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Abstract—Depth estimation is a traditional computer vision
task, which plays a crucial role in understanding 3D scene
geometry. Recently, deep-convolutional-neural-networks based
methods have achieved promising results in the monocular depth
estimation field. Specifically, the framework that combines the
multi-scale features extracted by the dilated convolution based
block (atrous spatial pyramid pooling, ASPP) has gained the
significant improvement in the dense labeling task. However,
the discretized and predefined dilation rates cannot capture the
continuous context information that differs in diverse scenes
and easily introduce the grid artifacts in depth estimation. In
this paper, we propose an attention-based context aggregation
network (ACAN) to tackle these difficulties. Based on the
self-attention model, ACAN adaptively learns the task-specific
similarities between pixels to model the context information.
First, we recast the monocular depth estimation as a dense
labeling multi-class classification problem. Then we propose a
soft ordinal inference to transform the predicted probabilities
to continuous depth values, which can reduce the discretization
error (about 1% decrease in RMSE). Second, the proposed
ACAN aggregates both the image-level and pixel-level context
information for depth estimation, where the former expresses
the statistical characteristic of the whole image and the latter
extracts the long-range spatial dependencies for each pixel. Third,
for further reducing the inconsistency between the RGB image
and depth map, we construct an attention loss to minimize
their information entropy. We evaluate on public monocular
depth-estimation benchmark datasets (including NYU Depth V2,
KITTI). The experiments demonstrate the superiority of our
proposed ACAN and achieve the competitive results with the
state of the arts. The source code of ACAN can be found in
https://github.com/miraiaroha/ACAN

I. INTRODUCTION

Depth information has a significant impact on under-
standing 3D scenes and can benefit the tasks such as 3D
reconstruction[36] , 3D object detection [37], visual simul-
taneous localization and mapping (SLAM) [38], [18], and
autonomous driving [9]. Estimating the pixel-wise depth of
scenes from RGB images has triggered wide research recently
in the computer vision community. The goal of depth estima-
tion is to assign each pixel in an image the distance between
the observer and the scene point represented by this pixel.
Estimating the depth from a single monocular image is ill-
posed without any geometric cues or priors. Therefore the
previous works mainly focus on the stereo vision [13], [29], in
which the binocular images or multi-view images are adopted
to obtain the disparity map, and the depth information can
be further reconstructed from the disparity map by utilizing

the camera parameters. However, the drawbacks of stereo
matching lie in the blind areas of the prediction due to the
existence of occlusion, and the predicted results might be
distorted by inaccurate camera parameters.

Recently, deep-neural-network-based methods have been
widely used in computer vision tasks and achieved great
performances. Convolutional neural networks (CNNs) have
been proved effective for image classification. Simultaneously,
people have applied CNN to dense labeling tasks, such as
monocular depth estimation [6], [S], semantic segmentation
[2]], [49] and edge detection [43] by modifying the network
structure of CNN.

Despite the above success, there still has existed some key
challenges in monocular depth estimation tasks. In common
deep-CNN-based image-processing, the spatial scales of fea-
ture maps continue to shrink as the network goes deeper due to
the successive pooling and stride operations, which allows the
deep CNN to learn the increasingly abstract representations
and fuse the global features to obtain the image-level predic-
tion. However, this translation invariance property may hinder
the dense prediction tasks, such as semantic segmentation and
depth estimation, where detailed spatial information and image
structure are crucial. To overcome this problem, some previous
works utilize the skip connection[30] to combine the feature
maps produced by shallow layers and deep layers of the same
spatial scales. Moreover, the intermediate supervision [27]],
[42] is applied to the multi-scale cues to progressively refine
the prediction. In other works [47], [46], the application of
dilated convolution maintains the resolution while extending
the receptive fields and without introducing extra parameters.

Another challenge comes from the depth distribution of
objects in the scene. Huang et al. [15] studied the statistics of
range images of natural scenes (called depth maps in the depth
estimation field), which showed that the range images can be
decomposed into piecewise smooth regions that show little
dependencies with each other and the sharp discontinuities
typically exist in the object boundaries. Therefore, the concept
of “objects” in the scene can be better defined in terms of
changes in depth rather than some low-level features, such
as color, intensity, texture, lighting etc. From this perspective,
depth estimation as a classification task can be regarded as
a generalized semantic segmentation task while the labels
between pixels are not independent. Accordingly, the key point
in depth estimation is how to capture the long-range context
information of intra-object and inter-object. Yu et al. [46] used
serialized layers with increasing dilation rates to extend the
receptive fields of convolutional kernels, while the research
works [2], [3] implement an “atrous spatial pyramid pooling
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(ASPP)” framework to capture multi-scale objects and context
information by placing multiple dilated convolution layers in
parallel. However, the discretized and limited dilation rates
cannot cover the complex and continuous scene depth and
easily introduce the grid artifacts [40], which can be found in
Fig. Pl

In view of the challenges, this paper proposes a novel

depth estimation algorithm, called the attention-based context
aggregation network (ACAN), to tackle the monocular depth
estimation problem. The deep residual architecture [L1] is
adopted by ACAN, where dilated convolutions are used to
maintain the spatial scale. To extract the continuous pixel-level
context information, the self-attention module [39]], [41]], [25]]
is plugged into our model to approximate depth distribution of
scenes by learning an attention map that carries the normalized
similarities between all the pixels. According to the learned
attention map, we can obtain the context information of each
pixel. Different from prefixed or prestructured local kernels,
our proposed attention model can obtain adaptive similarities,
which reflect the relationships between each pixel and any
other pixels in the whole feature map. Instead of using
predefined regions and extracting sparse context information
in ASPP, the proposed ACAN can learn the attention weights
associated with meaningful contextual areas, resulting in pre-
dicting the piecewise smooth depth. The comparison between
ASPP and our proposed ACAN can be seen in Fig. P} To
reduce the inconsistency between RGB image and depth map,
KL divergence is adopted to model the divergence between
the distribution produced by the self-attention model and the
distribution constructed by the corresponding ground truth
depth. To further incorporate the image-level information for
depth estimation, the image-pooling [3l], [25] is utilized in this
paper. Finally, our proposed soft ordinal inference translates
the predicted probabilities into the continuous depth values
and produce more realistic transitional regions.

The main contributions of this paper can be summarized as

follows:

o We propose a pixel-level attention model for the monoc-
ular depth estimation that can capture the context in-
formation associated with each pixel. In addition, the
aggregation of pixel-level context and image-level context
is effective to promote the estimation performance. Our
experimental results demonstrate that the proposed pixel-
level attention model outperform the ASPP based model
since the generated pixel-level context information of
ACAN is flexible and continuous, and therefore avoid
the grid effect.

e To eliminate the large semantic gap from 2D image
texture and depth map, we introduce KL divergence as
our attention loss to minimize the divergence between the
distribution of the attention map and the distribution of
the similarity map constructed by the ground truth depth.
The effectiveness of the attention loss is confirmed by
our ablation experiments.

« An easy-implemented soft inference strategy is proposed
in this paper, which can reduce the discretization error
and produce more realistic depth map compared with the
naive hard inference.

II. RELATED WORK

Estimating the depth of a scene is a traditional task in
computer vision and has been studied for a long period. As
a pioneering work, Saxena et al. [34] infer the depth from
monocular cues based on Markov Random Field (MRF), and
further develop their method in [33], where the smoothness
assumption is imposed to the superpixels to enforce the neigh-
boring constraint. Their work later extended for the 3D model
generation [35]. In [22], semantic labels are incorporated into
the MRF framework to guide the depth estimation. Ladicky
et al. [17] showed that the property of perspective geometry
could be used to learn a much simpler classifier to predict the
likelihood of a pixel instead of a pixel-wise depth classifier.
All these works provide novel thoughts, while most of them
rely on strong geometric constraints and hand-crafted features
thus limit their models to generalize to diverse scenarios.

Recently, a large body of works adopts the deep neural
network for monocular depth estimation[6], [S], [14], [3]], [18],
[45]. The seminal work of Eigen et al. [6] first proposed
a multi-scale coarse-to-fine model, where the fine network
refines the global prediction from coarse network to produce
a more detailed result, and the innovative scale-invariant loss
is proved an effective loss function both for training and
evaluation. They then extended their model to a three-scale
architecture for three dense labeling tasks, i.e. predicting
normal, label and depth [S]. In order to solve the heavy-
tailed effect of depth values reported in [31], Laina et at. [[18]]
presented that the reverse Huber loss [53] is more appropriate
than standard L2 regression loss for depth estimation since
Huber loss is more sensitive to small errors. While the deep
CNN-based methods are excellent at extracting image fea-
tures, they are weak in reconstructing high-resolution images
due to the down-sampling operation and lack of structural
constraints, therefore, often obtain the depth estimation with
distorted boundaries and counterfeit regions. To tackle this
problem, Hu et al. [14] proposed the notable loss function
whose three items are complementary with each other and
the loss function is edge-aware. Garg et al [8] proposed an
unsupervised framework for single view depth estimation with
a photometric reconstruction loss between stereo pairs. Under
this setting, Godard et al. [10] further proposed a combination
of an L1 loss and the structural similarity index (SSIM) term
[S2] as the reconstruction loss and explicitly imposed a spatial
smoothness constraint [12] for the synthesized image. Chen et
al. [4] regarded the depth estimation as an image-to-image
translation task, additionally utilized an adversarial loss with
the discriminator as a structural penalty.

Besides the above methods using the task-specific loss or
geometric prior to supervise the network learning, there exists
another research route that fuses multi-scale information in
CNNs for pixel-level prediction [43)], [301, [47], [46l, [3],
[L6]. Most of them applied an encoder-decoder architecture,
where a reliable encoder adaptively learns the hierarchical
features of input RGB images. In the decoder, the specially
designed building blocks are employed to recover the spatial
resolution or leverage the multi-scale context to restore the
finer details. Laina [18] introduced an up-sampling block to
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Figure 1: Network architecture. The ResNet is adopted by the ACAN as the encoder, where the cascaded 2-dilated and 4-dilated
convolutions are used to avoid the over-downsampling. In the decoder, the CAM is proposed to extract and aggregate both the
pixel-level and image-level context. Finally, our proposed soft ordinal inference will translate the predicted probabilities into

continuous depth values.

improve the output resolution. In the research works [44],
[24], [20], [23], [45], the conditional random field (CRF)
based models have been utilized for the multi-scale features to
estimate the fine-grained depth maps. Kim et al. [L6] proposed
a deep variational model that integrates the predictions from
the global and local networks. In the research works [30],
[1O], [48], [19]], skip connections were added to concatenate
the detail-abundant features from the encoder with the decoder
features of the corresponding scales. Although these works
give the impressively sharp inferences, they also introduce
the inevitable artifacts in some highly textured regions [48]],
[26]. To address this problem, Fu et al. [7] employed the
dilated convolutions to capture context information in multiple
scales, a typical example is ASPP [3], which has been well
studied in semantic segmentation [2], [46l, [3]. While the
dilated-convolution-based methods have achieved the state-of-
the-art, the dilated kernels introduce a sparse sub-sampling of
activations, which results in an inherent problem identified as
“gridding” [3].

To deal with the gridding problem, different from using
prefixed structures of the dilated kernels, we design an at-
tention model to extract the continuous multi-scale context by
adaptively learning the pixel-level similarity map. The output
features of the decoder can be computed by a weighted sum
of contextual regions, which is essential for the fine-grained
depth estimation. Moreover, due to our designed attention
loss, the ambiguity caused by the large semantic gap could
be partly eliminated and the produced attention map could
be task-specific. CRF is widely adopted to obtain the pixel-
level pairwise similarities as the context information [2]], [44],
(501, [211], [20], [23]]. However, the similarities are patch-wise
and only able to compute between the pixel and its local
neighborhoods. Armed with the pixel-level attention, which
could be regarded as a global structural extractor, our proposed
ACAN can capture the long-range dependencies of intra-object
by directly computing interactions between widely scattered
pixels which share similar depth values.

Although estimating a depth range is more robust than
estimating a depth value for each pixel and the classification
strategy can put different weights on different depth ranges
according to the tasks of depth estimation [1l], the naive

hard-threshold-based depth inference ignores the predicted
confidence of the depth distribution and usually introduces the
stepped artifacts [7]], [[1]. In this paper, taking the full advan-
tage of the output confidence of the proposed network, we
propose a soft inference strategy to reduce the discretization
error and eliminate the stepped artifacts.

III. METHODS

This section introduces the architecture of our proposed
ACAN and associated loss functions for the monocular depth
estimation, which maps an RGB image to its corresponding
depth map in an end-to-end fashion.

A. Network Architecture

The network architecture is illustrated in Fig. [I] which also
uses the encoder-decoder framework. We consider the ResNet
as the encoder to extract the dense features of RGB image.
ResNet shows great gradient-propagating capability in deeper
networks by adding identity branches to plain network, which
is essential for depth estimation due to its large receptive
field [18]]. However, the over-downsampling of original ResNet
may hinder the reconstruction of the fine-grained depth map.
Instead, we replace the block3 and block4 in ResNet with
2-dilated and 4-dilated residual blocks, which favor for the
initialization of pre-trained parameters and maintain the scale
of the subsequent feature maps (3], [46].

In the decoder, we propose a novel building block that
called the context aggregation module (CAM) to enable the
network to capture the discriminative image-level and pixel-
level context information. We finally jointly train our model
using the combination of attention loss and ordinal loss. We
then describe CAM and the training losses in detail.

B. Context Aggregation Module

As illustrated in Fig. [T} the CAM includes two branches.
The top branch is a pixel-level attention model, i.e. self-
attention, the bottom branch is the image pooling operation.
In the end, the resulting output features from the two branches
are concatenated and passed to the subsequent classifier.
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Figure 2: (a) Our pixel-level attention model can capture
the global and dense context for each location, while ASPP
only parallelizes a limited amount of convolution kernels thus
resulting in the sparse sampling. In addition, the attention loss
is proposed to reduce the semantic gap between RGB image
and depth map.

Self-Attention: The self-attention module maps a query and
a set of key-value pairs to an output, where query, key and
value represent three feature vectors extracted by the input
via three transformation functions respectively. The output is
computed as a weighted sum of the values in the feature space,
where the weight assigned to each value is computed by a
pairwise function of the query with the corresponding key.
The details of the self-attention model are illustrated in Fig.
Ral
Specifically, as demonstrated in Fig. 2a] the feature map x €
RN *Cin inputted to the self-attention module is first encoded
into two embedded features, i.e. key feature K € RV*Cx and
query feature Q € RV*CQ, where K = ¢(z), Q = ¢(x), ¢
and ¢ are the transformation functions, N is the number of
spatial positions, i.e. N = H x W, and Cg = Cq < Cjj,.
The normalized attention weight w; ; can be computed by a
pairwise function F as follows,
Wy, j=

— _Flx,x;) d,5=1,...,N |

Where Q;(x) is the normalized factor, defined as ;(z) =
Eé\’:l}" (x;,x;) . To be more specific, we consider the embed-
ded Gaussian as the pairwise function.

o) o(xy)
F(z,xj)=e Vo (2)
where \/C'k is the scaling factor to prevent values produced
by outer-product operation growing large in magnitude, thus
pushing the attention weights into saturation. Therefore, the
pixel-level attention map W € RY*¥ can be denoted equiv-
alently as

W = softmax (QTK) 3)

By virtue of the learned attention weights, the output of
self-attention module at position ¢ can be defined as

N
ci = sz‘}jiﬁ(%) “4)
j=1

where ¢ transforms x into value feature V € RN*Cv,
By this way, the process of feature extraction is enhanced
via explicitly aggregating the context representation of the
it" pixel according to the learned attention weights. In this
paper, we choose the 1 x 1 convolutions followed by the batch
normalization layer and ReLU activation function as ¢ and ¢
and they share the same parameters.

Image Pooling: The image pooling has been widely used
to produce a class-specific activation map [51]]. We first apply
global average pooling (GAP) over the whole image to reduce
the 3D input feature maps to a 1D context vector, i.e., output
one response for every input feature map. Then by replicating
feature vector to the size of the input feature map, we can
achieve the image-level context map, which carries the mixture
of information belonging to different categories (channels)
and helps to clarify local confusions [25]. Essentially, we
discover that the GAP is similar to the channel-wise attention
mechanism, the difference is that the latter applies a softmax
to the context vector produced by the GAP to get an output
probability. The effectiveness of image pooling lies in its class-
awareness. Given the input image of a scene, the GAP can
obtain its statistic prior to the features of the whole image.
Our experiment at Section [[V-E3| confirms our assumption.

C. Training Loss

Our overall training loss £ includes two items

L :aattLatt + aordLord (5)

Where Ly is the attention loss and L4 is the ordinal loss,
g and o,-q are the coefficients.

Attention Loss: As illustrated in Fig. to bridge the
semantic gap between the RGB image and depth, we consider
the KL divergence as the attention loss for training the
attention model, which measures the distance between the
attention weights produced by the self-attention with respect
to its ground truth,

1 N N wk .
_ * 2
ey (G2) o
=1 j=1 ’
Where w; ; is the attention weights produced by Eq. [T] and
w; ; can be computed by the ground truth depth values of ith
pixel and ;" pixel as follows,

. exp (1n dmax — | Ind} —1n d; \)

7 Yo exp (Indiax — |Indy —Ind3|)

where dn,.x denotes the preset value that is slightly larger
than the maximum depth value in the dataset. It is noted that



w,. (the 445, row of w) is the normalized attention distribution
of the it pixel. Without using L., our attention model
can also produce certain plausible attention map according
to the extracted features of the image. However, this is
problematic on the highly textured surface as the assumption
of appearance-depth correlation is violated in these regions.

Ordinal Loss: The depth estimation is regarded as a pixel-
level classification problem. Due to the severe imbalance of
depth data, the samples are distributed more frequently in the
small depth value intervals [19]. However, since the magnitude
of the error of the large depth sample is larger than that of
the small depth sample, the network may over-fit the former.
Hence, we discretize the ground truth depth value d in
logarithmic space into K sub-intervals equally,

«_ Indi —Indpi,
li N Lln dmax - ln dmin % KJ (8)

Where If € {0,1,---,K — 1} is the quantified label of

h pixel, d} is the continuous depth value of i‘" pixel. The
ordered discretization thresholds t* € {0,1,--- ,t5~1} can
be obtained as follows,
In dmaiézlln diin k (9)

The ordinal loss [28]], [7] is adopted in the proposed ACAN
to learn our network parameters rather than the straightforward
cross entropy loss, which transfers the multi-class classifi-
cation problem into a series of simpler binary classification
problems, each of which only decides whether the sample
is larger than t*. The ordinal loss imposes large loss on
predictions that are not consistent with the sequential property
of the depth labels.

Formally, assuming Y € RV*2K denotes the output (confi-
dence map) of the network. We can compute the ordinal loss
at spatial position ¢,

tk — eln dmin+

Ir—1

Z lnPk

PF=P(l; > k) =

K-—1
> (1-mPf), (10)

k=¥
eYi2k+1

eYi,2k + eYi,2k+1

Where [; is the estimated label and PF is the ordinal
probability that [ is larger than k at position i. The image-
wise ordinal loss is defined as the average of 6(y;) over all
spatial positions,

1 N
Lora = + ;e(yi) (1n)
Soft Ordinal Inference: Classification instead of regression
for depth estimation has been well studied in previous works,
which can naturally obtain the confidence of the depth distri-
bution [7]], [19], [1]. The element in the confidence map of
each class only pays attention to the specific depth interval,
which simplifies the network learning. However, it introduces
the discretization error, which is sensitive to the number of
depth intervals. In addition, the hard-threshold-based inference
strategies [7]], [[1] ignored the obtained probability distribution

which can be an important cue during evaluating and may
result in the step effect in the depth map, reported in our
experiment Instead, we generalize the naive hard in-
ference to a soft version, called the soft ordinal inference to
solve the above problems. The soft ordinal inference takes full
advantage of the confidence of predictions and shows a strong
ability to classify the transitional regions of inter-object.

After obtaining the probabilities of K binary classification
for each pixel, the predicted depth d; of hard inference can be
computed as,

tli tli+1
d; = % (12)
K—
Z (PF >0.5)

where 7(-) is an indicator function such that n(true) = 1
and 7(false) = 0. The rounding operation of hard inference
ignores the probability (or confidence) predicted by the net-
work, which may distort the predictions of transitional regions
that difficult to distinguish.

However, our soft ordinal inference can transfer the pre-
dicted probabilities to continuous depth values as follows,

tli th1+1 tl1/+1 tli+2
di= ( SD)+ D (1Y)
= UzJ =[i—1
K—1
Ji= Z P
k=0

where |-] means the floor operation. D; is between 0 and
1, which represents the extent to which the predicted category
is close to [;;1. Actually, [; is the area under the probability
distribution curve, which will be discussed in Section

IV. EXPERIMENTS

In this section, we investigate the performance of the
proposed ACAN model on two publicly available monocular
depth datasets, NYU v2 Depth [36], KITTT [9].

A. NYU v2 Depth

The original NYU v2 Depth dataset [36]consists of around
240k RGB-D images of 464 indoor scenes, captured by
a Microsoft Kinect camera as video sequences. Following
the research works [6], [[18], we use the official train\test
split, where 249 scenes for training and 215 for testing. For
training, we sample approximately 12k unique images with
a fixed sampling frequency from each training sequence and
then fill in the invalid pixels of the depth map using the
colorization method, which is available in the toolbox of NYU
v2 dataset. The original image resolution is 480 x 640, we
first downsample it to 288 x 384 using bilinear interpolation
and then randomly crop to 256 x 352 pixels, as inputs to the
network. It is noted that the output of ACAN is 1/8 of ground
truth depth in scale, we upsample the output to the desired
spatial dimension bilinearly. Following [6], we use the same



online data augmentation strategies to increase the diversity
of samples, which include random scaling, random rotation,
color, flips, and contrast. For testing, we use the official 654
images and report our scores on a predefined center cropping
by Eigen [6].

B. KITTI

KITTI dataset [9] is composed of several outdoor scenes
captured by LIDAR sensor and car-mounted cameras while
driving. Following [6], we use the part of raw data selected
from the “city”, “residual” and “road” categories for training,
which including around 22k images from 28 scenes, and we
evaluate on 697 images selected from the other 28 scenes. The
original resolution is 375x1242, and are resized to 160x512
to form the inputs. As the target depth maps projected by the
point cloud are sparse, we mask them out and evaluate the loss

only on valid points in both the training and testing phases.

C. Implementation Details

We implement our proposed model using the public deep
learning framework Pytorch on a single Nvidia GTX1080Ti
GPU. In the proposed ACAN, both ResNet-50 and ResNet-
101 are the candidates for the encoder, whose parameters are
pretrained on the ImageNet classification task [32]]. The depth
intervals are set to 80 in all of our experiment. The learning
rate strategy applies a polynomial decay, which starts with
the learning rate of 2e-4 and is decayed with the power of
0.9 in the encoder. Since the shallow convolution kernels are
optimized well to extract the general low-level features, we set
the learning rate of the newly added decoder layers to 10 times
to that of the encoder layers. SGD Optimization Algorithm is
used to update the parameters, where momentum and weight
decay are set to 0.9 and 5e-4 respectively. We set the weights
of the different loss items to gy and «,rg=0.1. The number
of epoches is set to 50 both for KITTI and NYU v2, and batch
size is set to 8. We find that further increasing the iteration
number can hardly improve the performance.

D. Evaluation Metrics

Following previous works [6], we evaluate our depth pre-
dictions using the following quantitative metrics:

Threshold: % of d; s.t. max (%, ‘;—1) =6 < thr,thr =
1.25,1.252,1.253 1

RMSE(linear): /% 5, [|d; — |2

RMSE(og): /4 X2, || nd; — Indg]|?

. . o1 d;—d}
Abs Relative Difference: >, T
. . 1;—d;|?
Squared Relative Difference: I — il

Please note that N denotes the number of valid pixels.

E. Discussion on Our Work

In this subsection, we dig into the proposed context aggre-
gation module and the training loss for the proposed ACAN.
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(a) example on NYU v2

(b) example on KITTI

Figure 3: (a) example on NYU v2; (b) example on KITTIL. The
first column shows the RGB images from the validation set.
The second column presents the ground truth contextual region
computed by equation (7), the third column and fourth column
present the attention map produced by our ACAN trained
without and with L_att respectively. The first and second rows

demonstrate the different attention maps located at “+” of the
same image.
[ & 5 55 | RMSE _ARE
NYU w/o | 81.9% 958%  98.5% 0.502  0.140
w 82.6% 96.4%  99.0% 0.496  0.138
KITTI w/o | 91.0% 98.0%  99.4% 3902  0.090
w 91.9% 982%  99.5% 3.599  0.083
higher is better lower is better

Table I: Comparisons of ACAN trained with and without
attention loss

1) Effect of the attention model and attention loss: We first
study the effectiveness of the proposed pixel-level attention
model. For qualitative analysis, we visualize the attention maps
produced by the attention model with and without attention
loss respectively. Fig. [3] shows that (1) the pixel-level attention
model does predict the meaningful contextual regions which
capture the long-range dependencies, and is well adjusted to
different scenarios adaptively. (2) The visual comparison of
the produced attention maps reveals that the model trained
with our L, can give the more detailed and global contextual
regions, which also acts as a structural extractor. For example,
in the first row of Fig. @ the attention map without L,
can only capture a local contextual region at this location,
while the attention map with L, highlights the area of the
standing man. Moreover, it also captures the context of the
stair that is away from the man but similar in depth, which
proves that the attention model can extract the contextual
region according to the task-specific semantical correlation
rather than the similarity of local and low-level features, i.e.
the intensity or texture.

Quantitative results can be seen in Table [, where “w/0”
denotes the model trained without the attention loss and “w”
denotes the model trained with the attention loss. We can
find that our ACAN with attention loss can obtain a better
performance in all of the metrics.

2) Effect of the image-level feature: We conduct the ab-
lation experiment to reveal the effectiveness of incorporating



[ o 02 53 [ RMSE ARE

NYU wio | 81.8% 96.1% 99.0% | 0.504  0.140
w 82.6% 964% 99.0% | 0496  0.138

KITTI wlo | 914% 982% 99.5% | 3.733  0.085
w 91.9% 982% 99.5% | 3.599  0.083

higher is better lower is better

Table II: Comparisons with and without image-level features
on NYU and KITTI

(a) Input RGB images from KITTI (b)
norm

Matrix of L2

Figure 4: (a) input RGB images from KITTI, the images of
the first row are from ‘City’ category, and the images of the
second row are from ‘Residential’ category; (b) L2 norm of
image-level context vector of the four images.

the image-level context to the proposed module. Results are
shown in Table [l All of these models are built on ResNet-
101. In the Table III, “w” represents an ACAN model with
image-pooling block, “w/0” represents an ACAN model that
sets the responses from GAP to a zero vector for a comparison.

We further explore the effect of the image-pooling module
by visualizing the L2 norm matrix where each entry is
calculated from the context vectors produced by the GAP
between the two images. As shown in Fig. 4] the images are
selected from KITTI dataset, each row in FigE| is from the
same scenario and is visually similar. We observe that the
image-pooling module has the remarkable distinguishability,
as it shows significant differences between different scenes
and little but not completely undifferentiated difference from
the same scene. It reveals that the image-pooling module can
extract the discriminative pattern of scenes.

The above experiment reveals that the image-level context
information does act as a variant of channel-wise attention
mechanism, which considers the class-specific statistics prior
that expresses the visual characteristic of a scene. Therefore,
our proposed ACAN is robust to the varied depth samples
from the dataset.

3) Effect of the ordinal loss and soft ordinal inference: To
demonstrate the effectiveness of the ordinal loss, we compared
the depth estimation obtained by ordinal inference and that
obtained using cross entropy. The experiment is evaluated
on KITTTI dataset. Normalized confusion matrices are plotted
in Fig. [5] On the plots of confusion matrices, the columns
show the predicted depth label, and the rows correspond to
the true class. The diagonal elements of the plots show what
percentage of the pixels the trained network correctly estimates
their true classes. That is, it shows what percentage of the true
and predicted labels match. The off-diagonal elements show
where the depth estimation has made mistakes. From Fig. [3} it
can be found that the ordinal-inference-based depth estimation
achieves higher estimation accuracy.

Ground truth label

20 25 30 35 40 45 50 55
Predicted label

20 25 30 35 40 45 50 55
Predicted label

(a) The plot of confusion matrix
(ordinal inference)

(b) The plot of confusion matrix
(cross entropy)

Figure 5: The plots of the normalized confusion matrices,
where the predicted labels are produced by (a) ordinal infer-
ence and (b) cross entropy. Here we only show the depth labels
between 20 and 60, as the samples in this range is dominant
and representative in KITTI dataset.
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Figure 6: The typical probability distribution of the output
of ordinal inference. Each curve on the plot represents the
predicted ordinal probability set {P2, P}, ..., PX} at position
i

To illustrate the effectiveness of the proposed soft ordinal
inference, we give the output probabilities of the ACAN
in Fig. [ which is defined by Eq. [I0] In the inference
phase, the predicted depth map can be inferred from the
output probability distribution. Different position has different
distributions of possible depth classes, some of which are
easy to estimate while others are not. For example, in Fig.
[l the depth classes of the green curves in the plot can be
easily determined, while those of the red curves are hard
to distinguish clearly. One plausible explanation is that the
model for depth estimation has uncertainty to distinguish the
depth classes from its nearby intervals at these locations.
Interestingly, the probability distribution curves are roughly
symmetric and centralized around the right labels. Therefore,
the area under the curve of probability distribution is nearest
to the ground truth depth label. Considering this statistical
analysis, we propose the soft ordinal inference to estimate the
depth values from the output probability effectively, which
can not only infer the correct depth class but also make up
the decimal error of quantization.

Furthermore, we then present both the qualitative and quan-
titative experimental results. All these experiments are imple-
mented with ResNet-50. As illustrated in Table m ‘CE(hard)’
represents the model trained by cross entropy and applies hard-



Figure 7: From left to right: input RGB image; ground truth;
results of OR(hard); results of OR(soft). The images in bottom
rows show the details in the red frames.

max inference, while ‘CE(soft)’ applies soft-weighted-sum
inference proposed in [19]]. ‘OR(hard)’ represents the model
trained by ordinal loss and applies hard-threshold inference
defined in Eq. [T2] while ‘OR(soft)’ applies the proposed soft
ordinal inference defined in Eq. [I3] For fair comparison, the
results of existing methods are also constructed with ResNet-
50.

It can be found that (1) No matter using the cross entropy
loss or ordinal loss, soft inference is always better than their
hard counterparts. (2) The RMSEs reduce clearly (NYU v2:
1.11% for CE, 1.14% for OR; KITTI: 0.56% for CE, 1.32%
for OR) while applying the soft inference. (3) The proposed
soft ordinal inference achieves the best result.

The qualitative comparison of the hard inference and our
soft ordinal inference are illustrated in Fig[7] As observed in
Fig. [7} the results of OR(hard) produce distorted predictions
on the transition area of depth while the results of OR(soft) are
smooth, continuous and similar to the ground truth depth map,
which well indicates that our soft ordinal inference can give
the more realistic depth map without introducing the stepped
artifact.

4) Comparisons with the-state-of-the-arts: 1) NYU v2
depth: We compare our proposed ACAN with state-of-the-
arts on NYU v2 depth dataset. The results are shown in Table
[[V] and the values in Table are copied from their respective
papers directly. In Table [[V] the ‘RX’ in the brackets means
the model is backboned on ResNet-X.

As we observe, our model obtains the best performance
among all of the ResNet-50 based methods in all metrics and
is even better than some methods built on a more stronger
backbone; our ResNet-101 based model obtains competitive
performance campared with some satae-of-the-arts. Specifi-
cally, in terms of RMSE, our best model outperforms the
previous works in a large margin, as our quantization strategy
and soft ordinal inference greatly reduce the discretization
error.

Qualitative results are illustrated in Fig. [§]and Fig. 0] As we
can observe in Fig. [] the results of 18] give the semantical
predictions, as their method imposed the over-downsampling

to the feature maps and lack of the detail-reconstruction
mechanism, resulting in their predictions corrupt into the
combination of simple geometries. The results of [5] contain
more details but introduce certain distortion. For example, in
the third row of Fig. [§] the depth of the person is estimated
inaccurate in the result of [S)]. The result of [44] is blurry. In
contrast, our results are detail-abundant and match the ground
truth well as a whole, as our attention model can extract the
global context features and is structure-aware.

Fig. 0] shows that the results of the ASPP-based method will
introduce severe grid artifacts. The reason is that the kernels
of the ASPP-based method are predefined elaborately, which
cannot adapt to different objects in the image. However, the
proposed ACAN method can produce the piecewise smooth-
ness depth map with more details visually.

2) KITTI: Table [V] shows the experimental results of the
proposed ACAN and the several state-of-the-art methods on
KITTI dataset.

As we observe, our proposed ACAN (no matter using
ResNet-50 or ResNet-101 as the encoder) achieves the ex-
cellent performance in all of the settings. Moreover, ACAN
(ResNet-50) outperforms the other methods even some of their
models are built on a stronger encoder. This can demonstrate
that our ACAN with soft ordinal inference is a more efficient
method for depth estimation.

Qualitative results are illustrated in Fig. [I0] As observed
in Fig. [I0] the result of [6] only give the coarse and blurry
predictions. The result of [[10] are visually plausible, however,
the depth maps of which are reconstructed indirectly via
learning the disparity of the given view under the stereo
constraint, which may introduce the noise. For example, the
predictions of the car and the tree are confused with the
background in the result of [[10]. In contrast, the predictions of
our method are visually satisfactory, where objects of different
scales can be recognized and our model can predict the sharp
boundaries as our attention model can capture the variable
pixel-level context adaptively.

V. CONCLUSION

In this paper, we propose a deep-CNN-based method, called
the attention-based context aggregation network (ACAN), for
monocular depth estimation. By utilizing the self-attention
model, the proposed ACAN is able to capture the long-range
contextual information by learning the pixel-level attention
map adaptively, which is essential for the fine-grained depth
estimation. The image pooling module is also incorporated in
the ACAN, which can obtain the discriminative image-level
context. The aggregation of the pixel-level and image-level
context is effective to promote the performance of depth esti-
mation. Soft ordinal inference is also proposed in this paper,
which takes full advantage of the output ordinal probabilities
to reduce the discretization error. The experiments on NYU
v2 dataset and KITTI dataset well demonstrate the superiority
of our model. In the future, we plan to investigate the more
effective variant of ACAN and extend our method to other
dense labeling tasks, such as semantic semantation and surface
normal prediction. Moreover, incorporating these tasks into the
depth estimation is also our interesting work.



01 02 03 | RMSE RMSE(og) ARE SRE

Li 80.8%  957%  98.5% 0.601 / 0.147 /

Xu [44] 81.1%  954%  98.7% 0.586 / 0.121 /

Laina 81.1%  953%  98.8% 0.573 0.195 0.127 /
NYU CE(hard) 799%  95.6%  98.8% 0.536 0.188 0.151  0.118
CE(soft) 80.0%  957%  98.9% 0.530 0.187 0.150  0.115
OR(hard) 81.4%  96.0%  98.8% 0.524 0.183 0.147  0.114
OR(soft) 81.5% 96.0% 98.9% 0.518 0.180 0.143  0.110
Godard [10] | 86.1% 94.9%  97.6% 4.935 0.206 0.190  1.515

Zhang 86.4%  96.6%  98.9% 4.082 0.164 0.139 /

Li 83.3%  95.6%  98.5% 5.325 / 0.128 /
KITTI CE(hard) 86.9%  96.8%  99.1% 4.446 0.163 0.105 0.664
CE(soft) 87.0%  96.9%  99.2% 4.421 0.160 0.103  0.631
OR(hard) 91.5%  982%  99.5% 3.686 0.132 0.086  0.461
OR(soft) 91.5% 98.3% 99.5% 3.637 0.130 0.085 0.445

higher is better lower is better

Table III: Comparisons of different training losses and inference strategies On NYU and KITTI with ResNet-50

| & 0o 03 | RMSE RMSE(og) ARE  SRE
Make3D [33] 447%  T145%  89.7% 1.214 / / /
Ladicky 542%  829%  94.1% / / / /
Liu [24] 61.4%  883%  97.1% 0.824 / 0.230 /
Li [20] 62.1%  88.6%  96.8% 0.821 / 0.232 /
Roy / / / 0.744 / 0.187 /
Liu [23] 65.0%  90.6%  97.6% 0.759 / 0.213 /
Eigen [6] 61.1% 88.7 97.1% 0.907 0.285 0.158 0.121
Eigen [3] 76.9%  95.0%  98.8% 0.641 0.214 0.158  0.121
Laina (R50) 81.1%  953%  98.8% 0.573 0.195 0.127 /
Xu (R50) [44] 81.1%  954%  98.7% 0.583 / 0.121 /
Li (R50) 80.8% 95.7 98.5% 0.601 / 0.147 /
Li (R101) 82.0%  96.0%  98.9% 0.545 / 0.139 /
Yan (R101) 81.3%  96.5%  99.3% 0.502 / 0.135 /
Cao (R152) [1] 81.9%  96.5%  99.2% 0.540 / 0.141 /
Li (R152) 832% 96.5%  98.9% 0.540 0.187 0.134  0.095
Moukari (R200) 83.0% 96.6%  99.3% 0.569 / 0.133 /
Our (R50) 81.5%  96.0%  98.9% 0.518 0.180 0.144  0.110
Our (R101) 82.6%  96.4%  99.0% 0.496 0.174 0.138  0.101
higher is better lower is better

Table IV: Comparisons between Our Proposed Method and The Different Previous State-of-The-Arts on NYU v2 Depth Dataset

Figure 8: From left to right: input RGB images; ground truth; results of ours; results of [[I8]; results of [3]; results of [44].




[ & 02 53 [ RMSE RMSE(log) ARE SRE
Liu [23] 647%  882%  96.1% 6.986 0.289 0.217 /
Eigen [6] 69.2%  89.9%  96.7% 7.156 0.270 0.190  1.515
Garg 74.0%  904%  96.2% 5.104 0.273 0.169  1.080
Godard (R50) 86.1%  949%  97.6% 4.935 0.206 0.114  0.898
Zhang (R50) [48] 86.4%  96.6%  98.9% 4.082 0.164 0.136 /
Li (R50) 833%  95.6%  98.5% 5.325 / 0.128 /
Li (R101) 85.7%  96.5%  98.9% 4.528 / 0.106 /
Li (R152) 86.8%  96.7%  99.0% 4.513 0.164 0.104  0.697
Cao (R152) 88.7%  963%  98.2% 4712 0.198 0.115 /
Our (R50) 91.5% 983%  99.5% 3.637 0.130 0.085  0.445
Our (R101) 91.9%  982%  99.5% 3.599 0.127 0.083  0.437
higher is better lower is better

Table V:

Figure 9: From left to right: input RGB images; ground truth;
results of ours; results of the ASPP-based method.
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