoration method using a single objective function that maximizes the 

peak signal to noise ratio, i.e., minimize the difference between the original image and 

reconstructed image of bridge defects. The superior capacity of the moth-flame optimization in 

exploration and exploitation motivated its application in solving the restoration problem of 

bridge defects images.  

In addition to investigating different combinations of filters, the proposed method 

explores the effectiveness of the sequence of applying the filters, whereas the sequence of 

applying the smoothing filters can substantially affect the quality of the restored images. For 
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instance, the quality of the restored image when applying the median filter followed by the 

Wiener filter is different from applying the Wiener filter followed by the median filter. Thus, the 

objective of the proposed method is to define for each noise the following: optimum number of 

filters, optimum types of filters, optimum sequence of applying the filters, and optimum tuning 

parameters (governing attributes) of the applied filters.  

The proposed method is validated on two stages. For the first stage, the proposed method is 

compared with the conventional filtering methods found in the literature. For the second stage, 

the proposed method is compared with a set of optimization algorithms which are: invasive weed 

optimization algorithm, differential evolution algorithm, modified differential evolution 

algorithm, grasshopper optimization algorithm, grey wolf optimization algorithm, particle swarm 

optimization algorithm, genetic algorithm and non-linear programming algorithm. This 

comparison is conducted to investigate the capacity of the proposed restoration method to search 

for the global optimum solutions in case of large search space and complex optimization 

problems against a set of well-known efficient meta-heuristics and exact optimization algorithm. 

The performances are assessed as per four performance metrics, namely peak signal to noise 

ratio (PSNR), mean-squared error (MSE), normalized absolute error (NAE) and image 

enhancements factor (IEF). Eventually, the significance level of the optimal solutions of the 

different meta-heuristic optimization algorithms is evaluated using the same parametric and non-

parametric tests of the noise detection and recognition model.    

4. TYPES OF NOISES  

Noise represents unwanted information that degrades the quality of the image. The present 

study deals with three types of noises which are: Gaussian noise, salt and pepper noise and 

speckle noise [29, 30].   
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4.1 Gaussian Noise 

Gaussian noise is the most common noise present in the image which mainly affects all the 

pixel values. Gaussian noise is a statistical noise that the Gaussian probability density function as 

shown in Equation (2). This type of noise is sometimes called “white noise”, which causes the 

image to be blurry. 

f(g) =
1

√2πσ2 
e
−(

g−µ
2σ2)

2

                                                                                                                               (2) 

Where; 

g represents the gray level. µ and σ2 represent the mean and variance of the noise, respectively.  

4.2 Salt and Pepper Noise  

Salt and pepper noise usually occurs due to errors during the image transmission phase, 

whereas the intensity of the corrupted pixel either has an intensity which is either very high or 

very low compared to the neighboring pixels. A pixel is called a “salt” pixel if its intensity is 

very high and it is called a “pepper” pixel if its intensity is very low. This type of noise is 

demonstrated in the form of dark pixels (black dots or pepper) in bright regions and bright pixels 

(white dots or salt) in dark regions.  

4.3 Speckle Noise  

Speckle noise is a granular noise that affects all the inherent characteristics of the image 

and increases the mean grey level in a local area. This type of noise is sometimes called “Data 

missing” noise, which occurs due to loss of data during the image transmission. The corrupted 

pixels are set to maximum value and the speckle noise follows a gamma distribution as 

illustrated in Equation (3).  
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f(g) =
gα−1

(α − 1)!
e
−g
σ2                                                                                                                                       (3) 

Where; 

𝛼 represents the shape parameter of the speckle noise distribution.  

5. TYPES OF FILTERS  

Image restoration can be performed in several domains such as spatial domain and 

frequency domain. The present study investigates a set of spatial domain filters (mean, median, 

mode, Gaussian, Lee, and Frost) and a frequency domain filter (Wiener filter). Spatial domain 

techniques deal directly with the pixel intensities present in the image. However, frequency 

domain filters are based on the Fourier transform of the image. 

5.1  Average Filter  

Mean filter is a simple and easy algorithm that is utilized to remove irrelevant details in the 

image. It is used to minimize the noise in the image by minimizing the intensity variations in the 

image pixel and the next pixels. Average filter is based on computing the sum of all pixels in the 

filter window and dividing them by the number of pixels. Then the center pixel is replaced by the 

average value. The 2D mask (window) is applied to each pixel in the image. The larger the 

window size, the more noise can be removed effectively however; this can result in a blur image 

[29, 30].      

5.2 Median Filter 

Median filter is a non-linear filter that is mainly utilized to remove speckle noise and salt 

and pepper noise. Median filter helps in decreasing the intensity variations between a certain 

pixel and its neighboring pixels as the average filter. However, median filter provides a better 
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alternative to filter out the noise, smooth the image and preserve its details than the average filter 

because it is less sensitive than the average filter to the outliers. The median filter is performed 

through a 2D mask, which is transferred across the whole pixels of the image. The median value 

is computed by first arranging the pixel intensities in an ascending order and then the pixel is 

replaced by the middle pixel value. If the number of neighboring pixels is equal to an even 

number, then the pixel value is replaced by the average of the two middle pixel values. The 

median filter is not efficient when dealing with images, where half of the pixel values are 

affected. Thus, the median filter is not effective in removing Gaussian noise from images [29, 

30].  

5.3 Mode Filter 

Mode filter is performed through a 2D mask applied to each pixel value, whereas each 

pixel value is replaced by the mode value of the neighboring pixels. 

5.4 Gaussian Filter  

Gaussian filter is used to smooth images by removing the Gaussian noise. Gaussian 

smoothing filter is utilized to remove the noise based on a Gaussian kernel function using 

Equation (4) [31]. 

G(x, y) =
1

2πσ2 
e
x2+y2

2σ2                                                                                                                                  (4) 

Where; 

x represents the distance from the origin in the horizontal axis. y represents the distance from the 

origin in the vertical axis. σ indicates the standard deviation of the Gaussian distribution.  
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5.5 Wiener Filter  

Wiener filter is a de-noising method that works in the frequency domain to filter out the 

noise from a corrupted signal and improve the signal to noise ratio. As mentioned before, the 

Wiener filter is a frequency domain filter, which means that it utilizes discrete Fourier transform 

(DFT) to transform the degraded image to the frequency domain. Wiener filter is an optimal 

image filtering technique that is used to minimize the mean square error between the restored 

image and the original image. The Fourier transform of the restored image can be expressed 

using Equation (5).  As shown in Equation (5), the Fourier transform of the restored image is 

equal to the product of the Wiener filter and the original image.  

F^(u, v) =  G(u, v) × A(u, v)                                                                                                                     (5) 

Where; 

F^(u, v) represents the Fourier transform of the original image. G(u, v) represents the Wiener 

filter. A(u, v) indicates the original image.  

The Wiener filter can be obtained using Equation (6). The term 
Sn

Sf
  is replaced by a 

frequency independent constant called K. Then a suitable value of the constant K that achieves a 

suitable restored image can be obtained by minimizing the mean squared error between the 

original image and the restored image [31, 32].  

G(u, v) =
H∗(u, v)

|H(u, v)|2 +
Sn

Sf

                                                                                                                           (6) 

Where; 
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H∗(u, v) denotes the Fourier transform of the degradation function. H(u, v) represents the 

degradation function. Sn and Sf represent the power spectrum of the noise and power spectrum of 

the un-degraded image, respectively.  

5.6 Lee Filter  

Lee filter is a spatial filtering method based on the first order of statistics to reduce noise 

present in images and preserve their details. It depends on the minimum mean-squared error to 

attain the noise free images. The pixel being filtered is replaced by a value calculated based on 

the neighboring pixels. Lee filter assumes that the speckle noise is uniformly distributed all over 

the image. Thus, it sometimes causes blurring of the edges as a result of the sudden change in the 

pixels’ intensity at the edges. The restored image is obtained as follows [33, 34].  

R^(τ) =  R^(τ) − W(τ)[ F^(τ) − F(τ)]                                                                                                 (7) 

Where; 

R^(τ) represents the restored image. F(τ) indicates the noisy image. F^(τ) represents the mean 

value of F(τ). W(τ) is the weighted function and can be obtained using the following Equations. 

W(τ) =
var(τ)

[F^(τ)]2σ2 + var(τ)]
                                                                                                                  (8) 

var(τ) =
σI

2 + µI
2

σ2 + 1
− µI

2                                                                                                                            (9) 

Where; 

var(τ) represents the variance of the pixel being filtered. σ2 represents the global variance of the 

noisy image. σI
2 and µI

2 indicate the local variance and local mean, respectively.  
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5.7 Frost Filter  

Frost filter is an exponentially weighted average filter that utilizes local statistics to reduce 

noise. Frost filter can be used to remove multiplicative noise from images, whereas it is based on 

the computation of variation, which is the ratio of the local standard deviation to the local mean 

of the noisy image. Thus, for high coefficients of variation, the sharp features in the image are 

preserved while the frost filter acts like the average filter for low coefficients of variation. The 

frost filter can be described as follows [33, 34].  

R^(τ) = ∑ Kαe−α|t|                                                                                                                                (10)

n×n

 

Such that; 

α =
4

nσ^2
×

σ2

I2
                                                                                                                                           (11) 

t = |X − Xo| + |Y − Yo|                                                                                                                            (12) 

Where; 

K is a normalizing constant. σ2 represents the local variance. σ^2 is the image coefficient of 

variation. I is the local mean. n is the moving kernel size.  

6. MODEL DEVELOPMENT 

This section describes in-detail the developed noise detection and recognition model in 

addition to the restoration models of bridge defects images presented in the “Proposed Method” 

section.   

6.1 Noise Detection and Recognition Model   

The present study a self-adaptive hybrid Elman hybrid ENN-IWO model to automatically 

train and classify the retrieved degraded images of bridge defects based on the noise type. The 



23 

 

following section discusses the basic theories of the Elman neural network and invasive weed 

optimization algorithm in addition to the hybrid ENN-IWO model for noise detection and 

recognition in bridge defects images.    

6.1.1 Basic theory of Elman neural network  

Elman neural network (ENN) is one of the recurrent neural networks (RNNs), which was 

proposed by Jeffrey Locke Elman in 1990 [35]. Elman neural network is characterized by 

additional context layers, which helps in providing a memory about the results of the 

computations done so far. The connections and dependencies between the layers form a directed 

cycle, which enables the neural network to preserve a state between the subsequent time steps 

[36]. The main difference between the conventional feed-forward neural networks and recurrent 

neural networks is that in the case of RNNs, the output at each time step depends on the previous 

inputs and previous computations by memorizing previous events while in the feed-forward 

neural network, outputs are independent of each and the network output depends only on the 

current time step [37, 38].  

The architecture of the Elman neural network is depicted in Figure 2. Elman neural 

network is composed of: input layer, hidden layer, context layer, and output layer, whereas 

number of neurons in the context layer is the same as number of neurons in the hidden layer. The 

neurons in each layer are used to propagate information from one layer to the subsequent layers. 

The connections of hidden layers entering the context layer are not weighted while the connections of 

the context layer entering the hidden layer are weighted. Elman neural network is considered as a 

recurrent neural network because it has a feedback loop, which has a substantial impact on 

improving the learning capability of the network, which consequently enhances the performance 
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of the neural network. The feedback loop incorporates the use of unit-delay element (Z−1), which 

provides a non-linear dynamic behaviour to the neural network.      

INSERT FIGURE 2 

The context layer takes its input from the output of hidden layer. Then, the context layer 

feeds into the hidden input layer. Therefore, the output of the hidden layer is going into two 

layers: context layer and output layer. The output from the hidden layer are sent into the context 

layer, stored, and fed through the weights into the hidden layer in order to rely on this 

information in the next iterations, so the neural network is constantly remembering the output 

from the hidden layer and re-feeding this output from the previous iteration into the hidden layer. 

This behaviour enables the neural network to maintain short term memory, which improves the 

network performance [39, 40].  

The output of the hidden layer  and output layer can be calculated using Equations (13) 

and (14), respectively.  

X(k) = f(W2Xc(k) + W1U(k − 1))                                                                                                        (13) 

Y(k) = g(W3X(k))                                                                                                                                     (14) 

Give that:  

Xc(k) = X(k − 1)                                                                                                                                       (15) 

Where; 

W1 represents the weight of the input later to the hidden layer. W2 represents the weight of the 

context layer to the hidden layer. X(k) is the output of the hidden layer. Xc(k) is the output of the 

context layer. U(k − 1) is the input of the neural network. Y(k) is the output of the neural 
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network. f represents the transfer (activation) function at the hidden layer. g is the transfer 

function at the output layer.  

Gradient descent (GD) algorithm is considered as one of the most commonly utilized 

algorithms to train the Elman neural network and back propagation neural networks. The 

networks are called “back propagation” because the error is computed at the output layer based 

on the desired and predicted output for each input value, and then the error distributed 

(propagates) backwards through the network layers from the output to the hidden layers and then 

further to the input layer. Gradient descent algorithm is based on finding the partial derivative of 

the error function to update the weights of the connections. The optimum weights are obtained 

based on minimizing the error function, which can be expressed as the sum of squared error 

(SSE) of the predicted and actual values. The error (cost) function is calculated using Equation 

(16).  

E = ∑(Pt − Ot)
2

N2

t=1

                                                                                                                                      (16) 

Where; 

E represents the error function, i.e., the objective function, which should be minimized within 

each training epoch. Pt and Ot represent the predicted and actual values, respectively.  

Based on the gradient descent algorithm, the weights are adjusted during each training 

epoch (k) based on Equation (17), whereas the error partial derivative is computed during each 

training epoch and subsequently, as per the error partial derivative and the learning rate, the 

weights are updated [41].  
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Wij(k + 1) = Wij(k) + ∆ Wij((k)  =  Wij(k) − η ×
∂E(k)

∂Wij
                                                             (17) 

Where; 

∆ Wij((k) represents the adjustment or increment in the weights (weight updates). Wij(k + 1) 

and Wij(k) represent the new (updated) and current (old) weights, respectively. η depicts the 

learning rate. 
∂E(k)

∂Wij
 represents the error partial derivative with respect to the weights.  

6.1.2 Basic theory of invasive weed optimization algorithm   

Invasive weed optimization (IWO) algorithm is a meta-heuristic bio-inspired 

optimization algorithm that was developed by Mehrabian and Lucas in 2006. IWO algorithm is 

exhaustive search engine that demonstrated its capabilities in exploring complex and multi-local 

search spaces. Moreover, it manifested its superiority over some of the best-performing 

optimization algorithms. IWO algorithm is based on simulating the invasive behaviour of weed 

in colonizing and finding the most suitable place for growth and reproduction. Weeds are robust 

and undesirable plants that grow spontaneously and they can have a harmful effect on both farms 

and gardens. The computational procedures of the invasive weed optimization algorithm are 

discussed in the following lines [42, 43]. 

The first stage is to create an initial population of weeds that are spread in the i-

dimensional search space. The fitness of each weed within the population is then computed 

based on a predefined objective function. The production of seeds associated with each weed is 

calculated based on a linear function, where the number of seeds varies between the minimum 

and maximum number of seeds. Each weed in the population produces seeds based on its own 

comparative fitness value, maximum and minimum fitness values within the population, and the 
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maximum and minimum number of seeds. The reproduction of seeds is shown in Equation (18) 

where the higher the fitness of the weed, the more seeds it produces  

Seedi =
fi − fmin

fmax−fmin

 × (smax − smin) + smin                                                                                         (18) 

Where; 

 Seedi represents number of seeds associated with the i − th weed. fi represents the current 

fitness of the weed. fmax, and fmin represent the maximum and minimum fitness of the current 

population, respectively. smax, and smin denote the maximum and minimum number of seeds, 

respectively.  

The following stage is the spatial dispersion, where the seeds are randomly scattered in 

the search space based on a normal distribution of a mean equal to zero and an adaptive varying 

standard deviation. This step ensures that the seeds are accumulated around the weed plant, 

which leads to a local search around each parent weed. The standard deviation of the seed 

dispersion is reduced from an initial predetermined maximum value to an initial predetermined 

smaller value based on a non-linear function as shown in Equation (19). The probability of 

finding a seed far from the weed plant is high at the beginning of the optimization process and it 

decreases within a predefined number of iterations.  

σi = σmin + (
itermax−iter

itermax−itermin
)
p

× (σmax − σmin)                                                                                (19)                             

Where; 

σi indicates the standard deviation of the current iteration. σmax, and σmin indicate the initial and 

final standard deviation of the optimization process, respectively. itermax represents the 
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maximum number of iterations. p represents non-linear modulation index, and usually, it is a 

number between two and three.  

Finally, competitive exclusion is performed because the number of weeds and seeds 

reaches the maximum population size due to the fast reproduction (exponential increase in the 

number of plants). The parent weeds alongside with the seeds are ranked based on the fitness 

value in order to eliminate the solutions with the least fitness values to keep the number of the 

weed plants and seeds within the maximum allowable population size. The seeds and their parent 

weeds with higher fitness survive, and become reproductive. The process continues until the 

convergence criteria are met (reaching the maximum number of iterations).  

6.1.3 Hybrid ENN-IWO for noise detection and recognition 

The proposed method utilizes invasive weed optimization algorithm to train the Elman 

neural network. This is expected to enhance the search mechanism of the Elman neural network, 

which leads to improve its recognition capacity of the noise type in the bridge defects images. 

The IWO is utilized to optimize the ENN for two main reasons which are: inferior accuracy and 

convergence of the gradient descent algorithm, and manual tuning of the parameters of Elman 

neural network. The training process based on the gradient descent usually gets trapped in a local 

minima or premature convergence and sometimes causes over-fitting problems especially in the 

case of presence of multilayer neural network. The multi-layer neural network is normally 

associated with large search space, multi-local minima points, non-differential function and 

complex multi-dimensional curve. Moreover, in some cases, the global minimum is hidden 
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between the local minima. Thus, the gradient descent algorithm can end up oscillating between 

the local minima. 

 The second reason is the existence of wide range of parameters, which substantially 

affect the performance of the neural network. These parameters are sensitive to the initial values, 

whereas their initial setting is always variable from one case to the other. For instance, there is 

no exact method to define the number of hidden neurons, whereas most of the equations present 

in the literature are case dependent and cannot be generalized. As such, if the number of hidden 

neurons is less than the optimum number, then the accuracy will be so much affected. However, 

if the number of hidden neurons is more than optimum number, this will consume so much 

training time. Thus, the blindness in the determination of such parameters can result in the 

network to be trapped in an inferior solution and subsequently a long computational time of the 

training process and slow convergence. Thus, a self-adaptive model is designed in order to 

automatically and dynamically tune the input parameters based on the available dataset of bridge 

defects images.  

In the present study, eight types of transfer functions are investigated. The hyperbolic 

tangent sigmoid transfer function, log-sigmoid transfer function, Elliot symmetric sigmoid 

transfer function and linear transfer function are shown in Equations (20), (21), (22) and (23), 

respectively. Positive linear transfer function, triangular basis transfer function, radial basis 

transfer function and normalized radial basis transfer function are depicted in Equations (24), 

(25), (26) and (27), respectively.   

f(x) =
2

(1 + е−2x)
 − 1                                                                                                                              (20) 
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f(x) =
1

(1 + е−x)
                                                                                                                                        (21) 

f(x) =
x 

1 + |x|
                                                                                                                                             (22) 

f(x) = x                                                                                                                                                         (23) 

f(x) = {
          x, if x ≥ 0           

0 , if x < 0
                                                                                                          (24) 

f(x) = {
          1 − |x|, if − 1 ≤  x ≤ 1           

0 , otherwise
                                                                                 (25) 

f(x) = е−x2
                                                                                                                                                   (26) 

f(x) =
е−x2

∑ е−x2
 E

x=1

                                                                                                                                       (27) 

Where; 

x represents the input of the transfer function. f(x) represents the output of the transfer function. 

E indicates the size of the entries of the transfer function.  

Optimality theory is mainly based on the fixed-length assumption, whereas most of the 

optimization algorithms utilize a fixed-length vector of decision variables to represent a solution. 

However, some few cases present in the literature for the variable-length optimization problems, 

whereas the number of decision variables changes over the number of iterations (training 

epochs). The variable-length optimization problems are more complex and require more 

computational effort when compared to the fixed-length optimization problems [44]. In the 

variable-length optimization problems, there is no clear definition for the gradient vector for the 

variable-length problem. Thus, the gradient-based methods are inefficient in dealing with such 
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problems. Some ways to deal with such problems is to assume a fixed length for the decision 

variables and to tune iteratively the decision variable that causes variability in length. However, 

this method leads to suboptimal solutions. Moreover, it is impractical and inefficient method if 

the ranges of the decision variables are very wide. Therefore, the better approach is to design a 

model whose vector of solutions vary in length within the training epochs.     

The development made in the use of Invasive weed optimization as a training mechanism 

includes optimization of both architecture and parameters of the Elman neural network. This 

encompasses selection of most suitable transfer functions between the network layers, number of 

hidden layers and hidden neurons, number of context layers and context neurons, and values of 

weights and bias terms. As a result of the structure and parameter learning of the proposed 

training paradigm, a variable-length optimization model is designed, whereas its length varies 

iteratively as per the number of hidden layers, hidden neurons, context layers and context 

neurons. As such an estimator is designed to handle the dynamism of the configuration of the 

ENN and to gives the user the flexibility to design a multi-hidden layer and a multi-context layer 

neural network based on the input dataset of bridge defects images. This is done by computing 

the number of weights and bias terms in each training epoch. The estimator can be 

mathematically defined using Equation (28).  

Num = ((I + 1) × N) + ((N × C × P + ((N + 1) × N × (P − 1)) + ((N + 1) × O)               (28) 

Where; 

Num represents the total number of weights and bias terms. I represents the number of 

input neurons. N indicates the number of hidden neurons. C represents the number of neurons in 

the context layer. P represents number of hidden and context layers. O depicts the number of 
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output neurons. For simplification purposes, the number of context layers is assumed to be equal 

to the number of hidden layers 

Elman neural network is trained using a single objective function which minimizes the 

misclassification error of the noise type of the bridge defects images. Therefore, the developed 

optimization model establishes a dynamically changing optimum configuration and 

characteristics of Elman neural network triggered by the number of images and their statistical 

features. The misclassification error is selected as an objective function because it is a well-

known good performing performance indicator, unitless. Moreover, it is usually more practical to 

deal with cost functions. The mathematical formulation of the misclassification error can be 

defined as follows. 

MC_ER =
WC_IM

T_IM
                                                                                                                                       (29) 

Where; 

 MC_ER represents the misclassification error. WC_IM  is the number of wrongly classified 

images. T_IM stands for the total number of images. 

6.2 Restoration of Bridge Defects Images 

The proposed method utilizes moth-flame optimization algorithm to design a filtering 

protocol, which encompasses designing a hybrid smoothing filter for each noise type that 

degrades bridge defects images. This enables to determine the optimum structure and parameter 

restoration method for each noise type. Moth-flame optimization (MFO) algorithm is newly-

developed bio-inspired meta-heuristic algorithm that proved its superior capacity in solving 

complex optimization problems. Yildiz and Yildiz [45] utilized MFO algorithm to maximize the 

profit rate of multi-tool milling operations considering unit production time and unit production 
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cost and subject to a set of difficult constraints. The developed method outperformed some other 

meta-heuristics such as genetic algorithm, ant colony algorithm, hybrid immune algorithm, 

cuckoo search algorithm and hybrid particle swarm immune algorithm based on the 

maximization of profit rate. Yildiz et al. [46] conducted a comparative study to investigate the 

application of ten newly-developed meta-heuristic algorithms to solve the design of six 

mechanical engineering optimization problems. They highlighted that the MFO algorithm is an 

efficient and robust algorithm in solving complex mechanical design optimization problems.   

  MFO algorithm was developed by Seyedali Mirjalili in 2015, whereas it is based on the 

simulation of navigation mechanism of moths in nature, which is called “transverse orientation” 

[47]. In the moth-flame optimization algorithm, the moths are the candidate solutions. In this 

mechanism, moths fly in the night by maintaining a fixed angle with their alignment to the moon, 

which is deemed as a very efficient method for travelling long distances in a straight line. The 

moths are the search agents that fly in 1-D, 2-D, 3-D or hyper dimension search space while the 

flames are the best positions attained so far, i.e., flames are the flags or pins dropped by moths 

while exploring the search space. As such, the moth searches around the flag or flame, and 

updates it if it finds a better solution. Simultaneously, the flames are updated according to the 

fitness values of the fittest moths. The positions of the moths in the search space are the 

optimization problem’s parameters. 

The computational procedures of the MFO algorithm are discussed in the following lines 

[46-48]. MFO algorithm is a population-based meta-heuristic algorithm. Thus, a set of moths can 

be defined as follows.  
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M =

[
 
 
 
 
m1,1 m1,2 m1,3 … . m1,d

m2,1 m2,2 m2,3 … . m2,d

m3,1 m3,2 m3,3 … . m3,d

… . … . … . … . … .
mn,1 mn,2 mn,3 mn,4 mn,d]

 
 
 
 

                                                                                               (30) 

Such that; 

M(i, j) = (ub(i) − lb(i)) × rand() + lb(i)                                                                                           (31) 

Where; 

M is the position matrix of moths. n represents number of moths. d represents the number of 

design variables or the dimensions of the optimization problem. M(i, j) is the value of the i − th 

row and j − th column of the matrix. ub(i) and lb(i) represent the upper and lower bounds of the 

i − th moth, respectively. rand() is a random number generated from a uniform distribution 

within the interval [0,1].  

The performance of each moth is evaluated using a pre-defined objective function. Then, 

a fitness matrix is constructed to store the fitness function values of the moths. The mathematical 

formulation of the fitness matrix of moths can be expressed as follows.  

OM =

[
 
 
 
 
OM1

OM2

OM3

… .
OMn]

 
 
 
 

=

[
 
 
 
 
f(m1,1 m1,2 m1,3 … . m1,d)

f(m2,1 m2,2 m2,3 … . m2,d)

f(m3,1 m3,2 m3,3 … . m3,d)
… . … . … . … . … .

f(mn,1 mn,2 mn,3 mn,4 mn,d)]
 
 
 
 

                                                                     (32) 

Where; 

OM indicates the fitness matrix of moths. f(∗) is the fitness function.  

As mentioned before, flames are another important aspect in the moth-flame optimization 

algorithm. The set of flames can be expressed using Equation (33). The fitness matrix of flames 

can be defined using Equation (34). 
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F =

[
 
 
 
 
f1,1 f1,2 f1,3 … . f1,d

f2,1 f2,2 f2,3 … . f2,d

f3,1 f3,2 f3,3 … . m3,d

… . … . … . … . … .
fn,1 fn,2 fn,3 fn,4 fn,d ]

 
 
 
 

                                                                                                          (33) 

OF =

[
 
 
 
 
OF1

OF2

OF3

… .
OFn]

 
 
 
 

                                                                                                                                                 (34)  

Where; 

F represents the position matrix of flames. f(i, j) indicates the j − th variable of the i − th flame. 

OFn is the fitness function value of the n − th flame. n represents number of flames.  

For the purpose of modelling the transverse orientation mechanism of moths, the MFO 

algorithm utilizes the logarithmic spiral as the main paradigm to update the positions of the 

moths with respect to the flames. The updated mechanism of moths’ positions can be defined as 

follows.  

 Mi = S(Mi, Fj) = Di × ebt × cos(2πt) + Fj                                                                                       (35)                                                                             

Such that; 

Di = |Mi − Fj|                                                                                                                                             (36) 

Where; 

S is the logarithmic spiral function. Mi and Fj represent the i − th moth and j − th flame. Di 

represents the distance of the i − th moth to j − th flame. b is a constant that defines the 

logarithmic spiral motion. T is a random number within the interval [-1, 1]. It is worth 

mentioning that the spiral movement is a fundamental component in the MFO algorithm because 

it depicts how the moths update their positions around flames. The logarithmic spiral function 

enables the moth to fly around the flame and not necessarily in the search space between the 
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moths. This mechanism facilitates both exploration and exploitation of the search space, which is 

deemed as an advantage over other meta-heuristic optimization algorithms.   

In order to further improve the exploitation mechanism of the MFO algorithm, t is 

assumed to be a random number in the range [r, 1] such that r is a convergence constant 

decreasing from -1 to -2 over the course of iterations. In addition to that, each moth is obliged to 

update its position using only one of the flames as per Equation (37) to increase the probability 

of converging to a global solution and to avoid being trapped in a local minimum. In the MFO 

algorithm, the exploration of the search space is guaranteed since moths update their positions 

around the best solutions obtained so far in the hyper sphere during the optimization process. To 

enable more exploitation of the best promising solutions, an adaptive mechanism is employed to 

decrease the number of flames within each iteration number. The updated mechanism can be 

expressed as follows.      

NFL = round ((N − it) ×
N − 1

T
)                                                                                                         (37) 

 

Where; 

N_FL represents the number of flames. it indicates the current iteration number. N and T stand 

for the maximum number of flames and maximum number of iterations, respectively.  

Within each iteration, the positions and fitness values of moths and flames are updated as 

per Equations form (30) to (36) such that the moths update their positions in the hyper sphere 

around the best solution obtained so far. The sequence of flames is adapted with respect the best 

solutions obtained so far in each iteration, and then the positions of the moths are updated as per 

the updated flames. The proposed restoration model utilizes peak signal to noise ratio as an 

objective function to search for the optimum configuration and parameters of the hybrid 

smoothing filter for each noise type. Peak signal to noise ratio measures the quality of the image 
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as per the maximum possible signal (image) power to the noise power that affects the 

representation of the image, whereas higher PSNR indicates better quality of the image. Peak 

signal to noise ratio can be defined using Equation (38). 

PSNR = Max(10 × log10(
R2

1
m × n

∑ ∑ [A(i,  j) − A^(i,  j)]2n
j=1

m
i=1

)                                                   (38) 

Where; 

R represents the maximum grey level intensity in the original image. A(i,  j) and A^(i,  j) 

represent the original image and restored image, respectively. m and n are the dimensions of the 

image.   

The quantitative performances of the restoration methods are compared as per mean-

squared error, normalized absolute error and image enhancement factor in addition to the peak 

signal to noise ratio. Mean-squared error measures the average deviation between the original 

image and the de-noised image. Normalized absolute error measures the error prediction 

accuracy of the filtered image. Lower values of MSE and NAE indicate that there is small 

deviation between the original image and the de-noised image, and consequently significant 

noise reduction is experienced. Image enhancement factor is a measure of the quality of the 

enhanced signal, and it is equal to the ratio of the sum of squared error before filtering to the sum 

of squared error after filtering. Hence, higher values of IEF indicates higher noise reduction and 

greater enhancement in the quality of the image as well as higher preservation of the edges. 

Mean-squared error, normalized absolute error and image enhancement factor can be expressed 

as follows [49, 50]. 
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MSE =
1

m × n
∑∑[(A(i, j) − A^(i, j)]2

n

j=1

m

i=1

                                                                                            (39) 

NAE =
∑ ∑  [|A(i,  j) − A^(i,  j)|]

n

j=1
m
i=1

∑ ∑  A(i, j)
n

j=1
m
i=1

                                                                                               (40) 

IEF =
∑ ∑ [(N(i, j) − A(i, j)]2

n

j=1
m
i=1

∑ ∑ [(A^(i, j) − A(i, j)]2
n

j=1
m
i=1

                                                                                                    (41) 

Where; 

N(i, j) indicates the noisy image. N(i, j) represents the corrupted image with noise. 

7. CONVENTIONAL MACHINE LEARNING METHODS  

This section provides an overview of some of the existing machine learning methods 

reported in the literature that are used to validate the proposed method. Due to the paper size 

limitations, K-nearest neighbors and random forest are discussed in detail in the following 

sections. Discriminant analysis is a multivariate statistical method for the discrimination of a set 

of data points to a finite number of classes. More details about the discriminant analysis method 

can be found in Rathi and Palani [51], and Subasi and Gursoy [52]. Support vector machines is a 

supervised learning method that can be utilized in either classification or regression applications 

based on defining the optimum hyperplane by maximizing the margin between positive and 

negative classes. More information about the support vector machines can be adopted from Feng 

et al. [53], and Chen et al. [54].      



39 

 

7.1 K-Nearest Neighbors  

K-Nearest Neighbors algorithm is a popular classification method in many applications 

because of its speed and relatively high convergence. It is based on the idea that similar feature 

vectors are located in close vicinity, whereas the classification of an input feature vector X is 

accomplished by identifying the K closest training vectors based on a suitable dimension metric. 

Usually, Euclidean distance is utilized as the dimension metric to measure the proximity of the 

feature vector the K nearest neighbors (instances). The feature vector X is then assigned to the 

class to which the majority of the K nearest neighbors belong. The Euclidean distance of a 

feature vector in the N-dimensional search space can be formulated as follows [55, 56].   

ED = √∑(X1i − X2i)2

N

i=1

                                                                                                                            (42) 

Where; 

ED is the Euclidean distance. Thus, if K=1, the feature vector is mapped to the class C based on 

the 1-nearest neighbor to the feature vector. if K=5 classifying is performed as per the most 

common class among the K-neareset neighbors. For instance, if four nearest labels are mapped to 

class label C1 while one nearest neighbor is mapped to class label C2. Hence, the feature vector 

is mapped to class label C1.  

7.2 Random Forest  

Random Forest is a tree-based ensemble method proposed by Breiman [57] to overcome 

the shortcomings of the decision tree method. Random Forest includes large number of decision 

tree learners, which grow at the same time to reduce the bias and randomness of the 
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classification process. Since the random forest is an ensemble classification method, it involves 

the employment of bootstrap aggregating (bagging) to enhance the prediction accuracy of the 

classifier. Moreover, it boosts the performance of various decision trees through voting scheme. 

Each decision tree provides different results. Hence, the results of the classification are 

aggregated through majority of voting, i.e., the feature vector is assigned to the class which 

obtained the highest voting score. Thus, for training a dataset of N instances, N bootstrapped 

samples are extracted from the original dataset (randomly sampled with replacement). Then, a 

decision tree is developed based on the randomly selected dataset, whereas each decision tree is 

constructed using different N bootstrap samples obtained from the original dataset. The 

bootstrapping improves the robustness of the classifier because some feature vectors may exist 

more than once in the classification process or some feature vectors may not be trained at all. 

Hence, the random forest becomes less sensitive to the variations in the input dataset.   

The subset that is not considered as a result of the bootstrap resampling is called “out of 

bag” (nearly one-third of the observations). This subset can be used to compute the error of the 

classifier, which eliminates the need for adding extra feature vectors. Random forest involves 

random feature selection, whereas in each split node of the decision tree, m random predictors 

(features or input variables) are selected from the M possible predictors. Random feature 

selection is introduced to minimize the correlation between the decision trees and to improve the 

prediction accuracy of each decision tree, which consequently enhances the prediction accuracy 

of the whole forest. The most common method is to select the split among the m possible 

predictors is called the Gini index. The Gini index is computed at each point of potential split of 

the predictors, whereas it can be defined as available selection measure which measures the 

impurity of a certain variable with respect to the output. 
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  The decision tree splitting criterion is based on selecting the predictor which yields low 

Gini index. Impurity is a measure for how well the variable splits the data, whereas the lower the 

impurity, the better splitting of the data is. Gini index measures the probability that an instance is 

incorrectly classified if it were randomly classified as per the distribution of the labels within the 

node. For binary splitting, Gini index at a certain node can be defined using Equation (43). The 

bootstrap resampling and random feature selection are repeated for creating D decision trees until 

forming a forest of random decision trees [58, 59].    

GInn = 1 − ∑[Pi
2]

2

i=1

                                                                                                                                   (43) 

Where; 

GInn represents the Gini index at a certain node nn. Pi represents the relative proportion of 

instances belonging to the i-th category.  

8. META-HEURISTIC OPTIMIZATION ALGORITHMS  

Many bio-inspired meta-heuristic optimization algorithms have been developed recently to 

solve exhaustive optimization problems. The proposed method incorporates moth-flame 

optimization algorithm to design the self-adaptive hybrid restoration method. This method is 

compared against a set of meta-heuristics which include: genetic algorithm, particle swarm 

optimization algorithm, invasive weed optimization algorithm, differential evolution algorithm, 

modified differential evolution algorithm, grasshopper optimization algorithm and grey wolf 

optimization algorithm. It is Worthing mentioning that recently some models utilized a 

hybridization of meta-heuristics to enhance the performance of the proposed method by 

enhancing the search paradigm as found in Demirci and Yildiz [60] in addition to Yildiz et al. 



42 

 

[61]. Differential evolution algorithm is going to be discussed in-detail while the basic concepts 

of other meta-heuristics in addition to the needed references are provided in the following lines. 

Genetic algorithm (GA) is one of the most popular evolutionary algorithms, which was 

developed by John Holland in 1975. Genetic algorithm is based on two main processes. The first 

process is the selection of individuals for the production of the next generation. The second 

process is the manipulation of the selected individual to form the next generation by crossover 

and mutation. The selection paradigm identifies which chromosomes are chosen for reproduction 

and how many off springs are produced. The better individual has a higher chance of being a 

parent [62, 63].  

Particle swarm optimization (PSO) algorithm is a population-based heuristic search 

algorithm that was originally developed by Eberhart and Kennedy in 1995 [64]. PSO algorithm 

belongs to the family of “swarm intelligence” algorithms in solving optimization problems, and 

it is inspired by the social behavior of birds flocking to the desired place in a multi-dimensional 

space. PSO algorithm is initiated by creating a population called “swarm” which is composed of 

individuals called “particles”, whereas each particle adjusts its own flying based on its own 

flying experience and its companions’ experience. Each particle represents a candidate solution 

in a multi-dimensional search space such that the status of the particle is characterized by its 

position and velocity and they are updated within each iteration [64-66].  

Grasshopper optimization algorithm (GOA) is a newly-developed bio-inspired algorithm 

that was introduced by Saremi et al. in 2017 [67]. This algorithm is inspired by the swarming 

behaviour of grasshoppers in nature. The main aspects of the GOA are foraging, target pursuing 

and team behavior in both nymph and adulthood phases. In the larval phase, the grasshopper 

swarm exhibit short-length jumps associated with slow movement. On the other hand, 
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grasshopper swarm exhibit long-range and swift movements to obtain food sources from farming 

areas in the adulthood phase. The search process of the GOA is divided into two paradigms, 

namely exploration and exploitation, whereas the search agents are encouraged to move abruptly 

in the exploration phase while they tend to move locally in the exploitation phase. These two 

processes are simulated by the swarming behavior of grasshopper [68, 69]. More information 

about the grasshopper optimization algorithm can be adopted from Saremi et al. [67] and Zhang 

et al. [70].  

Grey wolf optimization (GWO) algorithm is a recently-developed nature-inspired algorithm 

that was proposed by Mirjalili et al. in 2014 [71]. This algorithm is based on simulation of the 

behavior of a pack of grey wolves, which follow distinct steps while hunting in nature. Each 

pack hierarchy consists of four levels of grey wolves which are: alpha, beta, delta and omega. 

Alpha wolves are the leaders the pack and the ones responsible for making decisions. The next 

level in the hierarchy is the beta grey wolves, whereas they act as the subordinates of the alpha 

grey wolves and they support them in the decision-making process. Delta grey wolves follow the 

dictated orders of both alpha and beta grey wolves but they dominate the omega grey wolves. 

Delta grey wolves can be scouts, hunters, elders, sentinels or caretakers. Omega grey wolves are 

the least prioritized wolves in the hierarchy, whereas they have to submit to all other dominant 

wolves. They play the role of scapegoat and they are the last ones allowed to eat. In grey wolf 

optimization algorithm, a specific number of grey wolves explore the multi-dimensional search 

space to hunt a prey. The movement of grey wolves is influenced by search for prey, encircling 

prey, hunting and attacking prey operators. More information about the GWO algorithm can be 

found in [71, 72].  
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Differential evolution (DE) algorithm is an optimization algorithm that was introduced by 

Storn and Price in 1997 to search for the global solution of non-linear problems with non-

differentiable objective functions [73]. The framework of the differential evolution algorithm is 

similar to the genetic algorithm. However, the classical mutation and crossover in the genetic 

algorithm are substituted by alternative mutation and crossover operators. Differential evolution 

algorithm is divided into five main stages which are: initialization, mutation, crossover, 

selection, and convergence criteria. Differential evolution algorithm starts by generating a 

population of D-dimensional parameter vectors (candidate solutions) of size NP. The 

computational steps of the DE algorithm are as follows [73-75]. The generation of individuals 

can be obtained using the following Equation  

Xi,G = LB + rand[0, 1] × (UB − LB)                                                                                                     (44) 

Where; 

i denotes the population. G denotes the generation to which the population belongs to. LB, and 

UB represent two vectors of upper and lower bound for any decision variable, respectively. 

rand[0, 1] represent a uniformly distributed random number between 0 and 1. 

The next step is the mutation, whereas the mutation vector is defined based on the 

combination of three randomly selected vectors. A vector in the current population is selected to 

be the target vector (parent). For each target vector (Xi,G) in the population, a mutant vector is 

created using the following Equation.    

Vi,G+1 = Xr1,G + F(Xr2,G − Xr3,G)           r1 ≠ r2 ≠  r3                                                                      (45) 

Where; 
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r1, r2, and r3 represent three random and different indices between 1 and NP. The three random 

chosen vectors have to be different than the target vector. Vi,G+1 is the newly created mutant 

vector. F represents a mutation scale factor that control the amplification of differential variation 

between Xr2,G, and Xr3,G. Mutation scale factor is a real number between [0, 1]. 

Crossover is performed to diversify the current population by exchanging components of 

the target vector and the mutant vector. The trial vector (offspring) can be obtained using 

Equation (46). If the crossover rate is smaller than the random number, Vj,i,G+1 in the mutant 

vector is copied to the trial vector. Otherwise, Xj,i,G in the target vector is copied to the trial 

vector.  

Uj,i,G+1 = {
Vj,i,G+1            if CR ≥ randj 

Xj,i,G,             if CR < randj   
                                                                                                (46) 

Where; 

CR represents crossover probability. Uj,i,G+1 represents trial vector. j represents index element for 

any vector. randj denotes uniform random number between [0,1].  

In the selection stage, the trial vector is compared with the target vector to determine if 

trial vector should be a member of the next generation G + 1 as shown in Equation (47). Assume 

the objective function to be minimized. The vector with lower objective function survives to the 

next generation. If the trial vector yields a lower objective function than the target vector, then 

the trial vector replaces the target vector in the next generation.  

Xi,G+1 = {
Ui,G+1      if f(Ui,G+1) ≤ f(Xi,G) 

Xi,G,           if(Ui,G+1) > f(Xi,G)   
                                                                                           (47) 
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Mutation, crossover, and selection are repeated in each generation until stopping criterion is 

satisfied, i.e., reaching maximum number of generations. In the modified differential evolution 

(MDE) algorithm, the Gaussian distribution is used to model the mutation scale factor because it 

offers a good balance between the exploration and exploitation of the search space.   

9. MODEL IMPLEMENTATION  

The images utilized to train and test the proposed method are captured from three bridge 

decks in Montreal and Laval, Canada using Sony DSC-H300 digital camera of 20.1 megapixel 

resolution. All the computations of the machine learning and optimization algorithms took place 

on a laptop with an Intel Core i7 CPU, 2.2 GHz and 16 GB of memory. Sample of the free-noise 

bridge defects images is shown in Figures 3 and 4. Sample of the degraded bridge defects images 

with different types of noises is depicted in Figures 5 and 6. Figures 5 and 6 contain images 

corrupted with Gaussian noise, speckle noise, salt and pepper noise, combination of Gaussian 

and speckle noises, combination of Gaussian and salt and pepper noises and combination of 

speckle and salt and pepper. As shown in Figure 4, the combination of noises amplifies the 

degradation in the qualities of the bridge defects images, which requires a higher capacity 

restoration method.    

INSERT FIGURE 3         

INSERT FIGURE 4  

INSERT FIGURE 5         

INSERT FIGURE 6                

Three modules are developed for the noise detection and recognition in bridge defects 

images. Since the performance of the Elman neural network is substantially governed by number 
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of hidden and context layers, number of hidden and context neurons, type of transfer functions 

and weights and bias terms, the present study relies on the IWO algorithm to establish a proper 

setting for the tuning of the architecture of the Elman neural network and its parameters. One 

hundred sixty real-world images are used for training the noise detection module while the 

remaining forty are used for its testing in the split validation. The output of this module is 

whether the bridge defect image is noise free or corrupted with noise. The maximum numbers of 

hidden layers, hidden neurons, context layers and context neurons are equal to 5. Thus, the 

maximum length of the optimization problem is 304, which is considered as a large search space 

that substantiates the employment of exhaustive training mechanism. The parameters of the IWO 

algorithm are presented in Table 1. The number of iterations and the initial population size are 

assumed 200 and 100, respectively. The maximum and minimum numbers of seeds are 5 and 0, 

respectively. The initial and final standard deviations are assumed 0.5 and 0.001, respectively. 

INSERT TABLE 1         

The convergence of the ENN-IWO model for noise detection is shown in Figure 7. The least 

misclassification error achieved by ENN-IWO model equals to zero. Moreover, the optimization 

model stabilizes at iteration 96 which illustrates the superior search capability of the IWO 

algorithm. The optimum numbers of hidden and context layers are four while the optimum 

numbers of hidden and context neurons are five. The optimum transfer function is the hyperbolic 

tangent sigmoid function. The optimum transfer function is the hyperbolic tangent sigmoid 

function. The confusion matrix is the first step for the performance comparison. For example, the 

number of false positive instances in the ENN-IWO model is two. The confusion matrix enables 

the computation of true positive, false positive, true negative and false negative instances, which 

provides the platform for the calculation of the performance metrics. 
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INSERT FIGURE 7       

 The performances of the six machine learning models as per split validation and 10-fold 

cross validation are shown in Tables 2 and 3, respectively. As shown in Tables 2 and 3, the 

proposed noise detection model achieved the achieved the highest classification accuracies as per 

split validation and 10-fold cross validation. Support vector machines attained the second best 

performance. On the other hand, discriminant analysis and artificial neural network achieved the 

least performance. For instance, as per the cross-validation model, the proposed noise detection 

model is capable of attaining accuracy, sensitivity, specificity, precision, F-measure and Kappa 

coefficient of 98.72%, 99.65%, 98.52%, 93.12%, 96.39% and 0.956, respectively. Nevertheless, 

accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of ANN model are 

equal to 90.73%, 64.77%, 97.06%, 86.38%, 74.18% and 0.687, respectively.     

INSERT TABLE 2         

INSERT TABLE 3         

For the separate noise recognition module, the output of this model is if the image contains 

speckle, Gaussian, salt and pepper or doesn’t contain noise. The neural network is composed of 

four output neurons for the four previous states, whereas the output is expressed in the form of a 

binary vector. One hundred images are used for training the separate noise recognition module 

while the thirty five images are used for its testing in the split validation. The decision variables 

of the proposed ENN-IWO model are as follows: maximum numbers of hidden and context 

layers are 10 while the maximum numbers of hidden and context neurons are 10. Thus, 

maximum length of the optimization problem is 2137. The number of iterations is assumed 250 

while the initial population size is assumed 150. The maximum and minimum numbers of seeds 

are 5 and 0, respectively. The initial and final standard deviations are assumed 0.5 and 0.001, 
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respectively. The convergence of the ENN-IWO model for separate noise recognition is depicted 

in Figure 8. The least misclassification error achieved by ENN-IWO model is equal to 0.05. In 

addition to that, the proposed optimization model stabilizes 191, which exemplifies the higher 

capacity of the proposed model to search for the optimum structure and parameters of the ENN.  

INSERT FIGURE 8       

The optimum structure of the ENN is one hidden layer, one context layer, seven hidden 

neurons and seven context neurons. The optimum transfer function is the hyperbolic tangent 

sigmoid function. The confusion matrix of the classification provided by ENN-IWO model is 

shown in Table 4. The total numbers of true positive instances and true negative instances for all 

the classes are 129 and 393, respectively. The performance comparisons for the five 

classification models using the split and 10-fold cross validation are described in Tables 5 and 6, 

respectively. As shown in Table 5 and 6, the proposed separate noise recognition model 

outperformed other classification models for the six performances indicators in both split 

validation and 10-fold cross validation. Random forest achieved the second best performance, 

while discriminant analysis and artificial neural network attained the lowest values for the 

performance indicators. In the cross validation model, the proposed ENN-IWO model attained 

accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of 95.28%, 

95.24%, 98.07%, 95.25%, 95.43% and 0.935, respectively. On the other hand, accuracy, 

sensitivity, specificity, precision, F-measure and Kappa coefficient of discriminant analysis were 

equal to 83.45%, 83.41%, 93.84%, 83.42%, 83.57% and 0.768, respectively.            

INSERT TABLE 4         

INSERT TABLE 5         

INSERT TABLE 6     
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For the combined noise recognition module, the output layer is composed of seven neurons 

represented in the form of the binary vector. The output of this model determines if the image is 

noise free or if the image is corrupted with separate noise or corrupted with any of the different 

combinations of the noises. One hundred sixty images are used for training the combined noise 

recognition module while the forty images are used for testing purposes in the split validation. 

The decision variables of the proposed ENN-IWO model are as follows: maximum numbers of 

hidden and context layers are 10 while the maximum numbers of hidden and context neurons are 

10. As such, the maximum length of the optimization model is 2170, which is deemed as an 

exhaustive search space to explore. The parameters of the IWO algorithm in the current module 

are the same as the ones in the separate noise recognition module.  

The convergence of the ENN-IWO model for combined noise recognition is depicted in 

Figure 9. As shown in Figure 9, the minimum misclassification error achieved by ENN-IWO 

model is equal to 0.1625, whereas the model stabilizes at iteration 180. The optimum structure of 

the ENN is one hidden layer, one context layer, ten hidden neurons and ten context neurons. The 

optimum transfer function is the linear function. The confusion matrix of the classification 

attained by ENN-IWO model is shown in Table 7. As shown in Table 7, the total numbers of true 

positive instances and true negative instances for all the classes are 151 and 1035, respectively. 

The comparison between the six classification models using split validation and cross validation 

are described in Tables 8 and 9. As shown in Tables 8 and 9, it can be inferred that the proposed 

ENN-IWO model outperformed other classifiers for the six performances indicators in both split 

validation and 10-fold cross validation. For the 10-fold cross validation, the proposed ENN-IWO 

model achieved accuracy, sensitivity, specificity, precision, F-measure and Kappa coefficient of 

84.26%, 84.22%, 97.21%, 84.45%, 84.46% and 0.811, respectively. On the other hand, accuracy, 
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sensitivity, specificity, precision, F-measure and Kappa coefficient of discriminant analysis are 

equal to 75.27%, 81.33%, 95.05%, 75.25%, 78.32% and 0.702, respectively.               

INSERT FIGURE 9       

INSERT TABLE 7         

INSERT TABLE 8         

INSERT TABLE 9     

Parametric and non-parametric tests were conducted to provide a thorough assessment of 

the noise classification models by examining the significant difference in the accuracies among 

the different classifiers, whereas the significance level (α) is set to be 0.05. The performed 

statistical tests examine the null hypothesis (H0), which implies that there is no significant 

difference between the classification results obtained from each pair of classifiers. On the other 

contrary, the alternative hypothesis (H1) implies that there is a significant difference between the 

classification results obtained from each pair of classifiers. If the P − value is less than the 

significance level, then the null hypothesis is rejected in favor of the alternative hypothesis. 

Nonetheless, if the P − value is more than the significance level, thus the null hypothesis is 

accepted. The Student’s t-test, Wilcoxn test, Mann-Whitney-U test, Kruskal–Wallis test, 

binomial sign test, and Mood’s median test of the noise classification models are shown in 

Tables 10 and 11. Results indicate that the P − values of the pairs (ENN-IWO, discriminant 

analysis), (ENN-IWO, K-nearest neighbors), (ENN-IWO, random forest), (ENN-IWO, support 

vector machines) and (ENN-IWO, artificial neural network) for all the tests are less than 0.05, 

which implies that there are statistically significant differences between the performance of the 

proposed noise classification model, and other classification models.  

INSERT TABLE 10 
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INSERT TABLE 11             

Friedman test and Friedman's aligned ranks test were employed to investigate whether 

there are statistical differences among the set of noise detection and recognition models. The 

average rankings of the noise classification model obtained from the Friedman and Friedman's 

aligned ranks tests are presented in Table 12. It is worth mentioning that a smaller average 

ranking value implies a better noise classification model. As shown in Table 12, ENN-IWO 

achieved the best ranking followed by support vector machines based on the two tests. 

Discriminant analysis and artificial neural network achieved the lowest rankings based on 

Friedman test and Friedman's aligned ranks test, respectively. The P − value of the Friedman 

test and P − value of the Friedman's aligned ranks test are equal to zero, which indicates that 

there are statistical significant differences among the noise classification models. As such, 

Nemenyi, Holms and Finner post hoc statistical tests are utilized to investigate if the ENN-IWO 

model is significantly better than the remaining noise classification models. The P − values of 

the ENN-IWO model based on Nemenyi, Holms and Finner tests are shown in Table 13. As can 

be seen, the P − values of the pairs (ENN-IWO, discriminant analysis), (ENN-IWO, K-nearest 

neighbors), (ENN-IWO, random forest), (ENN-IWO, support vector machines) and (ENN-IWO, 

artificial neural network) for all the post hoc tests are less than 0.05. It is worth mentioning that 

the developed noise classification is the only model which provided statistical significant better 

performance against the reminder of noise classification models with respect to all tests. This 

indicates the ENN-IWO model is a statistically better noise classification model than other 

models.   

INSERT TABLE 12       

INSERT TABLE 13          
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The different classification models for noise detection and recognition were compared 

with respect to the average running time for both training and testing. Average run time 

represents the average run time per fold. The results of the comparisons are presented in Tables 

14, 15 and 16. For instance, in the training process of noise detection module, discriminant 

analysis had the shortest computational time of 3.36 seconds while the proposed model had the 

longest computational time of 1203.56 seconds. It can be inferred that the proposed ENN-IWO 

model requires more computational time to train the input dataset. However, almost most of the 

execution time is spent in the learning process of the underlying pattern between inputs and 

outputs. Moreover, the classification time is nearly the same for all detection and recognition 

models. The long computational training time of the proposed model can be explained by the fact 

that it has capacity to optimize all of the variables of the Elman neural network including both its 

architecture and parameters. The structure and parameter learning is a very exhaustive search 

process, which requires more processing time to explore the search space efficiently. It is also 

worth mentioning that the classification time is a more useful performance metric than training 

time in practical applications because the training process is only needed to be performed once 

also, the usage of a higher-performing computer can decrease the computational time of the 

training process. Although the discriminant analysis, K-nearest neighbors, random forest, support 

vector machines are not time-exhaustive models. However, their classification accuracies are 

low, which hinders their usage in noise detection and recognition. In view of above comparisons, 

the proposed ENN-IWO model required nearly the same computational time for classification as 

other models. Moreover, it achieved significant higher classification performance than other 

models. As such, the proposed ENN-IWO model serves as a better alternative in the noise 

detection and recognition of bridge defects images.    
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INSERT TABLE 14        

INSERT TABLE 15       

INSERT TABLE 16        

The second model is the restoration of bridge defects images identified from the previous 

stage. The output of this model is a filtering protocol, which incorporates the optimum design of 

filters for each noise type. In order to provide a fair comparison between the different meta-

heuristic optimization algorithms, the population size and number of iterations are assumed 10 

and 40, respectively. Different initializations of parameters were experimented for the different 

meta-heuristics in order to search for their optimum values. Each meta-heuristic was run ten 

times independently in order to avoid unstable solutions due to random initialization of 

population. The proposed restoration model was compared with other models reported in the 

literature based on the de-noising performance of ten different types of images to examine its 

robustness in restoration of degraded images.  

In the genetic algorithm, tournament selection is the parent selection strategy. Two-point 

crossover is utilized, and the crossover rate is assumed 0.8. Mutation rate is assumed 0.1. For the 

particle swarm optimization, the cognitive learning and social parameters are assumed two. The 

inertia weight is assumed 0.5. The initial standard deviation and final standard deviation are 

assumed 0.5 and 0.001, respectively. The maximum and minimum numbers of seeds are 5 and 0, 

respectively. For the differential evolution algorithm, the crossover probability is assumed 0.2.  

The mutation is assumed to follow a uniform distribution between 0.2 and 0.8. For the modified 

differential evolution algorithm, the mutation is assumed to follow a normal distribution with a 

mean and standard deviation equal to 0.5 and 0.2, respectively. For the grasshopper optimization 

algorithm, the maximum and minimum values of deceleration of grasshoppers approaching the 
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food source and consuming it are assumed 1 and 0.00004, respectively. In the grey wolf 

optimization algorithm, the trade-off parameter which controls the balance between exploration 

and exploitation is assumed to be linearly decreasing from 2 to 0. The logarithmic spiral motion 

constant is assumed 1 while the convergence constant is assumed to be decreasing from -1 to -2 

in the moth-flame optimization algorithm.  

A set of comparisons are conducted for the different possible combination of noises in 

order to investigate the robustness of the proposed restoration model in filtering of degraded 

images. For the Gaussian noise, the convergence curves of the different meta-heuristic-based 

restoration models of “Image 1”. The optimization problem is a maximization problem of PSNR, 

thus a negative sign to convert it to a minimization problem because it is often more easier to 

deal with cost functions. As shown in Figure 10, the MFO algorithm outperformed other 

optimization algorithms, whereas it achieved PSNR of 25.29. PSO algorithm provided the second 

best performance with PSNR of value 25.28. A performance comparison between the different 

restoration models of Gaussian noise is described in Table 17. Based on the MFO algorithm, the 

optimum filter design is to apply Wiener filter of size 3×3. The proposed restoration model 

achieved better de-noising results when compared to other optimization methods. For instance, 

the MFO algorithm achieved PSNR, MSE, NAE and IEF of 25.29, 185.75, 0.074 and 5.16, 

respectively. PSO algorithm attained PSNR, MSE, NAE and IEF equal to 25.28, 192.31, 0.076 

and 3.34, respectively. Mode filter achieved the lowest de-noising results such that PSNR, MSE, 

NAE and IEF equal to 16.73, 1381.15, 0.211 and 0.47, respectively. The restored images based 

on the optimization-based models and conventional filtering models are shown in Figures 11, 12, 

13, 14 and 15. By visually investigating the images, it is clear that the MFO algorithm provided 

better restoration results when compared to other models.  
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INSERT FIGURE 10   

INSERT TABLE 17           

INSERT FIGURE 11       

INSERT FIGURE 12       

INSERT FIGURE 13       

INSERT FIGURE 14       

INSERT FIGURE 15       

The convergence curves of the different meta-heuristic-based restoration models for salt 

and pepper noise of “Image 2” are depicted in Figure 16. MFO algorithm achieved the highest 

PSNR of 30.11 while MDE algorithm achieved the second highest PSNR of 30.07. The 

performances of the different restoration models of Gaussian noise are shown in Table 18. The 

optimum filter design is median filter of size 3×3 based on MFO algorithm, whereas it provided 

PSNR, MSE, NAE and IEF of 30.11, 65.29, 0.038 and 14.24, respectively. The PSNR, MSE, NAE 

and IEF of MDE algorithm are 30.07, 67.35, 0.039 and 13.61, respectively. Mode filter had the 

lowest de-noising results such that PSNR, MSE, NAE and IEF equal to 13.74, 2748.22, 0.194 and 

0.32, respectively. A clearer visual comparison is presented between the different restoration 

models in Figures 17, 18, 19, 20 and 21. The output of the proposed restoration model provided 

superior filtering results, which demonstrates its capabilities in removing the salt and pepper 

noise.  

INSERT FIGURE 16       

INSERT TABLE 18         

INSERT FIGURE 17       

INSERT FIGURE 18       
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INSERT FIGURE 19       

INSERT FIGURE 20       

INSERT FIGURE 21       

For the speckle noise, the convergence curves of the different meta-heuristic-based 

restoration models of “Image 3” are illustrated in Figure 22. MFO algorithm achieved the highest 

PSNR of 24.57 while MDE provided the second highest performance such that the PSNR is 

24.47. A performance evaluation of the different restoration models of speckle noise are shown 

in Table 19. It can be inferred that, the optimum filter design is Lee filter of size 3×3 based on 

MFO algorithm, whereas it provided PSNR, MSE, NAE and IEF of 24.57, 228.9, 0.082 and 4.13, 

respectively. MDE algorithm had PSNR, MSE, NAE and IEF equal to 24.49, 270.5, 0.088 and 

4.05, respectively. Mode filter achieved the lowest de-noising results such that PSNR, MSE, NAE 

and IEF equal to 15, 2055.63, 0.264 and 0.54, respectively. The restored images using 

optimization-based models are shown in Figures 23, 24 and 25. The restored images using 

conventional filtering models are shown in Figures 26 and 27. These images provide a visual 

understanding of the quality of the performances of restoration models. It can be inferred that the 

proposed restoration model provided the highest de-noising capabilities of speckle noise.   

INSERT FIGURE 22       

INSERT TABLE 19          

INSERT FIGURE 23      

INSERT FIGURE 24       

INSERT FIGURE 25       

INSERT FIGURE 26       

INSERT FIGURE 27       
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The convergence curves of the different meta-heuristic-based restoration models for the 

combination of Gaussian and speckle noises of “Image 4” are shown in Figure 28. As shown in 

Figure 28, MFO algorithm achieved very promising results, whereas the PSNR is 25.14 while the 

GWO algorithm achieved the second highest PSNR of 24.98. The optimum design of the 

proposed restoration model is Wiener filter of size 3×3 followed by Lee filter of size 3×3. A 

comparative analysis of the different restoration models is shown in Table 20. The proposed 

model achieved the highest filtering performance, whereas PSNR, MSE, NAE and IEF are 25.14, 

158.51, 0.084 and 7.87, respectively. GWO algorithm achieved the second best performance 

such that PSNR, MSE, NAE and IEF are 24.98, 155.04, 0.086 and 6.82, respectively. Mode filter 

achieved the lowest de-noising performance such that PSNR, MSE, NAE and IEF are 15.06, 2029, 

0.343 and 0.68, respectively. The output of the optimization-based restoration models is depicted 

in Figures 29, 30 and 31while the resorted images using the conventional restoration models are 

shown in Figures 32 and 33. By investigating these images, it can be inferred that the proposed 

restoration model achieved the best de-noising capabilities of the combination of Gaussian and 

speckle noises.        

INSERT FIGURE 28       

INSERT TABLE 20          

INSERT FIGURE 29      

INSERT FIGURE 30       

INSERT FIGURE 31       

INSERT FIGURE 32       

INSERT FIGURE 33       



59 

 

For the combination of Gaussian and salt and pepper noises, the convergence curves of 

different meta-heuristic-based restoration models of “Image 5” are presented in Figure 34. As 

shown in Figure 34, The MFO algorithm yielded the highest PSNR of 25.06 such that optimum 

filter obtained by it is median filter of size 3×3. GOA yielded the second highest PSNR of 25.05, 

whereas the optimum filter obtained by it is Frost filter of size 3×3. A comparison of the 

performances of the different restoration models is shown in Table 21. As shown in Table 21, the 

proposed model outperformed other models, where the PSNR, MSE, NAE and IEF achieved by 

the proposed method are equal to 25.16, 180.19, 0.095 and 8.61, respectively. Frost filter of size 

4×4 obtained the highest filtering performance among the conventional restoration models, 

whereas the PSNR, MSE, NAE and IEF are 24.42, 226.85, 0.103 and 5.63, respectively. The 

restoration outcome of the different optimization-based models is shown in Figures 35, 36 and 

37 while the restoration outcome of the conventional models is presented in Figures 38 and 39. 

As shown in these figures, the capacity of the restoration is significantly improved by applying 

the proposed model. This highlights the capacity of the proposed restoration model in removing 

noises from images corrupted by combination of Gaussian and salt and pepper noises.  

INSERT FIGURE 34      

INSERT TABLE 21         

INSERT FIGURE 35     

INSERT FIGURE 36      

INSERT FIGURE 37      

INSERT FIGURE 38      

INSERT FIGURE 39      
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For the images corrupted with a combination of speckle and salt and pepper noises, the 

convergence curves of the different meta-heuristic-based restoration models of “Image 6” are 

presented in Figure 40. As shown in Figure 40, MFO algorithm achieved the highest PSNR 

followed by MDE algorithm and then the DE algorithm. The values of PSNR obtained by the 

MFO algorithm, MDE algorithm and DE algorithm are 22.98, 22.93 and 22.82, respectively. A 

performance comparison of the different restoration models is presented in Table 22. The 

proposed restoration demonstrated the highest filtering performance while mode filter achieved 

the least performance among the restoration models. The PSNR, MSE, NAE and IEF of the MFO 

algorithm are 22.98, 290.61, 0.091 and 5.91, respectively. Lee filter of size 4×4 yielded the 

highest filtering performance among the conventional restoration models, whereas the PSNR, 

MSE, NAE and IEF are 21.66, 360.59, 0.099 and 4.82, respectively. The restored images using 

the optimization-based models are presented in Figures 41, 42 and 43. The restored images using 

the conventional restoration models are shown in Figures 44 and 45. By visually investigating 

the restored images, it is concluded that the proposed model provides an efficient alternative to 

restore images corrupted with combination of speckle and salt and pepper noises.    

INSERT FIGURE 40     

INSERT TABLE 22         

INSERT FIGURE 41     

INSERT FIGURE 42     

INSERT FIGURE 43      

INSERT FIGURE 44      

INSERT FIGURE 45      
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In view of the above comparisons with respect to the different types of noises, the 

proposed restoration model provided a consistent superior filtering capability than other models, 

which aids in overcoming the inconsistencies of other restoration models, such that some models 

perform well in some types of de-noising problems. However, they fail to deal with other types 

of de-noising problems. For example, DE algorithm provided efficient results when dealing with 

salt and pepper noise. However, it didn’t perform well when dealing with the combination of 

Gaussian and speckle noises. Moreover, median filter performed well when dealing with salt and 

pepper noise. On the other hand, it failed to deal with speckle noise.  

The overall performance of the different proposed restoration model is investigated 

through comparison against other restoration models as shown in Table 23. These models are 

evaluated as per the average of the peak signal to noise ratio (APSNR), average of mean-squared 

error (AMSE), average of normalized absolute error, (ANAE) and average of image enhancement 

factor (AIEF) for the ten images. The proposed restoration model achieved superior de-noising 

results when compared to other optimization-based restoration models and conventional 

restoration models. MDE achieved the second best performance followed by DE algorithm. On 

the other hand, non-linear programming-based model attained the least restoration performance 

among the optimization-based models. The APSNR, AMSE, ANAE and AIEF of the MFO 

algorithm are 25.36, 176.32, 0.059 and 7.18, respectively. MDE algorithm attained APSNR, 

AMSE, ANAE and AIEF of 25.23, 177.59, 0.059 and 6.9, respectively. For the DE algorithm, the 

values of  APSNR, AMSE, ANAE and AIEF are 24.94, 180.71, 0.06 and 6.82, respectively. The 

APSNR, AMSE, ANAE and AIEF of the non-linear programming are 20.3, 415.34, 0.099 and 

3.09, respectively. This highlights that the evolutionary algorithms provide better filtering 
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performance when compared to exact optimization models, which illustrates that exact 

optimization algorithms fail to solve discrete and complex optimization problems.  

INSERT TABLE 23         

For the conventional restoration models, Wiener and lee filter are the best two performing 

restoration models while mode filter achieved the least filtering performance. The APSNR, 

AMSE, ANAE and AIEF of the Wiener filter are 22.73, 290.04, 0.093 and 4.26, respectively. 

Mode filter achieved APSNR, AMSE, ANAE and AIEF of 14.14, 2701.5, 0.284 and 0.53, 

respectively. This manifests that the proposed restoration model using MFO algorithm provided 

holistic and consistent superior filtering capacity over the conventional restoration models.  

The utmost objective of the proposed method is to develop a filtering protocol, which 

incorporates the optimum filters to deal with each type of the different noises. Table 24 describes 

the optimum filter(s) for each noise type(s). As shown in Table 24, conventional filters of size 

3×3 are more efficient in removing separate noises than the combination of noises.  Moreover, a 

filter of size 3×3 provides better de-noising outcome than a filter of size 4×4. In addition to that, 

it is worth mentioning that, the application of a set of filters in a certain sequence can improve 

the restoration process when compared to single filters in the case of images corrupted with a 

combination of noises. For example, the optimum hybrid filter in the case of images corrupted by 

a combination of Gaussian and speckle noises is to apply Wiener filter of size 3×3 followed by 

Lee filter of size 3×3. Moreover, the optimum hybrid filter in the case of images corrupted with a 

combination of speckle and salt and pepper noises is to apply Lee filter of size 3×3 followed by 

Wiener filter of size 3×3. This also demonstrates that the application of two filters in two 

different sequences yields different restoration results.  

INSERT TABLE 24       
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Parametric and non-parametric tests were performed to evaluate the statistical significant 

differences in the filtering capacities of the different meta-heuristic-based restoration models at a 

significance level of 0.05. The Student’s t-test, Wilcoxn test, Mann-Whitney-U test, Kruskal–

Wallis test, binomial sign test, and Mood’s median test of the meta-heuristics-based restoration 

models are shown in Table 25 and 26. As can be seen, P − values of the pairs (MFO, DE), 

(MFO, MDE), (MFO, PSO), (MFO, IWO), (MFO, GOA), (MFO, GWO) and (MFO, GA) are 

less than 0.05 for all the previously-mentioned statistical tests. This evinces that there are 

significant differences in the filtering capacities of the proposed restoration model with respect to 

other meta-heuristic-based restoration models.  

INSERT TABLE 25     

INSERT TABLE 26                   

Table 27 displays the average rankings of the different meta-heuristic-based restoration 

models using Friedman test and Friedman's aligned ranks test, respectively. Moth-flame 

optimization algorithm yielded the best ranking followed by modified differential evolution 

algorithm while grasshopper optimization algorithm achieved the least ranking as per Friedman 

test and Friedman's aligned ranks test. The average ranking values of the moth-flame 

optimization algorithm, modified differential evolution algorithm and grasshopper optimization 

algorithm based on Friedman test are 1, 3.88 and 6.38, respectively. The P − values of the 

Friedman test and Friedman's aligned ranks test are equal to zero, which indicates that there are 

statistical significant differences among the meta-heuristic-based restoration models. Thus, 

Nemenyi, Holms and Finner post hoc statistical tests are applied to examine if the developed 

moth-flame restoration model is significantly better than other restoration models. The P −

values of the moth-flame-based restoration model using Nemenyi, Holms and Finner tests are 
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shown in Table 28. It can be inferred that the  P − values of the pairs (MFO, DE), (MFO, MDE), 

(MFO, PSO), (MFO, IWO), (MFO, GOA), (MFO, GWO) and (MFO, GA) are less than 0.05 for 

all post hoc tests. It should be mentioned that the developed restoration model is the only 

restoration model which provided statistical significant better filtering performance over other 

meta-heuristic-based restoration models for all tests. In view of the above comparisons, it can be 

concluded that the proposed restoration model introduced significant superior consistent and 

overall filtering results over other restoration models.   

INSERT TABLE 27      

INSERT TABLE 28      

The different restoration models were evaluated as per the average computational time of 

both training and restoration. The average computational times of the training and restoration are 

presented in Table 29. As shown in Table 29, non-linear programming required less training time 

with respect to other optimization-based models. On the other hand, while the IWO had the 

longest computational time of 1304.62 seconds. The proposed restoration model required 915.38 

seconds to select the optimum restoration process based on MFO algorithm. It is worth 

mentioning that optimization-based restoration models had longer computational time compared 

to the conventional time. However, most of the computational time is spent in the training 

process. In addition to that, most of the time spent in the restoration process is nearly equal 

among the different restoration models. The long computational time of the proposed restoration 

model is resulting from its capability to optimize the number of filters, types of filters, sequence 

of filters and the governing tuning parameters of these filters. This is deemed as a large search 

space problem, which requires an exhaustive search engine to explore the space. Moreover, the 

time of restoration process is a more practical performance indicator in bridge defects 
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recognition applications because the training process is only done once, and then the optimum 

filter(s) obtained from the restoration model are used to de-noise the images based on the type of 

noise that corrupts the images. As such, the different restoration models consume nearly the 

same time in the restoration process. Meanwhile, the proposed restoration model achieved 

significant enhancement in the filtering process when compared to other restoration models. 

Thus, it can provide an efficient alternative for the restoration of bridge defects images.     

INSERT TABLE 29        

In order to investigate the implication of the restoration process on the segmentation of 

the bridge defects, the proposed restoration model is compared with the median filter of size 4×4 

based on their influence on the quality of segmentation of spalling in reinforced concrete bridges. 

The case study is “Image 6” corrupted with Gaussian noise. The segmentation process of 

spalling is performed using fuzzy C-means clustering algorithm, which is considered as a well-

performing segmentation method that proved its capability in detecting bridge defects. More 

details about fuzzy C-means clustering algorithm can be found in keskin [76]. The results of the 

segmentation as per the proposed restoration model and median filter are shown in Figure 46. As 

shown in Figure 46, it is clearly visible that the segmented image using fuzzy C-means clustering 

algorithm based on the de-noised images of the proposed restoration model yields superior 

segmentation performance when compared to other methods. As such, the self-adaptive two-tier 

optimization-based method provides a consistent, holistic and remarkable improvement in 

recognition of noise as well as restoration of degraded bridge defects images with noise as per 

the different levels of comparison. This leads to better detection and evaluation of bridge defects 

images, which eventually leads to the establishment of more accurate image-based condition 

assessment models and reliable maintenance decision-making models.  
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INSERT FIGURE 46     

10. CONCLUSION  

Routine inspections are diagnostic methods to evaluate the condition of reinforced concrete 

bridges. Nevertheless, current visual inspection-based methods are labor-intensive, and provide 

biased and subjective judgments. This requires the development of a machine vision-based 

method for the automatic assessment of bridge defects. Noise is undesirable random variation in 

the brightness or intensity of the image, which significantly influences the attributes of bridge 

defects images. In this regard, the absence or the inefficiency of a restoration method of bridge 

defects images leads to error-prone deterioration models and maintenance intervention actions. 

As such the present study introduces a self-adaptive two-tier method for the restoration of bridge 

defects images.   

The developed method is envisioned on two main stages which are: automatic recognition of 

noise, and restoration of degraded bridge defects images. In the first model, a hybrid Elman 

neural network-invasive weed optimization model is developed to detect and recognize the 

noises in bridge defects images based on three different modules. A variable-length optimization 

problem is designed to enhance the search capacity of the ENN-IWO model through both 

parameter and structural learning of the Elman neural network. The recognition capabilities of 

the proposed ENN-IWO model are examined by comparison with other well-performing 

machine learning models such as discriminant analysis, artificial neural network, random forest, 

support vector machines and K-nearest neighbors. The proposed noise recognition model 

significantly outperformed other classifiers. For instance, in the separate noise recognition 

module the developed model achieved accuracy, sensitivity, specificity, precision, F-measure 
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and Kappa coefficient of 95.28%, 95.24%, 98.07%, 95.25%, 95.34%. 95.43% and 0.935, 

respectively.  

After mapping each image to the designated type of noise, a moth-flame optimization-based 

restoration model is developed to restore bridge defects corrupted with noise. The developed 

restoration model outperformed other optimization-based and conventional restoration models, 

whereas it achieved the APSNR, AMSE, ANAE and AIEF of 25.36, 176.32, 0.059 and 7.18, 

respectively. The final outcome of the proposed method is a filtering protocol, which enables 

decision-makers to deal with different types of noises in bridge defects images. In the developed 

protocol, hybrid combinations of filters are required to be applied in some cases of combinations 

of noises. This exemplifies that these combinations of noises amplify the degradation in bridge 

defects images, which necessitates the application of a higher capacity restoration model. It is 

expected that the developed method can enhance the automatic evaluation of bridge defects, 

which enables establishing more accurate image-based condition assessment models and 

enhancing the decision-making process in the bridge management systems.  
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Table 1: Parameters of IWO algorithm for noise detection module  

Decision Variable   Range 

Initial population size 100 

Maximum number of iterations  200 

Minimum number of seeds 0 

Maximum  number of seeds 5 

Initial standard deviation 0.5 

Final standard deviation 0.001 
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Table 2: Performance comparison of the different machine learning models in noise 

detection based on split validation  

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 95.5% 92% 96% 76.67% 83.64% 0.81 

KNN 98% 100% 97.7% 86.67% 92.86% 0.917 

RF 98% 96.43% 98.26% 90% 93.1% 0.919 

SVM 98.5% 93.55% 99.41% 96.67% 95.08% 0.942 

ANN 91% 65% 97.5% 86.67% 74.29% 0.689 

ENN-

IWO 99% 100% 98.84% 93.33% 96.55% 0.959 
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Table 3: Performance comparison of the different machine learning models in noise 

detection based on 10-fold cross validation   

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 95.21% 91.68% 95.57% 76.42% 83.51% 0.808 

KNN 97.71% 99.65% 97.26% 86.38% 92.72% 0.914 

RF 97.7% 96.09% 97.82% 89.70% 92.96% 0.916 

SVM 98.20% 93.22% 98.96% 96.35% 94.94% 0.939 

ANN 90.73% 64.77% 97.06% 86.38% 74.18% 0.687 

ENN-

IWO 
98.72% 99.65% 98.52% 93.12% 96.39% 0.956 
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Table 4: Confusion matrix of the classification of the ENN-IWO model for separate noise 

recognition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Class 1 Class 2 Class 3 Class 4 

Class 1 29 0 1 0 

Class 2 0 24 0 1 

Class 3 0 0 55 0 

Class 4 0 4 0 21 

Predicted class 

Act

ual 

clas

s 
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Table 5: Comparison of the performance metrics of the six classification models for 

separate noise recognition based on split validation  

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 83.7% 83.7% 94.26% 83.7% 83.7% 0.77 

KNN 85.93% 85.93% 95.08% 85.93% 85.93% 0.801 

RF 91.85% 91.85% 97.21% 91.85% 91.85% 0.887 

SVM 86.67% 86.67% 95.36% 86.67% 86.67% 0.813 

ANN 84.44% 84.44% 94.53% 84.44% 84.44% 0.781 

ENN-

IWO 95.56% 95.56% 98.5% 95.56% 95.56% 0.937 
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Table 6: Comparison of the performance metrics of the six classification models for 

separate noise recognition based on 10-fold cross validation 

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 83.45% 83.41% 93.84% 83.42% 83.57% 0.768 

KNN 85.67% 85.63% 94.65% 85.65% 85.80% 0.799 

RF 91.57% 91.53% 96.77% 91.55% 91.71% 0.884 

SVM 86.41% 86.37% 94.93% 86.38% 86.54% 0.811 

ANN 84.19% 84.14% 94.10% 84.16% 84.31% 0.779 

ENN-

IWO 
95.28% 95.24% 98.07% 95.25% 95.43% 0.935 
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Table 7: Confusion matrix of the classification of the ENN-IWO model for combined noise recognition 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 

Class 1 27 0 3 0 0 0 0 

Class 2 0 22 0 0 2 0 1 

Class 3 1 0 57 0 2 0 0 

Class 4 0 15 0 8 0 1 1 

Class 5 0 1 0 0 19 0 0 

Class 6 0 0 0 0 0 20 0 

Class 7 0 0 0 3 0 1 16 

Predicted class 

Act

ual 

clas

s 
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Table 8: Comparison of the performance metrics of the six classification models for 

combined noise recognition based on split validation  

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 82.5% 82.5% 96.97% 82.5% 82.5% 0.787 

KNN 82.5% 82.5% 96.94% 82.5% 82.5% 0.787 

RF 75.5% 81.62% 95.48% 75.5% 78.44% 0.704 

SVM 82.5% 82.5% 96.97% 82.5% 82.5% 0.691 

ANN 81% 81% 96.62% 81% 81% 0.77 

ENN-

IWO 
84.5% 84.5% 97.33% 84.5% 84.5% 0.812 
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Table 9: Comparison of the performance metrics of the six classification models for 

combined noise recognition based on 10-fold cross validation 

Type of 

classifier 
Accuracy Sensitivity specificity Precision 

F-

measure 

Kappa 

coefficient 

DA 82.25% 82.21% 96.53% 82.23% 82.38% 0.785 

KNN 82.25% 82.21% 96.50% 82.23% 82.38% 0.785 

RF 75.27% 81.33% 95.05% 75.25% 78.32% 0.702 

SVM 82.25% 82.21% 96.53% 82.23% 82.38% 0.689 

ANN 80.76% 80.72% 96.19% 80.73% 80.88% 0.768 

ENN-

IWO 
84.26% 84.22% 97.21% 84.45% 84.46% 0.811 
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Table 10: Statistical comparison between the different noise classification models based on two-tailed Student’s t-test 

 

 

 

 

 

 

Pair of 

classifiers 

Discriminant 

analysis 

K-nearest 

neighbors 

Random Forest Support vector 

machines 

Artificial 

neural network 
ENN-IWO 

Discriminant 

analysis 
H0 

 (P − value=1) 

H1 

(P − value 

=1.87×10-8) 

H0 

(P − value 

=3.01×10-1) 

H1 

(P − value 

=2.63×10-8) 

H1 

(P − value 

=1.51×10-4) 

H1 

(P − value 

=6.8×10-8) 

K-nearest 

neighbors 

H1 

(P − value 

=1.87×10-8) 

H0 

 (P − value=1) 

H0 

(P − value 

=6.98×10-1) 

H1 

(P − value 

=8.18×10-7) 

H1 

(P − value 

=1.38×10-7) 

H1 

(P − value 

=2.55×10-6) 

Random Forest H0 

(P − value 

=3.01×10-1) 

H0 

(P − value 

=6.98×10-1) 

H0 

 (P − value=1) 

H0 

(P − value 

=4.22×10-1) 

H1 

(P − value 

=1.28×10-2) 

H1 

(P − value 

=4.03×10-8) 

Support vector 

machines 

H1 

(P − value 

=2.63×10-8) 

H1 

(P − value 

=8.18×10-7) 

H0 

(P − value 

=4.22×10-1) 

H0 

 (P − value=1) 

H1 

(P − value 

=4.2×10-8) 

H1 

(P − value 

=5.56×10-6) 

Artificial 

neural network 

H1 

(P − value 

=1.51×10-4) 

H1 

(P − value 

=1.38×10-7) 

H1 

(P − value 

=1.28×10-2) 

H1 

(P − value 

=4.2×10-8) 

H0 

 (P − value=1) 

H1 

(P − value 

=1.66×10-13) 

ENN-IWO 
H1 

(P − value 

=6.8×10-8) 

H1 

(P − value 

=2.55×10-6) 

H1 

(P − value 

=4.03×10-8) 

H1 

(P − value 

=5.56×10-6) 

H1 

(P − value 

=1.66×10-13) 

H0 

 (P − value=1) 
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Table 11: Statistical comparison of the developed noise classification model against other models based on non-parametric 

tests 

 

 

 

 

 

 

Pair of classifiers Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median 

Discriminant 

analysis, ENN-

IWO 

H1 

(P − value 

=5.39×10-7) 

H1 

(P − value 

=1.17×10-6) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =1×10-3) 

K-nearest 

neighbors, ENN-

IWO 

H1 

(P − value 

=5.39×10-7) 

H1 

(P − value 

=6.06×10-3) 

H1 

(P − value =6×10-3) 

H1 

(P − value =0) 

H1 

(P − value =1×10-3) 

Random Forest, 

ENN-IWO 

H1 

(P − value 

=5.39×10-7) 

H1 

(P − value 

=1.83×10-2) 

H1 

(P − value 

=1.8×10-2) 

H1 

(P − value =0) 

H1 

(P − value =1×10-3) 

Support vector 

machines, ENN-

IWO 

H1 

(P − value 

=5.39×10-7) 

H1 

(P − value 

=1.83×10-2) 

H1 

(P − value 

=1.8×10-2) 

H1 

(P − value =0) 

H1 

(P − value =1×10-3) 

Artificial neural 

network, ENN-

IWO 

H1 

(P − value 

=5.39×10-7) 

H1 

(P − value 

=6.93×10-7) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =1×10-3) 
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Table 12: Average ranking of the noise classification models using Friedman test and 

Friedman's aligned ranks test  

Type of classifier Friedman Friedman's aligned 

ranks 

Discriminant analysis 4.69 124.21 

K-nearest neighbors 3.66 110.51 

Random Forest 3.83 106.19 

Support vector machines 2.63 81.21 

Artificial neural network 5.16 150.71 

ENN-IWO 1 24.15 
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Table 13: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the EN-IWO noise classification model using Nemenyi test, Holm test and Finner test  

Pair of classifiers Friedman Friedman's aligned ranks 

Nemenyi Holm Finner Nemenyi Holm Finner 

Discriminant analysis, 

ENN-IWO  
H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

K-nearest neighbors, 

ENN-IWO  
H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

Random Forest, ENN-

IWO  
H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

Support vector machines, 

ENN-IWO  
H1 

(P − value 

=5.71×10-3) 

H1 

(P − value 

=3.43×10-3) 

H1 

(P − value 

=8.2×10-4) 

H1 

(P − value 

=7.9×10-4) 

H1 

(P − value 

=5.2×10-4) 

H1 

(P − value 

=1.3×10-4) 

Artificial neural network, 

ENN-IWO  
H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 
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Table 14: Average run time in seconds of different classification models of noise detection  

Average run 

time 

Discriminant 

analysis 

K-nearest 

neighbors 

Random 

Forest 

Support 

vector 

machines 

Artificial 

neural 

network 

ENN-

IWO 

Training time 3.36 4.84 62.73 39.87 523.11 1203.56 

Classification 

time 

0.034 0.035 0.036 0.035 0.037 0.039 
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Table 15: Average run time in seconds of different classification models of separate noise 

recognition  

Average run 

time 

Discriminant 

analysis 

K-nearest 

neighbors 

Random 

Forest 

Support 

vector 

machines 

Artificial 

neural 

network 

ENN-

IWO 

Training time 4.23 5.96 77.16 60.65 620.42 1250.42 

Classification 

time 
0.037 0.037 0.038 0.037 0.039 0.041 
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Table 16: Average run time in seconds of different classification models for combined noise 

recognition  

Average run 

time 

Discriminant 

analysis 

K-nearest 

neighbors 

Random 

Forest 

Support 

vector 

machines 

Artificial 

neural 

network 

ENN-

IWO 

Training time 4.77 6.96 89.09 65.23 702.85 1652.65 

Classification 

time 
0.044 0.046 0.047 0.048 0.046 0.046 
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Table 17: Performance evaluation of different restoration models for “Image 1” corrupted 

with Gaussian noise 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm Lee filter of size 2×2 24.47 235.06 0.083 2.47 

MDE 

algorithm 
Frost filter of size 3×3 25.24 185.88 0.074 3.48 

PSO 

algorithm 
Wiener filter of size 2×2 25.28 192.31 0.076 3.34 

IWO 

algorithm 

Lee filter of size 3×3 followed by 

mode filter of size 5×5 25.01 303.77 0.093 2.61 

MFO 

algorithm 
Wiener filter of size 3×3 25.29 185.75 0.074 5.16 

GOA 
Average filter of size 3×3 followed 

by Wiener filter of size 3×3 23.3 411.62 0.103 1.68 

GWO 

algorithm 
Lee filter of size 3×3 25.14 250.23 0.084 2.6 

GA 
Gaussian filter of Size 3×3 and 

sigma of 0.6 25.18 186.06 0.074 3.47 

Nonlinear 

programming 
Median filter of size 2×2 22.12 406.89 0.104 1.56 

Median filter Size 4×4 22.64 292.86 0.089 2.23 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 21.45 465.20 0.121 1.87 

Weiner filter Size 4×4 23.09 195.96 0.084 2.17 

Mean filter Size 4×4 20.02 646.74 0.143 1.12 

Mode filter Size 4×4 16.73 1381.15 0.211 0.47 

Lee filter Size 4×4 23.02 251.09 0.082 2.57 

Frost filter Size 4×4 22.13 317.34 0.091 2.04 
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Table 18: Performance evaluation of different restoration models for “Image 2” corrupted 

with salt and pepper noise 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm Lee filter of size 2×2 30.03 66.94 0.038 13.15 

MDE 

algorithm 

Gaussian filter of Size 5×5 and 

sigma of 0.17 30.07 67.35 0.039 13.61 

PSO 

algorithm 

Gaussian filter of Size 3×3 and 

sigma of 0.48 followed by Lee 

filter of Size 3×3 
24.94 287.99 0.092 2.48 

IWO 

algorithm 

Median filter of size 3×3 followed 

by frost filter of size 3×3 25.45 135.44 0.057 13.47 

MFO 

algorithm 
Median filter of size 3×3 30.11 65.29 0.038 14.24 

GOA 
Median filter of size 2×2 followed 

by frost filter of size 3×3 23.91 199.6 0.066 4.62 

GWO 

algorithm 
Frost filter of size 3×3 29.90 72.41 0.039 12.66 

GA Frost filter of size 2×2 28.73 65.31 0.039 14.18 

Nonlinear 

programming 
Median filter of size 2×2 25.36 199.89 0.058 4.57 

Median filter Size 4×4 21.37 303.8 0.078 2.87 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 19.9 631.11 0.049 1.65 

Weiner filter Size 4×4 22.7 292.09 0.078 3.05 

Average filter Size 4×4 21.88 279.46 0.088 3.18 

Mode filter Size 4×4 13.74 2748.22 0.194 0.32 

Lee filter Size 4×4 23.54 192.09 0.078 4.75 

Frost filter Size 4×4 22.39 244.75 0.084 3.63 
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Table 19: Performance evaluation of different restoration models for “Image 3” corrupted 

with speckle noise 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm 

Gaussian filter of Size 4×4 and 

sigma of 0.25 followed by Lee 

filter of Size 3×3 
24.31 307.36 0.094 3.56 

MDE 

algorithm 
Wiener filter of size 3×3 24.49 270.5 0.088 4.05 

PSO 

algorithm 
Lee filter of size 2×2 24.44 566.83 0.124 2.32 

IWO 

algorithm 

Frost filter of Size 3×3 followed by 

Wiener filter of Size 2×2 23.45 276.34 0.088 4.02 

MFO 

algorithm 
Lee filter of size 3×3 24.57 228.9 0.082 4.13 

GOA Frost filter of Size 3×3 23.8 271.24 0.087 3.57 

GWO 

algorithm 
Frost filter of size 2×2 24.26 307.32 0.093 3.55 

GA Gaussian filter of Size 4×4 and 

sigma of 0.25 followed by Lee 

filter of Size 3×3 
24.21 272.1 0.089 1.72 

Nonlinear 

programming 

Average filter of size 3×3 followed 

by mode filter of size 4×4 20.16 640.86 0.136 4.08 

Median filter Size 4×4 19.94 511 0.112 2.15 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 19.11 796.62 0.164 1.89 

Weiner filter Size 4×4 23.13 275.39 0.089 3.99 

Average filter Size 4×4 21.25 378.79 0.099 2.9 

Mode filter Size 4×4 15 2055.63 0.264 0.54 

Lee filter Size 4×4 22.4 270.82 0.088 3.07 

Frost filter Size 4×4 21.62 331.94 0.095 2.29 
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Table 20: Performance evaluation of different restoration models for “Image 4” corrupted 

with a combination of Gaussian and speckle noises 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm 
Wiener filter of size 4×4 followed 

by median filter of size 3×3 24.27 195.14 0.095 5.59 

MDE 

algorithm 

Lee filter of size 3×3 followed by 

median filter of size 3×3 24.49 180.49 0.092 4.67 

PSO 

algorithm 

Wiener filter of size 3×3 followed 

by median filter of size 3×3 24.58 177.6 0.091 4.72 

IWO 

algorithm 

Wiener filter of size 5×5  followed 

by Gaussian filter of Size 3×3 and 

sigma of 0.5 
24.16 193.02 0.094 6.22 

MFO 

algorithm 

Wiener filter of size 3×3 followed 

by Lee filter of size 3×3 25.14 158.51 0.084 7.87 

GOA 
Wiener filter of size 3×3 followed 

by average filter of size 3×3 24.08 264.4 0.104 5.62 

GWO 

algorithm 

Lee filter of size 3×3 followed by 

Wiener filter of size 3×3 24.98 155.04 0.086 6.82 

GA Lee filter of size 3×3 followed by 

Wiener filter of size 6×6 24.24 180.54 0.092 7.64 

Nonlinear 

programming 

Median  filter of size 4×4  followed 

by Gaussian filter of Size 5×5 and 

sigma of 0.7 
15.24 1977.65 0.339 0.69 

Median filter Size 4×4 19.51 336.96 0.116 4.06 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 17.93 985.79 0.223 2.18 

Weiner filter Size 4×4 23.65 217.6 0.099 5.22 

Average filter Size 4×4 21.90 234.15 0.100 5.88 

Mode filter Size 4×4 15.06 2029 0.343 0.68 

Lee filter Size 4×4 23.22 178.56 0.098 5.71 

Frost filter Size 4×4 22.53 208.21 0.096 5.58 
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Table 21: Performance evaluation of different restoration models for “Image 5” corrupted 

with a combination of Gaussian and salt and pepper noises 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm Frost filter of size 5×5 24.6 223.72 0.102 6.63 

MDE 

algorithm 
Median filter of size 2×2 24.93 206.13 0.101 7.24 

PSO 

algorithm 

Frost filter of size 4×4 followed by 

Wiener filter of size 3×3 24.87 214.92 0.099 6.77 

IWO 

algorithm 

Median filter of size 5×5 followed 

by Wiener filter of size 2×2 24.39 373.08 0.129 3.67 

MFO 

algorithm 
Median filter of size 3×3 25.06 180.19 0.095 8.61 

GOA Frost filter of size 3×3 25.05 208.41 0.102 7.02 

GWO 

algorithm 

Frost filter of size 4×4 followed by 

Wiener filter of size 4×4 24.37 205.84 0.101 7.25 

GA Frost filter of size 5×5 24.67 224.34 0.102 
6.47 

Nonlinear 

programming 

Gaussian filter of Size 2×2 and 

sigma of 0.02 followed by median 

filter of Size 2×2 
21.16 414.73 0.133 

3.59 

Median filter Size 4×4 19.7 284.55 0.104 5.08 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 17.52 1075.86 0.198 1.38 

Weiner filter Size 4×4 22.37 283.38 0.107 5.15 

Average filter Size 4×4 20.85 239.55 0.106 6.13 

Mode filter Size 4×4 14.13 2511.65 0.341 0.6 

Lee filter Size 4×4 21.64 190.31 0.098 7.99 

Frost filter Size 4×4 24.42 226.85 0.103 5.63 
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Table 22: Performance evaluation of different restoration models for “Image 6” corrupted 

with a combination of speckle and salt and pepper noises 

Restoration 

model 

Optimum design of filter(s) 𝐏𝐒𝐍𝐑 𝐌𝐒𝐄 𝐍𝐀𝐄 𝐈𝐄𝐅 

DE algorithm 
Lee filter of size 3×3 followed by 

Wiener filter of size 4×4 22.82 379.61 0.106 5.43 

MDE 

algorithm 

Lee filter of size 3×3 followed by 

Wiener filter of size 2×2 22.93 350.7 0.102 5.68 

PSO 

algorithm 

Wiener filter of size 3×3 followed 

by median filter of size 3×3 22.82 285.68 0.092 3.34 

IWO 

algorithm 
Lee filter of size3×3 22.71 339.44 0.101 5.78 

MFO 

algorithm 

Lee filter of size 3×3 followed by 

Wiener filter of size 3×3 22.98 290.61 0.091 5.91 

GOA 
Lee filter of size 3×3 followed by 

Wiener filter of size 6×6 22.39 323.4 0.098 5.83 

GWO 

algorithm 

Wiener filter of size 3×3 followed 

by median filter of size 2×2 22.75 297.94 0.093 3.25 

GA Gaussian filter of Size 3×3 and 

sigma of 0.54 followed by median 

filter of Size 3×3 
22.32 340.52 0.101 2.84 

Nonlinear 

programming 
Median filter of size 3×3 19.72 720.69 0.144 2.72 

Median filter Size 4×4 19.14 603.06 0.118 3.23 

Gaussian 

filter 
Size 4×4 and sigma of 0.4 16.67 1382.63 0.193 1.31 

Weiner filter Size 4×4 20.88 434.14 0.108 4.59 

Average filter Size 4×4 20.04 448.64 0.111 4.32 

Mode filter Size 4×4 10.28 6099.58 0.405 0.32 

Lee filter Size 4×4 21.66 360.59 0.099 4.82 

Frost filter Size 4×4 20.93 392.7 0.106 3.95 
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Table 23: Overall performance evaluation of the different types of restoration models  

Restoration model 𝐀𝐏𝐒𝐍𝐑 𝐀𝐌𝐒𝐄 𝐀𝐍𝐀𝐄 𝐀𝐈𝐄𝐅 

DE algorithm 24.94 180.71 0.06 6.82 

MDE algorithm 25.23 177.59 0.059 6.9 

PSO algorithm 24.56 184.26 0.061 6.71 

IWO algorithm 24.32 186.57 0.062 6.65 

MFO algorithm 25.36 176.32 0.059 7.18 

GOA 23.92 191.71 0.064 6.54 

GWO algorithm 25.11 178.72 0.059 6.86 

GA 24.52 184.91 0.062 6.7 

Nonlinear programming 20.3 415.34 0.099 3.09 

Median filter 20.23 418.92 0.106 3.1 

Gaussian filter 18.72 884.72 0.154 1.38 

Weiner filter 22.73 290.04 0.093 4.26 

Average filter 20.97 355.99 0.104 3.86 

Mode filter 14.14 2701.5 0.284 0.53 

Lee filter 22.47 241.72 0.09 5.17 

Frost filter 21.68 291.38 0.096 4.34 
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Table 24: Filtering protocol for different types of noises 

Type of noise Restoration 

model 

Optimum design of filter(s) 

Gaussian MFO algorithm Wiener filter of size 3×3 

Salt and pepper MFO algorithm Median filter of size 3×3 

Speckle MFO algorithm Lee filter of size 3×3 

Combination of Gaussian 

and speckle noises 
MFO algorithm 

Wiener filter of size 3×3 followed by Lee 

filter of size 3×3 

Combination of Gaussian 

and salt and pepper noises 
MFO algorithm Median filter of size 3×3 

Combination of Speckle and 

salt and pepper noises 
MFO algorithm 

Lee filter of size 3×3 followed by Wiener 

filter of size 3×3 
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Table 25: Statistical comparison between the different meta-heuristic-based restoration models based on two-tailed Student’s 

t-test 

 

 

Pair of meta-

heuristics 

DE MDE PSO IWO MFO GOA GWO GA 

DE H0 

 (P −
value=1) 

H1 

(P − value 

=2.46×10-2) 

H1 

(P − value 

=9.69×10-3) 

H1 

(P − value 

=3.39×10-3) 

H1 

(P − value 

=2.6×10-3) 

H1 

(P − value 

=1.41×10-4) 

H1 

(P − value 

=4.32×10-2) 

H1 

(P − value 

=1.2×10-5) 

MDE H1 

(P − value 

=2.46×10-2) 

H0 

 (P −
value=1) 

H1 

(P − value 

=7.6×10-2) 

H1 

(P − value 

=1.89×10-2) 

H1 

(P − value 

=1.47×10-3) 

H1 

(P − value 

=5.14×10-4) 

H0 

(P − value 

=2.38×10-1) 

H1 

(P − value 

=2.02×10-3) 

PSO H1 

(P − value 

=9.69×10-3) 

H1 

(P − value 

=7.6×10-2) 

H0 

 (P −
value=1) 

H0 

(P − value 

=2.92×10-1) 

H1 

(P − value 

=2.09×10-3) 

H1 

(P − value 

=1.11×10-4) 

H1 

(P − value 

=4.07×10-2) 

H0 

(P − value 

=8.53×10-1) 

IWO H1 

(P − value 

=3.39×10-3) 

H1 

(P − value 

=1.89×10-2) 

H0 

(P − value 

=2.92×10-1) 

H0 

 (P −
value=1) 

H1 

(P − value 

=8×10-4) 

H0 

(P − value 

=1.76×10-1) 

H1 

(P − value 

=1.29×10-2) 

H0 

(P − value 

=4.25×10-1) 

MFO H1 

(P − value 

=2.6×10-3) 

H1 

(P − value 

=1.47×10-3) 

H1 

(P − value 

=2.09×10-3) 

H1 

(P − value 

=8×10-4) 

H0 

 (P −
value=1) 

H1 

(P − value 

=2.9×10-5) 

H1 

(P − value 

=9.65×10-6) 

H1 

(P − value 

=1.27×10-7) 

GOA H1 

(P − value 

=1.41×10-4) 

H1 

(P − value 

=1.47×10-3) 

H1 

(P − value 

=1.11×10-4) 

H0 

(P − value 

=1.76×10-1) 

H1 

(P − value 

=2.9×10-5) 

H0 

 (P −
value=1) 

H1 

(P − value 

=6.47×10-4) 

H1 

(P − value 

=3.46×10-2) 

GWO H1 

(P − value 

=4.32×10-2) 

H0 

(P − value 

=2.38×10-1) 

H1 

(P − value 

=4.07×10-2) 

H1 

(P − value 

=1.29×10-2) 

H1 

(P − value 

=9.65×10-6) 

H1 

(P − value 

=6.47×10-4) 

H0 

 (P −
value=1) 

H1 

(P − value 

=2.52×10-4) 

GA H1 

(P − value 

=1.2×10-5) 

H1 

(P − value 

=2.02×10-3) 

H0 

(P − value 

=8.53×10-1) 

H0 

(P − value 

=4.25×10-1) 

H1 

(P − value 

=1.27×10-7) 

H1 

(P − value 

=3.46×10-2) 

H1 

(P − value 

=2.52×10-4) 

H0 

 (P −
value=1) 
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Table 26: Statistical comparison of the developed restoration model against meta-heuristic-based models based on non-

parametric tests 

 

 

 

Pair of meta-heuristics Wilcoxn Mann-Whitney-U Kruskal–Wallis Binomial sign Mood’s median 

DE, MFO  H1 

(P − value 

=8.58×10-5) 

H1 

(P − value 

=1.64×10-3) 

H1 

(P − value =2×10-

3) 

H1 

(P − value 

=3.13×10-4) 

H1 

(P − value 

=1.8×10-2) 

MDE, MFO  H1 

(P − value 

=9.17×10-4) 

H1 

(P − value 

=8.27×10-3) 

H1 

(P − value =8×10-

3) 

H1 

(P − value 

=6.96×10-5) 

H1 

(P − value 

=1.8×10-2) 

PSO, MFO  H1 

(P − value 

=1.73×10-4) 

H1 

(P − value =1×10-

5) 

H1 

(P − value =0) 

H1 

(P − value 

=3.93×10-3) 

H1 

(P − value =1×10-

3) 

IWO, MFO  H1 

(P − value 

=3.2×10-5) 

H1 

(P − value 

=4.4×10-6) 

H1 

(P − value =0) 

H1 

(P − value 

=1.19×10-3) 

H1 

(P − value =5×10-

3) 

GOA, MFO  H1 

(P − value 

=1.11×10-6) 

H1 

(P − value 

=4.01×10-8) 

H1 

(P − value =0) 

H1 

(P − value 

=2.27×10-7) 

H1 

(P − value =0) 

GWO, MFO H1 

(P − value 

=2.22×10-5) 

H1 

(P − value 

=2.69×10-3) 

H1 

(P − value =3×10-

3) 

H1 

(P − value 

=3.13×10-4) 

H1 

(P − value 

=1.8×10-2) 

GA, MFO H1 

(P − value 

=4.58×10-7) 

H1 

(P − value 

=4.09×10-2) 

H1 

(P − value =1×10-

3) 

H1 

(P − value 

=1.94×10-8) 

H1 

(P − value 

=1.8×10-2) 
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Table 27: Average ranking of the meta-heuristic-based restoration models using Friedman 

test and Friedman's aligned ranks test  

Type of classifier Friedman Friedman's aligned 

ranks 

Differential evolution algorithm 4.41 144.33 

Modified differential evolution 

algorithm 

3.88 109.05 

Particle swarm optimization 

algorithm 

4.5 159.69 

Invasive weed optimization 

algorithm 

5.27 181.61 

Moth-flame optimization algorithm 1 29.77 

Grasshopper optimization 

algorithm 

6.38 214.22 

Grey wolf optimization algorithm 4.38 131.72 

Genetic algorithm 6.13 185.58 
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Table 28: 𝐏 − 𝐯𝐚𝐥𝐮𝐞𝐬 of the moth-flame-based restoration model using Nemenyi test, Holm test and Finner test  

Pair of meta-heuristics Friedman Friedman's aligned ranks 

Nemenyi Holm Finner Nemenyi Holm Finner 

DE, MFO  H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

MDE, MFO  H1 

(P − value 

=2×10-5) 

H1 

(P − value 

=1×10-5) 

H1 

(P − value =0) 

H1 

(P − value 

=1.51×10-5) 

H1 

(P − value =0) 

H1 

(P − value =0) 

PSO, MFO  H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

IWO, MFO  H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

GOA, MFO  H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

GWO, MFO H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value 

=1×10-5) 

H1 

(P − value =0) 

H1 

(P − value =0) 

GA, MFO H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 

H1 

(P − value =0) 
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Table 29: Average run time in seconds of different restoration models  1 

Average run 

time 

DE MDE PSO IWO MFO GOA GWO GA NLP Conventional 

restoration 

models 

Training time 748.45 899.09 711.84 1304.62 915.38 1062.12 787.37 559.41 475.72 … 

Restoration 

time 
2.93 2.7 3.15 3.83 2.69 3.16 2.94 3.17 2.69 2.89 

 2 

 3 

AS 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 




